JP2011079167A - Method for producing laminated resin plate - Google Patents

Method for producing laminated resin plate Download PDF

Info

Publication number
JP2011079167A
JP2011079167A JP2009231469A JP2009231469A JP2011079167A JP 2011079167 A JP2011079167 A JP 2011079167A JP 2009231469 A JP2009231469 A JP 2009231469A JP 2009231469 A JP2009231469 A JP 2009231469A JP 2011079167 A JP2011079167 A JP 2011079167A
Authority
JP
Japan
Prior art keywords
resin
transparent resin
laminated
base layer
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009231469A
Other languages
Japanese (ja)
Other versions
JP4902717B2 (en
Inventor
Toyohiro Hamamatsu
豊博 濱松
Takashi Sakamoto
坂本  隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2009231469A priority Critical patent/JP4902717B2/en
Priority to TW99132887A priority patent/TW201117959A/en
Priority to KR20100095915A priority patent/KR20110037869A/en
Priority to CN2010105043503A priority patent/CN102033254A/en
Publication of JP2011079167A publication Critical patent/JP2011079167A/en
Application granted granted Critical
Publication of JP4902717B2 publication Critical patent/JP4902717B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/302Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising aromatic vinyl (co)polymers, e.g. styrenic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/308Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/412Transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/418Refractive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2551/00Optical elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock
    • Y02P20/143Feedstock the feedstock being recycled material, e.g. plastics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Laminated Bodies (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method which can recycle an end material produced during production and can produce a laminated resin plate with coloring suppressed enough. <P>SOLUTION: The manufacturing method includes an end material obtaining process in which after a laminated plate is obtained by laminating a surface layer containing a transparent resin (B) on at least one side of a base layer containing a transparent resin (A), at least one part of the peripheral part of the laminated plate is cut to classify it as the end material and a process for producing the laminated resin plate by laminating the surface layer containing the transparent resin (B) on at least one side of the base layer made of a resin composition obtained by mixing the transparent resin (A) with the end material or the end material. When the absolute value of the difference between the SP value of the transparent resin (A) and the SP value of the transparent resin (B) is (Δδ), and the absolute value of the difference between the refractive index of the transparent resin (A) and the refractive index of the transparent resin (B) is (Δn), the relational expression: Δδ×Δn≤0.42 is set up. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

この発明は、製造時に出る端材(耳材)をリサイクル利用しつつ着色が十分に抑制された積層樹脂板を製造する製造方法に関する。   The present invention relates to a manufacturing method for manufacturing a laminated resin plate in which coloring is sufficiently suppressed while recycling end materials (ear materials) that are produced during manufacturing.

なお、この明細書において、「SP値」の語は、Hansenの溶解度パラメーター(Solubility Parameter)を意味する。   In this specification, the term “SP value” means Hansen's solubility parameter (Solubility Parameter).

液晶表示装置としては、例えば液晶セルを備えた液晶パネル(画像表示部)の背面側に面光源装置がバックライトとして配置された構成のものが公知である。前記バックライト用の面光源装置としては、ランプボックス(筐体)内に複数の光源が配置されると共にこれら光源の前面側に光拡散板が配置された構成の面光源装置が知られている。   As a liquid crystal display device, for example, a configuration in which a surface light source device is disposed as a backlight on the back side of a liquid crystal panel (image display unit) including a liquid crystal cell is known. As the surface light source device for the backlight, a surface light source device having a configuration in which a plurality of light sources are disposed in a lamp box (housing) and a light diffusion plate is disposed on the front side of these light sources is known. .

前記光拡散板としては、ポリスチレンからなる基層にスチレン−メタクリル酸メチル共重合体及び紫外線吸収剤を含有した表面層が積層されてなる多層光拡散板が公知である(特許文献1参照)。このような表面層を積層することにより、紫外線による劣化を防止できる。このように、光拡散板としては、光拡散性能以外にもその用途に応じて様々な特性を具備していることが求められることから、基層の少なくとも片面に、基層を構成する樹脂とは異なる樹脂からなる表面層が積層されてなる積層板が多く用いられている。   As the light diffusion plate, a multilayer light diffusion plate is known in which a surface layer containing a styrene-methyl methacrylate copolymer and an ultraviolet absorber is laminated on a base layer made of polystyrene (see Patent Document 1). By laminating such a surface layer, deterioration due to ultraviolet rays can be prevented. As described above, since the light diffusing plate is required to have various characteristics in addition to the light diffusing performance depending on the application, it is different from the resin constituting the base layer on at least one side of the base layer. A laminated board in which surface layers made of resin are laminated is often used.

特開2008−292977号公報JP 2008-292977 A

ところで、近年、地球環境保全の観点から、樹脂材料をリサイクル利用することが求められるようになってきている。そこで、本発明者は、これに応ずるべく、光拡散板を製造する際に出る端材(耳材)を、基層を構成する材料の一部として再利用する製造方法を着想した。   By the way, in recent years, from the viewpoint of global environmental conservation, it has been required to recycle resin materials. In view of this, the present inventor has conceived a manufacturing method in which the end material (ear material) that is produced when the light diffusing plate is manufactured is reused as part of the material constituting the base layer.

しかしながら、上記従来の積層構成を採用する場合において、例えば基層にポリスチレンを用い、表面層にスチレン−メタクリル酸メチル共重合体(スチレン単位40質量%、メタクリル酸メチル単位60質量%)を用いた場合、このような端材を基層の一部として再利用して製造すると、基層としてはポリスチレンにスチレン−メタクリル酸メチル共重合体(スチレン単位40質量%、メタクリル酸メチル単位60質量%)が混合された組成になるが、このような混合組成では光拡散板が少し黄色がかった色合いになるという問題があった。   However, in the case of employing the above-described conventional laminated structure, for example, when polystyrene is used for the base layer and a styrene-methyl methacrylate copolymer (styrene unit 40% by mass, methyl methacrylate unit 60% by mass) is used for the surface layer. When such a milled material is reused and manufactured as a part of the base layer, polystyrene is mixed with styrene-methyl methacrylate copolymer (styrene unit 40% by mass, methyl methacrylate unit 60% by mass) as the base layer. However, such a mixed composition has a problem that the light diffusion plate has a slightly yellowish hue.

この発明は、かかる技術的背景に鑑みてなされたものであって、製造時に出る端材をリサイクル利用することができると共に、着色が十分に抑制された積層樹脂板を製造することのできる製造方法を提供することを目的とする。   The present invention has been made in view of such a technical background, and can be used to recycle offcuts produced at the time of manufacture, and a manufacturing method capable of manufacturing a laminated resin plate in which coloring is sufficiently suppressed. The purpose is to provide.

前記目的を達成するために、本発明は以下の手段を提供する。   In order to achieve the above object, the present invention provides the following means.

[1]透明樹脂(A)を含有してなる基層の少なくとも片面に、透明樹脂(B)を含有してなる表面層を積層して積層板を得た後、該積層板の周縁部の少なくとも一部を裁断して端材として分別する端材取得工程と、
透明樹脂(A)と前記端材を混合して得られた樹脂組成物からなる又は前記端材からなる基層の少なくとも片面に、透明樹脂(B)を含有してなる表面層を積層して積層樹脂板を製造する工程と、を包含し、
前記透明樹脂(A)のSP値と前記透明樹脂(B)のSP値の差の絶対値を「Δδ」とし、前記透明樹脂(A)の屈折率と前記透明樹脂(B)の屈折率の差の絶対値を「Δn」としたとき、Δδ×Δn≦0.42の関係式が成立することを特徴とする積層樹脂板の製造方法。
[1] After obtaining a laminated board by laminating a surface layer containing a transparent resin (B) on at least one side of a base layer containing the transparent resin (A), at least the peripheral part of the laminated board A scrap material acquisition process in which a part is cut and separated as a scrap material;
A surface layer containing a transparent resin (B) is laminated on at least one side of a base layer made of a resin composition obtained by mixing the transparent resin (A) and the end material or made of the end material. A step of manufacturing a resin plate,
The absolute value of the difference between the SP value of the transparent resin (A) and the SP value of the transparent resin (B) is “Δδ”, and the refractive index of the transparent resin (A) and the refractive index of the transparent resin (B) A manufacturing method of a laminated resin plate, wherein a relational expression of Δδ × Δn ≦ 0.42 is satisfied when an absolute value of the difference is “Δn”.

[2]透明樹脂(A)を含有してなる基層の少なくとも片面に、透明樹脂(B)を含有してなる表面層を積層して第1積層板を得た後、該第1積層板の周縁部の少なくとも一部を裁断して第1端材として分別する第1端材取得工程と、
透明樹脂(A)と前記第1端材を混合して得られた樹脂組成物からなる又は前記第1端材からなる基層の少なくとも片面に、透明樹脂(B)を含有してなる表面層を積層して第2積層板を得た後、該第2積層板の周縁部の少なくとも一部を裁断して第2端材として分別する第2端材取得工程と、
透明樹脂(A)と前記第2端材を混合して得られた樹脂組成物からなる又は前記第2端材からなる基層の少なくとも片面に、透明樹脂(B)を含有してなる表面層を積層して積層樹脂板を製造する工程と、を包含し、
前記透明樹脂(A)のSP値と前記透明樹脂(B)のSP値の差の絶対値を「Δδ」とし、前記透明樹脂(A)の屈折率と前記透明樹脂(B)の屈折率の差の絶対値を「Δn」としたとき、Δδ×Δn≦0.42の関係式が成立することを特徴とする積層樹脂板の製造方法。
[2] After laminating the surface layer containing the transparent resin (B) on at least one side of the base layer containing the transparent resin (A) to obtain the first laminated plate, A first edge material acquisition step of cutting at least a part of the peripheral edge and separating it as a first edge material;
A surface layer comprising a transparent resin (B) on at least one side of a base layer comprising a resin composition obtained by mixing a transparent resin (A) and the first end material or comprising the first end material. After obtaining the second laminate by laminating, a second end material acquisition step of cutting at least a part of the peripheral edge of the second laminate and separating it as a second end material;
A surface layer comprising a transparent resin (B) on at least one surface of a base layer comprising a resin composition obtained by mixing the transparent resin (A) and the second end material or comprising the second end material. And laminating to produce a laminated resin plate,
The absolute value of the difference between the SP value of the transparent resin (A) and the SP value of the transparent resin (B) is “Δδ”, and the refractive index of the transparent resin (A) and the refractive index of the transparent resin (B) A manufacturing method of a laminated resin plate, wherein a relational expression of Δδ × Δn ≦ 0.42 is satisfied when an absolute value of the difference is “Δn”.

[3]前記積層板における基層の厚さを表面層の厚さの9〜100倍の範囲に設定すると共に、前記透明樹脂(A)と前記端材を混合する際、前記透明樹脂(A)と前記端材の合計量に対する前記端材の含有率が1質量%以上100質量%未満になるように混合する前項1または2に記載の積層樹脂板の製造方法。   [3] When the thickness of the base layer in the laminate is set in the range of 9 to 100 times the thickness of the surface layer, the transparent resin (A) is mixed with the transparent resin (A) and the end material. 3. The method for producing a laminated resin plate according to item 1 or 2, wherein mixing is performed so that the content of the end material relative to the total amount of the end material is 1% by mass or more and less than 100% by mass.

[4]0.03≦Δn≦0.15の関係式が成立する前項1〜3のいずれか1項に記載の積層樹脂板の製造方法。   [4] The method for producing a laminated resin sheet according to any one of items 1 to 3, wherein a relational expression of 0.03 ≦ Δn ≦ 0.15 is established.

[5]前記透明樹脂(A)がスチレン系樹脂であり、前記透明樹脂(B)がスチレン系樹脂又はアクリル系樹脂である前項1〜4のいずれか1項に記載の積層樹脂板の製造方法。   [5] The method for producing a laminated resin plate according to any one of the above items 1 to 4, wherein the transparent resin (A) is a styrene resin, and the transparent resin (B) is a styrene resin or an acrylic resin. .

[6]透明樹脂(A)100質量部に対し、透明樹脂(B)を0.01〜20質量部含有してなる基層と、
前記基層の片面または両面に積層一体化された、透明樹脂(B)を含有してなる表面層と、を備えてなり、
前記基層の厚さが前記表面層の厚さの9〜100倍の範囲であり、
前記透明樹脂(A)のSP値と前記透明樹脂(B)のSP値の差の絶対値を「Δδ」とし、前記透明樹脂(A)の屈折率と前記透明樹脂(B)の屈折率の差の絶対値を「Δn」としたとき、Δδ×Δn≦0.42の関係式が成立することを特徴とする積層樹脂板。
[6] A base layer containing 0.01 to 20 parts by mass of the transparent resin (B) with respect to 100 parts by mass of the transparent resin (A);
A surface layer containing a transparent resin (B) that is laminated and integrated on one or both sides of the base layer, and
The thickness of the base layer is in the range of 9 to 100 times the thickness of the surface layer;
The absolute value of the difference between the SP value of the transparent resin (A) and the SP value of the transparent resin (B) is “Δδ”, and the refractive index of the transparent resin (A) and the refractive index of the transparent resin (B) A laminated resin plate characterized in that a relational expression of Δδ × Δn ≦ 0.42 holds when an absolute value of the difference is “Δn”.

[7]前記基層は、前記透明樹脂(A)100質量部に対し、前記透明樹脂(B)を0.01〜20質量部及び光拡散粒子を0.01〜10質量部含有してなる前項6に記載の積層樹脂板。   [7] The preceding item, wherein the base layer contains 0.01 to 20 parts by mass of the transparent resin (B) and 0.01 to 10 parts by mass of light diffusing particles with respect to 100 parts by mass of the transparent resin (A). 6. The laminated resin plate according to 6.

[8]前記透明樹脂(A)がスチレン系樹脂であり、前記透明樹脂(B)がスチレン系樹脂又はアクリル系樹脂である前項6または7に記載の積層樹脂板。   [8] The laminated resin plate according to item 6 or 7, wherein the transparent resin (A) is a styrene resin, and the transparent resin (B) is a styrene resin or an acrylic resin.

[9]前項6〜8のいずれか1項に記載の積層樹脂板からなる光拡散板と、該光拡散板の背面側に配置された複数の光源とを備えることを特徴とする面光源装置。   [9] A surface light source device comprising: a light diffusing plate comprising the laminated resin plate according to any one of 6 to 8 above; and a plurality of light sources arranged on the back side of the light diffusing plate. .

[10]前項6〜8のいずれか1項に記載の積層樹脂板からなる光拡散板と、該光拡散板の背面側に配置された複数の光源と、前記光拡散板の前面側に配置された液晶パネルとを備えることを特徴とする液晶表示装置。   [10] A light diffusing plate comprising the laminated resin plate according to any one of 6 to 8 above, a plurality of light sources arranged on the back side of the light diffusing plate, and arranged on the front side of the light diffusing plate A liquid crystal display device comprising: a liquid crystal panel.

[1][2]の発明(製造方法)では、製造工程で出る端材を基層の構成材料の一部として再利用するので、資源の有効利用に繋がり、社会的要請である地球環境保全に貢献できる。また、透明樹脂(A)のSP値と透明樹脂(B)のSP値の差の絶対値を「Δδ」とし、透明樹脂(A)の屈折率と透明樹脂(B)の屈折率の差の絶対値を「Δn」としたとき、Δδ×Δn≦0.42の関係式が成立するものであるから、端材を基層の構成材料の一部として再利用する比率を増大させても(即ち端材のリサイクル含有比率を増大させても)、黄色等の着色が十分に抑制された積層樹脂板(光拡散板等)を製造することができる。   In the inventions [1] and [2] (manufacturing method), the scraps produced in the manufacturing process are reused as a part of the constituent material of the base layer, which leads to effective use of resources and the preservation of the global environment as a social request Can contribute. The absolute value of the difference between the SP value of the transparent resin (A) and the transparent resin (B) is “Δδ”, and the difference between the refractive index of the transparent resin (A) and the refractive index of the transparent resin (B) When the absolute value is “Δn”, the relational expression of Δδ × Δn ≦ 0.42 is established. Therefore, even if the ratio of recycling the end material as a part of the constituent material of the base layer is increased (that is, Even if the recycled content ratio of the mill ends is increased), a laminated resin plate (light diffusion plate or the like) in which coloring such as yellow is sufficiently suppressed can be produced.

[3]の発明では、積層板における基層の厚さを表面層の厚さの9〜100倍の範囲に設定すると共に、透明樹脂(A)に端材を混合して基層用材料を得る際に、透明樹脂(A)と端材の合計量に対する端材の含有率が1質量%以上100質量%未満になるように混合するので、黄色等の着色がより十分に抑制された積層樹脂板(光拡散板等)を製造できる。   In the invention of [3], when the thickness of the base layer in the laminate is set in the range of 9 to 100 times the thickness of the surface layer, and the end material is mixed with the transparent resin (A) to obtain the base layer material In addition, since the mixing ratio is such that the content of the end material relative to the total amount of the transparent resin (A) and the end material is 1% by mass or more and less than 100% by mass, the laminated resin plate in which coloring such as yellow is more sufficiently suppressed (Such as a light diffusion plate) can be manufactured.

[4]の発明では、0.03≦Δn≦0.15の関係式が成立する構成であるが、このような透明樹脂(A)と透明樹脂(B)の屈折率差が大きい構成であっても、(Δδ×Δn≦0.42の関係式が成立する構成であるので)黄色等の着色が十分に抑制された積層樹脂板(光拡散板等)を製造できる。   In the invention of [4], the relational expression of 0.03 ≦ Δn ≦ 0.15 is established, but such a difference in refractive index between the transparent resin (A) and the transparent resin (B) is large. However, a laminated resin plate (such as a light diffusing plate) in which coloring such as yellow is sufficiently suppressed can be manufactured (because the relational expression of Δδ × Δn ≦ 0.42 is satisfied).

[5]の発明では、透明樹脂(A)がスチレン系樹脂であり、透明樹脂(B)がスチレン系樹脂又はアクリル系樹脂であるから、黄色等の着色がより十分に抑制された積層樹脂板(光拡散板等)を製造できる。   In the invention of [5], since the transparent resin (A) is a styrene resin and the transparent resin (B) is a styrene resin or an acrylic resin, a laminated resin plate in which coloring such as yellow is more sufficiently suppressed. (Such as a light diffusion plate) can be manufactured.

[6]の発明は、[1]〜[5]の製造方法で得られる積層樹脂板のうち好適な構成に相当するものであり、基層が、透明樹脂(A)100質量部に対し透明樹脂(B)を0.01〜20質量部含有してなる構成であり、基層の少なくとも片面に透明樹脂(B)を含有してなる表面層が積層され、基層の厚さが表面層の厚さの9〜100倍の範囲に設定され、Δδ×Δn≦0.42の関係式が成立する構成であるから、黄色等の着色が十分に抑制された積層樹脂板が提供される。   The invention of [6] corresponds to a preferred configuration among the laminated resin plates obtained by the production methods of [1] to [5], and the base layer is a transparent resin with respect to 100 parts by mass of the transparent resin (A). It is the structure formed by containing 0.01-20 mass parts of (B), the surface layer containing transparent resin (B) is laminated | stacked on the at least single side | surface of a base layer, and the thickness of a base layer is the thickness of a surface layer. Is set in the range of 9 to 100 times, and a relational expression of Δδ × Δn ≦ 0.42 is established, so that a laminated resin plate in which coloring such as yellow is sufficiently suppressed is provided.

[7]の発明では、基層は、さらに光拡散粒子を含有してなる構成であるが、このような光拡散粒子を含有してなる構成であっても黄色等の着色が十分に抑制されたものとなる。即ち、基層に光拡散粒子が存在した場合には、積層樹脂板中を通過する光路長が長くなるために、通常は、光拡散粒子が存在しない場合と比べて着色が特に目立ちやすくなるのであるが、本発明では、基層に光拡散粒子が存在した場合においても黄色等の着色が十分に抑制されたものとなる。即ち、基層に光拡散粒子を含有するにもかかわらず、黄色等の着色が十分に抑制された光拡散性積層樹脂板が提供される。   In the invention of [7], the base layer further comprises a light diffusing particle, but coloring such as yellow was sufficiently suppressed even in a constitution comprising such a light diffusing particle. It will be a thing. That is, when the light diffusing particles are present in the base layer, the optical path length passing through the laminated resin plate is increased, so that coloring is usually particularly noticeable as compared with the case where no light diffusing particles are present. However, in the present invention, even when light diffusing particles are present in the base layer, coloring such as yellow is sufficiently suppressed. That is, there is provided a light diffusing laminated resin plate in which coloring such as yellow is sufficiently suppressed even though the base layer contains light diffusing particles.

[8]の発明では、透明樹脂(A)がスチレン系樹脂であり、透明樹脂(B)がスチレン系樹脂又はアクリル系樹脂であるから、黄色等の着色がより十分に抑制された積層樹脂板(光拡散板等)が提供される。   In the invention of [8], since the transparent resin (A) is a styrene resin and the transparent resin (B) is a styrene resin or an acrylic resin, a laminated resin plate in which coloring such as yellow is more sufficiently suppressed. (Such as a light diffusing plate).

[9]の発明では、実質的に黄色がかっていない白色度の高い拡散光を出射できる。   In the invention of [9], it is possible to emit diffused light having high whiteness that is not substantially yellowish.

[10]の発明では、黄色味を帯びることなく自然で高品位なカラー表示を実現できる液晶表示装置が提供される。   In the invention of [10], a liquid crystal display device capable of realizing a natural and high-quality color display without being yellowish is provided.

この発明に係る積層樹脂板の一実施形態を示す断面図である。It is sectional drawing which shows one Embodiment of the laminated resin board which concerns on this invention. この発明の製造方法の一例の概略を示すフロー図である。It is a flowchart which shows the outline of an example of the manufacturing method of this invention.

この発明に係る積層樹脂板の製造方法について図1、2を参照しつつ説明する。なお、以下の説明及び図2において「ステップ」を「S」と略記する。   A method for manufacturing a laminated resin plate according to the present invention will be described with reference to FIGS. In the following description and FIG. 2, “step” is abbreviated as “S”.

まず、透明樹脂(A)を含有してなる基層(8)の少なくとも片面に、透明樹脂(B)を含有してなる表面層(9)を積層して第1積層板(3)を得る(S1)。本実施形態では、基層(8)の両面に表面層(9)(9)を積層して第1積層板(3)を得る(図1参照)。   First, a surface layer (9) containing a transparent resin (B) is laminated on at least one surface of a base layer (8) containing a transparent resin (A) to obtain a first laminate (3) ( S1). In this embodiment, surface layers (9) and (9) are laminated on both sides of the base layer (8) to obtain a first laminated plate (3) (see FIG. 1).

ここで、前記透明樹脂(A)、透明樹脂(B)としては、互いに下記式(1)が成立するものを用いる。即ち、前記透明樹脂(A)のSP値と前記透明樹脂(B)のSP値の差の絶対値を「Δδ」とし、前記透明樹脂(A)の屈折率と前記透明樹脂(B)の屈折率の差の絶対値を「Δn」としたとき、
Δδ×Δn≦0.42 …(1)
互いに上記式(1)が成立する関係にある透明樹脂(A)と透明樹脂(B)を用いる。
Here, as the transparent resin (A) and the transparent resin (B), those satisfying the following formula (1) are used. That is, the absolute value of the difference between the SP value of the transparent resin (A) and the SP value of the transparent resin (B) is “Δδ”, and the refractive index of the transparent resin (A) and the refraction of the transparent resin (B) are set. When the absolute value of the rate difference is “Δn”,
Δδ × Δn ≦ 0.42 (1)
The transparent resin (A) and the transparent resin (B) that are in a relationship that satisfies the above formula (1) are used.

次に、得られた第1積層板の周縁部の少なくとも一部を裁断し、所定の大きさの製品(第1積層樹脂板)(3)を得ると共に、裁断された部分を第1端材として分別する(S2)。このS1、S2が第1端材取得工程である。   Next, at least a part of the peripheral portion of the obtained first laminated plate is cut to obtain a product (first laminated resin plate) (3) having a predetermined size, and the cut portion is used as the first end material. (S2). S1 and S2 are the first edge material acquisition process.

こうして得られた第1積層樹脂板(3)は、透明樹脂(A)を含有してなる基層(8)の両面に透明樹脂(B)を含有してなる表面層(9)(9)が積層された構成である。   The first laminated resin plate (3) thus obtained has surface layers (9) and (9) containing the transparent resin (B) on both sides of the base layer (8) containing the transparent resin (A). It is a laminated structure.

次に、前記第1端材を透明樹脂(A)に混合することによって、基層用樹脂を調製する(S3)。この時、透明樹脂(A)と第1端材の合計量に対する第1端材の含有率が1質量%以上100質量%未満になるように混合して基層用樹脂の組成物を調製するのが好ましい。   Next, a base layer resin is prepared by mixing the first end material with the transparent resin (A) (S3). At this time, the composition of the resin for the base layer is prepared by mixing so that the content of the first end material relative to the total amount of the transparent resin (A) and the first end material is 1% by mass or more and less than 100% by mass. Is preferred.

この後、前記基層用樹脂からなる基層(8)の片面又は両面に、透明樹脂(B)を含有してなる表面層(9)を積層して第2積層板を得る(S4)。   Then, the surface layer (9) containing transparent resin (B) is laminated | stacked on the single side | surface or both surfaces of the base layer (8) which consists of said resin for base layers, and a 2nd laminated board is obtained (S4).

次に、前記得られた第2積層板の周縁部の少なくとも一部を裁断し、所定の大きさの製品(第2積層樹脂板)(3)を得ると共に、裁断された部分を第2端材として分別する(S5)。これらS3、S4、S5が第2端材取得工程である。   Next, at least a part of the peripheral edge of the obtained second laminated plate is cut to obtain a product (second laminated resin plate) (3) having a predetermined size, and the cut portion is set to the second end. Sort as material (S5). These S3, S4, and S5 are a 2nd edge material acquisition process.

こうして得られた第2積層樹脂板(3)は、透明樹脂(A)及び透明樹脂(B)を含有してなる基層(8)の両面に透明樹脂(B)を含有してなる表面層(9)(9)が積層された構成であるが、透明樹脂(A)と透明樹脂(B)との間にΔδ×Δn≦0.42の関係式が成立する構成であるから、第1端材を基層(8)の構成材料の一部として再利用するにもかかわらず、黄色等の着色が十分に抑制された第2積層樹脂板(3)を製造できる。また、第1端材を基層(8)の構成材料の一部として再利用する比率を増大させても(即ち端材のリサイクル含有比率を増大させても)、黄色等の着色を十分に抑制できる。   The second laminated resin plate (3) thus obtained has a surface layer (B) containing the transparent resin (B) on both sides of the base layer (8) containing the transparent resin (A) and the transparent resin (B). 9) Although (9) is laminated, since the relational expression Δδ × Δn ≦ 0.42 is established between the transparent resin (A) and the transparent resin (B), the first end Although the material is reused as a part of the constituent material of the base layer (8), the second laminated resin plate (3) in which coloring such as yellow is sufficiently suppressed can be manufactured. Moreover, even if the ratio of reusing the first mill ends as a part of the constituent material of the base layer (8) is increased (that is, the ratio of recycled contents of the mill ends is increased), coloring such as yellow is sufficiently suppressed. it can.

このようにS3、S4を経て得られた上記第2積層樹脂板(3)は、端材を1回再利用に供して製造されたものであるが(図2参照)、本発明の製造方法では、更に以下の工程を実施して積層樹脂板の製造を行うようにしても良い。   Thus, although the said 2nd laminated resin board (3) obtained through S3 and S4 was manufactured by using a scrap for one time reuse (refer FIG. 2), the manufacturing method of this invention Then, the following steps may be further performed to manufacture a laminated resin plate.

即ち、S5の裁断工程で出た前記第2端材を透明樹脂(A)に混合することによって、基層用樹脂を調製する(S6)。この時、前記同様に、透明樹脂(A)と第2端材の合計量に対する第2端材の含有率が1質量%以上100質量%未満になるように混合して基層用樹脂の組成物を調製するのが好ましい。   That is, the base layer resin is prepared by mixing the second end material produced in the cutting step of S5 with the transparent resin (A) (S6). At this time, in the same manner as described above, the composition of the base layer resin is mixed so that the content of the second end material relative to the total amount of the transparent resin (A) and the second end material is 1% by mass or more and less than 100% by mass. Is preferably prepared.

この後、前記基層用樹脂からなる基層(8)の片面又は両面に、透明樹脂(B)を含有してなる表面層(9)を積層して第3積層板を得る(S7)。   Then, the surface layer (9) containing transparent resin (B) is laminated | stacked on the single side | surface or both surfaces of the base layer (8) which consists of said resin for base layers, and a 3rd laminated board is obtained (S7).

次に、前記得られた第3積層板の周縁部の少なくとも一部を裁断し、所定の大きさの製品(第3積層樹脂板)(3)を得ると共に、裁断された部分を第3端材として分別する(S8)。これらS6、S7、S8が第3端材取得工程である。   Next, at least a part of the peripheral portion of the obtained third laminated board is cut to obtain a product (third laminated resin board) (3) having a predetermined size, and the cut part is taken to the third end. Sort as material (S8). These S6, S7, and S8 are a 3rd end material acquisition process.

こうして得られた第3積層樹脂板(3)は、前記同様に、透明樹脂(A)及び透明樹脂(B)を含有してなる基層(8)の両面に透明樹脂(B)を含有してなる表面層(9)(9)が積層された構成である。ここで、S6で再利用された第2端材は、そもそもその基層中に前のS3で再利用された第1端材が混合されてなるものであり、いわば2度目の再利用に供されているものであり、従ってS6で得られた基層用樹脂の組成物における前記透明樹脂(B)の含有率は、前のS3で得られた基層用樹脂の組成物における前記透明樹脂(B)の含有率よりも増大しているのであるが、透明樹脂(A)と透明樹脂(B)との間にΔδ×Δn≦0.42の関係式が成立する構成であるから、依然として着色が十分に抑制された積層樹脂板を得ることができる。   The 3rd laminated resin board (3) obtained in this way contains transparent resin (B) on both surfaces of the base layer (8) containing transparent resin (A) and transparent resin (B) similarly to the above. The surface layers (9) and (9) are stacked. Here, the second end material reused in S6 is originally formed by mixing the first end material reused in the previous S3 into the base layer, so to speak, it is used for the second reuse. Therefore, the content of the transparent resin (B) in the base layer resin composition obtained in S6 is the same as the transparent resin (B) in the base layer resin composition obtained in the previous S3. However, since the relational expression of Δδ × Δn ≦ 0.42 is established between the transparent resin (A) and the transparent resin (B), coloring is still sufficient. It is possible to obtain a laminated resin plate that is suppressed by the above.

次に、前記第3端材を透明樹脂(A)に混合することによって、基層用樹脂を調製する(S9)。前記同様に、透明樹脂(A)と第3端材の合計量に対する第3端材の含有率が1質量%以上100質量%未満になるように混合して基層用樹脂の組成物を調製するのが好ましい。   Next, a base layer resin is prepared by mixing the third end material with the transparent resin (A) (S9). In the same manner as described above, the composition of the base layer resin is prepared by mixing so that the content of the third end material relative to the total amount of the transparent resin (A) and the third end material is 1% by mass or more and less than 100% by mass. Is preferred.

以下、S7〜S9を順次同様に繰り返すことによって、製造過程で出る端材を再利用しながら、黄色等の着色が十分に抑制された積層樹脂板(第4積層樹脂板、第5積層樹脂板、第6積層樹脂板…)(3)を製造することができる。即ち、端材を2回、3回または4回以上の再利用に供することによって、得られる積層樹脂板(3)における端材のリサイクル含有比率が少しづつ増大していくことになるが、前述したように、透明樹脂(A)と透明樹脂(B)との間にΔδ×Δn≦0.42の関係式が成立する構成を採用しているから、端材を複数回再利用に供しても、黄色等の着色が十分に抑制された積層樹脂板(3)を得ることができる。このように、本製造方法では、端材を1回再利用に供した場合は勿論のこと、端材を複数回再利用に供した場合でも黄色等の着色を抑制できるので、本製造方法は工業生産に適している。   Hereinafter, by repeating the steps S7 to S9 in the same manner, the laminated resin plates (the fourth laminated resin plate and the fifth laminated resin plate) in which coloring such as yellow is sufficiently suppressed while reusing the scraps produced in the manufacturing process. The sixth laminated resin plate (...) (3) can be manufactured. That is, when the milled material is reused twice, three times, or four times or more, the recycled content ratio of the milled material in the resulting laminated resin plate (3) gradually increases. As described above, since a configuration in which the relational expression Δδ × Δn ≦ 0.42 is established between the transparent resin (A) and the transparent resin (B), the end material is reused a plurality of times. Also, it is possible to obtain a laminated resin plate (3) in which coloring such as yellow is sufficiently suppressed. As described above, in this manufacturing method, since the milling material can be reused once, it is possible to suppress coloring such as yellow even when the milling material is reused multiple times. Suitable for industrial production.

なお、前記基層(8)と前記表面層(9)とを積層する手法としては、特に限定されるものではないが、例えば共押出成形法、貼合法、熱接着法、溶剤接着法、重合接着法、キャスト重合法、表面塗布法等の方法が挙げられる。中でも、作業が容易で製造効率が高く、接着剤等の他の材料を使う必要のない共押出成形法が好ましい。   The method for laminating the base layer (8) and the surface layer (9) is not particularly limited, but for example, a coextrusion molding method, a bonding method, a thermal bonding method, a solvent bonding method, a polymerization bonding method. Examples thereof include a method such as a method, a cast polymerization method, and a surface coating method. Among them, a coextrusion method that is easy to work and has high production efficiency and does not require the use of other materials such as an adhesive is preferable.

また、前記端材を透明樹脂(A)に混合する際に、傷付き、汚れ、割れ等が存在するために製品として提供できない品質不良品(品質不良の積層樹脂板)を前記端材と共に透明樹脂(A)に混合しても良い。   In addition, when mixing the end material with the transparent resin (A), a defective product that cannot be provided as a product due to scratches, dirt, cracks, etc. (laminated resin plate with poor quality) is transparent together with the end material. You may mix with resin (A).

また、上記実施形態では、基層用樹脂調製工程において(S3、S6、S9)、透明樹脂(A)と端材とを混合して基層用樹脂を調製していたが、特にこれに限定されるものではなく、前記端材を基層用樹脂に用いても良い(透明樹脂(A)を混合せしめない)。   In the above embodiment, the base layer resin is prepared by mixing the transparent resin (A) and the mill ends in the base layer resin preparation step (S3, S6, S9). However, the present invention is particularly limited to this. Instead of the above, the end material may be used as the base layer resin (the transparent resin (A) cannot be mixed).

この発明において、前記透明樹脂(A)、前記透明樹脂(B)としては、透明樹脂(A)のSP値と透明樹脂(B)のSP値の差の絶対値を「Δδ」とし、透明樹脂(A)の屈折率と透明樹脂(B)の屈折率の差の絶対値を「Δn」としたとき、互いにΔδ×Δn≦0.42の関係式が成立する透明樹脂同士であればどのようなものでも使用できる。下記表1は、2つの樹脂の組み合わせにおける「Δδ×Δn」の数値を表にして記載したものであるが、例えばこのような組み合わせにおいてΔδ×Δnが0.42以下である組み合わせになる樹脂の一方を透明樹脂(A)として用い、他方を透明樹脂(B)として用いることができる。なお、表1において、「*」が付された組み合わせではΔδ×Δnが0.42を超えているので、本発明における透明樹脂(A)と透明樹脂(B)の組み合わせとして採用できない(本願発明の効果を達成できない)。   In this invention, as the transparent resin (A) and the transparent resin (B), the absolute value of the difference between the SP value of the transparent resin (A) and the SP value of the transparent resin (B) is “Δδ”, and the transparent resin As long as the absolute value of the difference between the refractive index of (A) and the refractive index of the transparent resin (B) is “Δn”, the transparent resins satisfying the relational expression of Δδ × Δn ≦ 0.42 are established. Anything can be used. Table 1 below lists the numerical values of “Δδ × Δn” in a combination of two resins. For example, in such a combination, a resin having a combination in which Δδ × Δn is 0.42 or less. One can be used as the transparent resin (A) and the other as the transparent resin (B). In Table 1, since Δδ × Δn exceeds 0.42 in the combinations marked with “*”, it cannot be adopted as the combination of the transparent resin (A) and the transparent resin (B) in the present invention (the present invention). Cannot achieve the effect).

Figure 2011079167
Figure 2011079167

なお、表1の「Δδ×Δn」の算出の基礎となる「Δδ」の値を表2に示し、表1の「Δδ×Δn」の算出の基礎となる「Δn」の値を表3に示す。また、「Δδ」の算出の基礎となる各樹脂のSP値および「Δn」の算出の基礎となる各樹脂の屈折率nの値を表4に示す。   Table 2 shows the value of “Δδ” that is the basis for the calculation of “Δδ × Δn” in Table 1. Table 3 shows the value of “Δn” that is the basis for the calculation of “Δδ × Δn” in Table 1. Show. Table 4 shows the SP value of each resin that is the basis for calculating “Δδ” and the value of the refractive index n of each resin that is the basis for calculating “Δn”.

Figure 2011079167
Figure 2011079167

Figure 2011079167
Figure 2011079167

Figure 2011079167
Figure 2011079167

ここで、前記屈折率は、株式会社アタゴ製の屈折率計「多波長アッベ屈折計DR−M4」を用いてJIS K7142−1996に準拠して測定した値である(定義)。   Here, the refractive index is a value measured according to JIS K7142-1996 using a refractometer “Multiwave Abbe Refractometer DR-M4” manufactured by Atago Co., Ltd. (definition).

但し、表3のΔnの算出及び表4の各樹脂の屈折率nについては、便宜的に、下記文献1に記載の当該樹脂の屈折率を用い、文献1に記載のない樹脂については下記文献2の当該樹脂の屈折率を用いた。なお、これら文献1、2に共重合体の屈折率の記載がない場合には、既知の樹脂の屈折率と各単位単量体の成分のモル比率により算出した、即ち共重合体の屈折率は、各単位単量体の屈折率と各成分モル比率の積を合計することによって算出した。これらの点は、後述する実施例においても同様である。
文献1:「POLYMER HANDBOOK(THIRD EDITION)」、著者:J.BRANDRUP and E.H.IMMERGUT、発行所:A WILEY−INTERSCIENCE PUBLICATION、1989年発行、p.VI/453〜VI/461
文献2:「光時代の透明性樹脂」、監修者:井出文雄、発行所:CMC出版、2004年6月30日発行、第1版、第10章、p.128〜137。
However, for the calculation of Δn in Table 3 and the refractive index n of each resin in Table 4, for convenience, the refractive index of the resin described in Document 1 below is used, and for the resin not described in Document 1, the following document is used. 2 was used. In addition, when there is no description of the refractive index of a copolymer in these literatures 1 and 2, it calculated by the molar ratio of the refractive index of a known resin and the component of each unit monomer, ie, the refractive index of a copolymer. Was calculated by adding the product of the refractive index of each unit monomer and the molar ratio of each component. These points are the same in the embodiments described later.
Reference 1: “POLYMER HANDBOOK (THIRD EDITION)”, author: BRANDRUP and E. H. IMMERGUT, Publisher: A WILEY-INTERSCIENCE PUBLICATION, 1989, p. VI / 453-VI / 461
Reference 2: “Transparent resin in the light age”, supervisor: Fumio Ide, publisher: CMC Publishing, published June 30, 2004, 1st edition, Chapter 10, p. 128-137.

また、前記SP値は、Hansenの溶解度パラメーター(Hansenの方法により計算して求められた溶解度パラメーター)である。Hansenによれば、溶解度パラメーターδは、(δd、δp、δh)の3次元のパラメーターで定義されている、即ち次式(2)で定義されている。なお、Hansenが提唱したこの考え方(理論)は、「PROPERTIES OF POLYMERS」(著者:D.W.VAN KREVELEN、発行所:ELSEVIER SCIENTIFIC PUBLISHING COMPANY、1989年発行、第5版)に記載されている。
δ2=(δd)2+(δp)2+(δh)2 …(2)
δd:London分散力項
δp:分子分極項(双極子間力項)
δh:水素結合項
従って、本発明において、「Δδ」は、次式(3)で定義される。
(Δδ)2=(δd1−δd22+(δp1−δp22+(δh1−δh22 …(3)
δd1:透明樹脂(A)のLondon分散力項
δd2:透明樹脂(B)のLondon分散力項
δp1:透明樹脂(A)の分子分極項
δp2:透明樹脂(B)の分子分極項
δh1:透明樹脂(A)の水素結合項
δh2:透明樹脂(B)の水素結合項。
The SP value is a Hansen solubility parameter (solubility parameter calculated by the Hansen method). According to Hansen, the solubility parameter δ is defined by three-dimensional parameters (δd, δp, δh), that is, defined by the following equation (2). This concept (theory) proposed by Hansen is described in “PROPERITES OF POLYMERS” (author: DW VAN KREVEREN, publisher: ELSEVIER SCIENTIFIC PUBLISHING COMPANY, 1989, 5th edition).
δ 2 = (δd) 2 + (δp) 2 + (δh) 2 (2)
δd: London dispersion force term δp: molecular polarization term (dipole force term)
δh: hydrogen bond term Therefore, in the present invention, “Δδ” is defined by the following equation (3).
(Δδ) 2 = (δd 1 -δd 2 ) 2 + (δp 1 -δp 2 ) 2 + (δh 1 -δh 2 ) 2 (3)
δd 1 : London dispersion force term of transparent resin (A) δd 2 : London dispersion force term of transparent resin (B) δp 1 : Molecular polarization term of transparent resin (A) δp 2 : Molecular polarization term of transparent resin (B) δh 1 : Hydrogen bond term of transparent resin (A) δh 2 : Hydrogen bond term of transparent resin (B)

本発明において、Hansenの溶解度パラメーター(SP値)は、具体的には、次のようにして求める。   In the present invention, the Hansen solubility parameter (SP value) is specifically determined as follows.

1)各官能基のグループモル牽引定数(Fdi、Fpi、Ehi)及びモル体積(Vi)を、「PROPERTIES OF POLYMERS」(著者:D.W.VAN KREVELEN、発行所:ELSEVIER SCIENTIFIC PUBLISHING COMPANY、1989年発行、第5版)の「CHAPTER7 COHESIVE PROPERTIES AND SOLUBILITY」(129〜158頁)の記載事項、手法により算出する。   1) The group molar pulling constants (Fdi, Fpi, Ehi) and molar volume (Vi) of each functional group were determined according to “PROPERITES OF POLYMERS” (author: DW VAN KREVELEN, publisher: ELSEVIER SCIENTIFIC PUBLISHING COMPANY, 1989). It is calculated according to the description items and technique of “CHAPTER7 COHESIVE PROPERITES AND SOLUBILITY” (pages 129 to 158) of the fifth edition).

2)ポリマー(樹脂)の単位グループモル牽引定数は、上記1)で求めた各官能基のグループモル牽引定数(Fdi、Fpi、Ehi)及びモル体積(Vi)から、
δd=ΣFdi/ΣVi …(4)
δp=(Σ(Fpi)21/2/ΣVi …(5)
δh=(ΣEhi/ΣVi)1/2 …(6)
上記式(4)、式(5)、式(6)によりそれぞれ算出する。
2) The unit group molar pulling constant of the polymer (resin) is determined from the group molar pulling constant (Fdi, Fpi, Ehi) and the molar volume (Vi) of each functional group determined in 1) above.
δd = ΣFdi / ΣVi (4)
δp = (Σ (Fpi) 2 ) 1/2 / ΣVi (5)
δh = (ΣEhi / ΣVi) 1/2 (6)
It calculates by said Formula (4), Formula (5), and Formula (6), respectively.

3)複数個の単量体単位を含むポリマー(共重合体)については、各単位単量体の存在モル比率を掛けて算出する。   3) For a polymer (copolymer) containing a plurality of monomer units, it is calculated by multiplying the molar ratio of each unit monomer.

前記透明樹脂(A)、前記透明樹脂(B)としては、互いにΔδ×Δn≦0.30の関係式が成立する透明樹脂同士を用いるのが好ましく、特に好ましいのは互いにΔδ×Δn≦0.20の関係式が成立する透明樹脂同士である。このように「Δδ×Δn」の値がより小さい場合には、端材を基層の構成材料の一部としてより多く使用しても、黄色等の着色が十分に抑制された積層樹脂板(光拡散板等)を製造できる。   As the transparent resin (A) and the transparent resin (B), it is preferable to use transparent resins satisfying the relational expression of Δδ × Δn ≦ 0.30, particularly preferably Δδ × Δn ≦ 0. The transparent resins satisfy 20 relational expressions. In this way, when the value of “Δδ × Δn” is smaller, a laminated resin plate (light) in which coloring such as yellow is sufficiently suppressed even when the end material is used more as a part of the constituent material of the base layer. Diffusion plate etc.) can be manufactured.

また、透明樹脂(A)の屈折率と透明樹脂(B)の屈折率の差の絶対値は、即ちΔnは、0.03以上0.15以下であるのが好ましく、さらに0.032以上0.13以下であるのがより好ましい。   The absolute value of the difference between the refractive index of the transparent resin (A) and the refractive index of the transparent resin (B), that is, Δn is preferably 0.03 or more and 0.15 or less, and more preferably 0.032 or more and 0. .13 or less is more preferable.

また、透明樹脂(A)のSP値と透明樹脂(B)のSP値の差の絶対値は、即ちΔδは、0.0以上12.0以下であるのが好ましく、この場合には端材を基層の構成材料の一部として再利用する比率をより増大させても、黄色等の着色を十分に抑制することができる。中でも、Δδは0.0以上10.0以下であるのがより好ましい。   Further, the absolute value of the difference between the SP value of the transparent resin (A) and the SP value of the transparent resin (B), that is, Δδ is preferably 0.0 or more and 12.0 or less. Even if the ratio of reusing as a part of the constituent material of the base layer is further increased, coloring such as yellow can be sufficiently suppressed. Among them, Δδ is more preferably 0.0 or more and 10.0 or less.

なお、表1に示した透明樹脂(A)と透明樹脂(B)の組み合わせは一例に過ぎず、特にこれら例示のものに限定されるものではない。即ち、前記透明樹脂(A)、前記透明樹脂(B)としては、互いにΔδ×Δn≦0.42の関係式が成立する限りにおいて、例えば次のような透明樹脂の中から組み合わせて用いることができる。例えば、メタクリル樹脂、MS樹脂(スチレン−メタクリル酸メチル共重合体)、ABS樹脂(アクリロニトリル−ブタジエン−スチレン共重合体)、ポリスチレン、AS樹脂(アクリロニトリル−スチレン共重合体)、ポリエチレン、ポリプロピレン、環状オレフィン樹脂等が挙げられる。   The combinations of the transparent resin (A) and the transparent resin (B) shown in Table 1 are merely examples, and are not particularly limited to these examples. That is, as the transparent resin (A) and the transparent resin (B), as long as the relational expression Δδ × Δn ≦ 0.42 is established, for example, a combination of the following transparent resins can be used. it can. For example, methacrylic resin, MS resin (styrene-methyl methacrylate copolymer), ABS resin (acrylonitrile-butadiene-styrene copolymer), polystyrene, AS resin (acrylonitrile-styrene copolymer), polyethylene, polypropylene, cyclic olefin Examples thereof include resins.

これらの中でも、前記透明樹脂(A)としてスチレン系樹脂を用い、前記透明樹脂(B)としてスチレン系樹脂又はアクリル系樹脂を用いるのが好ましい。勿論、この場合にも、透明樹脂(A)であるスチレン系樹脂と、透明樹脂(B)であるスチレン系樹脂又はアクリル系樹脂とは、互いにΔδ×Δn≦0.42の関係式が成立するものでなければならない。   Among these, it is preferable to use a styrene resin as the transparent resin (A) and a styrene resin or an acrylic resin as the transparent resin (B). Of course, also in this case, the styrene resin as the transparent resin (A) and the styrene resin or acrylic resin as the transparent resin (B) satisfy the relational expression Δδ × Δn ≦ 0.42. Must be a thing.

前記スチレン系樹脂とは、スチレン系単量体単位の含有率が50〜100質量%である樹脂である。前記スチレン系単量体としては、スチレンの他、例えば置換スチレン類などを用いることもできる。前記置換スチレン類としては、特に限定されるものではないが、例えば、クロロスチレン、ブロモスチレン等のハロゲン化スチレン類、ビニルトルエン、α−メチルスチレン等のアルキルスチレン類などが挙げられる。前記スチレン系単量体は、単独で用いても良いし、2種以上を組み合わせて用いても良い。   The styrene resin is a resin having a styrene monomer unit content of 50 to 100% by mass. As the styrene monomer, for example, substituted styrenes can be used in addition to styrene. Examples of the substituted styrenes include, but are not limited to, halogenated styrenes such as chlorostyrene and bromostyrene, and alkylstyrenes such as vinyltoluene and α-methylstyrene. The styrenic monomer may be used alone or in combination of two or more.

前記スチレン系樹脂に単量体単位として含ませ得る、スチレン系単量体以外の単量体としては、特に限定されるものではないが、例えば、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチル、メタクリル酸シクロヘキシル、メタクリル酸オクタデシル、メタクリル酸フェニル、メタクリル酸ベンジル、メタクリル酸2−エチルヘキシル、メタクリル酸2−ヒドロキシエチル、メタクリル酸アダマンチル、メタクリル酸トリシクロデシル、メタクリル酸フェンチル、メタクリル酸ノルボルニル、メタクリル酸ノルボルニルメチル等のメタクリル酸エステル類、アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、アクリル酸シクロヘキシル、アクリル酸フェニル、アクリル酸ベンジル、アクリル酸2−エチルヘキシル、アクリル酸2−ヒドロキシエチル、アクリル酸トリシクロデシル等のアクリル酸エステル類、メタクリル酸、アクリル酸等の不飽和酸類、アクリロニトリル、メタクリロニトリル、無水マレイン酸、フェニルマレイミド、シクロヘキシルマレイミド、無水グルタル酸、グルタルイミドなどが挙げられ、これらの2種以上を含んでいても良い。   The monomer other than the styrene monomer that can be included as a monomer unit in the styrenic resin is not particularly limited. For example, methyl methacrylate, ethyl methacrylate, butyl methacrylate, Cyclohexyl methacrylate, octadecyl methacrylate, phenyl methacrylate, benzyl methacrylate, 2-ethylhexyl methacrylate, 2-hydroxyethyl methacrylate, adamantyl methacrylate, tricyclodecyl methacrylate, fentil methacrylate, norbornyl methacrylate, nor methacrylate Methacrylic acid esters such as bornylmethyl, methyl acrylate, ethyl acrylate, butyl acrylate, cyclohexyl acrylate, phenyl acrylate, benzyl acrylate, 2-ethylhexyl acrylate, acrylic Acrylic acid esters such as 2-hydroxyethyl acrylate and tricyclodecyl acrylate, unsaturated acids such as methacrylic acid and acrylic acid, acrylonitrile, methacrylonitrile, maleic anhydride, phenylmaleimide, cyclohexylmaleimide, glutaric anhydride, A glutarimide etc. are mentioned, These 2 or more types may be included.

前記アクリル系樹脂とは、単量体単位としてメタクリル酸メチルを50質量%以上含有する樹脂であり、実質的にメタクリル酸メチルの単独重合体であっても良いし、メタクリル酸メチルを50質量%以上とこれと共重合可能な他の単量体50質量%以下とを共重合して得られる共重合体であっても良い。   The acrylic resin is a resin containing 50% by mass or more of methyl methacrylate as a monomer unit, and may be substantially a homopolymer of methyl methacrylate, or 50% by mass of methyl methacrylate. It may be a copolymer obtained by copolymerizing the above and 50% by mass or less of other monomers copolymerizable therewith.

前記アクリル系樹脂に単量体単位として含ませ得る、メタクリル酸メチル以外の他の単量体(メタクリル酸メチルと共重合可能な他の単量体)としては、特に限定されるものではないが、例えば、メタクリル酸エチル、メタクリル酸ブチル、メタクリル酸シクロヘキシル、メタクリル酸オクタデシル、メタクリル酸フェニル、メタクリル酸ベンジル、メタクリル酸2−エチルヘキシル、メタクリル酸2−ヒドロキシエチル、メタクリル酸アダマンチル、メタクリル酸トリシクロデシル、メタクリル酸フェンチル、メタクリル酸ノルボルニル、メタクリル酸ノルボルニルメチル等のメタクリル酸エステル類、アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、アクリル酸シクロヘキシル、アクリル酸フェニル、アクリル酸ベンジル、アクリル酸2−エチルヘキシル、アクリル酸2−ヒドロキシエチル、アクリル酸トリシクロデシル等のアクリル酸エステル類、メタクリル酸、アクリル酸等の不飽和酸類、アクリロニトリル、メタクリロニトリル、無水マレイン酸、フェニルマレイミド、シクロヘキシルマレイミド、無水グルタル酸、グルタルイミド、スチレン系単量体などが挙げられ、これらの2種以上を含んでいても良い。前記スチレン系単量体としては、スチレンの他、上記の置換スチレン類を用いても良い。また、前記アクリル系樹脂には、無水グルタル酸単位やグルタルイミド単位が含まれていても良い。   Other monomers other than methyl methacrylate (other monomers copolymerizable with methyl methacrylate) that can be included as a monomer unit in the acrylic resin are not particularly limited. For example, ethyl methacrylate, butyl methacrylate, cyclohexyl methacrylate, octadecyl methacrylate, phenyl methacrylate, benzyl methacrylate, 2-ethylhexyl methacrylate, 2-hydroxyethyl methacrylate, adamantyl methacrylate, tricyclodecyl methacrylate, Methacrylic acid esters such as fenthyl methacrylate, norbornyl methacrylate, norbornyl methyl methacrylate, methyl acrylate, ethyl acrylate, butyl acrylate, cyclohexyl acrylate, phenyl acrylate, benzyl acrylate, Acrylic acid esters such as 2-ethylhexyl silylate, 2-hydroxyethyl acrylate and tricyclodecyl acrylate, unsaturated acids such as methacrylic acid and acrylic acid, acrylonitrile, methacrylonitrile, maleic anhydride, phenylmaleimide, cyclohexyl Maleimide, glutaric anhydride, glutarimide, styrenic monomer and the like may be mentioned, and two or more of these may be included. As said styrene-type monomer, you may use said substituted styrene other than styrene. The acrylic resin may contain a glutaric anhydride unit or a glutarimide unit.

前記基層(8)に光拡散粒子を含有せしめても良い。この場合には、光拡散板として好適なものとなる。前記光拡散粒子としては、前記基層(8)を構成する樹脂又は混合樹脂と屈折率が異なる粒子であって、該粒子を分散させて含有させることにより積層樹脂板(光拡散板)を透過する光を拡散し得るものであれば、特に限定されない。例えば、ガラス粒子、ガラス繊維、シリカ粒子、水酸化アルミニウム粒子、炭酸カルシウム粒子、硫酸バリウム粒子、酸化チタン粒子、タルク等の無機粒子であっても良いし、スチレン系重合体粒子、アクリル系重合体粒子、シロキサン系重合体粒子等の有機粒子であっても良い。   The base layer (8) may contain light diffusing particles. In this case, the light diffusing plate is suitable. The light diffusing particles are particles having a refractive index different from that of the resin or mixed resin constituting the base layer (8), and the particles are dispersed and contained to transmit the laminated resin plate (light diffusing plate). There is no particular limitation as long as it can diffuse light. For example, the particles may be inorganic particles such as glass particles, glass fibers, silica particles, aluminum hydroxide particles, calcium carbonate particles, barium sulfate particles, titanium oxide particles, talc, styrene polymer particles, acrylic polymers. Organic particles such as particles and siloxane polymer particles may be used.

また、前記基層(8)に、この発明の効果を阻害しない範囲において、紫外線吸収剤、熱安定剤、酸化防止剤、耐候剤、光安定剤、蛍光増白剤、加工安定剤、造核剤等の添加剤を含有せしめても良い。   Further, in the base layer (8), an ultraviolet absorber, a heat stabilizer, an antioxidant, a weathering agent, a light stabilizer, a fluorescent whitening agent, a processing stabilizer, and a nucleating agent as long as the effects of the present invention are not impaired. Such additives may be included.

同様に、この発明の効果を阻害しない範囲において、前記表面層(9)に、紫外線吸収剤、熱安定剤、酸化防止剤、耐候剤、光安定剤、蛍光増白剤、加工安定剤、造核剤等の添加剤を含有せしめても良い。   Similarly, to the extent that the effects of the present invention are not impaired, the surface layer (9) is provided with an ultraviolet absorber, a heat stabilizer, an antioxidant, a weathering agent, a light stabilizer, a fluorescent brightening agent, a processing stabilizer, An additive such as a nucleating agent may be included.

前記基層(8)の厚さ(R)は、通常50〜2990μmである。50μm以上であることで十分な強度を確保できると共に、2990μm以下であることでコスト増大を抑制できる。中でも、前記基層(8)の厚さ(R)は好ましくは100μm以上2980μm以下、より好ましくは2500μm以下である。   The thickness (R) of the base layer (8) is usually 50 to 2990 μm. When it is 50 μm or more, sufficient strength can be secured, and when it is 2990 μm or less, an increase in cost can be suppressed. Among them, the thickness (R) of the base layer (8) is preferably 100 μm or more and 2980 μm or less, and more preferably 2500 μm or less.

また、前記表面層(9)の厚さ(T)は、通常10〜300μmである。10μm以上であることで安定した厚さの表面層が得られると共に、300μm以下であることでコスト増大を抑制できる。中でも、前記表面層(9)の厚さ(T)は好ましくは20μm以上200μm以下である。   The thickness (T) of the surface layer (9) is usually 10 to 300 μm. A surface layer having a stable thickness can be obtained when the thickness is 10 μm or more, and an increase in cost can be suppressed when the thickness is 300 μm or less. Among them, the thickness (T) of the surface layer (9) is preferably 20 μm or more and 200 μm or less.

前記基層の厚さは前記表面層の厚さ(片面)の9〜100倍の範囲に設定されるのが好ましい。9以上であることでコスト増大を抑制できると共に100以下であることで安定した厚さの表面層が得られる。中でも、前記基層の厚さは前記表面層の厚さの10〜80倍の範囲に設定されるのがより好ましい。なお、前記積層樹脂板の厚さは、通常0.05mm〜5mm、好ましくは0.1〜4mmの範囲、より好ましくは0.2〜3mmの範囲に設定される。   The thickness of the base layer is preferably set in the range of 9 to 100 times the thickness (one side) of the surface layer. When it is 9 or more, an increase in cost can be suppressed, and when it is 100 or less, a surface layer having a stable thickness can be obtained. Especially, it is more preferable that the thickness of the base layer is set in a range of 10 to 80 times the thickness of the surface layer. In addition, the thickness of the said laminated resin board is 0.05 mm-5 mm normally, Preferably it is the range of 0.1-4 mm, More preferably, it is set to the range of 0.2-3 mm.

なお、上記実施形態では、基層(8)の両面に表面層(9)(9)を積層一体化した構成が採用されていたが(図1参照)、特にこのような構成に限定されるものではなく、基層(8)の片面に表面層(9)を積層一体化した構成を採用しても良い。ただ、反りをより十分に防止できる点で、上記実施形態のように基層(8)の両面に表面層(9)(9)を積層一体化した構成を採用するのが好ましい。   In the above embodiment, the structure in which the surface layers (9) and (9) are laminated and integrated on both surfaces of the base layer (8) is employed (see FIG. 1), but the structure is particularly limited to such a structure. Instead, a configuration in which the surface layer (9) is laminated and integrated on one surface of the base layer (8) may be employed. However, it is preferable to adopt a configuration in which the surface layers (9) and (9) are laminated and integrated on both surfaces of the base layer (8) as in the above-described embodiment in that the warpage can be more sufficiently prevented.

また、積層樹脂板(3)の表面は、平滑面に形成されていても良いし、或いはマット形状、レンズ形状等に形成されていても良く、特に限定されない。   Further, the surface of the laminated resin plate (3) may be formed as a smooth surface, or may be formed into a mat shape, a lens shape or the like, and is not particularly limited.

この発明の製造方法により得られる積層樹脂板(3)として好適な構成は、透明樹脂(A)100質量部および透明樹脂(B)0.01〜20質量部を含有してなる基層(8)と、前記基層の片面または両面に積層一体化され、透明樹脂(B)を含有してなる表面層(9)と、を備えた構成であって、基層の厚さが表面層の厚さ(片面)の9〜100倍の範囲に設定された構成である。このような構成の積層樹脂板は、着色が十分に抑制されたものとなっている。   A preferred structure for the laminated resin plate (3) obtained by the production method of the present invention is a base layer (8) containing 100 parts by mass of the transparent resin (A) and 0.01 to 20 parts by mass of the transparent resin (B). And a surface layer (9) which is laminated and integrated on one side or both sides of the base layer and contains a transparent resin (B), wherein the thickness of the base layer is the thickness of the surface layer ( It is a configuration set in a range of 9 to 100 times that of one side. The laminated resin plate having such a configuration is sufficiently suppressed in coloring.

なお、この発明に係る積層樹脂板の製造方法は、上記例示の実施形態のものに特に限定されるものではなく、請求の範囲内であれば、その精神を逸脱するものでない限りいかなる設計的変更をも許容するものである。   Note that the method for producing a laminated resin plate according to the present invention is not particularly limited to that of the above-described exemplary embodiment, and any design change is within the scope of the claims, as long as it does not depart from the spirit. Is also allowed.

次に、この発明の具体的実施例について説明するが、本発明はこれら実施例のものに特に限定されるものではない。   Next, specific examples of the present invention will be described, but the present invention is not particularly limited to these examples.

<実施例1>
スチレン−メタクリル酸メチル共重合体(スチレン単位の含有率:約80質量%、メタクリル酸メチル単位の含有率:約20質量%)(新日鐵化学社製「MS200」)90.90質量部、アクリル系重合体粒子(架橋重合体粒子)(住友化学社製「スミペックスXC1A」、体積平均粒子径約25μm)8.00質量部、アデカスタブLA31(ベンゾトリアゾール系紫外線吸収剤、ADEKA社製)1.00質量部、スミライザーGP(加工安定剤、住友化学社製)0.10質量部を、ドライブレンドした後、スクリュー径40mmの押出機に供給して溶融混練することによって、表面層形成用樹脂組成物B1を得た。
<Example 1>
90.90 parts by mass of styrene-methyl methacrylate copolymer (styrene unit content: about 80% by mass, methyl methacrylate unit content: about 20% by mass, “MS200” manufactured by Nippon Steel Chemical Co., Ltd.) Acrylic polymer particles (crosslinked polymer particles) (“SUMIPEX XC1A” manufactured by Sumitomo Chemical Co., Ltd., volume average particle diameter of about 25 μm) 8.00 parts by mass, ADK STAB LA31 (benzotriazole ultraviolet absorber, manufactured by ADEKA) 00 parts by mass, Sumilizer GP (processing stabilizer, manufactured by Sumitomo Chemical Co., Ltd.) 0.10 parts by mass, and after dry blending, the mixture is supplied to an extruder with a screw diameter of 40 mm and melt-kneaded to form a resin composition for surface layer formation Product B1 was obtained.

上記表面層形成用樹脂組成物B1をスクリュー径20mmの第2押出機に供給して250℃で溶融混練し、マルチマニホールドダイに供給した。   The surface layer forming resin composition B1 was supplied to a second extruder having a screw diameter of 20 mm, melt-kneaded at 250 ° C., and supplied to a multi-manifold die.

一方、ポリスチレン樹脂(東洋スチレン社製「HRM40」)84.45質量部、アクリル系重合体粒子(架橋重合体粒子)(ローム&ハース社製「パラロイドEXL5766」、体積平均粒子径約0.8μm)14.00質量部、スミソーブ200(ベンゾトリアゾール系紫外線吸収剤、住友化学社製)1.00質量部、スミライザーGP(加工安定剤、住友化学社製)0.50質量部、ホワイトフローPSN(蛍光増白剤、住化カラー社製)0.05質量部を、ドライブレンドすることによって、マスターバッチ樹脂組成物A1を得た。   On the other hand, 84.45 parts by mass of polystyrene resin (“HRM40” manufactured by Toyo Styrene Co., Ltd.), acrylic polymer particles (crosslinked polymer particles) (“Paralloid EXL5766” manufactured by Rohm & Haas Co., volume average particle diameter of about 0.8 μm) 14.00 parts by mass, Sumsorb 200 (benzotriazole ultraviolet absorber, manufactured by Sumitomo Chemical Co.) 1.00 parts by mass, Sumizer GP (processing stabilizer, manufactured by Sumitomo Chemical Co.) 0.50 parts by mass, White Flow PSN (Fluorescent) A masterbatch resin composition A1 was obtained by dry blending 0.05 part by weight of a whitening agent (manufactured by Sumika Color Co., Ltd.).

ポリスチレン樹脂(東洋スチレン社製「HRM40」)を100質量部、上記表面層形成用樹脂組成物B1を4.63質量部、上記マスターバッチ樹脂組成物A1を11.00質量部ドライブレンドした後、スクリュー径40mmの第1押出機に供給して250℃で溶融混練し、マルチマニホールドダイに供給した。   After dry blending 100 parts by weight of polystyrene resin (“HRM40” manufactured by Toyo Styrene Co., Ltd.), 4.63 parts by weight of the resin composition B1 for forming the surface layer, and 11.00 parts by weight of the masterbatch resin composition A1, It supplied to the 1st extruder with a screw diameter of 40 mm, melt-kneaded at 250 degreeC, and supplied to the multi manifold die.

前記第1押出機からマルチマニホールドダイに供給される樹脂組成物が基層(8)となり、前記第2押出機からマルチマニホールドダイに供給される樹脂組成物が表面層(9)(9)となるように温度245〜250℃で共押出成形を行い、図1に示すような厚さ2.0mm(基層1.9mm、表面層0.05mm×2)の3層の積層樹脂板(3)からなる光拡散板を作製した。   The resin composition supplied from the first extruder to the multi-manifold die becomes the base layer (8), and the resin composition supplied from the second extruder to the multi-manifold die becomes the surface layer (9) (9). Thus, co-extrusion is performed at a temperature of 245 to 250 ° C., and from a three-layer laminated resin plate (3) having a thickness of 2.0 mm (base layer 1.9 mm, surface layer 0.05 mm × 2) as shown in FIG. A light diffusion plate was produced.

なお、上記ポリスチレン樹脂(透明樹脂(A))と、上記スチレン−メタクリル酸メチル共重合体(スチレン単位の含有率:約80質量%、メタクリル酸メチル単位の含有率:約20質量%)(透明樹脂(B))との間におけるΔδ×Δnは0.093であるから(表1参照)、これら両樹脂の間にはΔδ×Δn≦0.42の関係式が成立する。   The polystyrene resin (transparent resin (A)) and the styrene-methyl methacrylate copolymer (styrene unit content: about 80% by mass, methyl methacrylate unit content: about 20% by mass) (transparent Since Δδ × Δn with respect to resin (B)) is 0.093 (see Table 1), a relational expression of Δδ × Δn ≦ 0.42 is established between these two resins.

この実施例1で得られた積層樹脂板(3)は、透明樹脂(A)製の基層の厚さが1.9mm、透明樹脂(B)製の表面層の厚さが0.05mm(両側合計で0.10mm)である積層板の周縁部を裁断して端材として分別し、この端材92質量部と透明樹脂(A)8質量部とを混合して得られた樹脂組成物からなる厚さ1.9mmの基層の両面に、それぞれ透明樹脂(B)製の厚さ0.05mmの表面層を積層して製造した積層樹脂板に相当する。   The laminated resin plate (3) obtained in Example 1 has a transparent resin (A) base layer thickness of 1.9 mm and a transparent resin (B) surface layer thickness of 0.05 mm (both sides). From the resin composition obtained by cutting the peripheral edge of the laminated board having a total of 0.10 mm) and separating it as an end material, and mixing 92 parts by mass of the end material and 8 parts by mass of the transparent resin (A) This corresponds to a laminated resin plate produced by laminating a surface layer made of a transparent resin (B) and having a thickness of 0.05 mm on both sides of a 1.9 mm thick base layer.

<実施例2>
第1押出機に供給する樹脂組成物(基層用)における各成分の含有割合及び各層の厚さを表1に示す条件にそれぞれ設定した以外は、実施例1と同様にして3層の積層樹脂板(3)からなる光拡散板を作製した。
<Example 2>
Three-layer laminated resin in the same manner as in Example 1 except that the content ratio of each component and the thickness of each layer in the resin composition (for the base layer) supplied to the first extruder were set to the conditions shown in Table 1, respectively. A light diffusing plate made of the plate (3) was produced.

この実施例2で得られた積層樹脂板(3)は、透明樹脂(A)製の基層の厚さが1.6mm、透明樹脂(B)製の表面層の厚さが0.2mm(両側合計で0.4mm)である積層板の周縁部を裁断して端材として分別し、この端材49質量部と透明樹脂(A)51質量部とを混合して得られた樹脂組成物からなる厚さ1.9mmの基層の両面に、それぞれ透明樹脂(B)製の厚さ0.05mmの表面層を積層して製造した積層樹脂板に相当するものである。   The laminated resin plate (3) obtained in Example 2 has a transparent resin (A) base layer thickness of 1.6 mm and a transparent resin (B) surface layer thickness of 0.2 mm (both sides). From the resin composition obtained by cutting the peripheral portion of the laminate having a total of 0.4 mm) and separating it as an end material, and mixing 49 parts by mass of the end material and 51 parts by mass of the transparent resin (A) This corresponds to a laminated resin plate produced by laminating a surface layer made of transparent resin (B) and having a thickness of 0.05 mm on both surfaces of a 1.9 mm thick base layer.

<参照例1>
上記表面層形成用樹脂組成物B1をスクリュー径20mmの第2押出機に供給して250℃で溶融混練し、マルチマニホールドダイに供給した。
<Reference Example 1>
The surface layer forming resin composition B1 was supplied to a second extruder having a screw diameter of 20 mm, melt-kneaded at 250 ° C., and supplied to a multi-manifold die.

ポリスチレン樹脂(東洋スチレン社製「HRM40」)を100.00質量部、上記マスターバッチ樹脂組成物A1を11.00質量部ドライブレンドした後、スクリュー径40mmの第1押出機に供給して250℃で溶融混練し、マルチマニホールドダイに供給した。   After dry blending 100.00 parts by mass of polystyrene resin (“HRM40” manufactured by Toyo Styrene Co., Ltd.) and 11.00 parts by mass of the masterbatch resin composition A1, the mixture is supplied to a first extruder having a screw diameter of 40 mm and 250 ° C. And kneaded and fed to a multi-manifold die.

前記第1押出機からマルチマニホールドダイに供給される樹脂組成物が基層(8)となり、前記第2押出機からマルチマニホールドダイに供給される樹脂組成物が表面層(9)(9)となるように温度245〜250℃で共押出成形を行い、図1に示すような厚さ2.0mm(基層1.9mm、表面層0.05mm×2)の3層の積層樹脂板(3)からなる光拡散板を作製した。   The resin composition supplied from the first extruder to the multi-manifold die becomes the base layer (8), and the resin composition supplied from the second extruder to the multi-manifold die becomes the surface layer (9) (9). Thus, co-extrusion is performed at a temperature of 245 to 250 ° C., and from a three-layer laminated resin plate (3) having a thickness of 2.0 mm (base layer 1.9 mm, surface layer 0.05 mm × 2) as shown in FIG. A light diffusion plate was produced.

この参照例1は、基層の構成材料として積層板の端材を全く使用しなかった場合に相当する。   This reference example 1 corresponds to the case where the end material of the laminated plate is not used at all as the constituent material of the base layer.

<実施例3>
スチレン−メタクリル酸メチル共重合体(スチレン単位の含有率:約80質量%、メタクリル酸メチル単位の含有率:約20質量%)(新日鐵化学社製「MS200」)78.55質量部、アクリル系重合体粒子(架橋重合体粒子)(住友化学社製「スミペックスXC1A」、体積平均粒子径約25μm)20.00質量部、アデカスタブLA31(ベンゾトリアゾール系紫外線吸収剤、ADEKA社製)1.00質量部、スミライザーGP(加工安定剤、住友化学社製)0.20質量部、バルーHSP311(離型剤、丸菱油化社製)0.25質量部を、ドライブレンドした後、スクリュー径40mmの押出機に供給して溶融混練することによって、表面層形成用樹脂組成物B2を得た。
<Example 3>
Styrene-methyl methacrylate copolymer (styrene unit content: about 80% by mass, methyl methacrylate unit content: about 20% by mass) (“MS200” manufactured by Nippon Steel Chemical Co., Ltd.) 78.55 parts by mass, 1. Acrylic polymer particles (crosslinked polymer particles) (Sumitomo Chemical “Sumipex XC1A”, volume average particle diameter of about 25 μm) 20.00 parts by mass, ADK STAB LA31 (benzotriazole UV absorber, manufactured by ADEKA) After dry blending 00 parts by mass, Sumilizer GP (processing stabilizer, manufactured by Sumitomo Chemical Co., Ltd.) 0.20 parts by mass, Balu HSP311 (release agent, manufactured by Maruhishi Oil Chemical Co., Ltd.), the screw diameter By supplying it to a 40 mm extruder and melt-kneading, a surface layer forming resin composition B2 was obtained.

上記表面層形成用樹脂組成物B2をスクリュー径20mmの第2押出機に供給して250℃で溶融混練し、マルチマニホールドダイに供給した。   The surface layer forming resin composition B2 was supplied to a second extruder having a screw diameter of 20 mm, melt-kneaded at 250 ° C., and supplied to a multi-manifold die.

一方、スチレン−メタクリル酸共重合体(スチレン単位の含有率:約90.5質量%、メタクリル酸単位の含有率:約9.5質量%)(東洋スチレン社製「T080」)96.70質量部、シリコーンゴム粒子(東レ・ダウコーニング社製「DY33−719」)0.10質量部、アクリル系重合体粒子(架橋重合体粒子)(積水化成品工業社製「MBX2H」、体積平均粒子径約3μm)0.50質量部、スミソーブ200(ベンゾトリアゾール系紫外線吸収剤、住友化学社製)0.10質量部、スミライザーGP(加工安定剤、住友化学社製)0.10質量部、上記表面層形成用樹脂組成物B2の2.50質量部をドライブレンドした後、スクリュー径40mmの第1押出機に供給して250℃で溶融混練し、マルチマニホールドダイに供給した。   On the other hand, styrene-methacrylic acid copolymer (styrene unit content: about 90.5 mass%, methacrylic acid unit content: about 9.5 mass%) ("T080" manufactured by Toyo Styrene Co., Ltd.) 96.70 mass Parts, silicone rubber particles ("Toy Dow Corning" DY33-719 ") 0.10 parts by mass, acrylic polymer particles (cross-linked polymer particles) (Sekisui Plastics" MBX2H ", volume average particle diameter About 3 μm) 0.50 parts by mass, Sumisorb 200 (benzotriazole ultraviolet absorber, manufactured by Sumitomo Chemical Co., Ltd.) 0.10 parts by mass, Sumilizer GP (processing stabilizer, manufactured by Sumitomo Chemical Co., Ltd.) 0.10 parts by mass, the above surface After 2.50 parts by mass of the layer forming resin composition B2 is dry blended, it is supplied to a first extruder having a screw diameter of 40 mm and melt-kneaded at 250 ° C. to form a multi-manifold die. The paper was.

前記第1押出機からマルチマニホールドダイに供給される樹脂組成物が基層(8)となり、前記第2押出機からマルチマニホールドダイに供給される樹脂組成物が表面層(9)(9)となるように温度245〜250℃で共押出成形を行い、図1に示すような厚さ2.0mm(基層1.9mm、表面層0.05mm×2)の3層の積層樹脂板(3)からなる光拡散板を作製した。   The resin composition supplied from the first extruder to the multi-manifold die becomes the base layer (8), and the resin composition supplied from the second extruder to the multi-manifold die becomes the surface layer (9) (9). Thus, co-extrusion is performed at a temperature of 245 to 250 ° C., and from a three-layer laminated resin plate (3) having a thickness of 2.0 mm (base layer 1.9 mm, surface layer 0.05 mm × 2) as shown in FIG. A light diffusion plate was produced.

なお、上記スチレン−メタクリル酸共重合体(スチレン単位の含有率:約90.5質量%、メタクリル酸単位の含有率:約9.5質量%)(透明樹脂(A))と、上記スチレン−メタクリル酸メチル共重合体(スチレン単位の含有率:約80質量%、メタクリル酸メチル単位の含有率:約20質量%)(透明樹脂(B))との間におけるΔδ×Δnは0.088であるから(表1参照)、これら両樹脂の間にはΔδ×Δn≦0.42の関係式が成立する。   The styrene-methacrylic acid copolymer (styrene unit content: about 90.5% by mass, methacrylic acid unit content: about 9.5% by mass) (transparent resin (A)) and the styrene- Δδ × Δn between the methyl methacrylate copolymer (content of styrene units: about 80% by mass, content of methyl methacrylate units: about 20% by mass) (transparent resin (B)) is 0.088 Therefore (see Table 1), a relational expression of Δδ × Δn ≦ 0.42 is established between these two resins.

この実施例3で得られた積層樹脂板(3)は、透明樹脂(A)製の基層の厚さが1.9mm、透明樹脂(B)製の表面層の厚さが0.05mm(両側合計で0.10mm)である積層板の周縁部を裁断して端材として分別し、この端材50質量部と透明樹脂(A)50質量部とを混合して得られた樹脂組成物からなる厚さ1.9mmの基層の両面に、それぞれ透明樹脂(B)製の厚さ0.05mmの表面層を積層して製造した積層樹脂板に相当する。   The laminated resin plate (3) obtained in Example 3 has a transparent resin (A) base layer thickness of 1.9 mm and a transparent resin (B) surface layer thickness of 0.05 mm (both sides). From the resin composition obtained by cutting the peripheral portion of the laminate having a total of 0.10 mm) and separating it as an end material, and mixing the end material 50 parts by mass with the transparent resin (A) 50 parts by mass This corresponds to a laminated resin plate produced by laminating a surface layer made of a transparent resin (B) and having a thickness of 0.05 mm on both sides of a 1.9 mm thick base layer.

<参照例2>
上記表面層形成用樹脂組成物B1をスクリュー径20mmの第2押出機に供給して250℃で溶融混練し、マルチマニホールドダイに供給した。
<Reference Example 2>
The surface layer forming resin composition B1 was supplied to a second extruder having a screw diameter of 20 mm, melt-kneaded at 250 ° C., and supplied to a multi-manifold die.

スチレン−メタクリル酸共重合体(スチレン単位の含有率:約90.5質量%、メタクリル酸単位の含有率:約9.5質量%)(東洋スチレン社製「T080」)99.20質量部、シリコーンゴム粒子(東レ・ダウコーニング社製「DY33−719」)0.10質量部、アクリル系重合体粒子(架橋重合体粒子)(積水化成品工業社製「MBX2H」、体積平均粒子径約3μm)0.50質量部、スミソーブ200(ベンゾトリアゾール系紫外線吸収剤、住友化学社製)0.10質量部、スミライザーGP(加工安定剤、住友化学社製)0.10質量部をドライブレンドした後、スクリュー径40mmの第1押出機に供給して250℃で溶融混練し、マルチマニホールドダイに供給した。   Styrene-methacrylic acid copolymer (styrene unit content: about 90.5% by mass, methacrylic acid unit content: about 9.5% by mass) (“T080” manufactured by Toyo Styrene Co., Ltd.) 99.20 parts by mass, 0.10 parts by mass of silicone rubber particles ("DY33-719" manufactured by Toray Dow Corning), acrylic polymer particles (crosslinked polymer particles) ("MBX2H" manufactured by Sekisui Plastics Co., Ltd.), volume average particle diameter of about 3 μm ) After dry blending 0.50 parts by mass, SUMISOB 200 (benzotriazole-based UV absorber, manufactured by Sumitomo Chemical Co., Ltd.) 0.10 parts by mass, and Sumilizer GP (processing stabilizer, manufactured by Sumitomo Chemical Co., Ltd.) 0.10 parts by mass The mixture was supplied to a first extruder having a screw diameter of 40 mm, melted and kneaded at 250 ° C., and supplied to a multi-manifold die.

前記第1押出機からマルチマニホールドダイに供給される樹脂組成物が基層(8)となり、前記第2押出機からマルチマニホールドダイに供給される樹脂組成物が表面層(9)(9)となるように温度245〜250℃で共押出成形を行い、図1に示すような厚さ2.0mm(基層1.9mm、表面層0.05mm×2)の3層の積層樹脂板(3)からなる光拡散板を作製した。   The resin composition supplied from the first extruder to the multi-manifold die becomes the base layer (8), and the resin composition supplied from the second extruder to the multi-manifold die becomes the surface layer (9) (9). Thus, co-extrusion is performed at a temperature of 245 to 250 ° C., and from a three-layer laminated resin plate (3) having a thickness of 2.0 mm (base layer 1.9 mm, surface layer 0.05 mm × 2) as shown in FIG. A light diffusion plate was produced.

この参照例2は、基層の構成材料として積層板の端材を全く使用しなかった場合に相当する。   This Reference Example 2 corresponds to the case where the end material of the laminated plate is not used at all as the constituent material of the base layer.

<実施例4>
スチレン−メタクリル酸メチル共重合体(スチレン単位の含有率:約40質量%、メタクリル酸メチル単位の含有率:約60質量%)(新日鐵化学社製「MS600」)78.55質量部、アクリル系重合体粒子(架橋重合体粒子)(住友化学社製「スミペックスXC1A」、体積平均粒子径約25μm)20.00質量部、アデカスタブLA31(ベンゾトリアゾール系紫外線吸収剤、ADEKA社製)1.00質量部、スミライザーGP(加工安定剤、住友化学社製)0.20質量部、バルーHSP311(離型剤、丸菱油化社製)0.25質量部を、ドライブレンドした後、スクリュー径40mmの押出機に供給して溶融混練することによって、表面層形成用樹脂組成物B3を得た。
<Example 4>
Styrene-methyl methacrylate copolymer (content of styrene units: about 40% by mass, content of methyl methacrylate units: about 60% by mass) (“MS600” manufactured by Nippon Steel Chemical Co., Ltd.) 78.55 parts by mass, 1. Acrylic polymer particles (crosslinked polymer particles) (Sumitomo Chemical “Sumipex XC1A”, volume average particle diameter of about 25 μm) 20.00 parts by mass, ADK STAB LA31 (benzotriazole UV absorber, manufactured by ADEKA) After dry blending 00 parts by mass, Sumilizer GP (processing stabilizer, manufactured by Sumitomo Chemical Co., Ltd.) 0.20 parts by mass, Balu HSP311 (release agent, manufactured by Maruhishi Oil Chemical Co., Ltd.), screw diameter By supplying it to a 40 mm extruder and melt-kneading, a surface layer forming resin composition B3 was obtained.

上記表面層形成用樹脂組成物B3をスクリュー径20mmの第2押出機に供給して250℃で溶融混練し、マルチマニホールドダイに供給した。   The surface layer forming resin composition B3 was supplied to a second extruder having a screw diameter of 20 mm, melt-kneaded at 250 ° C., and supplied to a multi-manifold die.

一方、スチレン−メタクリル酸共重合体(スチレン単位の含有率:約90.5質量%、メタクリル酸単位の含有率:約9.5質量%)(東洋スチレン社製「T080」)96.70質量部、シリコーンゴム粒子(東レ・ダウコーニング社製「DY33−719」)0.10質量部、アクリル系重合体粒子(架橋重合体粒子)(積水化成品工業社製「MBX2H」、体積平均粒子径約3μm)0.50質量部、スミソーブ200(ベンゾトリアゾール系紫外線吸収剤、住友化学社製)0.10質量部、スミライザーGP(加工安定剤、住友化学社製)0.10質量部、上記表面層形成用樹脂組成物B3の2.50質量部をドライブレンドした後、スクリュー径40mmの第1押出機に供給して250℃で溶融混練し、マルチマニホールドダイに供給した。   On the other hand, styrene-methacrylic acid copolymer (styrene unit content: about 90.5 mass%, methacrylic acid unit content: about 9.5 mass%) ("T080" manufactured by Toyo Styrene Co., Ltd.) 96.70 mass Parts, silicone rubber particles ("Toy Dow Corning" DY33-719 ") 0.10 parts by mass, acrylic polymer particles (crosslinked polymer particles) (Sekisui Plastics" MBX2H ", volume average particle diameter About 3 μm) 0.50 parts by mass, Sumisorb 200 (benzotriazole ultraviolet absorber, manufactured by Sumitomo Chemical Co., Ltd.) 0.10 parts by mass, Sumilizer GP (processing stabilizer, manufactured by Sumitomo Chemical Co., Ltd.) 0.10 parts by mass, the above surface After 2.50 parts by mass of the layer forming resin composition B3 is dry blended, it is supplied to a first extruder having a screw diameter of 40 mm and melt-kneaded at 250 ° C. to form a multi-manifold die. The paper was.

前記第1押出機からマルチマニホールドダイに供給される樹脂組成物が基層(8)となり、前記第2押出機からマルチマニホールドダイに供給される樹脂組成物が表面層(9)(9)となるように温度245〜250℃で共押出成形を行い、図1に示すような厚さ2.0mm(基層1.9mm、表面層0.05mm×2)の3層の積層樹脂板(3)からなる光拡散板を作製した。   The resin composition supplied from the first extruder to the multi-manifold die becomes the base layer (8), and the resin composition supplied from the second extruder to the multi-manifold die becomes the surface layer (9) (9). Thus, co-extrusion is performed at a temperature of 245 to 250 ° C., and from a three-layer laminated resin plate (3) having a thickness of 2.0 mm (base layer 1.9 mm, surface layer 0.05 mm × 2) as shown in FIG. A light diffusion plate was produced.

なお、上記スチレン−メタクリル酸共重合体(スチレン単位の含有率:約90.5質量%、メタクリル酸単位の含有率:約9.5質量%)(透明樹脂(A))と、上記スチレン−メタクリル酸メチル共重合体(スチレン単位の含有率:約80質量%、メタクリル酸メチル単位の含有率:約20質量%)(透明樹脂(B))との間におけるΔδ×Δnは0.271であるから(表1参照)、これら両樹脂の間にはΔδ×Δn≦0.42の関係式が成立する。   The styrene-methacrylic acid copolymer (styrene unit content: about 90.5% by mass, methacrylic acid unit content: about 9.5% by mass) (transparent resin (A)) and the styrene- Δδ × Δn with respect to the methyl methacrylate copolymer (styrene unit content: about 80% by mass, methyl methacrylate unit content: about 20% by mass) (transparent resin (B)) is 0.271. Therefore (see Table 1), a relational expression of Δδ × Δn ≦ 0.42 is established between these two resins.

この実施例4で得られた積層樹脂板(3)は、透明樹脂(A)製の基層の厚さが1.9mm、透明樹脂(B)製の表面層の厚さが0.05mm(両側合計で0.10mm)である積層板の周縁部を裁断して端材として分別し、この端材50質量部と透明樹脂(A)50質量部とを混合して得られた樹脂組成物からなる厚さ1.9mmの基層の両面に、それぞれ透明樹脂(B)製の厚さ0.05mmの表面層を積層して製造した積層樹脂板に相当する。   In the laminated resin plate (3) obtained in Example 4, the thickness of the transparent resin (A) base layer was 1.9 mm, and the thickness of the transparent resin (B) surface layer was 0.05 mm (both sides). From the resin composition obtained by cutting the peripheral portion of the laminate having a total of 0.10 mm) and separating it as an end material, and mixing the end material 50 parts by mass with the transparent resin (A) 50 parts by mass This corresponds to a laminated resin plate produced by laminating a surface layer made of a transparent resin (B) and having a thickness of 0.05 mm on both sides of a 1.9 mm thick base layer.

<参照例3>
上記表面層形成用樹脂組成物B3をスクリュー径20mmの第2押出機に供給して250℃で溶融混練し、マルチマニホールドダイに供給した。
<Reference Example 3>
The surface layer forming resin composition B3 was supplied to a second extruder having a screw diameter of 20 mm, melt-kneaded at 250 ° C., and supplied to a multi-manifold die.

一方、スチレン−メタクリル酸共重合体(スチレン単位の含有率:約90.5質量%、メタクリル酸単位の含有率:約9.5質量%)(東洋スチレン社製「T080」)99.20質量部、シリコーンゴム粒子(東レ・ダウコーニング社製「DY33−719」)0.10質量部、アクリル系重合体粒子(架橋重合体粒子)(積水化成品工業社製「MBX2H」、体積平均粒子径約3μm)0.50質量部、スミソーブ200(ベンゾトリアゾール系紫外線吸収剤、住友化学社製)0.10質量部、スミライザーGP(加工安定剤、住友化学社製)0.10質量部をドライブレンドした後、スクリュー径40mmの第1押出機に供給して250℃で溶融混練し、マルチマニホールドダイに供給した。   On the other hand, styrene-methacrylic acid copolymer (styrene unit content: about 90.5 mass%, methacrylic acid unit content: about 9.5 mass%) ("T080" manufactured by Toyo Styrene Co., Ltd.) 99.20 mass Parts, silicone rubber particles ("Toy Dow Corning" DY33-719 ") 0.10 parts by mass, acrylic polymer particles (cross-linked polymer particles) (Sekisui Plastics" MBX2H ", volume average particle diameter About 3 μm) 0.50 parts by mass, Sumisorb 200 (benzotriazole UV absorber, manufactured by Sumitomo Chemical Co., Ltd.) 0.10 parts by mass, Sumilizer GP (processing stabilizer, manufactured by Sumitomo Chemical Co., Ltd.) 0.10 parts by mass, dry blended Then, it was supplied to a first extruder having a screw diameter of 40 mm, melted and kneaded at 250 ° C., and supplied to a multi-manifold die.

前記第1押出機からマルチマニホールドダイに供給される樹脂組成物が基層(8)となり、前記第2押出機からマルチマニホールドダイに供給される樹脂組成物が表面層(9)(9)となるように温度245〜250℃で共押出成形を行い、図1に示すような厚さ2.0mm(基層1.9mm、表面層0.05mm×2)の3層の積層樹脂板(3)からなる光拡散板を作製した。   The resin composition supplied from the first extruder to the multi-manifold die becomes the base layer (8), and the resin composition supplied from the second extruder to the multi-manifold die becomes the surface layer (9) (9). Thus, co-extrusion is performed at a temperature of 245 to 250 ° C., and from a three-layer laminated resin plate (3) having a thickness of 2.0 mm (base layer 1.9 mm, surface layer 0.05 mm × 2) as shown in FIG. A light diffusion plate was produced.

この参照例3は、基層の構成材料として積層板の端材を全く使用しなかった場合に相当する。   This Reference Example 3 corresponds to the case where the end material of the laminated plate is not used at all as the constituent material of the base layer.

Figure 2011079167
Figure 2011079167

<比較例1>
スチレン−メタクリル酸メチル共重合体(スチレン単位の含有率:約40質量%、メタクリル酸メチル単位の含有率:約60質量%)(新日鐵化学社製「MS600」)90.90質量部、アクリル系重合体粒子(架橋重合体粒子)(住友化学社製「スミペックスXC1A」、体積平均粒子径約25μm)8.00質量部、アデカスタブLA31(ベンゾトリアゾール系紫外線吸収剤、ADEKA社製)1.00質量部、スミライザーGP(加工安定剤、住友化学社製)0.10質量部を、ドライブレンドした後、スクリュー径40mmの押出機に供給して溶融混練することによって、表面層形成用樹脂組成物B4を得た。
<Comparative Example 1>
90.90 parts by mass of a styrene-methyl methacrylate copolymer (content of styrene units: about 40% by mass, content of methyl methacrylate units: about 60% by mass) (“MS600” manufactured by Nippon Steel Chemical Co., Ltd.) Acrylic polymer particles (crosslinked polymer particles) (“SUMIPEX XC1A” manufactured by Sumitomo Chemical Co., Ltd., volume average particle diameter of about 25 μm) 8.00 parts by mass, ADK STAB LA31 (benzotriazole ultraviolet absorber, manufactured by ADEKA) 00 parts by mass, Sumilizer GP (processing stabilizer, manufactured by Sumitomo Chemical Co., Ltd.) 0.10 parts by mass, and after dry blending, the mixture is supplied to an extruder with a screw diameter of 40 mm and melt-kneaded to form a resin composition for surface layer formation Product B4 was obtained.

上記表面層形成用樹脂組成物B4をスクリュー径20mmの第2押出機に供給して250℃で溶融混練し、マルチマニホールドダイに供給した。   The surface layer forming resin composition B4 was supplied to a second extruder having a screw diameter of 20 mm, melt-kneaded at 250 ° C., and supplied to a multi-manifold die.

一方、ポリスチレン樹脂(東洋スチレン社製「HRM40」)を100質量部、上記表面層形成用樹脂組成物B4を2.20質量部、上記マスターバッチ樹脂組成物A1を11.00質量部ドライブレンドした後、スクリュー径40mmの第1押出機に供給して250℃で溶融混練し、マルチマニホールドダイに供給した。   On the other hand, 100 parts by mass of polystyrene resin (“HRM40” manufactured by Toyo Styrene Co., Ltd.), 2.20 parts by mass of the resin composition B4 for forming the surface layer, and 11.00 parts by mass of the masterbatch resin composition A1 were dry blended. Then, it supplied to the 1st extruder with a screw diameter of 40 mm, melt-kneaded at 250 degreeC, and supplied to the multi manifold die.

前記第1押出機からマルチマニホールドダイに供給される樹脂組成物が基層(8)となり、前記第2押出機からマルチマニホールドダイに供給される樹脂組成物が表面層(9)(9)となるように温度245〜250℃で共押出成形を行い、図1に示すような厚さ2.0mm(基層1.9mm、表面層0.05mm×2)の3層の積層樹脂板(3)からなる光拡散板を作製した。   The resin composition supplied from the first extruder to the multi-manifold die becomes the base layer (8), and the resin composition supplied from the second extruder to the multi-manifold die becomes the surface layer (9) (9). Thus, co-extrusion is performed at a temperature of 245 to 250 ° C., and from a three-layer laminated resin plate (3) having a thickness of 2.0 mm (base layer 1.9 mm, surface layer 0.05 mm × 2) as shown in FIG. A light diffusion plate was produced.

なお、上記ポリスチレン樹脂(透明樹脂(A))と、上記スチレン−メタクリル酸メチル共重合体(スチレン単位の含有率:約40質量%、メタクリル酸メチル単位の含有率:約60質量%)(透明樹脂(B))との間におけるΔδ×Δnは0.495であるから(表1参照)、これら両樹脂の間にはΔδ×Δn≦0.42の関係式が成立しない。   The polystyrene resin (transparent resin (A)) and the styrene-methyl methacrylate copolymer (styrene unit content: about 40% by mass, methyl methacrylate unit content: about 60% by mass) (transparent Since Δδ × Δn with respect to the resin (B) is 0.495 (see Table 1), the relational expression Δδ × Δn ≦ 0.42 does not hold between these two resins.

この比較例1で得られた積層樹脂板は、透明樹脂(A)製の基層の厚さが1.9mm、透明樹脂(B)製の表面層の厚さが0.05mm(両側合計で0.10mm)である積層板の周縁部を裁断して端材として分別し、この端材44質量部と透明樹脂(A)56質量部とを混合して得られた樹脂組成物からなる厚さ1.9mmの基層の両面に、それぞれ透明樹脂(B)製の厚さ0.05mmの表面層を積層して製造した積層樹脂板に相当する。   The laminated resin plate obtained in Comparative Example 1 has a transparent resin (A) base layer thickness of 1.9 mm and a transparent resin (B) surface layer thickness of 0.05 mm (total of both sides is 0). .10 mm), the peripheral portion of the laminated plate is cut and separated as end material, and the thickness is made of a resin composition obtained by mixing 44 parts by mass of the end material and 56 parts by mass of the transparent resin (A). This corresponds to a laminated resin plate produced by laminating a surface layer made of transparent resin (B) and having a thickness of 0.05 mm on both sides of a 1.9 mm base layer.

<参照例4>
上記表面層形成用樹脂組成物B4をスクリュー径20mmの第2押出機に供給して250℃で溶融混練し、マルチマニホールドダイに供給した。
<Reference Example 4>
The surface layer forming resin composition B4 was supplied to a second extruder having a screw diameter of 20 mm, melt-kneaded at 250 ° C., and supplied to a multi-manifold die.

一方、ポリスチレン樹脂(東洋スチレン社製「HRM40」)を100質量部、上記マスターバッチ樹脂組成物A1を11.00質量部ドライブレンドした後、スクリュー径40mmの第1押出機に供給して250℃で溶融混練し、マルチマニホールドダイに供給した。   On the other hand, 100 parts by mass of polystyrene resin (“HRM40” manufactured by Toyo Styrene Co., Ltd.) and 11.00 parts by mass of the masterbatch resin composition A1 were dry-blended, and then supplied to a first extruder having a screw diameter of 40 mm at 250 ° C. And kneaded and fed to a multi-manifold die.

前記第1押出機からマルチマニホールドダイに供給される樹脂組成物が基層(8)となり、前記第2押出機からマルチマニホールドダイに供給される樹脂組成物が表面層(9)(9)となるように温度245〜250℃で共押出成形を行い、図1に示すような厚さ2.0mm(基層1.9mm、表面層0.05mm×2)の3層の積層樹脂板(3)からなる光拡散板を作製した。   The resin composition supplied from the first extruder to the multi-manifold die becomes the base layer (8), and the resin composition supplied from the second extruder to the multi-manifold die becomes the surface layer (9) (9). Thus, co-extrusion is performed at a temperature of 245 to 250 ° C., and from a three-layer laminated resin plate (3) having a thickness of 2.0 mm (base layer 1.9 mm, surface layer 0.05 mm × 2) as shown in FIG. A light diffusion plate was produced.

この参照例4は、基層の構成材料として積層板の端材を全く使用しなかった場合に相当する。   This reference example 4 corresponds to the case where the end material of the laminated plate is not used at all as the constituent material of the base layer.

Figure 2011079167
Figure 2011079167

上記のようにして得られた各光拡散板について下記評価法に従い評価を行った。評価結果を表5、6に示す。   Each light diffusion plate obtained as described above was evaluated according to the following evaluation method. The evaluation results are shown in Tables 5 and 6.

<全光線透過率測定法>
JIS K7361−1997に準拠して光拡散板の全光線透過率(%)を測定した。
<Total light transmittance measurement method>
Based on JIS K7361-1997, the total light transmittance (%) of the light diffusing plate was measured.

<拡散光線透過率測定法>
JIS K7136−2000に準拠して光拡散板の拡散光線透過率(%)を測定した。
<Diffusion light transmittance measurement method>
Based on JIS K7136-2000, the diffused light transmittance (%) of the light diffusing plate was measured.

<曇価測定法>
JIS K7136−2000に準拠して光拡散板の曇価(%)を測定した。
<Haze value measuring method>
The haze (%) of the light diffusion plate was measured according to JIS K7136-2000.

<分光透過率測定による黄色度YIの測定法>
積分球を備えた自記分光光度計(日立製作所製「UV−4000」)を用いて光拡散板の380〜780nmの波長範囲の分光透過率を測定し、これに基づいて黄色度YIを算出した。
<Measurement method of yellowness YI by spectral transmittance measurement>
The spectral transmittance in the wavelength range of 380 to 780 nm of the light diffusing plate was measured using a self-recording spectrophotometer equipped with an integrating sphere (“UV-4000” manufactured by Hitachi, Ltd.), and the yellowness YI was calculated based on this. .

<拡散率の測定法>
自動変角光度計(株式会社村上色彩技術研究所製「GP−1R」)を用い、光拡散板に対して、法線方向から光を入射させた時の透過光のうち、法線方向に対して5°の角度への透過光の強度I5、法線方向に対して20°の角度への透過光の強度I20、法線方向に対して70°の角度への透過光の強度I70をそれぞれ測定し、
D=100×(I20+I70)/(2×I5
上記算出式により拡散率D(%)を求めた。
<Diffusion rate measurement method>
Using an automatic goniophotometer ("GP-1R" manufactured by Murakami Color Research Laboratory Co., Ltd.), in the normal direction of the transmitted light when light is incident on the light diffusing plate from the normal direction intensity of transmitted light to the 5 ° of the intensity I 5 of the transmitted light to the angle, the transmitted light intensity I 20 to an angle of 20 ° to the normal direction, an angle of 70 ° to the normal direction for Measure I 70 respectively
D = 100 × (I 20 + I 70 ) / (2 × I 5 )
The diffusivity D (%) was determined by the above formula.

表5、6から明らかなように、この発明の製造方法で製造された実施例1〜4の光拡散板は、黄色度YIが小さくて着色が十分に抑制されている。即ち、例えば参照例1と実施例1、2のYI値の対比、参照例2と実施例3のYI値の対比、参照例3と実施例4のYI値の対比から明らかなように、基層における表面層形成用樹脂組成物の混合比率が大きくても(即ち端材のリサイクル含有比率が大きくても)黄色度YIは小さく抑制されていた。即ち、端材の再利用を行った実施例1、2のYI値は、端材の再利用をしなかった参照例1のYI値と同等であり、端材の再利用を行った実施例3のYI値は、端材の再利用をしなかった参照例2のYI値と同等であり、端材の再利用を行った実施例4のYI値は、端材の再利用をしなかった参照例3のYI値と同等であった。   As is clear from Tables 5 and 6, the light diffusion plates of Examples 1 to 4 manufactured by the manufacturing method of the present invention have a small yellowness YI and are sufficiently suppressed in coloring. That is, for example, as is clear from the comparison of the YI values of Reference Example 1 and Examples 1 and 2, the comparison of the YI values of Reference Example 2 and Example 3, and the comparison of the YI values of Reference Example 3 and Example 4, the base layer Even when the mixing ratio of the resin composition for forming the surface layer in (i.e., the recycled content ratio of the mill ends was large), the yellowness YI was suppressed to be small. That is, the YI values of Examples 1 and 2 in which the end material was reused are equivalent to the YI values in Reference Example 1 in which the end material was not reused, and the end material was reused. The YI value of 3 is equivalent to the YI value of Reference Example 2 in which the end material was not reused, and the YI value of Example 4 in which the end material was reused did not reuse the end material. It was equivalent to the YI value of Reference Example 3.

また、これら実施例1〜4の光拡散板では、基層における表面層形成用樹脂組成物の混合比率が大きくても(即ち端材のリサイクル含有比率が大きくても)、全光線透過率及び拡散光線透過率はいずれも殆ど変化がなくほぼ一定のレベルであった。   In the light diffusion plates of Examples 1 to 4, even when the mixing ratio of the resin composition for forming the surface layer in the base layer is large (that is, the recycled content ratio of the mill ends is large), the total light transmittance and diffusion The light transmittance was almost constant with almost no change.

本発明の製造方法において端材を複数回再利用に供した場合には、端材の再利用を繰り返す毎に、積層樹脂板における端材のリサイクル含有比率が少しづつ増大していくことになるが、このような場合においても、黄色度YIは小さく抑制されるし、全光線透過率及び拡散光線透過率はいずれも殆ど変化がなく、従って本発明の製造方法を採用すれば、端材を再利用しながら、安定した品質を備えた積層樹脂板を製造することができる。   In the manufacturing method of the present invention, when the milling material is reused a plurality of times, the recycling content ratio of milling material in the laminated resin plate gradually increases every time the milling material is reused. However, even in such a case, the yellowness YI is suppressed to be small, and the total light transmittance and the diffused light transmittance are hardly changed. Therefore, if the manufacturing method of the present invention is adopted, the end material is reduced. While being reused, a laminated resin plate having stable quality can be produced.

これに対し、Δδ×Δn≦0.42の関係式が成立しない構成である比較例1の光拡散板では、端材を再利用したことによって、黄色度YIが比較的大きく少し黄色がかった着色があった。即ち、参照例4と比較例1のYI値の対比から明らかなように、基層における表面層形成用樹脂組成物の混合比率が大きいと(即ち端材のリサイクル含有比率が大きいと)、黄色度YIは比較的大きく増大し、黄色着色が目立つものとなった。また、参照例4と比較例1のYI値の対比から明らかなように、基層における表面層形成用樹脂組成物の混合比率が大きい場合(即ち端材のリサイクル含有比率が大きいと)、拡散率は低下した。   On the other hand, in the light diffusing plate of Comparative Example 1 in which the relational expression of Δδ × Δn ≦ 0.42 is not established, the yellowness YI is relatively large and slightly yellowish due to the reuse of the end material. was there. That is, as is clear from the comparison of the YI values of Reference Example 4 and Comparative Example 1, when the mixing ratio of the surface layer forming resin composition in the base layer is large (that is, the recycle content ratio of the mill ends is large), the yellowness YI increased relatively greatly, and yellow coloring became conspicuous. Further, as apparent from the comparison of the YI values of Reference Example 4 and Comparative Example 1, when the mixing ratio of the surface layer forming resin composition in the base layer is large (that is, when the recycled content ratio of the mill ends is large), the diffusivity Fell.

この発明の製造方法で製造された積層樹脂板は、例えば、光拡散板として好適であり、中でも液晶表示装置用のバックライト等として用いられる面光源装置用の光拡散板として特に好適に用いられるが、このような用途に限定されるものではない。   The laminated resin plate produced by the production method of the present invention is suitable, for example, as a light diffusing plate, and particularly suitably as a light diffusing plate for a surface light source device used as a backlight for a liquid crystal display device. However, it is not limited to such an application.

3…積層樹脂板(光拡散板)
8…基層
9…表面層
R…基層の厚さ
T…表面層の厚さ
3 ... Laminated resin plate (light diffusion plate)
8 ... Base layer 9 ... Surface layer R ... Base layer thickness T ... Surface layer thickness

Claims (10)

透明樹脂(A)を含有してなる基層の少なくとも片面に、透明樹脂(B)を含有してなる表面層を積層して積層板を得た後、該積層板の周縁部の少なくとも一部を裁断して端材として分別する端材取得工程と、
透明樹脂(A)と前記端材を混合して得られた樹脂組成物からなる又は前記端材からなる基層の少なくとも片面に、透明樹脂(B)を含有してなる表面層を積層して積層樹脂板を製造する工程と、を包含し、
前記透明樹脂(A)のSP値と前記透明樹脂(B)のSP値の差の絶対値を「Δδ」とし、前記透明樹脂(A)の屈折率と前記透明樹脂(B)の屈折率の差の絶対値を「Δn」としたとき、Δδ×Δn≦0.42の関係式が成立することを特徴とする積層樹脂板の製造方法。
After laminating a surface layer containing the transparent resin (B) on at least one surface of the base layer containing the transparent resin (A) to obtain a laminate, at least a part of the peripheral edge of the laminate is obtained. Cutting material acquisition process of cutting and separating as cutting material,
A surface layer containing a transparent resin (B) is laminated on at least one side of a base layer made of a resin composition obtained by mixing the transparent resin (A) and the end material or made of the end material. A step of manufacturing a resin plate,
The absolute value of the difference between the SP value of the transparent resin (A) and the SP value of the transparent resin (B) is “Δδ”, and the refractive index of the transparent resin (A) and the refractive index of the transparent resin (B) A manufacturing method of a laminated resin plate, wherein a relational expression of Δδ × Δn ≦ 0.42 is satisfied when an absolute value of the difference is “Δn”.
透明樹脂(A)を含有してなる基層の少なくとも片面に、透明樹脂(B)を含有してなる表面層を積層して第1積層板を得た後、該第1積層板の周縁部の少なくとも一部を裁断して第1端材として分別する第1端材取得工程と、
透明樹脂(A)と前記第1端材を混合して得られた樹脂組成物からなる又は前記第1端材からなる基層の少なくとも片面に、透明樹脂(B)を含有してなる表面層を積層して第2積層板を得た後、該第2積層板の周縁部の少なくとも一部を裁断して第2端材として分別する第2端材取得工程と、
透明樹脂(A)と前記第2端材を混合して得られた樹脂組成物からなる又は前記第2端材からなる基層の少なくとも片面に、透明樹脂(B)を含有してなる表面層を積層して積層樹脂板を製造する工程と、を包含し、
前記透明樹脂(A)のSP値と前記透明樹脂(B)のSP値の差の絶対値を「Δδ」とし、前記透明樹脂(A)の屈折率と前記透明樹脂(B)の屈折率の差の絶対値を「Δn」としたとき、Δδ×Δn≦0.42の関係式が成立することを特徴とする積層樹脂板の製造方法。
After laminating a surface layer containing the transparent resin (B) on at least one side of the base layer containing the transparent resin (A) to obtain the first laminated plate, the peripheral portion of the first laminated plate A first end material acquisition step of cutting at least a part and separating the first end material;
A surface layer comprising a transparent resin (B) on at least one side of a base layer comprising a resin composition obtained by mixing a transparent resin (A) and the first end material or comprising the first end material. After obtaining the second laminate by laminating, a second end material acquisition step of cutting at least a part of the peripheral edge of the second laminate and separating it as a second end material;
A surface layer comprising a transparent resin (B) on at least one surface of a base layer comprising a resin composition obtained by mixing the transparent resin (A) and the second end material or comprising the second end material. And laminating to produce a laminated resin plate,
The absolute value of the difference between the SP value of the transparent resin (A) and the SP value of the transparent resin (B) is “Δδ”, and the refractive index of the transparent resin (A) and the refractive index of the transparent resin (B) A manufacturing method of a laminated resin plate, wherein a relational expression of Δδ × Δn ≦ 0.42 is satisfied when an absolute value of the difference is “Δn”.
前記積層板における基層の厚さを表面層の厚さの9〜100倍の範囲に設定すると共に、前記透明樹脂(A)と前記端材を混合する際、前記透明樹脂(A)と前記端材の合計量に対する前記端材の含有率が1質量%以上100質量%未満になるように混合する請求項1または2に記載の積層樹脂板の製造方法。   While setting the thickness of the base layer in the said laminated board to the range of 9-100 times the thickness of a surface layer, when mixing the said transparent resin (A) and the said end material, the said transparent resin (A) and the said edge The manufacturing method of the laminated resin board of Claim 1 or 2 mixed so that the content rate of the said end material with respect to the total amount of material may be 1 mass% or more and less than 100 mass%. 0.03≦Δn≦0.15の関係式が成立する請求項1〜3のいずれか1項に記載の積層樹脂板の製造方法。   The manufacturing method of the laminated resin board of any one of Claims 1-3 with which the relational expression of 0.03 <= (DELTA) n <= 0.15 is materialized. 前記透明樹脂(A)がスチレン系樹脂であり、前記透明樹脂(B)がスチレン系樹脂又はアクリル系樹脂である請求項1〜4のいずれか1項に記載の積層樹脂板の製造方法。   The method for producing a laminated resin plate according to claim 1, wherein the transparent resin (A) is a styrene resin, and the transparent resin (B) is a styrene resin or an acrylic resin. 透明樹脂(A)100質量部に対し、透明樹脂(B)を0.01〜20質量部含有してなる基層と、
前記基層の片面または両面に積層一体化された、透明樹脂(B)を含有してなる表面層と、を備えてなり、
前記基層の厚さが前記表面層の厚さの9〜100倍の範囲であり、
前記透明樹脂(A)のSP値と前記透明樹脂(B)のSP値の差の絶対値を「Δδ」とし、前記透明樹脂(A)の屈折率と前記透明樹脂(B)の屈折率の差の絶対値を「Δn」としたとき、Δδ×Δn≦0.42の関係式が成立することを特徴とする積層樹脂板。
A base layer containing 0.01 to 20 parts by mass of the transparent resin (B) with respect to 100 parts by mass of the transparent resin (A);
A surface layer containing a transparent resin (B) that is laminated and integrated on one or both sides of the base layer, and
The thickness of the base layer is in the range of 9 to 100 times the thickness of the surface layer;
The absolute value of the difference between the SP value of the transparent resin (A) and the SP value of the transparent resin (B) is “Δδ”, and the refractive index of the transparent resin (A) and the refractive index of the transparent resin (B) A laminated resin plate characterized in that a relational expression of Δδ × Δn ≦ 0.42 holds when an absolute value of the difference is “Δn”.
前記基層は、前記透明樹脂(A)100質量部に対し、前記透明樹脂(B)を0.01〜20質量部及び光拡散粒子を0.01〜10質量部含有してなる請求項6に記載の積層樹脂板。   The said base layer contains 0.01-20 mass parts of said transparent resin (B), and 0.01-10 mass parts of light-diffusion particle | grains with respect to 100 mass parts of said transparent resin (A). The laminated resin plate described. 前記透明樹脂(A)がスチレン系樹脂であり、前記透明樹脂(B)がスチレン系樹脂又はアクリル系樹脂である請求項6または7に記載の積層樹脂板。   The laminated resin plate according to claim 6 or 7, wherein the transparent resin (A) is a styrene resin, and the transparent resin (B) is a styrene resin or an acrylic resin. 請求項6〜8のいずれか1項に記載の積層樹脂板からなる光拡散板と、該光拡散板の背面側に配置された複数の光源とを備えることを特徴とする面光源装置。   A surface light source device comprising: a light diffusing plate comprising the laminated resin plate according to any one of claims 6 to 8; and a plurality of light sources disposed on a back side of the light diffusing plate. 請求項6〜8のいずれか1項に記載の積層樹脂板からなる光拡散板と、該光拡散板の背面側に配置された複数の光源と、前記光拡散板の前面側に配置された液晶パネルとを備えることを特徴とする液晶表示装置。   A light diffusing plate comprising the laminated resin plate according to any one of claims 6 to 8, a plurality of light sources arranged on a back side of the light diffusing plate, and a front side of the light diffusing plate. A liquid crystal display device comprising a liquid crystal panel.
JP2009231469A 2009-10-05 2009-10-05 Manufacturing method of laminated resin plate Expired - Fee Related JP4902717B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2009231469A JP4902717B2 (en) 2009-10-05 2009-10-05 Manufacturing method of laminated resin plate
TW99132887A TW201117959A (en) 2009-10-05 2010-09-28 Method of manufacturing laminated resin plate
KR20100095915A KR20110037869A (en) 2009-10-05 2010-10-01 Method for producing laminated resin plate
CN2010105043503A CN102033254A (en) 2009-10-05 2010-10-08 Method for producing a laminated resin plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009231469A JP4902717B2 (en) 2009-10-05 2009-10-05 Manufacturing method of laminated resin plate

Publications (2)

Publication Number Publication Date
JP2011079167A true JP2011079167A (en) 2011-04-21
JP4902717B2 JP4902717B2 (en) 2012-03-21

Family

ID=43886398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009231469A Expired - Fee Related JP4902717B2 (en) 2009-10-05 2009-10-05 Manufacturing method of laminated resin plate

Country Status (4)

Country Link
JP (1) JP4902717B2 (en)
KR (1) KR20110037869A (en)
CN (1) CN102033254A (en)
TW (1) TW201117959A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012162637A (en) * 2011-02-07 2012-08-30 Toyo Styrene Co Ltd Styrene-(meth)acrylic acid copolymer composition
WO2012133914A1 (en) 2011-03-31 2012-10-04 オリエンタル酵母工業株式会社 Potentiator of cancer immunity containing rankl antagonist

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI765028B (en) * 2017-06-30 2022-05-21 日商琳得科股份有限公司 Resin sheet, laminate, and method for producing resin sheet
CN111032347A (en) * 2017-08-21 2020-04-17 沙特基础工业全球技术有限公司 Transparent multilayer film comprising polymer

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005202097A (en) * 2004-01-15 2005-07-28 Sumitomo Chemical Co Ltd Multilayered light diffusion board
JP2007090877A (en) * 2005-08-31 2007-04-12 Mitsubishi Plastics Ind Ltd Heat shrinkable laminated film, and molded article, heat shrinkable label and container using the film
JP2008006800A (en) * 2006-06-26 2008-01-17 Kaohsiung Monomer Co Ltd Bonded composite board
JP2008249995A (en) * 2007-03-30 2008-10-16 Sumitomo Chemical Co Ltd Light diffusion sheet
JP2008543610A (en) * 2005-06-17 2008-12-04 イーストマン ケミカル カンパニー Process for producing multilayer transparent products containing polyester containing cyclobutanediol and uniform polyamide
JP2009184216A (en) * 2008-02-06 2009-08-20 Mitsui Chemicals Inc Surface protection film
JP2009196125A (en) * 2008-02-19 2009-09-03 Mitsubishi Gas Chem Co Inc Thermoplastic resin laminated body

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1177904A (en) * 1997-09-17 1999-03-23 Takeuchi Sangyo Kk Multi-layer resin sheet and multi-layer resin molded body
WO2004109379A1 (en) * 2003-06-04 2004-12-16 Nippon Polyester Co.,Ltd. Light diffusing plate for liquid crystal display and polycarbonate resin composition for light diffusing plate for liquid crystal display

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005202097A (en) * 2004-01-15 2005-07-28 Sumitomo Chemical Co Ltd Multilayered light diffusion board
JP2008543610A (en) * 2005-06-17 2008-12-04 イーストマン ケミカル カンパニー Process for producing multilayer transparent products containing polyester containing cyclobutanediol and uniform polyamide
JP2007090877A (en) * 2005-08-31 2007-04-12 Mitsubishi Plastics Ind Ltd Heat shrinkable laminated film, and molded article, heat shrinkable label and container using the film
JP2008006800A (en) * 2006-06-26 2008-01-17 Kaohsiung Monomer Co Ltd Bonded composite board
JP2008249995A (en) * 2007-03-30 2008-10-16 Sumitomo Chemical Co Ltd Light diffusion sheet
JP2009184216A (en) * 2008-02-06 2009-08-20 Mitsui Chemicals Inc Surface protection film
JP2009196125A (en) * 2008-02-19 2009-09-03 Mitsubishi Gas Chem Co Inc Thermoplastic resin laminated body

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012162637A (en) * 2011-02-07 2012-08-30 Toyo Styrene Co Ltd Styrene-(meth)acrylic acid copolymer composition
WO2012133914A1 (en) 2011-03-31 2012-10-04 オリエンタル酵母工業株式会社 Potentiator of cancer immunity containing rankl antagonist

Also Published As

Publication number Publication date
JP4902717B2 (en) 2012-03-21
KR20110037869A (en) 2011-04-13
TW201117959A (en) 2011-06-01
CN102033254A (en) 2011-04-27

Similar Documents

Publication Publication Date Title
CN102197323B (en) Light diffuser plate and use thereof
SK50732008A3 (en) Light diffuser plate
US10184019B2 (en) Optical thermoplastic resin and formed body
TW200848796A (en) Light diffuser plate, surface emission light source apparatus and liquid crystal display
KR102519252B1 (en) (meth)acrylic resin composition and (meth)acrylic resin film
JP4902717B2 (en) Manufacturing method of laminated resin plate
NL1036457C2 (en) Light diffuser plate, surface light source, and liquid crystal display.
JP6039168B2 (en) Protective sheet, method for producing protective sheet and polarizing plate
KR102342375B1 (en) optical laminate
JP6591492B2 (en) Manufacturing method of resin laminate
JP2010241883A (en) Phase difference modifier, optical resin composition using the same, and optical film
KR20140047548A (en) Optical film and method for producing the same, polarizing plate, and liquid crystal display device
KR102008464B1 (en) Resin laminate
WO2008010552A1 (en) Styrene resin composition and molded body
JP2007219456A (en) Heat-resistant light diffusion plate
JP2009226941A (en) Method of manufacturing laminated resin plate
JP2006285083A (en) Light diffusion plate
JP2010070608A (en) Acrylic film for optical use, light guide plate, and backlight unit
JP2010211171A (en) Light diffusing plate, surface light source device, and liquid crystal display device
JP4970451B2 (en) Light diffusion resin composition and light diffusion plate
JP2011079168A (en) Method for producing resin plate
JP5045481B2 (en) Light diffusion plate
KR20140000215A (en) Light guide plate and edge-lit surface light source device using same
JP5341053B2 (en) Light diffusing laminated resin plate and manufacturing method thereof
JP2009211810A (en) Optical diffuser panel for downright backlight device and downright backlight device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110902

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110913

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111213

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111228

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees