JP2011078745A - Bone prosthetic material - Google Patents

Bone prosthetic material Download PDF

Info

Publication number
JP2011078745A
JP2011078745A JP2010175865A JP2010175865A JP2011078745A JP 2011078745 A JP2011078745 A JP 2011078745A JP 2010175865 A JP2010175865 A JP 2010175865A JP 2010175865 A JP2010175865 A JP 2010175865A JP 2011078745 A JP2011078745 A JP 2011078745A
Authority
JP
Japan
Prior art keywords
bone
material according
grafting material
bone grafting
spherical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010175865A
Other languages
Japanese (ja)
Inventor
Akira Shibata
明 柴田
Koji Horikawa
袷志 堀川
Mitsunobu Iwasaki
光伸 岩崎
Nobuki Kawashima
信樹 河島
Chiaki Hamanishi
千秋 浜西
Koji Matsuzaki
晃治 松崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kinki University
Original Assignee
Kinki University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kinki University filed Critical Kinki University
Priority to JP2010175865A priority Critical patent/JP2011078745A/en
Publication of JP2011078745A publication Critical patent/JP2011078745A/en
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/44Joints for the spine, e.g. vertebrae, spinal discs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof

Landscapes

  • Health & Medical Sciences (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Cardiology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Neurology (AREA)
  • Vascular Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Prostheses (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a percutaneous vertebroplasty capable of introducing in a vertebral bone by using a formed insertion hole, relieving a throbbing pain of the patient by adhering to the inside space and filling, and distributing an improvement of QOL in patients by providing a material which can induce a new bone formation promptly. <P>SOLUTION: A spherical or elliptical material is composed of elastic metal materials, having an outer diameter capable of introducing to an insertion hole formed on a vertebral bone, and the vertebral body is filled with a lot of materials, and then they are deformed and adhered according to the shape in the vertebral body. The surface of the spherical or elliptical material is operated with a biocompatible treatment in order to induce a new bone formation on the surface and the inside promptly. Furthermore, the mechanical strength is improved as a bone reinforcement material by binding caused from the new bone formation between the adhered spherical or elliptical materials. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

この発明は骨補填材に関するものである。   The present invention relates to a bone grafting material.

外傷、骨粗しょう症、あるいは骨腫瘍等によって椎体が潰れた圧迫骨折の従来治療法として、椎体骨内にセラミックス材料を充填する方法(例えば、特許文献1参照)、あるいは、主としてPMMA樹脂(ポリメチルメタアクリレート)からなる骨セメントを充填する方法が知られている(例えば、特許文献2参照)。また、最近、線材をコイル状に巻き、その中央空間にリン酸カルシウム系無機化合物が充填されている骨補填材が報告されている(例えば、特許文献3参照)。   As a conventional treatment method for compression fractures in which the vertebral body is collapsed due to trauma, osteoporosis, bone tumor, etc., a method of filling a ceramic material in the vertebral bone (see, for example, Patent Document 1), or mainly PMMA resin ( A method of filling bone cement made of polymethyl methacrylate) is known (for example, see Patent Document 2). Recently, a bone grafting material in which a wire is wound in a coil shape and a calcium phosphate inorganic compound is filled in the central space thereof has been reported (for example, see Patent Document 3).

特開2004−16289号 公報JP 2004-16289 A 特開2004−313738号 公報JP 2004-313738 A 特開2007−289551号 公報JP 2007-289551 A

しかしながら、上記の特許文献1,2の補填材は、弾性を有しておらず、隣接する椎体骨よりも柔軟性が乏しく、過大な荷重がかかり骨折してしまうという問題がある。特に、骨セメント療法では、樹脂が血液中に漏れ出し、血液低下によるショック症状や、肺塞栓症を引き起こす場合があり、手術後、補填材間に隙間が生じる問題や、長期間手術部位を固定することを必要とすることから、患者のQOLの低下が報告されている。さらに、特許文献3のコイル状補填材では、ある特定の方向にのみ押圧がかかる可能性があり、コイル中央に配置されているリン酸カルシウム系無機化合物が必ずしも生体親和性向上に有効に機能しないことも考えられる。   However, the prosthetic materials of Patent Documents 1 and 2 do not have elasticity, are less flexible than the adjacent vertebral bones, and have a problem that an excessive load is applied to cause a fracture. In particular, in bone cement therapy, the resin leaks into the blood and may cause shock symptoms due to blood drop and pulmonary embolism. Because of the need to do so, a reduction in patient quality of life has been reported. Furthermore, in the coil-shaped filling material of Patent Document 3, there is a possibility that the pressure is applied only in a specific direction, and the calcium phosphate inorganic compound arranged in the center of the coil does not necessarily function effectively for improving biocompatibility. Conceivable.

このような課題の解決は、下記の(1)から(15)の本発明により達成される。   The solution of such a problem is achieved by the present inventions (1) to (15) below.

(1)経皮的椎体形成術に用いられる骨補填材であり、少なくとも1本の線材を不規則に絡めた球体ないしは楕円体の形状を持ち、椎体骨に施された導入孔に通過可能な外寸法を有することを特徴とする骨補填材。これにより、患者の疼痛を緩和するとともに、上記課題の骨折の問題を回避し、早期に新生骨生成を誘起することができる。   (1) Bone prosthesis used for percutaneous vertebroplasty, which has a spherical or ellipsoidal shape with at least one wire irregularly entangled, and passes through an introduction hole made in the vertebral bone Bone prosthesis characterized by having possible outer dimensions. Thereby, while relieving a patient's pain, the problem of the fracture of the said subject can be avoided and a new bone formation can be induced at an early stage.

(2)前記球体ないしは楕円体の形状の表面および内部に多くの不規則な隙間が施されていることを特徴とする上記(1)に記載の骨補填材。これにより、骨芽細胞のような骨関連細胞の骨補填材の空隙への侵入を可能にし、早期に新生骨の生成を誘起することができる。   (2) The bone prosthetic material according to (1) above, wherein many irregular gaps are formed on the inside and inside of the spherical or ellipsoidal shape. As a result, bone-related cells such as osteoblasts can enter the voids of the bone filling material, and the generation of new bone can be induced at an early stage.

(3)前記球体ないしは楕円体の形状の多方向の弾力性が施されていることを特徴とする上記(1)または上記(2)のいずれかに記載の骨補填材。これにより、導入孔を利用して椎体骨内に円滑に導入でき、その内部空間に複数の骨補填材を密着して充填するができ、かつ、それらの多方向への弾力性により患者の疼痛軽減を図ることができる。   (3) The bone grafting material according to any one of (1) and (2), wherein the spherical or ellipsoidal shape is provided with multi-directional elasticity. As a result, it can be smoothly introduced into the vertebral bone using the introduction hole, a plurality of bone prosthetic materials can be intimately filled in the internal space, and the elasticity of the patient in the multi-direction allows the patient to Pain can be reduced.

(4)前記線材は、チタンまたはその合金から構成されていることを特徴とする上記(1)、上記(2)または上記(3)のいずれかに記載の骨補填材。これにより、高い抗腐食性と強い機械的強度をもつ骨補填材を提供することができる。   (4) The bone grafting material according to any one of (1), (2), and (3) above, wherein the wire is made of titanium or an alloy thereof. As a result, a bone prosthetic material having high anti-corrosion properties and strong mechanical strength can be provided.

(5)前記球体ないしは楕円体の形状に物理的、化学的あるいは電気的な生体親和性向上処理が施されていることを特徴とする上記(1)から上記(4)のいずれかに記載の骨補填材。これにより、生体親和性を向上させることができ、早期に新生骨生成を誘起することができる。   (5) The shape of the sphere or ellipsoid is subjected to a physical, chemical, or electrical biocompatibility improving process, as described in any one of (1) to (4) above Bone filling material. Thereby, biocompatibility can be improved and a new bone production | generation can be induced at an early stage.

(6)前記電気的な生体親和性向上処理が陽極酸化処理であることを特徴とする上記(1)から上記(5)のいずれかに記載の骨補填材。これにより、金属表面に多数のミクロ孔を有する酸化皮膜が形成され、新生骨形成のための足場とすることができる。   (6) The bone grafting material according to any one of (1) to (5) above, wherein the electrical biocompatibility improving treatment is an anodizing treatment. Thereby, the oxide film which has many micropores on the metal surface is formed, and it can be used as a scaffold for new bone formation.

(7)前記電気的な生体親和性向上処理がHAp等のリン酸カルシウム系無機化合物を含む電解質液中での陽極酸化処理であることを特徴とする上記(1)から上記(6)のいずれかに記載の骨補填材。これにより、チタン線材の酸化皮膜層の表面および内部にリン酸カルシウム系無機化合物が固着し、生体親和性を向上させることができ、早期に新生骨形成を誘起することができる。   (7) The electrical biocompatibility improving treatment is an anodic oxidation treatment in an electrolyte solution containing a calcium phosphate inorganic compound such as HAp. The bone filling material described. Thereby, the calcium phosphate inorganic compound adheres to the surface and inside of the oxide film layer of the titanium wire, biocompatibility can be improved, and new bone formation can be induced at an early stage.

(8)前記骨補填材の空隙率が重量換算で60−90%であることを特徴とする上記(1)から上記(7)のいずれかに記載の骨補填材。これにより、骨芽細胞が骨補填材の内部に侵入することができる。   (8) The bone grafting material according to any one of (1) to (7) above, wherein a porosity of the bone grafting material is 60 to 90% in terms of weight. As a result, osteoblasts can enter the inside of the bone grafting material.

(9)前記線材の直径が0.1mm以上0.5mm以下であることを特徴とする上記(1)から上記(8)のいずれかに記載の骨補填材。これにより、補填材の空隙率を60−90%にすることができる。   (9) The bone grafting material according to any one of (1) to (8) above, wherein the wire has a diameter of 0.1 mm to 0.5 mm. Thereby, the porosity of a filling material can be 60-90%.

(10)前記線材の長さが10cm以上150cm以下であることを特徴とする上記(1)から上記(9)のいずれかに記載の骨補填材。これにより、椎体骨に施された導入孔から導入可能な外寸法を有し、かつ、空隙率が60−90%である骨補填材を作製することができる。   (10) The bone grafting material according to any one of (1) to (9) above, wherein the length of the wire is 10 cm or more and 150 cm or less. As a result, it is possible to produce a bone prosthetic material having an outer dimension that can be introduced from an introduction hole provided in a vertebral body bone and having a porosity of 60 to 90%.

(11)前記骨補填材の外寸法の最大方向が2mm以上5mm以下であることを特徴とする上記(1)から上記(10)のいずれかに記載の骨補填材。これにより、椎体骨に施された導入孔から導入可能な外寸法を有する骨補填材を作製することができる。   (11) The bone grafting material according to any one of (1) to (10) above, wherein the maximum direction of the outer dimension of the bone grafting material is 2 mm or more and 5 mm or less. Thereby, the bone grafting material which has the outer dimension which can be introduce | transduced from the introduction hole given to the vertebral body bone can be produced.

(12)1個あたりの体積が4mm以上70mm以下であることを特徴とする上記(1)から上記(11)のいずれかに記載の骨補填材。これにより、椎体骨に施された導入孔から導入可能な外寸法を有する骨補填材を作製することができる。 (12) The bone prosthetic material according to any one of (1) to (11) above, wherein the volume per piece is 4 mm 3 or more and 70 mm 3 or less. Thereby, the bone grafting material which has the outer dimension which can be introduce | transduced from the introduction hole given to the vertebral body bone can be produced.

(13)単一の椎体内に複数個の骨補填材を充填して用いることを特徴とする上記(1)から上記(12)のいずれかに記載の骨補填材。これにより、骨補填材同士が新生骨を介して結合することができる。   (13) The bone grafting material according to any one of (1) to (12) above, wherein a plurality of bone grafting materials are filled in a single vertebral body. As a result, the bone prosthetic materials can be bonded to each other via the new bone.

(14)椎体海綿骨と類似した弾性を有することを特徴とする上記(1)から上記(13)のいずれかに記載の骨補填材。これにより、隣接する椎体骨に過大な荷重がかかり、骨折してしまうという問題を解決することができる。   (14) The bone grafting material according to any one of (1) to (13) above, which has elasticity similar to that of vertebral cancellous bone. As a result, it is possible to solve the problem that an excessive load is applied to the adjacent vertebral bones to cause a fracture.

(15)前記骨補填材の線材の両端部を骨補填材の内部に埋め込み処理することを特徴とする上記(1)から上記(14)のいずれかに記載の骨補填材。これにより、材料両端部が生体内組織に突き刺さること、あるいは引っかかることなどを防ぐことができる。   (15) The bone grafting material according to any one of (1) to (14) above, wherein both ends of the wire rod of the bone grafting material are embedded in the bone grafting material. As a result, it is possible to prevent the both end portions of the material from piercing or catching on the in vivo tissue.

(16)上記(1)に記載の経皮的椎体形成術に限定されることなく、頭部骨、体幹骨、上肢骨ないしは下肢骨の各々の群の中から選択される少なくとも一種の骨欠損部、軟骨欠損部ないしは椎間板損傷部のいずれかに充填される上記(1)から上記(15)のいずれかに記載の骨補填材。これにより、患者の疼痛を緩和するとともに、早期に新生骨あるいは軟骨の生成を誘起することができる。   (16) Without being limited to the percutaneous vertebroplasty described in (1) above, at least one kind selected from the group of the head bone, trunk bone, upper limb bone or lower limb bone The bone prosthetic material according to any one of (1) to (15) above, which is filled in any of a bone defect, a cartilage defect, or an intervertebral disc injury. Thereby, while a patient's pain is relieved, the production | generation of a new bone or a cartilage can be induced at an early stage.

(17)添付図面の図1あるいは図2を参照して、実質的に請求項1ないし3に記載した外観を有することを特徴とする骨補填材。これにより、早期に新生骨形成が誘起可能な骨補填材とすることができる。   (17) With reference to FIG. 1 or FIG. 2 of the accompanying drawings, a bone prosthetic material substantially having the appearance described in claims 1 to 3. Thereby, it can be set as the bone grafting material which can induce new bone formation at an early stage.

本発明によれば、弾力性ある球体ないしは楕円体補填材を椎体内に充填・密着させることによって、患者の疼痛を抑え、椎体骨骨折を防止することができる。   According to the present invention, the patient's pain can be suppressed and vertebral fractures can be prevented by filling and closely contacting the elastic sphere or ellipsoidal filling material into the vertebral body.

‥‥陽極酸化前の球状補填材を示した図である。FIG. 4 is a view showing a spherical filling material before anodization. ‥‥陽極酸化後の球状補填材を示した図である。FIG. 5 is a view showing a spherical filling material after anodization. ‥‥陽極酸化後の球状補填材の表面SEM写真を示した図である。(a)、(b)は球状補填材の外側のチタン線材の表面SEM写真、(c)、(d)は球状補填材の内側のSEM写真を表している。FIG. 4 is a view showing a surface SEM photograph of a spherical filling material after anodization. (A), (b) is the surface SEM photograph of the titanium wire outside the spherical filler, and (c), (d) are the SEM photographs inside the spherical filler. ‥‥陽極酸化後の球状補填材のEDX測定結果を示した図である。(a)は球状補填材の表面SEM写真、(b)は(a)の領域に対する酸素、チタン、リン、カルシウムの検出結果、(c)はチタン、(d)は酸素、(e)はカルシウム、(f)はリンの検出結果をそれぞれ表している。また、(b)から(f)のグラフの縦軸はカウント数であり、横軸は距離を表している。... It is the figure which showed the EDX measurement result of the spherical filling material after anodization. (A) is a SEM photograph of the surface of a spherical filler, (b) is the detection result of oxygen, titanium, phosphorus and calcium in the region (a), (c) is titanium, (d) is oxygen, (e) is calcium , (F) represent the detection results of phosphorus, respectively. In addition, the vertical axis of the graphs (b) to (f) is the count number, and the horizontal axis represents the distance. ‥‥陽極酸化後の球状補填材の断面SEM写真を示した図である。(a)、(b)は陽極酸化前の球状補填材の断面SEM写真、(c)、(d)は陽極酸化後の球状補填材の断面SEM写真を表している。FIG. 6 is a view showing a cross-sectional SEM photograph of a spherical filler after anodization. (A), (b) is the cross-sectional SEM photograph of the spherical filler before anodization, (c), (d) represents the cross-sectional SEM photograph of the spherical filler after anodization. ‥‥陽極酸化後の球状補填材の弾性率を示した図である。... is a diagram showing the elastic modulus of the spherical filler after anodization. ‥‥ウサギ脛骨埋入後2週後:球状補填材のチタン線材(黒い部分)間に周辺骨梁から骨芽細胞による類骨組織が侵入し、球状補填材の中央部まで類骨組織は達し、周辺部はすでに骨化している写真を表している。Two weeks after the implantation of the rabbit tibia: The osteoid tissue by osteoblasts invades between the titanium wire rod (black part) of the spherical filler material, and the osteoid tissue reaches the central part of the spherical filler material. The periphery shows a photo that has already been ossified. ‥‥ウサギ脛骨埋入4週後:球状補填材の再深部まで完全に骨化した骨組織によって満たされている写真を表している。4 weeks after implantation of rabbit tibia: Represents a photograph filled with completely ossified bone tissue up to the deep part of the spherical filler. ‥‥一部成長軟骨帯に接して埋入された球状補填材に向かって軟骨細胞様細胞(矢印)の増殖が認められる写真を表している。This represents a photograph in which the proliferation of chondrocyte-like cells (arrows) is observed toward the spherical filling material partially in contact with the growing cartilage zone. ‥‥応力変形実験(stress-strain curve)の結果、球状補填材の弾性率は海綿骨の弾性率に近似することを示した図である。... As a result of stress-strain curve, it is a figure showing that the elastic modulus of the spherical filling material approximates that of cancellous bone. ‥‥周期的負荷―除荷試験の結果、10000回の周期的負荷を加えた後も、球状補填材は十分な弾性力および復元力を有することを示した図である。FIG. 6 is a diagram showing that the spherical filling material has sufficient elastic force and restoring force even after applying periodic load 10,000 times as a result of the cyclic load-unloading test.

(1)直径0.1mm、長さ73cmのチタン線材を不規則に絡めて、外径4mmの球状補填材(図1)を作製する。   (1) A titanium wire rod having a diameter of 0.1 mm and a length of 73 cm is irregularly entangled to produce a spherical filling material (FIG. 1) having an outer diameter of 4 mm.

(2)上記球状補填材の空隙率は、83%である。   (2) The porosity of the spherical filler is 83%.

(3)上記球状補填材を(実施例1)のように、HAp含有電解液中にて陽極酸化を施す。   (3) The spherical filler is anodized in the HAp-containing electrolyte as in (Example 1).

(4)陽極酸化において、電解浴にエタノールを添加することにより、均一なHApの固着と連通孔の維持形成がみられる(図2)。   (4) In the anodic oxidation, by adding ethanol to the electrolytic bath, uniform fixation of HAp and maintenance formation of communication holes are observed (FIG. 2).

本発明をさらに詳細に説明するために実施例を挙げるが、本発明はこれらによって何ら限定されるものではない。   Examples will be given to describe the present invention in more detail, but the present invention is not limited to these examples.

10vol.%のエタノール含有電解浴(0.5mol/L水酸化ナトリウム、0.05mol/Lリン酸三ナトリウム、0.05mol/L過酸化水素)にハイドロキシアパタイト微粒子を2.5g/L添加し、分散させた。次に、その浴中に上記球状補填材を浸漬し、これをパルスアノード酸化した。このときの電解条件は、周波数300Hz、電流密度5A/dm、電解時間5分、波形は矩形波とし、対極には純チタン板を用い、電極間距離は5cmとした。なお、アノード酸化時の電流値は正のみ(オフセットあり)として電解を行った。電解後、水洗、超音波洗浄、乾燥した。 10 vol. Hydroxyapatite fine particles of 2.5 g / L are added to and dispersed in an electrolytic bath containing 0.5% ethanol (0.5 mol / L sodium hydroxide, 0.05 mol / L trisodium phosphate, 0.05 mol / L hydrogen peroxide). It was. Next, the spherical filler was immersed in the bath and pulsed anodized. Electrolysis conditions at this time were a frequency of 300 Hz, a current density of 5 A / dm 2 , an electrolysis time of 5 minutes, a waveform of a rectangular wave, a pure titanium plate as a counter electrode, and an interelectrode distance of 5 cm. The electrolysis was carried out with the current value during anodic oxidation being only positive (with offset). After electrolysis, washing with water, ultrasonic washing and drying were performed.

(外観写真)
球状補填材および、上記陽極酸化で得られた球状補填材の外観写真を図1、2に示す。
(Appearance photo)
FIGS. 1 and 2 show photographs of the appearance of the spherical filler and the spherical filler obtained by the anodic oxidation.

(表面SEM観察)
上記陽極酸化で得られた球状補填材の表面SEM写真を図3に示す。(a)(b)は球状補填材の外側のチタン線材の表面SEM写真、(c)(d)は球状補填材の内側のSEM写真を表している。これより、上記陽極酸化によりチタン線材表面に酸化皮膜が形成され、HApの固着が確認できる。
(SEM observation on the surface)
FIG. 3 shows a surface SEM photograph of the spherical filler obtained by the anodic oxidation. (a) and (b) show the surface SEM photograph of the titanium wire outside the spherical filler, and (c) and (d) show the SEM photograph inside the spherical filler. Thus, an oxide film is formed on the surface of the titanium wire by the anodic oxidation, and HAp sticking can be confirmed.

(EDX測定)
上記陽極酸化で得られた球状補填材のEDX測定結果を図4に示す。(b)および、(c)から(f)のグラフから、(a)のSEM写真の白色微粒子に対応する部分に、酸素、カルシウム、リンの検出ピークが見られることより、上記陽極酸化によりチタン線材表面にHApの固着が確認できる。
(EDX measurement)
The EDX measurement result of the spherical filling material obtained by the above anodic oxidation is shown in FIG. From the graphs of (b) and (c) to (f), detection peaks of oxygen, calcium and phosphorus are observed in the portion corresponding to the white fine particles in the SEM photograph of (a). HAp sticking can be confirmed on the surface of the wire.

(断面SEM観察)
球状補填材および上記陽極酸化で得られた球状補填材の断面SEM写真を図5に示す。(a)は陽極酸化前、(b)は陽極酸化後の球状補填材の断面を表している。(d)の断面SEM写真より、上記陽極酸化により約5−15μm程度の酸化皮膜が形成することがわかる。
(Cross section SEM observation)
FIG. 5 shows a cross-sectional SEM photograph of the spherical filler and the spherical filler obtained by the anodic oxidation. (A) represents the cross section of the spherical filling material before anodization and (b) after the anodization. From the cross-sectional SEM photograph of (d), it can be seen that an oxide film of about 5-15 μm is formed by the anodic oxidation.

(圧縮強度試験)
上記陽極酸化で得られたチタン線材量の異なる3種類の球状補填材A、B、Cの圧縮強度試験の結果を図6に示す。A、B、Cは、0.1mmの直径で、長さがそれぞれ110cm、73cm、55cmのチタン線材から作製された直径4mmの球状補填材である。3本の曲線は、3種類の球状補填材についてそれぞれ5個ずつ圧縮強度試験を行い、それらの平均をとった応力−ひずみ曲線である。この曲線の直線部分の傾きから得られた球状補填材A、B、Cの弾性率は、それぞれ553MPa、239MPa、120MPaであった。海綿骨の弾性率は50−500MPaであると報告されている(J Mater Sci: Mater Med. 19(2008) 451-457)ことから、球状補填材B、Cは、それぞれ海綿骨と同様の弾性強度を有していることが示された。なお、上記実施例では、チタン線材を用いたが、チタン線材以外でも高分子からなる線材を用いることも可能である。
(Compressive strength test)
FIG. 6 shows the results of compressive strength tests of three types of spherical fillers A, B, and C having different titanium wire amounts obtained by the anodic oxidation. A, B, and C are spherical fillers having a diameter of 0.1 mm and 4 mm in diameter made from titanium wires having a length of 110 cm, 73 cm, and 55 cm, respectively. The three curves are stress-strain curves obtained by performing an average of five compression strength tests on three types of spherical fillers. The elastic moduli of the spherical fillers A, B, and C obtained from the slope of the straight line portion of this curve were 553 MPa, 239 MPa, and 120 MPa, respectively. Since the elastic modulus of cancellous bone has been reported to be 50-500 MPa (J Mater Sci: Mater Med. 19 (2008) 451-457), spherical fillers B and C have the same elasticity as cancellous bone, respectively. It was shown to have strength. In the above embodiment, the titanium wire is used. However, it is also possible to use a wire made of a polymer other than the titanium wire.

本発明の骨補填材をウサギ骨内に充填した効果   Effect of filling bone filling material of the present invention into rabbit bone

(組織学的検索)
成体日本ウサギの大腿骨ならびに脛骨骨内に埋入し、埋入後1,2,4週後に屠殺し材料を含む骨組織を採集した。さらに硬組織標本を作成してヴィラネバゴールドナー染色を施し光学顕微鏡にて観察した。
(Histological search)
The tissue was embedded in the femur and tibia bones of adult Japanese rabbits and sacrificed 1, 2, and 4 weeks after implantation, and the bone tissue containing the material was collected. Furthermore, a hard tissue specimen was prepared, stained with Villa Neva Goldner, and observed with an optical microscope.

(骨組織の骨補填材への進入と、その存在の確認)
埋入後1週と言う早期から球状補填材のチタン線材(黒い部分)間に周辺骨梁から骨芽細胞による類骨組織が侵入し、すでに一部は石灰化を認めた。埋入後2週には球状補填材の中央部まで類骨組織は達し、周辺部はすでに骨化していた(図7、線材の間の地図状の部分)。埋入4週後には球状補填材の再深部まで完全に骨化した骨組織によって満たされていた。(図8) また一部成長軟骨帯に接して埋入された球状補填材に向かって軟骨細胞様細胞(矢印)の増殖が認められた。(図9) これは球状補填材が骨だけではなく軟骨組織とも強い親和性を示す所見である。
(Entry of bone tissue into bone filling material and confirmation of its existence)
As early as one week after implantation, the osteoid tissue by osteoblasts invaded between the titanium wire rods (black part) of the spherical filling material from the surrounding trabeculae, and a part of the tissue was already calcified. Two weeks after implantation, the osteoid tissue reached the central part of the spherical filler, and the peripheral part was already ossified (FIG. 7, a map-like part between the wires). After 4 weeks of implantation, the bone filling material was completely filled up to the deep part of the spherical filling material. (FIG. 8) Further, proliferation of chondrocyte-like cells (arrows) was observed toward the spherical filling material partially in contact with the growing cartilage band. (FIG. 9) This is a finding that the spherical filler has a strong affinity not only with bone but also with cartilage tissue.

椎体海綿骨と類似した弾性を有することの実験   Experiments with resilience similar to vertebral cancellous bone

チタン線材量の異なる3種類の球状補填材D、E、Fの圧縮強度試験の結果を図10に示す。D、E、Fは、0.1mmの直径で、長さがそれぞれ110cm、73cm、55cmのチタン線材から作製された直径4mmの球状補填材である。3本の曲線は、3種類の球状補填材についてそれぞれ5個ずつ圧縮強度試験を行い、それらの平均をとった応力−ひずみ曲線である。この曲線の直線部分の傾きから得られた球状補填材D、E、Fの弾性率は、それぞれ192MPa、153MPa、88MPaであった。海綿骨の弾性率は50−500MPaであると報告されている(J Mater Sci: Mater Med. 19(2008) 451-457)ことから、これら3種類の球状補填材は、それぞれ海綿骨と同様の弾性強度を有していることが示された。図6の結果とあわせ、当該球状補填材は、陽極酸化処理の有無に関わらず、海綿骨とほぼ同等の弾性強度を有していることが明らかとなった。   The result of the compressive strength test of three types of spherical fillers D, E, and F having different amounts of titanium wire is shown in FIG. D, E, and F are spherical fillers having a diameter of 0.1 mm and 4 mm in diameter made from titanium wires having a length of 110 cm, 73 cm, and 55 cm, respectively. The three curves are stress-strain curves obtained by performing an average of five compression strength tests on three types of spherical fillers. The elastic modulus of the spherical fillers D, E, and F obtained from the slope of the straight line portion of this curve was 192 MPa, 153 MPa, and 88 MPa, respectively. Since the elastic modulus of cancellous bone is reported to be 50-500 MPa (J Mater Sci: Mater Med. 19 (2008) 451-457), these three types of spherical fillers are similar to cancellous bone, respectively. It was shown to have elastic strength. Together with the results in FIG. 6, it was revealed that the spherical filling material has almost the same elastic strength as cancellous bone regardless of the presence or absence of anodizing treatment.

日常生活における椎体骨への負荷の再現試験   Reproduction test of load on vertebral bones in daily life

直径0.1mm、長さ73cmのチタン線材から作製された直径4mmの球状補填材に10MPaの負荷−除荷を繰り返し加えた周期的負荷−除荷試験の結果を図11に示す。4本の曲線は、それぞれ1周期目、100周期目、1000周期目、10000周期目の応力−ひずみ曲線である。1周期目曲線に示されるように、10MPaの負荷を加えたとき、約15%のひずみが生じるが、10MPaの負荷を取り除いたとき、そのひずみの約90%が解消された。さらに、10000周期目の曲線の挙動は、1周期目の曲線の挙動と類似することが明らかになった。これらの結果から、球状補填材に10000回の負荷を周期的に繰り返し加えても、弾性力および復元力が維持されることより、周期的に負荷のかかる日常生活において、球状補填材は十分な弾性力および復元力を有していることが明らかになった。   FIG. 11 shows the results of a cyclic load-unloading test in which a 10-MPa load-unload was repeatedly applied to a 4-mm diameter spherical filler made from a titanium wire having a diameter of 0.1 mm and a length of 73 cm. The four curves are stress-strain curves in the first period, the 100th period, the 1000th period, and the 10000th period, respectively. As shown in the first cycle curve, a strain of about 15% was generated when a load of 10 MPa was applied, but about 90% of the strain was eliminated when the load of 10 MPa was removed. Furthermore, it became clear that the behavior of the curve at the 10,000th cycle is similar to the behavior of the curve at the first cycle. From these results, the spherical filling material is sufficient in the daily life that is periodically loaded because the elastic force and the restoring force are maintained even if the load of 10,000 times is periodically added to the spherical filling material. It became clear that it had elastic force and restoring force.

現在、椎体骨圧迫骨折治療として、主として骨セメントによる経皮的椎体形成術が行われているが、過大な荷重による骨折、漏れによる肺塞栓等の問題があることが知られている。前記のようにして開発された球体ないし楕円体形状の材料を用いることにより、これらの問題を克服した新しい治療法の提供を可能とすることができる。   Currently, percutaneous vertebroplasty with bone cement is mainly performed as a treatment for vertebral body compression fractures, but it is known that there are problems such as fracture due to excessive load and pulmonary embolism due to leakage. By using the spherical or ellipsoidal material developed as described above, it is possible to provide a new treatment method that overcomes these problems.

Claims (17)

経皮的椎体形成術に用いられる骨補填材であり、少なくとも1本の線材を不規則に絡めた球体ないしは楕円体の形状を持ち、椎体骨に施された導入孔に通過可能な外寸法を有することを特徴とする骨補填材。   Bone prosthesis used in percutaneous vertebroplasty. It has a spherical or ellipsoidal shape with at least one wire irregularly entangled, and can pass through an introduction hole made in the vertebral bone. Bone prosthetic material characterized by having dimensions. 前記球体ないしは楕円体の形状の表面および内部に多くの不規則な隙間が施されていることを特徴とする請求項1に記載の骨補填材。   2. The bone grafting material according to claim 1, wherein a number of irregular gaps are provided on the surface and the inside of the spherical or ellipsoidal shape. 前記球体ないしは楕円体の形状に多方向の弾力性が施されていることを特徴とする請求項1または請求項2のいずれかに記載の骨補填材。   The bone prosthetic material according to claim 1 or 2, wherein multi-directional elasticity is applied to the shape of the sphere or ellipsoid. 前記線材は、チタンまたはその合金から構成されていることを特徴とする請求項1、請求項2または請求項3のいずれかに記載の骨補填材。   The bone prosthetic material according to any one of claims 1 to 3, wherein the wire is made of titanium or an alloy thereof. 前記球体ないしは楕円体の線材に物理的、化学的あるいは電気的な生体親和性向上処理が施されていることを特徴とする請求項1から請求項4のいずれかに記載の骨補填材。   The bone grafting material according to any one of claims 1 to 4, wherein the spherical or ellipsoidal wire is subjected to physical, chemical or electrical biocompatibility treatment. 前記電気的な生体親和性向上処理が陽極酸化処理であることを特徴とする請求項1から請求項5のいずれかに記載の骨補填材。   The bone grafting material according to any one of claims 1 to 5, wherein the electrical biocompatibility improving treatment is an anodic oxidation treatment. 前記電気的な生体親和性向上処理がHAp等のリン酸カルシウム系無機化合物を含む電解質液中での陽極酸化処理であることを特徴とする請求項1から請求項6のいずれかに記載の骨補填材。   The bone grafting material according to any one of claims 1 to 6, wherein the electrical biocompatibility improving treatment is an anodizing treatment in an electrolyte solution containing a calcium phosphate inorganic compound such as HAp. . 前記骨補填材の空隙率が重量換算で60−90%であることを特徴とする請求項1から請求項7のいずれかに記載の骨補填材。   The bone grafting material according to any one of claims 1 to 7, wherein a porosity of the bone grafting material is 60 to 90% in terms of weight. 前記線材の直径が0.1mm以上0.5mm以下であることを特徴とする請求項1から請求項8のいずれかに記載の骨補填材。   The bone grafting material according to any one of claims 1 to 8, wherein a diameter of the wire is 0.1 mm or more and 0.5 mm or less. 前記線材の長さが10cm以上150cm以下であることを特徴とする請求項1から請求項9のいずれかに記載の骨補填材。   The length of the said wire is 10 cm or more and 150 cm or less, The bone grafting material in any one of Claims 1-9 characterized by the above-mentioned. 前記骨補填材の外寸法の最大方向が2mm以上5mm以下であることを特徴とする請求項1から請求項10のいずれかに記載の骨補填材。   The bone grafting material according to any one of claims 1 to 10, wherein a maximum direction of an outer dimension of the bone grafting material is 2 mm or more and 5 mm or less. 1個あたりの体積が4mm以上70mm以下であることを特徴とする請求項1から請求項11のいずれかに記載の骨補填材。 The bone prosthetic material according to any one of claims 1 to 11, wherein the volume per piece is 4 mm 3 or more and 70 mm 3 or less. 単一の椎体内に複数個の前記骨補填材を充填して用いることを特徴とする請求項1から請求項12のいずれかに記載の骨補填材。   The bone grafting material according to any one of claims 1 to 12, wherein a plurality of the bone grafting materials are filled and used in a single vertebral body. 椎体海綿骨と類似した弾性を有することを特徴とする請求項1から請求項13のいずれかに記載の骨補填材。   The bone grafting material according to any one of claims 1 to 13, wherein the bone grafting material has elasticity similar to that of vertebral body cancellous bone. 前記骨補填材の線材の両端部を骨補填材の内部に埋め込み処理することを特徴とする請求項1から請求項14のいずれかに記載の骨補填材。   The bone grafting material according to any one of claims 1 to 14, wherein both ends of the wire rod of the bone grafting material are embedded in the bone grafting material. 請求項1に記載の経皮的椎体形成術に限定されることなく、頭部骨、体幹骨、上肢骨ないしは下肢骨の各々の群の中から選択される少なくとも一種の骨欠損部、軟骨欠損部ないしは椎間板損傷部へのいずれかに充填される請求項1から請求項15のいずれかに記載の骨補填材。   Without being limited to the percutaneous vertebroplasty according to claim 1, at least one bone defect selected from each group of head bone, trunk bone, upper limb bone or lower limb bone, The bone filling material according to any one of claims 1 to 15, which is filled into a cartilage defect portion or an intervertebral disc injury portion. 添付図面の図1あるいは図2を参照して、実質的に上で説明したような骨補填材   Bone prosthesis substantially as described above with reference to FIG. 1 or 2 of the accompanying drawings.
JP2010175865A 2009-09-09 2010-08-05 Bone prosthetic material Pending JP2011078745A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010175865A JP2011078745A (en) 2009-09-09 2010-08-05 Bone prosthetic material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009208680 2009-09-09
JP2010175865A JP2011078745A (en) 2009-09-09 2010-08-05 Bone prosthetic material

Publications (1)

Publication Number Publication Date
JP2011078745A true JP2011078745A (en) 2011-04-21

Family

ID=44073460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010175865A Pending JP2011078745A (en) 2009-09-09 2010-08-05 Bone prosthetic material

Country Status (1)

Country Link
JP (1) JP2011078745A (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06285149A (en) * 1993-03-31 1994-10-11 Ulvac Japan Ltd Artificial raw material for organism excellent in organism affinity and manufacture thereof
US20040024463A1 (en) * 2001-08-27 2004-02-05 Thomas James C. Expandable implant for partial disc replacement and reinforcement of a disc partially removed in a discectomy and for reduction and maintenance of alignment of cancellous bone fractures and methods and apparatuses for same
JP2004097259A (en) * 2002-09-05 2004-04-02 National Institute Of Advanced Industrial & Technology Artificial bone unit with projections for forming stable structure/bone reproducing space in self-organizing manner, and its use
JP2006505331A (en) * 2002-11-05 2006-02-16 スパインオロジー,インク. Semi-artificial intervertebral disc replacement system
JP2007021101A (en) * 2005-07-21 2007-02-01 Olympus Biomaterial Corp Bone prosthetic material and bone prosthetic material unit
WO2007038349A2 (en) * 2005-09-28 2007-04-05 Synthes (Usa) Apparatus and methods for vertebral augmentation using linked expandable bodies
JP2008018156A (en) * 2006-07-14 2008-01-31 Terumo Corp Bone prosthetic material

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06285149A (en) * 1993-03-31 1994-10-11 Ulvac Japan Ltd Artificial raw material for organism excellent in organism affinity and manufacture thereof
US20040024463A1 (en) * 2001-08-27 2004-02-05 Thomas James C. Expandable implant for partial disc replacement and reinforcement of a disc partially removed in a discectomy and for reduction and maintenance of alignment of cancellous bone fractures and methods and apparatuses for same
JP2004097259A (en) * 2002-09-05 2004-04-02 National Institute Of Advanced Industrial & Technology Artificial bone unit with projections for forming stable structure/bone reproducing space in self-organizing manner, and its use
JP2006505331A (en) * 2002-11-05 2006-02-16 スパインオロジー,インク. Semi-artificial intervertebral disc replacement system
JP2007021101A (en) * 2005-07-21 2007-02-01 Olympus Biomaterial Corp Bone prosthetic material and bone prosthetic material unit
WO2007038349A2 (en) * 2005-09-28 2007-04-05 Synthes (Usa) Apparatus and methods for vertebral augmentation using linked expandable bodies
JP2008018156A (en) * 2006-07-14 2008-01-31 Terumo Corp Bone prosthetic material

Similar Documents

Publication Publication Date Title
US7186267B2 (en) Porous and/or polycrystalline silicon orthopaedic implant
CN111494035A (en) Trabecular bone porous tantalum dental implant and preparation method thereof
AU2001274217A1 (en) A porous and/or polycrystalline silicon orthopaedic implant
US20120183923A1 (en) Dental implant and surface treatment method of dental implant
CN107496020A (en) A kind of degradable pure magnesium metal bone fracture plate fixed for Long bone fracture
Zhou et al. Early osseointegration of implants with cortex-like TiO2 coatings formed by micro-arc oxidation: A histomorphometric study in rabbits
Gorbach et al. Osseointegration of innovative customized implants in the tubular bone (experimental study)
JP2011078745A (en) Bone prosthetic material
CN104688391B (en) A kind of mesh-supported device for treating femur head necrosiss
Cao et al. Evaluation of polyetheretherketone composites modified by calcium silicate and carbon nanotubes for bone regeneration: mechanical properties, biomineralization and induction of osteoblasts
CN205073074U (en) Cervical vertebra fusion device
CN208002882U (en) One kind being used for the fixed degradable pure magnesium metal bone fracture plate of Long bone fracture
CN206138242U (en) Centrum humidifier of treatment centrum compressibility fracture
RU184086U1 (en) IMPLANT MODULE FOR REPLACING INTRACOSTIC DEFECTS
Shibata et al. New Development of Titanium Wire Ball as Vertebra Substitute
RU82541U1 (en) Intramedullary Implant
RU95496U1 (en) Intramedullary Implant
RU83914U1 (en) Intramedullary Implant
RU75930U1 (en) Intramedullary Implant
RU83912U1 (en) Intramedullary Implant
RU98115U1 (en) Intramedullary Implant
CN117512606A (en) Method for preparing gradient-size nanowire coating on medical titanium surface
RU113650U1 (en) Intramedullary Implant
RU113652U1 (en) Intramedullary Implant
RU89811U1 (en) Intramedullary Implant

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120328

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130521

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131022