JP2011080137A - Blue coloring agent made of gold fine particle - Google Patents

Blue coloring agent made of gold fine particle Download PDF

Info

Publication number
JP2011080137A
JP2011080137A JP2009248231A JP2009248231A JP2011080137A JP 2011080137 A JP2011080137 A JP 2011080137A JP 2009248231 A JP2009248231 A JP 2009248231A JP 2009248231 A JP2009248231 A JP 2009248231A JP 2011080137 A JP2011080137 A JP 2011080137A
Authority
JP
Japan
Prior art keywords
gold
acid
salt
aqueous dispersion
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009248231A
Other languages
Japanese (ja)
Inventor
Young Kook Choi
永国 崔
Yakugun Cho
躍軍 張
Takaki Koike
崇喜 小池
Takao Fukuoka
隆夫 福岡
Yutaka Ishigami
裕 石上
Hisao Hidaka
久夫 日高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hyosung Corp
Original Assignee
Hyosung Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hyosung Corp filed Critical Hyosung Corp
Priority to JP2009248231A priority Critical patent/JP2011080137A/en
Publication of JP2011080137A publication Critical patent/JP2011080137A/en
Pending legal-status Critical Current

Links

Landscapes

  • Colloid Chemistry (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a blue coloring agent by gold nano fine particles of the quality same as that of a gold hydrosol (gold colloid) widely used as a color material of red to purple. <P>SOLUTION: Spiculisporic acid as a biosurfactant (a surfactant produced by an organism) with a tribasic acid type structure derived from an organism, safe and having biodegradability and various alkali salts of the lactone ring opened body thereof are used as a reducing agent of Au<SP>3+</SP>of a chloroauric acid aqueous solution in the coexistence of monovalent inorganic salts. After reduction reaction, the unreacted biosurfactant and the oxide thereof are adsorbed on gold nano fine particles in the produced gold hydrosol and gold hydrogel so as to stabilize a water dispersion system of the gold nano fine particles. Alternatively, the blue coloring agent is made of a water dispersion system of gold nanofine particles prepared by adding monovalent inorganic salts to a red system gold hydrosol obtained by reducing chloroauric acid by the biosurfactant. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、スピクリスポール酸およびその誘導体アルカリ塩が還元力と分散安定化作用を併せ持つ特性を利用して塩化金酸水溶液中のAu3+を還元するとともに、反応前または反応後に無機塩類やゲル化剤など第三物質を添加することによって、生成する金ナノ微粒子の水分散系(金ヒドロゲルまたは金コロイド)を安定化させ、かつ分散系中の金ナノ微粒子の一次粒子の粒子径制御し、さらに、これら一次粒子が凝集した二次粒子の大きさおよび疎密を制御して得られる金ヒドロゾル、また金ヒドロゲルからなる青色系着色料の提供に関する。The present invention reduces the Au 3+ in chloroauric acid aqueous solution by utilizing the characteristics that spikrispolic acid and its derivative alkali salt have both reducing power and dispersion stabilizing action, and also, before or after the reaction, inorganic salts and gelation. By adding a third substance such as an agent, the aqueous dispersion of gold nanoparticles (gold hydrogel or gold colloid) is stabilized, and the particle size of the primary particles of gold nanoparticles in the dispersion is controlled. The present invention also relates to provision of a blue colorant comprising a gold hydrosol obtained by controlling the size and density of secondary particles in which the primary particles are aggregated, and a gold hydrogel.

赤系色の金コロイドはステンドグラス、ボヘミアングラス、塗装用色材、合成樹脂用着色剤、酸化触媒、金属ナノ粒子分散ハイブリッド薄膜、表面増強ラマン分光分析(SERS)への利用など広く知られている。1nm〜1μmの大きさの金のコロイド粒子が水などの分散媒に安定に分散しているものが金コロイドである。金ヒドロゾルとも言う。金コロイドの着色力(溶液の色の濃さ)は、Cu2+の2万倍、Au3+の400倍である(非特許文献4)。しかし、希薄濃度(例えば0.1mmol/l以下)以下では色が薄く着色剤として各種の基材を染色するには至らない。希薄濃度の金コロイドは安定であるが、高濃度の金コロイドは不安定であり、コロイド系の安定化のために保護コロイド剤の添加が必須である。一般に、金コロイドは塩化ナトリウム等の微少な塩添加によって赤−紫−青−灰色−黒色と速やかに変化し、容易に沈殿を生ずるので、従来、安定な青色系金コロイドの応用は実現していない。Red-colored gold colloids are widely known for use in stained glass, bohemian glass, coating color materials, colorants for synthetic resins, oxidation catalysts, metal nanoparticle-dispersed hybrid thin films, and surface-enhanced Raman spectroscopy (SERS). Yes. A colloidal gold is one in which colloidal gold particles having a size of 1 nm to 1 μm are stably dispersed in a dispersion medium such as water. Also called gold hydrosol. The coloring power (the color depth of the solution) of colloidal gold is 20,000 times that of Cu 2+ and 400 times that of Au 3+ (Non-patent Document 4). However, below a dilute concentration (for example, 0.1 mmol / l or less), the color is thin and various substrates cannot be dyed as a colorant. Dilute gold colloids are stable, but high concentrations of gold colloids are unstable, and the addition of a protective colloid agent is essential to stabilize the colloidal system. In general, colloidal gold rapidly changes from red-purple-blue-gray-black by the addition of a small amount of salt such as sodium chloride, and easily precipitates, so that stable blue-type gold colloids have been realized in the past. Absent.

本発明者らは、先に[化1]で表わされるスピクリスポール酸アルカリ塩[I]および[化2]で表わされる[I]のラクトン環の開環体アルカリ塩[II]が、水溶液中、常温下において塩化金酸などのAu3+を還元するとともに生成する金コロイドの濃厚溶液を安定に分散させることを見出している(特許文献5)。この還元反応の機構は、クエン酸によるAu3+の還元反応と同様に[I]および[II]のカルボキシル基がAu3+を還元してAu(金単体)にするとともに、自身は酸化されてカルボニル基に変わると考えられる。また、生成した金コロイドは疎水コロイドで不安定であるが、カルボニル化された{I}および[II]の誘導体も界面活性であり、さらに還元反応に関わらなかった未反応の{I}および{II}がAuの金ナノ微粒子に吸着して負荷電を与え、またアルキル基が粒子を取り囲んで他粒子との合一・凝集を妨げることによって金コロイドを安定化させていると考えられる。本発明においては、上記の知見を基礎にして、還元反応で生成するAuの一次粒子の粒子径の制御、一次粒子の合一による二次粒子の大きさの制御を一価無機塩または式[II]のMg塩の存在下で達成したものである。The inventors of the present invention have previously described an alkali salt [II] of splicrispolic acid [I] represented by [Chemical Formula 1] and a ring-opened alkaline salt [II] of [L] represented by [Chemical Formula 2] in an aqueous solution. In addition, it has been found that Au 3+ such as chloroauric acid is reduced at room temperature and a concentrated colloidal gold solution is stably dispersed (Patent Document 5). The mechanism of this reduction reaction is that the carboxyl group of [I] and [II] reduces Au 3+ to Au 0 (single gold) as well as the reduction reaction of Au 3+ with citric acid, and itself is oxidized. It is thought to change to a carbonyl group. In addition, although the produced gold colloid is a hydrophobic colloid and unstable, the carbonylated {I} and [II] derivatives are also surface active, and unreacted {I} and {I II} is adsorbed to gold nanoparticles of Au 0 to give negative charge, and the alkyl group surrounds the particles to prevent coalescence and aggregation with other particles, thereby stabilizing the gold colloid. In the present invention, based on the above knowledge, control of the primary particle diameter of Au 0 produced by the reduction reaction, and control of the secondary particle size by coalescence of the primary particles are carried out as a monovalent inorganic salt or a formula. This was achieved in the presence of the Mg salt of [II].

特開平11−61209公報Japanese Patent Laid-Open No. 11-61209 特開昭62−299587公報JP-A-62-299587 特開平2−118186公報Japanese Patent Laid-Open No. 2-118186 特開平11−80647公報Japanese Patent Laid-Open No. 11-80647 特開2009−57627公報JP 2009-57627 A

福岡隆夫、森 康維、ケミカルエンジニアリング、2004−8,36(2004)Takao Fukuoka, Yasushi Mori, Chemical Engineering, 2004-8, 36 (2004) 荻野和男、大田昌勝、松井順一、粧技誌、31(2),158(1997)Kazuo Kanno, Masakatsu Ota, Junichi Matsui, Cosmetic Technology Journal, 31 (2), 158 (1997) 赤松謙祐、池田慎吾、縄舟秀美、化学工業、2005−10,40(2005)Kensuke Akamatsu, Shingo Ikeda, Hidemi Ropefune, Chemical Industry, 2005-10, 40 (2005) 中垣正幸、福田清成、「コロイド化学の基礎」、p.58、大日本図書(1993)Masayuki Nakagaki, Kiyonari Fukuda, “Basics of Colloid Chemistry”, p. 58, Dai Nippon Books (1993)

本発明は金ヒドロゾル中の金ナノ微粒子の濃度が1,3,12mmol/lと可及的高濃度において安定な青色系金ヒドロゾルを調製し、また青系色の金ヒドロゾル配合組成物のin situ調製を可能とする技術を提供するものである。塩化金酸の還元剤として用いるスピクリスポール酸およびその開環体のアルカリ塩が還元作用とともに分散作用などの界面活性を有することが本発明において重要な役割を果たしているのである。このため、還元反応前の塩化金酸水溶液中のAu3+への吸着、還元反応中のAu3+−−→Auへの還元と安定化、還元反応終了後のAuの一次粒子から二次粒子への凝集の制御のバランスを取ることによって青色系の色相・色調に発色させるのである。この場合、金ナノ微粒子の一次粒子が球状であることを想定している。疎水コロイドである金コロイド(金ヒドロゾル)に対する保護・安定化作用を持つとともに、添加する無機塩の塩効果の大きさを見極めながら、金ナノ微粒子の一次粒子の大きさおよび一次粒子のゆるやかな凝集体の大きさを平均で約100〜200nmに調製した上で安定に保つ金ヒドロゾル、また金ヒドロゲル組成物を調製可能にすることを課題とするものである。The present invention prepares a blue-based gold hydrosol that is stable at a gold nanosol concentration of 1,3,12 mmol / l as high as possible, and also provides an in-situ composition of a blue-based gold hydrosol composition. A technique that enables preparation is provided. It is important in the present invention that spikrispolic acid used as a reducing agent for chloroauric acid and the alkali salt of the ring-opened product thereof have a surface activity such as a dispersing action as well as a reducing action. Therefore, adsorption to Au 3+ in the aqueous chloroauric acid solution before the reduction reaction, reduction and stabilization to Au 3 + − − → Au 0 during the reduction reaction, and secondary particles from the primary particles of Au 0 after the reduction reaction are completed. By balancing the control of agglomeration into the particles, the color is developed in a blue hue / tone. In this case, it is assumed that the primary particles of the gold nanoparticle are spherical. While protecting and stabilizing the gold colloid (gold hydrosol), which is a hydrophobic colloid, the size of the primary particles of the gold nanoparticles and the gentle aggregation of the primary particles are determined while determining the magnitude of the salt effect of the added inorganic salt. It is an object of the present invention to make it possible to prepare a gold hydrosol and a gold hydrogel composition that keeps the aggregate size of about 100 to 200 nm on average and keeps it stable.

本発明者らは、上記課題を解決するために鋭意研究を重ね、微生物由来で安全かつ生分解性が確認されており、固有の化学構造(従来にはない多塩基酸型アニオン界面活性剤)をもつバイオサーファクタントの一種、スピクリスポール酸[(4S,5S)−4,5−ジカルボキシ−4−ペンタデカノリド]アルカリ塩[I],[化1]および[I]のラクトン環の開環体[(4S,5S)−3−ヒドロキシ−1,3,4−テトラデカントリカルボ酸]アルカリ塩[II]、[化2]が、水溶液中および含水有機溶媒中において塩化金酸溶液中のAu3+を還元して金コロイドを生成するとともに、生成した金ナノ粒子に吸着して分散安定化させることを、既に見出している(特許文献5)。本発明者らは、これらの知見をさらに進めて、式[I]および[II]が金ナノ微粒子に吸着して安定化させるとともに金ナノ微粒子に吸着していない過剰のスピクリスポール酸誘導体、[I]および[II]のミセルまたは液晶(非特許文献5)との共存により青色金コロイドをヒドロゲル化して安定化しうるとのコンセプトに立って本発明を完成させたものである。疎水コロイドである金コロイド(金ヒドロゾル)に無機塩類を添加すると容易に凝析を起こすことは周知であり、従来避けるべきことであった。すなわち、分子内に本来荷電基を持つ[I]および[II]のような親水コロイド(会合コロイド)は無機塩類を大量に添加しないと凝集を起こさない(塩析)が、金ヒドロゾル中の金微粒子のように荷電基を持たない疎水コロイドの場合は少量の無機塩類の添加によっても沈殿を生ずる(凝析)のである。さらに、無機塩類による凝析作用は無機イオンの価数が大きいほど飛躍的に凝析力が増すことが知られている(Schulze−Hardyの規則)。凝析価はコロイド溶液を凝析させるのに必要な電解質の最小濃度(mmol/l)と定義される。個々の疎水コロイドと個々の無機塩類との組合わせによりその数値は固有ではあるが、おおまかには一価無機塩で10〜200mmol,/l、二価無機塩で0.2〜2mmol/l、三価無機塩で0.01〜1mmol/lである。また、凝析価の対数を縦軸に、錯塩の原子価の対数を横軸に取ってプロットすると負勾配の直線関係があることも示されている(非特許文献4)。実際、本発明者らは、赤紫色の金ヒドロゾルに二価の1MCaCl・2HOまたは三価のAl3+を持つ0.1MKAl(SO水溶液を加えると赤紫色の沈殿が容易に生ずることを見出している。ただし、[II]のMg塩には単独でヒドロゲル、また乳化ゲルを形成するものがあり、金ヒドロゲルを安定化させる作用があることを見出している。本発明は還元作用と分散作用などの界面活性とを併せ持つバイオサーファクタントであるスピクリスポール酸同族体を金ナノ微粒子の保護コロイド剤として用い、敢えて無機塩と共存させることにより、不可能とされた安定な青系金ヒドロゲルの色材を得たものである。
The inventors of the present invention have made extensive studies to solve the above problems, have been confirmed to be safe and biodegradable due to microorganisms, and have a unique chemical structure (unprecedented polybasic acid type anionic surfactant). Of the lactone ring of spiccrisporic acid [(4S, 5S) -4,5-dicarboxy-4-pentadecanolide] alkali salt [I], [Chemical Formula 1] and [I] [ (4S, 5S) -3-Hydroxy-1,3,4-tetradecanetricarboxylic acid] alkali salt [II], [Chemical Formula 2] is used to convert Au 3+ in a chloroauric acid solution in an aqueous solution and an aqueous organic solvent. It has already been found that gold colloid is produced by reduction and adsorbed on the produced gold nanoparticles to stabilize the dispersion (Patent Document 5). The present inventors further advanced these findings, and the formulas [I] and [II] are adsorbed and stabilized on the gold nanoparticles, and an excess of splicrispolic acid derivative not adsorbed on the gold nanoparticles, [ The present invention has been completed based on the concept that blue gold colloid can be hydrogelated and stabilized by coexistence with micelles or liquid crystals (Non-patent Document 5) of [I] and [II]. It has been well known and should be avoided in the past that coagulation easily occurs when inorganic salts are added to gold colloid (gold hydrosol) which is a hydrophobic colloid. That is, hydrocolloids (associative colloids) such as [I] and [II] that originally have a charged group in the molecule do not aggregate (salting out) unless a large amount of inorganic salts are added. In the case of a hydrophobic colloid that does not have a charged group, such as fine particles, precipitation occurs (coagulation) even when a small amount of inorganic salt is added. In addition, it is known that the coagulation action by inorganic salts dramatically increases the coagulation force as the valence of inorganic ions increases (Schulze-Hardy rule). The coagulation number is defined as the minimum electrolyte concentration (mmol / l) required to coagulate the colloidal solution. Although the numerical value is unique depending on the combination of each hydrophobic colloid and each inorganic salt, it is roughly 10 to 200 mmol / l for a monovalent inorganic salt, 0.2 to 2 mmol / l for a divalent inorganic salt, The trivalent inorganic salt is 0.01 to 1 mmol / l. It is also shown that there is a negative gradient linear relationship when the logarithm of the coagulation value is plotted on the vertical axis and the logarithm of the valence of the complex salt is plotted on the horizontal axis (Non-Patent Document 4). In fact, when the inventors added a 0.1 M KAl (SO 4 ) 2 aqueous solution with divalent 1MCaCl 2 .2H 2 O or trivalent Al 3+ to a reddish purple gold hydrosol, a reddish purple precipitate was easily formed. It has been found to occur. However, some Mg salts of [II] form hydrogels or emulsified gels alone, and have been found to have the effect of stabilizing gold hydrogels. The present invention uses a spicrispolic acid homologue, which is a biosurfactant that has both surface activity such as reduction action and dispersion action, as a protective colloid agent for gold nanoparticles, and is made stable by making it coexist with inorganic salts. A blue-based gold hydrogel coloring material is obtained.

石上 裕、蒲 康夫、山崎信助、油化学、36,490(1987)Hiroshi Ishigami, Yasuo Tsuji, Shinsuke Yamazaki, Yukagaku, 36,490 (1987)

本発明者らは、第一にスピクリスポール酸(以下、S−酸と略称する)同族体を還元剤に用いて調製された赤系色の金コロイド(特許文献5)に対して、無機塩類等を添加して大きな金ナノ微粒子(一次粒子および二次粒子)からなる青系色の金コロイドを得、そのまま同じスピクリスポール酸同族体の具備する界面活性を発揮させて安定化しようとするものである。また、第二には、塩化金酸のAu3+を還元してAuの金コロイドを得るための水系反応混合物の中に界面活性なスピクリスポール酸誘導体とともに当初から無機塩類等の第三物質を加えて還元反応を行なわせ、得られた金コロイドの色相・色調の安定化を確保することである。上記二つのアプローチにはゲル(ヒドロゲル)形成による安定化も含まれる。このために[化1]で表わされるスピクリスポール酸アルカリ塩[I]およびスピクリスポール酸のラクトン環の開環体(以下、O−酸と略称する)アルカリ塩[化2]で表わされる[II]のうち、三つのカルボキシル基のすべてがn−ヘキシルアミンで中和されたもの(以下、O−3n−HAと略称する)、カルボキシル基の二つが2−エチルヘキシルアミンで中和されたもの(以下、O−2EHAと略称する)、同じく1.5個がアルギニンで中和されたもの(以下、O−1.5Argと略称する)、同じくMg1.5中和塩(以下、O−1.5Mgと略称する)を後添加してもよい。こうして、金ヒドロゾル中の青系色を示す金微粒子を分散安定化させる方法を見出し、本発明を完成するに至ったものである。The inventors of the present invention first made inorganic salts against a red-colored gold colloid (Patent Document 5) prepared using a spikrispolic acid (hereinafter abbreviated as S-acid) homologue as a reducing agent. To obtain a blue colloidal gold colloid consisting of large gold nanoparticles (primary particles and secondary particles), and to stabilize the surface activity of the same spicrispolic acid analog It is. In addition, secondly, a third substance such as an inorganic salt is added to the aqueous reaction mixture for reducing Au 3+ of chloroauric acid to obtain a gold colloid of Au 0 together with a surface active spiculisporic acid derivative. In addition, a reduction reaction is performed to ensure stabilization of the hue and tone of the gold colloid obtained. The above two approaches include stabilization by gel (hydrogel) formation. For this purpose, spikrispolic acid alkali salt [I] represented by [Chemical Formula 1] and ring-opened lactone ring (hereinafter abbreviated as O-acid) alkali salt [Chemical Formula 2] represented by [Chemical Formula 2] [II] ], All of the three carboxyl groups are neutralized with n-hexylamine (hereinafter abbreviated as O-3n-HA), and two of the carboxyl groups are neutralized with 2-ethylhexylamine ( Hereinafter, it is abbreviated as O-2EHA), 1.5 of which are neutralized with arginine (hereinafter abbreviated as O-1.5Arg), and a Mg1.5 neutralized salt (hereinafter referred to as O-1. (Abbreviated as 5Mg) may be added later. Thus, the inventors have found a method for dispersing and stabilizing gold fine particles exhibiting a blue color in a gold hydrosol, and have completed the present invention.

すなわち、本発明は、次式  That is, the present invention has the following formula:

Figure 2011080137
Figure 2011080137

[式中のXは無機アルカリ(Na、K、Li、NH、Mgなど)、有機アルカリ(アルキルアミン、アルギニンなど)、またはHを示す。nはXの陽イオンとしての価数を表わす][X in the formula represents an inorganic alkali (Na, K, Li, NH 4 , Mg, etc.), an organic alkali (alkylamine, arginine, etc.), or H. n + represents the valence of X as a cation]

で表わされる化合物[I]、および次式The compound [I] represented by the formula:

Figure 2011080137
Figure 2011080137

[式中のXは無機アルカリ(Na、K、Li、NH、Mgなど)、有機アルカリ(アルキルアミン、アルギニンなど)、またはHを示す。nはXの陽イオンとしての価数を示す][X in the formula represents an inorganic alkali (Na, K, Li, NH 4 , Mg, etc.), an organic alkali (alkylamine, arginine, etc.), or H. n + represents the valence of X as a cation]

で表わされる化合物[II]Compound [II] represented by

を含有することを特徴とする金微粒子からなる青色系着色料。A blue colorant comprising gold fine particles, characterized in that

多塩基酸バイオサーファクタント、スピクリスポール酸(以下、S−酸と略称する)およびそのラクトン環の開環体(以下、O−酸と略称する)の各種アルカリ塩は、親水・親油バランス(HLB)の異なる同族体を構成し、それらの水溶液が大きい界面活性[表面張力低下作用、乳化・分散作用(耐塩性あり)、金属イオン捕捉作用、pH緩衝作用、中程度の湿潤・浸透作用、対イオンを選ぶことによる増粘・ゲル化作用および液晶(ベシクル)形成作用を有することが見出されている(非特許文献5、6〜10)。また、スピクリスポール酸ナトリウム塩は、生分解性およびヒトや生物に対する安全性が示されている(非特許文献9)。本発明者らはS−酸の特性および機能について鋭意研究を進めたところ、S−酸およびその開環体のアルカリ塩が塩化金酸に対して強い還元力をしめすことを見出した(特許文献5)。S−酸開環体が三塩基酸型界面活性剤なので、ミセルの会合構造表面(ステルン層近傍)にAu3+イオンを強く引きつけ、局所濃縮するのである。ちなみに、O−3Na水溶液の臨界ミセル濃度(cmc):1.7x10−1,O−2Na:1.01x10−1,O−1Na:3.6x10−3mol/lである(非特許文献10)。O−酸の三n−ヘキシルアミン塩(以下、O−3n−HAと略称する)やO−酸の二置換2−エチルヘキシルアミン塩(以下、O−2EHAと略称する)は、中和度(カルボキシル基の置換度)が同じの上記ナトリウム塩よりも、cmcが小さく界面活性が大きい(非特許文献10)。これらのカルボキシル基がカルボニル基に酸化され、このとき塩化金酸のAu3+はAuの金nナノ微粒子に変換されると考えられる。これは、クエン酸三ナトリウムによる塩化金酸の還元機構と同様である。反応時塩化金酸の強い酸性のために、O−3NaはO−2NaやO−1Naに変わって、分散作用が強まるなど界面活性が大きくなって青色系金コロイドを得るのに好都合である。こうして、金コロイドの安定化には、生成したAuの金単体表面に、分子がかさ高く、多塩基酸であるO−酸アルカリ塩がイオン的、またアルキル基のファンデルワールス力により吸着して負電荷を与えて金微粒子間の合一を妨げるのである。さらにまた、塩化金酸の強い酸性によりO−3Naからに変換されたO−2NaとO−1Naの共存によって、やや濁ったスラリーないし、ヒドロゲルが安定化に寄与することもできる。
Various alkali salts of polybasic acid biosurfactant, spicrispolic acid (hereinafter abbreviated as S-acid) and its lactone ring ring-opened product (hereinafter abbreviated as O-acid) have a hydrophilic / lipophilic balance (HLB). ) Of different homologues, and their aqueous solutions have large surface activity [surface tension lowering action, emulsification / dispersion action (with salt resistance), metal ion scavenging action, pH buffering action, moderate wetting / penetration action, It has been found that it has a thickening / gelling action and a liquid crystal (vesicle) forming action by selecting ions (Non-Patent Documents 5, 6 to 10). Spikrispolic acid sodium salt has been shown to be biodegradable and safe for humans and organisms (Non-patent Document 9). As a result of diligent research on the properties and functions of the S-acid, the present inventors have found that the alkaline salt of the S-acid and its ring-opened compound exhibits a strong reducing power against chloroauric acid (Patent Document). 5). Since the S-acid ring-opened substance is a tribasic acid type surfactant, Au 3+ ions are strongly attracted to the surface of the micelle associating structure (near the stern layer) and concentrated locally. By the way, the critical micelle concentration (cmc) of the O-3Na aqueous solution is 1.7 × 10 −1 , O-2Na: 1.01 × 10 −1 , O-1Na: 3.6 × 10 −3 mol / l (Non-patent Document 10). . The tri-n-hexylamine salt of O-acid (hereinafter abbreviated as O-3n-HA) and the disubstituted 2-ethylhexylamine salt of O-acid (hereinafter abbreviated as O-2EHA) have a neutralization degree ( The cmc is smaller and the surface activity is larger than the sodium salt having the same carboxyl group substitution degree (Non-patent Document 10). These carboxyl groups are oxidized to carbonyl groups, and at this time, Au 3+ of chloroauric acid is considered to be converted to Au 0 gold n nanoparticles. This is similar to the reduction mechanism of chloroauric acid by trisodium citrate. Due to the strong acidity of chloroauric acid during the reaction, O-3Na is converted to O-2Na or O-1Na, which is advantageous for obtaining a blue-type gold colloid with increased surface activity such as increased dispersion action. Thus, in order to stabilize the colloidal gold, the O-acid alkali salt, which is a bulky and polybasic acid, is adsorbed on the surface of the generated Au 0 gold alone by ionic and van der Waals forces of alkyl groups. Thus, a negative charge is applied to prevent coalescence between the gold fine particles. Furthermore, due to the coexistence of O-2Na and O-1Na converted from O-3Na due to the strong acidity of chloroauric acid, a slightly turbid slurry or hydrogel can contribute to stabilization.

古澤邦夫監修、新しい分散・乳化の科学と応用技術の新展開、第I編第5節 天然乳化剤(石上 裕)、p.216、(株)テクノシステム、2006Supervised by Kunio Furusawa, New Dispersion / Emulsification Science and New Development of Applied Technology, Part I, Section 5 Natural Emulsifier (Hiroshi Ishigami), p. 216, Techno System Corporation, 2006 Y.Ishigami,Y.Zhang,F.Ji,CHIMICA OGGI,July/August Issue,1(spiculisporic acid)(2000)Y. Ishigami, Y. et al. Zhang, F.M. Ji, CHIMICA OGGI, July / August Issue, 1 (spiculsporic acid) (2000) 崔、石上、オレオサイエンス、2,649(2002)Tsuji, Ishigami, Oreoscience, 2,649 (2002) 石上 裕、化学工業、1990−9,28(1990)Hiroshi Ishigami, Chemical Industry, 1990-9, 28 (1990) 石上 裕、山崎信助、化技研報、80,231(1985)Hiroshi Ishigami, Shinsuke Yamazaki, Kaken Kengakuho, 80, 231 (1985)

ついで、本発明者らは、スピクリスポール酸誘導体の水溶液中における金微粒子の分散作用と耐塩性の限界とをバランスさせて、金微粒子の一次または二次粒子の粒子径を平均して100〜200nmのレベルに制御するとともに、準安定化または第三の添加物によりゲル化(ヒドロゲル化)して安定化する方法を見出して本発明を完成するに至ったものである。すなわち、還元剤兼金コロイドの分散安定剤として用いるスピクリスポール酸同属体、[I]および[II]は、アニオン性界面活性剤に分類されるが、本発明者らの研究により、耐塩性が大きく(非特許文献11)、pH緩衝作用があり(非特許文献12)、pHに依存して分子集合形態を液晶状態に変換する(非特許文献5)など当該コロイド分散系(金ヒドロゾル)の安定化に対して優れるとの展望の下に、応用技術として開発されたものである。ここで、無機塩の添加により、安定な金ヒドロゾルの青系色を得るには、500〜560nmの波長の光を吸収すれば色相は赤紫色、このときの金微粒子の粒子径は80nm、同様に560〜580nmの波長の光を吸収すれば青紫色、このときの金微粒子の粒子径は100nmまたそれ以上、595〜605nmの光の吸収であれば緑青、605〜750nmの光の吸収であれば青緑を示す(非特許文献14)。なお、添加物としての第三の物質は次のA,B,C,Dに四分類される。これらは、単独で、また二者、三者混合して添加してよい。ここで、A.一価の無機塩類(NaCl,KClなど)、B.ヒドロゲル形成性のスピクリスポール酸誘導体(O−酸のn−ヘキシルアミン塩、オクチルアミン塩、2−エチルヘキシルアミン塩)、であり、粘度は10mPa・s(100cps)以下で、著しいチキソトロピー性を示す。C.水系ゲル化剤・増粘剤(高分子ゲル化剤、アラビアガム、アルギン酸、ペクチン、ゼラチン、ケルコガム、キサンタンガム、プルラン、ポリビニルアルコール(PVA),ポリビニルピロリドン(PVP)などの水溶性高分子, D.後添加に限定されるものとして、水溶性有機酸(酢酸、酪酸、イソ吉草酸、アスコルビン酸等)およびO−1.5Mgがある。
Next, the present inventors balanced the dispersion action of the gold fine particles in the aqueous solution of the splicrispolic acid derivative and the limit of salt resistance, and averaged the particle diameter of the primary or secondary particles of the gold fine particles to be 100 to 200 nm. As a result, the present invention has been completed by finding a method of controlling to a level of ## EQU1 ## and stabilizing by quasi-stabilization or gelation (hydrogelation) with a third additive. That is, spikrispolic acid analogs [I] and [II] used as a reducing agent and colloidal gold dispersion stabilizer are classified as anionic surfactants. The colloidal dispersion system (gold hydrosol) is large (Non-Patent Document 11), has a pH buffering action (Non-Patent Document 12), and converts the molecular assembly form into a liquid crystal state depending on pH (Non-Patent Document 5). It was developed as an applied technology with the prospect of being excellent for stabilization. Here, in order to obtain a stable blue color of a gold hydrosol by adding an inorganic salt, the hue is reddish purple when absorbing light having a wavelength of 500 to 560 nm, and the particle diameter of the gold fine particles at this time is 80 nm. If it absorbs light with a wavelength of 560 to 580 nm, the particle size of the gold fine particles is 100 nm or more, and if it absorbs light with a wavelength of 595 to 605 nm, it is greenish blue, and absorbs light with a wavelength of 605 to 750 nm. Blue-green (Non-Patent Document 14). The third substance as an additive is classified into the following four categories A, B, C, and D. These may be added alone or in a mixture of two or three. Here, A. Monovalent inorganic salts (NaCl, KCl, etc.), B.I. It is a hydrogel-forming splicrispolic acid derivative (n-hexylamine salt, octylamine salt, and 2-ethylhexylamine salt of O-acid), and has a viscosity of 10 mPa · s (100 cps) or less and exhibits remarkable thixotropic properties. C. Water-based gelling agent / thickening agent (polymer gelling agent, water-soluble polymer such as gum arabic, alginic acid, pectin, gelatin, kelco gum, xanthan gum, pullulan, polyvinyl alcohol (PVA), polyvinyl pyrrolidone (PVP), Those limited to post-addition include water-soluble organic acids (such as acetic acid, butyric acid, isovaleric acid, ascorbic acid) and O-1.5Mg.

M.Osman,Y.Ishigami,K.Furusawa,H.Holmsen,J.Jpn.Oil Chem.Soc.(Yukagaku),46,741(1997)M.M. Osman, Y .; Ishigami, K .; Furusawa, H .; Holmsen, J. et al. Jpn. Oil Chem. Soc. (Yukagaku), 46, 741 (1997) Y.Ishigami,S.Yamazaki,Y.Gama,J.Colloid and Interface Sci.,94,131(1983)Y. Ishigami, S .; Yamazaki, Y. et al. Gama, J .; Colloid and Interface Sci. , 94, 131 (1983) 石上 裕、蒲 康夫、山崎信助、油化学、36,490(1987)Hiroshi Ishigami, Yasuo Tsuji, Shinsuke Yamazaki, Yukagaku, 36,490 (1987) 中原勝儼、色の科学、(株)培風館(1999)Katsumi Nakahara, Science of Color, Bafukan Co., Ltd. (1999)

<塩化金酸水溶液の調製>HAuCl・4HO1.030gを量りこみで100ml容メスフラスコに入れ、標線まで脱イオン・蒸留水(以下、純水という)を加えて100mlとし、25.0mmol/l(1.03%)HAuCl・4HO水溶液を調製した。低濃度の溶液は、この原液を希釈して調製した。別に、71.6mmol/lの高濃度溶液も調製した。Placed in a 100ml volume flask in crowded weighed <Preparation of aqueous chloroauric acid solution> HAuCl 4 · 4H 2 O1.030g, and 100ml was added deionized-distilled water to the mark (hereinafter, referred to as pure water), and 25. A 0 mmol / l (1.03%) HAuCl 4 .4H 2 O aqueous solution was prepared. A low concentration solution was prepared by diluting this stock solution. Separately, a highly concentrated solution of 71.6 mmol / l was also prepared.

<本発明に係るスピクリスポール酸アルカリ塩{I}およびその開環体アルカリ塩[II]の調製法>
O−酸は、S−酸のエタノールー水混合水溶液に溶解後、NaOH水溶液を加えて70℃に加熱・かくはんしてラクトン環を開環させ、ついで同量のHClを徐々に加えてO−酸を析出させ、含水エタノールから再結晶してO−酸を得た。このO−酸を所定量の水に懸濁し、かくはんしながら対応するアルカリ(NaOH,KOH,LiOH,Mg(OCHCH,ブチルアミン、n−ヘキシルアミン、2−エチルヘキシルアミン、アルギニンなど)を徐々に加えて中和塩を得た。なお、S−酸に所定量のアルカリを加えて70℃に加熱して、直接O−酸アルカリ塩の調製も実用的には支障がない。ただし、S−酸が少量夾雑し、金ヒドロゲルの特性の再現性が一部変わるおそれがある。
<Preparation of Splicrispolic Acid Alkaline Salt {I} and Ring-Opening Alkaline Salt [II] According to the Present Invention>
The O-acid is dissolved in an ethanol-water mixed aqueous solution of S-acid, then added with an aqueous NaOH solution, heated and stirred at 70 ° C. to open the lactone ring, and then gradually added the same amount of HCl to add an O-acid. And O-acid was obtained by recrystallization from hydrous ethanol. Alkali this O- acid was suspended in a predetermined amount of water, corresponding with stirring (NaOH, KOH, LiOH, Mg (OCH 2 CH 3) 2, butylamine, n- hexylamine, 2-ethylhexylamine, arginine, etc.) Was gradually added to obtain a neutralized salt. It should be noted that the preparation of the O-acid alkali salt is not practically hindered by adding a predetermined amount of alkali to the S-acid and heating to 70 ° C. However, a small amount of S-acid may be contaminated, and the reproducibility of the properties of the gold hydrogel may be partially changed.

<金コロイド液中の金微粒子の粒子径の決定>
金ナノ粒子の粒子径が既知の単分散性の市販金コロイド[田中貴金属工業(株)製およびブリティッシュ・バイオセル・インターナショナル社製]をUV測定して、UVスペクトルの極大吸収波長またはスペクトルの波形と粒子径との関係が求められている(特許文献1)。この関係図および150〜200nmのスペクトル波形の比較から、調製した金コロイド試料の金ナノ微粒子の粒子数を10〜1010個/mlに調節(希釈するなど相当する濃度に調整した)して可視・紫外分光光度計(UV)によるスペクトル測定を行なって金ナノ微粒子の平均粒子径を決定した。また、別に、走査型電子顕微鏡(日立S−4700型)を用い、5万倍で観察し、また撮影した写真を拡大して詳細に観察した。71.6mmol/lHAuCl・4HOの111mmol/lO−3Na水溶液により70℃で還元した金コロイドのSEM写真は、すべて10〜20nmの一次粒子が緊密に分散していた。一方、反応時または反応後のNaClの添加系はすべて、粒子径の分布が見られた。Au高濃度では特に顕著であった。いずれも一次粒子が大きいもの、様々な個数の二次粒子の凝集体であった。
<Determination of the particle size of gold particles in colloidal gold solution>
UV measurement of a monodispersed commercially available gold colloid with known gold nanoparticle size [manufactured by Tanaka Kikinzoku Kogyo Co., Ltd. and British Biocell International Co., Ltd.] There is a demand for a relationship with particle diameter (Patent Document 1). From the comparison of this relationship diagram and the spectral waveform of 150 to 200 nm, the number of gold nanoparticle particles of the prepared gold colloid sample was adjusted to 10 9 to 10 10 particles / ml (adjusted to a corresponding concentration such as dilution). The average particle diameter of the gold nanoparticle was determined by performing spectrum measurement using a visible / ultraviolet spectrophotometer (UV). Separately, using a scanning electron microscope (Hitachi S-4700 type), it was observed at 50,000 times, and the photographed image was enlarged and observed in detail. All SEM photographs of colloidal gold reduced at 70 ° C. with a 111 mmol / lO-3Na aqueous solution of 71.6 mmol / l HAuCl 4 .4H 2 O had 10-20 nm primary particles closely dispersed. On the other hand, in the NaCl addition system during or after the reaction, a particle size distribution was observed. This was particularly noticeable at a high Au 0 concentration. All were large primary particles and aggregates of various numbers of secondary particles.

<反応混合物の組成とHAuCl・4HOの還元による金コロイドの合成反応>
O−3Na水溶液の2.5mmol/lHAuCl・4HOに対する還元力は、O−3Na0.9:Au3+1.0のモル比以上で還元作用があったが、NaClの存在下では、格段に反応が起こりにくくなった。7.4mmol/lO−3Na水溶液を用いて検討したところでは、NaCl濃度が170mmol/l付近の添加量で青系色になった。NaClの後添加によってもほぼ同様に赤紫色の金コロイドが青紫〜青灰色に変わった。O−3NaとHAuCl・4HOの濃度をそれぞれ10倍にして還元反応を行なうとNaClなどが共存しても耐塩性が著しく向上した。
<本発明によって得た青系色の各種基材への着色>
1mmol/lのAu濃度の金ヒドロゾルは、ろ紙や紙類などの天然素材をよく染めた。また、プラスチックのうち、ポリエチレンテレフタレート板、ポリ酢酸ビニルペレット、6,6−ナイロン板上に沈積し、沈着して乾燥後には青系色に染まった。ポリビニルホルマール粉末の表面には弾かれて染まらなかった。また、ポリエステル繊維(非特許文献15)、ナイロン繊維にもなじむが、当該金コロイド液が界面活性であるため浸透・拡散して染めにくかった。そこで、O−3n−HAやO−2EHAを反応前に反応混合物に予め添加し、または後添加することにより、スラリー状またはペースト状の金ヒドロゲルにすると、より濃厚に上記の表面を青系色に着色することが可能であった。
<Composition of reaction mixture and synthesis reaction of gold colloid by reduction of HAuCl 4 .4H 2 O>
The reducing power of the O-3Na aqueous solution with respect to 2.5 mmol / l HAuCl 4 · 4H 2 O had a reducing action at a molar ratio of O-3Na0.9: Au 3+ 1.0 or more, but in the presence of NaCl, The reaction became difficult to occur. When a 7.4 mmol / lO-3Na aqueous solution was used for the study, a blue color was obtained when the NaCl concentration was around 170 mmol / l. The red-purple gold colloid changed from bluish purple to blue-gray in the same manner by the subsequent addition of NaCl. When the reduction reaction was performed by increasing the concentration of O-3Na and HAuCl 4 · 4H 2 O by 10 times, the salt resistance was remarkably improved even when NaCl was present.
<Coloring various base materials of blue color obtained by the present invention>
A gold hydrosol with 1 mmol / l Au 0 concentration well dyed natural materials such as filter paper and papers. Further, among plastics, they were deposited on polyethylene terephthalate plates, polyvinyl acetate pellets, and 6,6-nylon plates, deposited, and dyed a blue color after drying. The surface of the polyvinyl formal powder was not repelled and dyed. Moreover, although it adapts to a polyester fiber (nonpatent literature 15) and a nylon fiber, since the said gold colloid liquid was surface active, it was hard to osmose | permeate and diffuse and to be dyed. Therefore, by adding O-3n-HA or O-2EHA in advance to the reaction mixture before the reaction or after adding it to a slurry-like or paste-like gold hydrogel, the surface is more concentrated in a blue color. It was possible to color.

峯村勲弘、色材、79,492(2006)Nobuhiro Tsujimura, Coloring Material, 79,492 (2006)

次に、本発明を実施例をもって詳細に説明する。Next, the present invention will be described in detail with reference to examples.

2.5mM(0.103%)HAuCl・4HO水溶液1mlを5ml容ふたつき試験管に入れ、ついで1MNaCl水溶液0.4mlを加えて振り混ぜた後、さらに7.43mMO−3Na水溶液1mlを加えて70℃にて60分加熱した。この反応混合物中のNaCl濃度は167mmol/lに相当する。還元反応により、くすんだ青色の金ヒドロゾル(金コロイド)が得られた。室温にて1日精置後UV測定すると、金ナノ微粒子に固有の565nmに極大吸収波長をもつスペクトルが得られた。これより、粒子径はおよそ105nmに相当した。ついで、示差走査電子顕微鏡観察を行なったところ、20〜60nmのAuの一次粒子およびそれらからなる、大きさの異なる二次粒子の凝集塊が散在していた。 2.5mM (0.103%) HAuCl 4 · 4H 2 O-solution 1ml placed in 5ml ml two-out tube, and then after shaking added 1MNaCl aqueous solution 0.4 ml, and more 7.43mMO-3Na aqueous 1ml In addition, it was heated at 70 ° C. for 60 minutes. The NaCl concentration in the reaction mixture corresponds to 167 mmol / l. A dull blue gold hydrosol (gold colloid) was obtained by the reduction reaction. When UV measurement was carried out after centrifuging at room temperature for 1 day, a spectrum having a maximum absorption wavelength at 565 nm inherent to gold nanoparticles was obtained. From this, the particle diameter corresponded to about 105 nm. Subsequently, when a differential scanning electron microscope observation was performed, primary particles of 20 to 60 nm of Au 0 and aggregates of secondary particles made of them and having different sizes were scattered.

2.5mMHAuCl・4HO水溶液10mlを30ml容栓つきスクリュー管瓶に入れ、ついで7.4mMO−3Na水溶液10mlを加えて振り混ぜ、70℃で5分間加熱すると、濃い赤紫色の金ヒドロゾルが得られた。UVスペクトルは500〜600nmにわたって幅広い吸収があった。この中から、1mlを取り、1MNaCl0.4mlを加え、振り混ぜて室温に静置すると徐々に色が変わっていき、30分後の色は青色であった。1日後UV測定すると波長616nmに極大吸収を持ち、特徴的なスペクトル波形を示した。この波長・波形は平均粒子径150nmに相当した。2.5mMHAuCl 4 · 4H 2 O-solution 10ml was placed in 30ml ml stoppered screw tube bottle, then shaken added 7.4mMO-3Na solution 10ml, and heated for 5 minutes at 70 ° C., gold hydrosols dark red-purple Obtained. The UV spectrum had a broad absorption over 500-600 nm. From this, 1 ml was taken, 0.4 ml of 1M NaCl was added, the mixture was shaken and allowed to stand at room temperature, the color gradually changed, and the color after 30 minutes was blue. One day later, UV measurement showed a maximum absorption at a wavelength of 616 nm and a characteristic spectral waveform. This wavelength and waveform corresponded to an average particle diameter of 150 nm.

2.5mMHAuCl・4HO水溶液3.6mlを、栓つき10ml容スクリュー管瓶に入れ、7.4mMO−3Na水溶液3.6mlを加えて振り混ぜ、さらに1MNaCl0.4mlを加えて70℃にて30分加熱すると、青紫色の分散液が得られた。SEM観察によれば、20〜60nmの一次粒子が疎または密にアットランダムにくっつき合って(フラクタール凝集)、全体として直径200nmまたはそれ以上の大きな凝集塊を含む多数の凝集塊が散在して分散してい多。特性X線分析でのAuの分布に対応していた。この分散液をナイロン板、ポリカーボネート板、およびポリエチレンテレフタレート板上に垂らして風乾すると、青色に染めついた。ポリビニルホルマール粉の染着はできなかった。Add 3.6 ml of 2.5 mM HAuCl 4 · 4H 2 O aqueous solution to a stoppered 10 ml screw tube bottle, add 3.6 ml of 7.4 mMO-3Na aqueous solution, shake and mix, and then add 0.4 ml of 1M NaCl at 70 ° C. When heated for 30 minutes, a blue-violet dispersion was obtained. According to SEM observation, primary particles of 20 to 60 nm are loosely or densely attached at random (fractal aggregation), and a large number of aggregates including large aggregates having a diameter of 200 nm or more as a whole are scattered and dispersed. There are many. It corresponded to the distribution of Au in the characteristic X-ray analysis. When this dispersion was hung on a nylon plate, a polycarbonate plate, and a polyethylene terephthalate plate and air-dried, it was dyed blue. Polyvinyl formal powder could not be dyed.

5ml容ふたつき試験管に入れた25mMHAuCl・4HOの1mlと1MNaClの1mlとの混合液中に、111mMO−3Naを0.15ml、100mMO−3n−HAを0.45ml、50mMO−2EHAを0.4ml加えた混合液を加え、70℃にて40分加熱すると青灰色の分散液が得られ、室温に静置するとゲル化した。このゲルは20mPa・s程度の粘性(Brookfield粘度計)であったが、著しいチキソトロピー性を示した。In a mixed solution of 1 ml of 25 mM HAuCl 4 .4H 2 O and 1 ml of 1M NaCl in a 5 ml lidded test tube, 0.15 ml of 111mMO-3Na, 0.45 ml of 100mMO-3n-HA, and 50mMO-2EHA When 0.4 ml of the mixed solution was added and heated at 70 ° C. for 40 minutes, a blue-gray dispersion was obtained, and when left at room temperature, it gelled. This gel had a viscosity of about 20 mPa · s (Brookfield viscometer), but showed marked thixotropy.

5ml容ふたつき試験管に入れた2.5mMHAuCl・4HO水溶液1mlと1MNaCl水溶液0.4ml中に、7.4mMO−3Na水溶液0.7mlを加え、70℃にて60分加熱して青紫色の分散液を得た。直ちに50mMO−2EHA水溶液0.2mlを加えて振り混ぜ、静置すると金ヒドロゲルが得られた。このゲルは実施例4のゲルより大きな粘性を示し、安定に金ナノ微粒子を保持した。Add 0.7 ml of 7.4 mMO-3Na aqueous solution to 1 ml of 2.5 mM HAuCl 4 .4H 2 O aqueous solution and 0.4 ml of 1M NaCl aqueous solution placed in a 5 ml lidded test tube, and heat at 70 ° C. for 60 minutes. A purple dispersion was obtained. Immediately after adding 0.2 ml of 50mMO-2EHA aqueous solution, the mixture was shaken and allowed to stand, a gold hydrogel was obtained. This gel showed a greater viscosity than the gel of Example 4 and stably retained the gold nanoparticles.

5ml容ふたつき試験管に入れた25mMHAuCl・4HOと2mlと3MNaCl0.4mlとを加えた溶液の中に、111mMO−3Na水溶液2mlを加え、70℃にて10分加熱すると濃紫色の金ヒドロゾルが得られた。さらに、50分加熱、反応させたが、金ナノ微粒子がより大きく成長して青系色に変わることがなく、安定な濃紫色を保持した。SEM観察から、20〜80nmの一次粒子が均一に分散していた。
得られた金ヒドロゲル5mlに対して3MNaCl10mlを加え、室温(約25℃)で静置したが変色しないので、70℃で10分間加熱したところ、暗紫色に変化した。一日静置後、ミリポア(社)0.2μmの孔径のフィルターを用いて限外ろ過すると、ろ液はピンクないし赤色で、一方残液は灰色がかった青色であった。両者をそれぞれろ紙上に垂らすと、色の差異は明白であった。ついで、実施例3と同じ基材の染色を行なったところ同様の染着結果が得られたが、より濃厚に染まった。
In a solution plus the 25mMHAuCl 4 · 4H 2 O and 2ml and 3MNaCl0.4ml taking into 5ml ml two-out tube, added 111mMO-3Na solution 2ml, dark purple gold and heated 10 minutes at 70 ° C. A hydrosol was obtained. Furthermore, although it was heated and reacted for 50 minutes, the gold nanoparticle grew larger and did not change to a blue color, and a stable deep purple color was maintained. From SEM observation, primary particles of 20 to 80 nm were uniformly dispersed.
To 5 ml of the obtained gold hydrogel, 10 ml of 3M NaCl was added and allowed to stand at room temperature (about 25 ° C.), but it did not change color, so when heated at 70 ° C. for 10 minutes, it turned dark purple. After standing for one day, when ultrafiltered using a filter having a pore size of 0.2 μm from Millipore, the filtrate was pink to red, while the remaining liquid was grayish blue. When both were hung on the filter paper, the color difference was obvious. Subsequently, the same base material as in Example 3 was dyed, and the same dyeing result was obtained.

Claims (6)

次式、[化1]で表わされるスピクリスポール酸アルカリ塩[I]および次式、[化2]で表わされる[I](化1)のラクトン環の開環体アルカリ塩[II]を塩化金酸などAu3+の還元剤(生成した金ヒドロゲルの安定剤を兼ねる)として用い、反応温度10〜90℃、また特に40〜80℃で還元反応を行ない、得られた金ナノ微粒子の水分散系(金コロイド、金ヒドロゾル、金ヒドロゲル)を得た後、一価の無機塩類(NaCl、KCl、LiClなど)を添加して得られる青系色を有する金ナノ微粒子の水分散系。
Figure 2011080137
[式中のXは無機アルカリ(Na、K、Li、NH、Mgなど)、有機アルカリ(アルキルアミン、アルギニンなど)、またはHを示す。nはXの陽イオンとしての価数を表わす]
Figure 2011080137
[式中のXは無機アルカリ(Na、K、Li、NH、Mgなど)、有機アルカリ(アルキルアミン、アルギニンなど)、またはHを示す。nはXの陽イオンとしての価数を示す]
The splicrispolic acid alkali salt [I] represented by the following formula [Chemical Formula 1] and the ring-opened alkali salt [II] of the lactone ring represented by the following formula [Chemical Formula 2] [Chemical Formula 1] are salified. Use as a reducing agent for Au 3+ such as gold acid (also serves as a stabilizer for the generated gold hydrogel), and carry out a reduction reaction at a reaction temperature of 10 to 90 ° C., particularly 40 to 80 ° C. An aqueous dispersion of gold nanoparticles having a blue color obtained by obtaining a system (gold colloid, gold hydrosol, gold hydrogel) and then adding a monovalent inorganic salt (NaCl, KCl, LiCl, etc.).
Figure 2011080137
[X in the formula represents an inorganic alkali (Na, K, Li, NH 4 , Mg, etc.), an organic alkali (alkylamine, arginine, etc.), or H. n + represents the valence of X as a cation]
Figure 2011080137
[X in the formula represents an inorganic alkali (Na, K, Li, NH 4 , Mg, etc.), an organic alkali (alkylamine, arginine, etc.), or H. n + represents the valence of X as a cation]
請求項1の[I]および[II]の化合物を塩化金酸などAu3+の還元剤の全部または一部とし、無機塩類の存在下で、反応温度10〜90℃、また特に40〜80℃でAu3+の還元反応を行ない、反応終了と同時に[I]と[II]の酸化されたカルボニル化物(界面活性を示す)および過剰な未反応の[I]および[II]を、生成した金ナノ微粒子の水分散系の分散安定剤としてはたらかせることを特徴とする青系色を有する金ナノ微粒子の水分散系。The compounds of [I] and [II] of claim 1 are all or part of Au 3+ reducing agent such as chloroauric acid, and in the presence of inorganic salts, the reaction temperature is 10 to 90 ° C., and particularly 40 to 80 ° C. gold in performs reduction of Au 3+, the completion of the reaction at the same time as [I] and [II] oxide carbonyl fluoride of (indicating surfactant) and the excess unreacted [I] and [II], the resulting An aqueous dispersion of gold nanoparticles having a blue color, which serves as a dispersion stabilizer for an aqueous dispersion of nanoparticles. 請求項1および2において、無機塩類を存在させずに還元反応を行なって得た赤〜赤紫〜紫色の金コロイド液に対して一価の無機塩類またはゲル形成性の[II]のMg塩を添加して得られる青系色を有する金ナノ微粒子の水分散系。  3. A monovalent inorganic salt or a gel-forming [II] Mg salt in a red-red purple-violet colloidal gold solution obtained by carrying out a reduction reaction in the absence of an inorganic salt. An aqueous dispersion of gold nano-particles having a blue color obtained by adding Nb. 請求項1,2および3において得られる金ナノ微粒子の水分散系から、限外ろ過により微小粒子を除き、またサブミクロン領域以上の大粒子をNo.7Cろ紙にてろ滓として除くことにより、青系色の色相と色調を整えた金ナノ微粒子の水分散系。  From the aqueous dispersion of gold nanoparticles obtained in claims 1, 2 and 3, fine particles are removed by ultrafiltration, and large particles in the submicron region or more are No. An aqueous dispersion of gold nano-particles with a blue hue and tone adjusted by removing them as filter cake with 7C filter paper. 請求項1,2,3および4において得られた金ナノ微粒子の水分散系に対して、式[I]及び[II]で示されるスピクリスポール酸塩のうち、特にゲル形成力のあるアルキルアミン塩、アルギニン塩、Mg塩の濃厚水溶液を後添加して系全体をゲル化させて金ナノ微粒子濃度10mmol/l以上の高濃度を有するヒドロゲルおよびペースト。  The spikrispolate represented by the formulas [I] and [II] with respect to the aqueous dispersion of gold nanoparticles obtained in claim 1, 2, 3, and 4, particularly an alkylamine having gel-forming ability. Hydrogels and pastes having a high concentration of gold nanoparticles of 10 mmol / l or more by post-adding concentrated aqueous solutions of salts, arginine salts, and Mg salts to gel the entire system. 請求項5において、後添加するヒドロゲル化剤として、既知の水系ゲル化剤を用いて得た金ヒドロゲルおよびペースト。  The gold hydrogel and paste obtained by using a known aqueous gelling agent as a hydrogelling agent to be added later.
JP2009248231A 2009-10-08 2009-10-08 Blue coloring agent made of gold fine particle Pending JP2011080137A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009248231A JP2011080137A (en) 2009-10-08 2009-10-08 Blue coloring agent made of gold fine particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009248231A JP2011080137A (en) 2009-10-08 2009-10-08 Blue coloring agent made of gold fine particle

Publications (1)

Publication Number Publication Date
JP2011080137A true JP2011080137A (en) 2011-04-21

Family

ID=44074466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009248231A Pending JP2011080137A (en) 2009-10-08 2009-10-08 Blue coloring agent made of gold fine particle

Country Status (1)

Country Link
JP (1) JP2011080137A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113791214A (en) * 2021-11-15 2021-12-14 南京黎明生物制品有限公司 Enhancing solution for detecting chlamydia trachomatis antigen and detection method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002069328A (en) * 2000-08-24 2002-03-08 Mira:Kk Method for producing gold colloid particle pigment
JP2009057627A (en) * 2007-09-03 2009-03-19 Yutaka Ishigami Thick nanocolloidal gold liquid, fine gold particle, and their manufacturing methods

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002069328A (en) * 2000-08-24 2002-03-08 Mira:Kk Method for producing gold colloid particle pigment
JP2009057627A (en) * 2007-09-03 2009-03-19 Yutaka Ishigami Thick nanocolloidal gold liquid, fine gold particle, and their manufacturing methods

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113791214A (en) * 2021-11-15 2021-12-14 南京黎明生物制品有限公司 Enhancing solution for detecting chlamydia trachomatis antigen and detection method

Similar Documents

Publication Publication Date Title
Yuan et al. Plasmon enhanced upconversion luminescence of NaYF4: Yb, Er@ SiO 2@ Ag core–shell nanocomposites for cell imaging
Nidhin et al. Synthesis of iron oxide nanoparticles of narrow size distribution on polysaccharide templates
JP2021531955A (en) Nanoreactor for the synthesis of porous crystalline materials
JP7053153B2 (en) Nanodiamond salted ultrasonic deagglomeration
Chen et al. Synthesis and performance of ZnO quantum dots water-based fluorescent ink for anti-counterfeiting applications
Upadhyay et al. Photo degradation of synthetic dyes using cadmium sulfide nanoparticles synthesized in the presence of different capping agents
CN107815309B (en) Preparation method of water-soluble fluorescent calcium fluoride nanoparticles
Qasim et al. Synthesis and characterization of ultra-fine colloidal silica nanoparticles
JP2008115370A (en) Core-shell type cerium oxide fine particle or dispersion containing them, and methods of manufacturing those
Jesionowski Preparation of colloidal silica from sodium metasilicate solution and sulphuric acid in emulsion medium
JP2008111114A (en) Method of manufacturing dispersion of core-shell type metal oxide fine particle and dispersion thereof
CN104591275B (en) Aqueous medium disperses the synthetic method of cerium Zirconium oxide nano material
Simeonova et al. Kinetic study of gold nanoparticles synthesized in the presence of chitosan and citric acid
CN109110819B (en) Synthesis method of chiral manganese oxide nanoparticles
Zhang et al. Facile assembly of silica gel/reduced graphene oxide/Ag nanoparticle composite with a core–shell structure and its excellent catalytic properties
Chen et al. Large-scale synthesis of water-soluble luminescent hydroxyapatite nanorods for security printing
JP2009057627A (en) Thick nanocolloidal gold liquid, fine gold particle, and their manufacturing methods
Andrade et al. Easy preparation of gold nanostructures supported on a thiolated silica-gel for catalysis and latent fingerprint detection
Tan et al. Monodisperse, colloidal and luminescent calcium fluoride nanoparticles via a citrate-assisted hydrothermal route
Ashayer et al. Synthesis and characterization of gold nanoshells using poly (diallyldimethyl ammonium chloride)
Daberkow et al. Fluorescence labeling of colloidal core–shell particles with defined isoelectric points for in vitro studies
Kozhevnikova et al. One-pot inorganic route to highly stable water-dispersible Ag2S quantum dots
JP6527923B2 (en) Platinum group nanoparticle dispersion liquid and platinum group nanoparticle
Ding et al. Preparation of water dispersible, fluorescent Ag–PAA–PVP hybrid nanogels and their optical properties
Gigault et al. Selection of an appropriate aqueous nano-fullerene (nC60) preparation protocol for studying its environmental fate and behavior

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121004

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140107

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140610