JP2011078706A - Method for improving quality of surface biocompatibility - Google Patents

Method for improving quality of surface biocompatibility Download PDF

Info

Publication number
JP2011078706A
JP2011078706A JP2009235723A JP2009235723A JP2011078706A JP 2011078706 A JP2011078706 A JP 2011078706A JP 2009235723 A JP2009235723 A JP 2009235723A JP 2009235723 A JP2009235723 A JP 2009235723A JP 2011078706 A JP2011078706 A JP 2011078706A
Authority
JP
Japan
Prior art keywords
repeating unit
group
blood
polymer
repeating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009235723A
Other languages
Japanese (ja)
Other versions
JP5656241B2 (en
Inventor
Yukio Nagasaki
幸夫 長崎
Yu Yamaguchi
雄 山口
Toru Yoshitomi
徹 吉冨
Akihiko Kikuchi
明彦 菊池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo University of Science
University of Tsukuba NUC
Original Assignee
Tokyo University of Science
University of Tsukuba NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo University of Science, University of Tsukuba NUC filed Critical Tokyo University of Science
Priority to JP2009235723A priority Critical patent/JP5656241B2/en
Publication of JP2011078706A publication Critical patent/JP2011078706A/en
Application granted granted Critical
Publication of JP5656241B2 publication Critical patent/JP5656241B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for revising or especially improving the quality of biocompatibility of a surface in contact with a living body or a substance derived from a living body, particularly, for reducing or preventing modification of the blood caused when the blood in the living body comes into contact with an artificial material. <P>SOLUTION: The method includes a step for fixing a polymer which contains any one kind of unit selected from a group consisting of repeating units for supporting a cyclic nitroxide radical for at least 15% or more of repeating unit of a polymer main chain, and when another repeating unit exists, contains a repeating unit to be a group in which a cyclic nitroxide radical of a corresponding unit forms a hydrogen atom or another functional group or a repeating unit forming a co-polymer together with the repeating unit. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は生体または生体に由来する物質と接触する表面の生体適合性を改質、特に、向上せしめる方法に関する。より具体的には、本発明は生体内の血液と人工物である材料とが接触した時に生じる血液の変性を低減乃至防止する方法に関する。   The present invention relates to a method for modifying, in particular improving the biocompatibility of a surface in contact with a living body or a substance derived from a living body. More specifically, the present invention relates to a method for reducing or preventing blood degeneration that occurs when blood in a living body comes into contact with an artificial material.

近年の医療工学の発展に伴い医療現場では、人工血管や人工心肺などの人工臓器が使用されるようになってきた。現在使用されている人工臓器の多くは高分子材料からできており、血液や生体組織と直接接触するものについては、生体適合性、特に、血液適合性や組織適合性が要求される。例えば、材料に血液が接触すると生体液は活性化され、酸化ストレスの上昇、血液の凝固反応や炎症反応を引き起こす。このとき活性化された白血球などの食細胞は、活性酸素種(ROS)を産生すると伴に炎症性サイトカインを放出する。   With the development of medical engineering in recent years, artificial organs such as artificial blood vessels and heart-lung machines have been used in the medical field. Many of the artificial organs currently used are made of a polymer material, and those that come into direct contact with blood or biological tissue are required to have biocompatibility, particularly blood compatibility and tissue compatibility. For example, when blood comes into contact with the material, the biological fluid is activated, causing an increase in oxidative stress, blood coagulation reaction, and inflammation reaction. At this time, activated phagocytes such as leukocytes produce reactive oxygen species (ROS) and release inflammatory cytokines.

現在までに血液の活性化を小さくするために親水性ポリマー、生体膜を模倣したポリマー、ミクロドメイン構造を持つポリマー、生理活性物質を固定化した表面など様々な研究がなされてきた(例えば、非特許文献1および非特許文献2参照)。最近ではアセチルコリン基を有する高分子(PMPC)やポリアクリル酸2−メトキシエチルなどの生体適合性の良い新規ポリマーが開発されて来ている(例えば、特許文献1および特許文献2参照)。これらの材料は比較的性能がよく、その一部は実用化されているものの、完全に問題が解決されているわけではない。たとえば親水性ポリマーは血小板の吸着は抑制するが血液の活性化反応については抑制することができないことが挙げられる。生理活性物質は動物由来物質であり安全面に問題があることや、生理活性の自然低下といった問題がある。最近、トコフェロールのような抗酸化剤を表面にコーティングしてROSの発生を抑える方法が一定の成果を上げているものの、高価で化学量論的反応のため、公算可能が継続しないという問題があった。また、医療用物品の表面を被覆するためのポリマー性キャリアとして、ポリ(ヒドロキアルカン酸エステル−co−エステルアミド)の側鎖に活性酸素をはじめとするフリーラジカルの捕捉剤としての2,2’,6,6’−テトラメチル−1−ピペリジニルオキシフリーラジカル(TEMPO)を担持させたポリマーも提案されている(特許文献3参照)。なお、特許文献3では、上記フリーラジカル捕捉剤の他に、多種多様な薬剤、例えば、増殖抑制薬、抗血小板薬もしくは抗凝固薬、診断用薬剤を該ポリマーの側鎖に担持させることが提案されている。しかし、これらの薬剤を担持するポリマーで被覆された表面が具体的にどのような挙動を示すかを明らかにするデータは何ら開示されていない。   To date, various studies have been conducted to reduce blood activation, including hydrophilic polymers, polymers that mimic biological membranes, polymers with microdomain structures, and surfaces on which bioactive substances are immobilized (for example, (See Patent Document 1 and Non-Patent Document 2). Recently, new polymers having good biocompatibility such as a polymer having an acetylcholine group (PMPC) and 2-methoxyethyl polyacrylate have been developed (for example, see Patent Document 1 and Patent Document 2). Although these materials have relatively good performance and some have been put into practical use, the problem has not been completely solved. For example, hydrophilic polymer suppresses the adsorption of platelets but cannot inhibit the activation reaction of blood. The physiologically active substance is an animal-derived substance, which has a problem in safety and has a problem of a natural decrease in physiological activity. Recently, a method of suppressing the generation of ROS by coating an antioxidant such as tocopherol has achieved a certain result, but there is a problem that the probable possibility does not continue due to the expensive and stoichiometric reaction. It was. Further, as a polymeric carrier for coating the surface of a medical article, 2,2 ′ as a scavenger for free radicals including active oxygen in the side chain of poly (hydroxyalkanoic acid ester-co-esteramide). , 6,6′-Tetramethyl-1-piperidinyloxy free radical (TEMPO) is also proposed (see Patent Document 3). In addition, Patent Document 3 proposes that in addition to the above-mentioned free radical scavenger, a wide variety of drugs, for example, growth inhibitors, antiplatelet drugs or anticoagulants, and diagnostic drugs are carried on the side chain of the polymer. Has been. However, no data is disclosed which reveals how the surface coated with the polymer carrying these drugs specifically behaves.

特開2004−161954JP 2004-161954 A WO2008/023604WO2008 / 023604 WO2006/078356WO2006 / 078356

Megan C.Frost,et al.Biomaterials 26(2005)1685-1693Megan C.I. Frost, et al. Biomaterials 26 (2005) 1685-1693 Kazuhiko Ishihara et al.J.Biomater Sci.Polymer Edn.10(3)271−282(1999)Kazuhiko Ishihara et al. J. et al. Biometer Sci. Polymer Edn. 10 (3) 271-282 (1999)

上記先行技術の問題点は、下記のようにまとめることができる。
1)親水性ポリマーのミクロ相分離膜は、一度活性酸素が発生するとその活性酸素を捕捉することができない。
2)生体活性物質を固定化した表面は、当該物質は、通常、動物由来物質であり、生体で使用する際の安全面に問題があり、また、一度発生した活性酸素を捕捉することもできない。また、表面へ固定化が困難であり、表面の物理的安定が低い。
3)生体膜模倣ポリマーは、一度活性酸素が発生するとその活性酸素を捕捉することができない。
4)フリーラジカル捕捉剤を担持させたポリマーから形成される塗膜が抗血小板薬もしくは抗凝固薬を担持させたポリマーと異なり血液や生体に対して具体的にどのように作用するのか推測できない。
The problems of the above prior art can be summarized as follows.
1) The microphase separation membrane of hydrophilic polymer cannot capture the active oxygen once it is generated.
2) The surface on which the bioactive substance is immobilized is usually an animal-derived substance, and there is a problem in safety when used in a living body, and once generated active oxygen cannot be captured. . Further, it is difficult to fix to the surface, and the physical stability of the surface is low.
3) A biomimetic polymer cannot capture active oxygen once it is generated.
4) Unlike a polymer in which an antiplatelet drug or an anticoagulant is supported, a coating film formed from a polymer in which a free radical scavenger is supported cannot be specifically estimated how it acts on blood or a living body.

したがって、本発明の目的は、生体または生体に由来する物質と接触する表面に対して容易、かつ、安定に固定できる材料を用い、生体適合性に関連して、広範にかつ、より具体的に有意な挙動を示すように該表面を改質するための方法を提供することにある。   Accordingly, an object of the present invention is to use a material that can be easily and stably fixed to a living body or a surface that comes into contact with a substance derived from a living body, and more broadly and more specifically in relation to biocompatibility. The object is to provide a method for modifying the surface to show significant behavior.

発明者らは先に、触媒的に酸化還元を司るニトロキシラジカルを高分子に担持することにより生体内での代謝を回避し、ROS消去剤として機能することを見出し提案した(特願2008−120626及び特願2008−178150)。今ここに、TEMPO等のニトロキシドラジカルを側鎖に担持した一定の反復単位を含むポリマーが、生体または生体に由来する物質と接触する表面に安定に固定でき、該表面上でROSを消去もしくは吸収できることのみならず、該表面が、とくに、生体内の血液と人工物である材料とが接触した時に生じる血液の変性を低減乃至防止できることを見出した。これは、特許文献3が具体的に血液に関連するものとして、抗血小板薬、抗凝固薬、及び抗トロンビン薬、例えば、ヘパリンナトリウム、低分子ヘパリン、へパリノイド、ヒルジン、アルガトロパン、フォルスコリン、プロスタサイクリン等を使用することと明確に異なる。   The inventors have previously found and proposed that a nitroxy radical that catalyzes redox catalytically is supported on a polymer to avoid metabolism in vivo and function as a ROS scavenger (Japanese Patent Application 2008- 120626 and Japanese Patent Application No. 2008-178150). Now, a polymer containing a certain repeating unit carrying nitroxide radicals such as TEMPO on its side chain can be stably immobilized on a living body or a surface in contact with a substance derived from the living body, and erases or absorbs ROS on the surface. In addition to being able to do so, the present inventors have found that the surface can reduce or prevent blood degeneration that occurs particularly when blood in a living body comes into contact with an artificial material. This is because Patent Document 3 specifically relates to blood, such as antiplatelet drugs, anticoagulants, and antithrombin drugs such as heparin sodium, low molecular weight heparin, heparinoids, hirudin, argatropane, forskolin, prosta It is clearly different from using cyclin.

したがって、本発明は、本発明は生体または生体に由来する物質と接触する表面の生体適合性を改質する方法であって、該表面に
環状ニトロキシドラジカル部分を担持する反復単位を、少なくとも、ポリマー主鎖の反復単位の15%以上含んでなり、他の反復単位が存在する場合には、対応する環状ニトロキシラジカル部分が水素原子もしくは官能基である反復単位であるか、または該反復単位と一緒になってコポリマーを形成しうる別の反復単位を含み、かつ、環状ニトロキシドラジカル部分を担持する反復単位と存在する場合の他の反復単位は相互にランダムに存在するかまたはブロックを形成してもよい、ポリマーを固定する工程を含んでなる、上記方法が提供される。好ましくは、該ポリマーはフィルムまたは被膜として目的の表面に固定される。
Accordingly, the present invention is a method for modifying the biocompatibility of a surface that contacts a living body or a substance derived from the living body, and the surface has a repeating unit carrying a cyclic nitroxide radical moiety on at least a polymer. If it contains more than 15% of the repeating units of the main chain and other repeating units are present, the corresponding cyclic nitroxyl radical moiety is a hydrogen atom or a repeating unit that is a functional group, or The repeating unit containing another repeating unit that can form a copolymer together and carrying a cyclic nitroxide radical moiety and the other repeating unit, if present, are randomly present in each other or form a block There is provided the above method comprising the step of immobilizing the polymer. Preferably, the polymer is fixed to the target surface as a film or coating.

本発明によれば、生体または生体に由来する物質と接触する表面とし、限定されるものでないが、ダイアライザー、コンタクトレンズ、人工血管、人工臓器、注射器、培養シャーレ、ピペットチップ、といった直接血液や血漿などの体液や細胞、組織などと接触する医療用具等の表面の生体適合性、特に血液適合性を改質乃至向上できる。   According to the present invention, a surface that comes into contact with a living body or a substance derived from a living body, but is not limited to direct blood or plasma such as a dialyzer, a contact lens, an artificial blood vessel, an artificial organ, a syringe, a culture dish, or a pipette tip. It is possible to modify or improve the biocompatibility of the surface of a medical device or the like that comes into contact with body fluids such as cells, tissue, etc., particularly blood compatibility.

表面処理例1のコーティング表面の反応TEMPOLに対するソックスレー洗浄後のESR測定結果を示す。The ESR measurement result after Soxhlet washing | cleaning with respect to reaction TEMPOL of the coating surface of the surface treatment example 1 is shown. 上記ESR測定結果についてESR強度を縦軸に、洗浄時間を横軸にプロットしたグラフ表示である。It is the graph display which plotted the ESR intensity | strength on the vertical axis | shaft and the washing | cleaning time on the horizontal axis about the said ESR measurement result. ソックスレー洗浄後のコーティングのESR測定結果を示す。The ESR measurement result of the coating after Soxhlet cleaning is shown. 試験例1におけるNRPランダムコポリマーに関する全血接触試験による血球数の変動についてのグラフ表示である。2 is a graphical representation of changes in blood cell count by whole blood contact test for NRP random copolymer in Test Example 1. FIG. 製造例3で製造されたPCMSのH NMRスペクトラムである。3 is a 1 H NMR spectrum of PCMS produced in Production Example 3. 製造例3で製造されたPCMSのGPCの測定結果を示す。The measurement result of GPC of PCMS manufactured in Manufacturing Example 3 is shown. 表面処理例2で処理した表面のXPSの測定結果を示す。The measurement result of XPS of the surface processed in surface treatment example 2 is shown. 試験例2におけるNRPホモポリマーに関する全血接触試験による血球数(A:血小板、B:白血球)の変動についてのグラフ表示である。It is a graph display about the fluctuation | variation of the blood cell count (A: platelet, B: leukocyte) by the whole blood contact test regarding the NRP homopolymer in Test Example 2. 試験例2におけるビーズ表面の電子顕微鏡写真である(左:TEMPOを含まないポリマー処理、右:TEMPO含有ポリマー処理)。It is an electron micrograph of the bead surface in Test Example 2 (left: polymer treatment not containing TEMPO, right: TEMPO-containing polymer treatment). 試験例3における活性酸素産生量の経時的な変動のグラフ表示である。10 is a graphical representation of changes over time in the amount of active oxygen production in Test Example 3. 試験例3におけるTEMPO導入率の異なる各ポリマーコート表面の活性酸素産生量のグラフ表示である。It is a graph display of the amount of active oxygen production of each polymer coat surface from which the TEMPO introduction rate differs in Test Example 3.

発明の詳細な記述Detailed description of the invention

本発明にいう、生体適合性とは、長期間にわたって生体に悪影響も強い刺激も与えず、本来の機能を果たしながら生体と共存できる属性をいう。生体は、人体をはじめ哺乳動物,その他の動物、さらには、植物を包含する概念で使用しており、したがって、生体に由来する物質とは、動物の器官、臓器、細胞、体液(例えば、ヒトにおいては血液、涙、唾液)等を意味する。   The biocompatibility referred to in the present invention refers to an attribute that can coexist with a living body while performing its original function without giving adverse effects or strong stimulation to the living body for a long period of time. Living organisms are used in a concept that includes human bodies, mammals, other animals, and even plants. Therefore, substances derived from living organisms include animal organs, organs, cells, body fluids (for example, humans). Means blood, tears, saliva) and the like.

上記表面の改質に使用できる、ポリマーは、下記式(a)〜(p)で表される反復単位を、少なくとも、ポリマー主鎖の反復単位の15%以上、好ましくは20%、より好ましくは35%以上をランダムもしくはブロックを形成するように含むコポリマーであるか、またはすべての反復単位がそれらのいずれかの1種であるホモポリマーであることができる。   The polymer that can be used for the modification of the surface has a repeating unit represented by the following formulas (a) to (p) at least 15% or more of the repeating unit of the polymer main chain, preferably 20%, more preferably It can be a copolymer containing more than 35% so as to form a random or block, or it can be a homopolymer in which all repeating units are any one of them.

上式中、Rは環状ニトロキシドラジカル部分を表し、
nは、5〜10,000、好ましくは、5〜5,000、より好ましくは5〜2,500の整数を表す。
Wherein R represents a cyclic nitroxide radical moiety;
n represents an integer of 5 to 10,000, preferably 5 to 5,000, more preferably 5 to 2,500.

上記反復単位が、ポリマー主鎖の反復単位の100%を占めない場合、存在し得る残りの反復単位は、上記環状ニトロキシドラジカル部分を表す、Rが水素原子であるか、または他の官能基を形成し得る基を有するランダムに存在するかもしくはブロックを形成するように存在する反復単位である。ポリハロメチルスチレン(a)において、他の官能基を形成し得る基は−(CH)−ORまたは−(CH)−NHRの−ORおよび−NHRがハロゲン原子、例えば、フッ素、塩素もしくは臭素原子であることができる。 If the repeat unit does not occupy 100% of the repeat units of the polymer backbone, the remaining repeat unit that may be present represents the cyclic nitroxide radical moiety, R is a hydrogen atom, or other functional group A repeating unit that is present randomly or has a group that can form to form a block. In the polyhalomethylstyrene (a), the group capable of forming another functional group is — (CH 2 ) —OR or —OR of — (CH 2 ) —NHR and —NHR are halogen atoms such as fluorine, chlorine or It can be a bromine atom.

これらの反復単位のうち、ポリハロメチルスチレンから誘導できる反復単位(a):   Of these repeating units, the repeating unit (a) derivable from polyhalomethylstyrene:

を好もしいものとして挙げることができる。このような反復単位を含むポリマーは、一般的に、これらの反復単位に起因して疎水性を示すが、それにもかかわらず、生体適合性を上記表面に付与することができる。 Can be cited as a good thing. Polymers containing such repeating units generally exhibit hydrophobicity due to these repeating units, but can nevertheless impart biocompatibility to the surface.

Rの環状ニトロキシラジカル部分は、必要により、連結基、−CHCHO−、−CHCHS−、−COCHCHO−、−COCHCHS−、−(CH−O−、−(CH−S−、−CO(CH−O−、−(CH−O−等を介して結合することができる、2,2,6,6−テトラメチルピペリジン−1−オキシル−4−イル、2,2,5,5−テトラメチルピロリジン−1−オキシル−3−イル、2,4,4,−トリメチル−1,3−チアゾリジン−3−オキシル−2−イル、および2,4,4−トリメチル−イミダゾリジン−3−オキシ−2−イル等から選ぶことができる。より具体的には、次式 The cyclic nitroxy radical part of R is optionally connected to a linking group, —CH 2 CH 2 O—, —CH 2 CH 2 S—, —COCH 2 CH 2 O—, —COCH 2 CH 2 S—, — (CH 2 ) 3— O—, — (CH 2 ) 3 —S—, —CO (CH 2 ) 3 —O—, — (CH 2 ) 3 —O—, etc. , 6,6-tetramethylpiperidin-1-oxyl-4-yl, 2,2,5,5-tetramethylpyrrolidin-1-oxyl-3-yl, 2,4,4, -trimethyl-1,3- It can be selected from thiazolidine-3-oxyl-2-yl, 2,4,4-trimethyl-imidazolidin-3-oxy-2-yl, and the like. More specifically, the following formula

(式中、R’はメチル基である。)
のいずれかで表される環状ニトロキシドラジカル化合物の残基であることができる。
(In the formula, R ′ is a methyl group.)
Or a residue of a cyclic nitroxide radical compound represented by

上記のポリマーは、例えば、下記の反復単位を含むそれ自体公知のポリマーに上記の環状ニトロキシドラジカル部分を導入することにより製造できる。なお、この導入は、下記の反復単位を有するそれ自体公知のポリマーを表面に塗布した後、ニトロキシラジカル部分を導入してもよい。塗布は、それ自体公知のポリマー溶液を用いる塗布等であることができる。
式:
The above polymer can be produced, for example, by introducing the above cyclic nitroxide radical moiety into a polymer known per se containing the following repeating unit. In this introduction, a nitroxy radical moiety may be introduced after a polymer known per se having the following repeating unit is applied to the surface. The application can be an application using a polymer solution known per se.
formula:

(ここで、pは1または2を表し、Rは非結合末端において1個のフェニル基もしくはベンズヒドリル基により置換されていてもよいC−C12アルキル基を表し、nは3〜1,000の整数を表す。)で表されるポリアミノ酸エステル鎖セグメント(i)。
式:
(Wherein p represents 1 or 2, R 1 represents a C 1 -C 12 alkyl group optionally substituted by one phenyl group or benzhydryl group at the non-bonding end, and n represents 3-1, A polyamino acid ester chain segment (i) represented by an integer of 000).
formula:

(ここで、Rは非結合末端において1個のフェニル基もしくはベンズヒドリル基により置換されていてもよいC−C12アルキル基を表し、Rは水素原子またはC1−5アルキル基を表し、nは3〜1,000の整数を表す。)で表されるポリ((メタ)アクリル酸エステル)鎖セグメント(ii)。
式:
(Here, R 1 represents a C 1 -C 12 alkyl group optionally substituted by one phenyl group or benzhydryl group at the non-bonding end, and R 2 represents a hydrogen atom or a C 1-5 alkyl group. , N represents an integer of 3 to 1,000.) Poly ((meth) acrylic acid ester) chain segment (ii).
formula:

(ここで、nは3〜1,000の整数を表す。)で表されるスチレン−無水マレイン酸共重合体鎖セグメント(iii)。
式:
(Here, n represents an integer of 3 to 1,000). A styrene-maleic anhydride copolymer chain segment (iii).
formula:

(ここで、Rは非結合末端において1個のフェニル基もしくはベンズヒドリル基により
置換されていてもよいC−C12アルキル基を表し、nは3〜1,000の整数を表す。)で表されるポリリンゴ酸エステル鎖セグメント(iv)。
式:
(Here, R 1 represents a C 1 -C 12 alkyl group which may be substituted with one phenyl group or benzhydryl group at the non-bonding end, and n represents an integer of 3 to 1,000). Polymalate chain segment (iv) represented.
formula:

(ここで、nは3〜1,000の整数を表す。)で表されるポリアミック酸鎖セグメント(v)。
式:
(Here, n represents an integer of 3 to 1,000.) Polyamic acid chain segment (v).
formula:

(ここで、Lは塩素、臭素またはヨウ素原子を表し、nは3〜1,000の整数を表す。)で表されるポリ(ハロメチルスチレン)鎖セグメント(vi)。
式:
(Here, L 1 represents a chlorine, bromine or iodine atom, and n represents an integer of 3 to 1,000.) A poly (halomethylstyrene) chain segment (vi).
formula:

(ここで、nは3〜1,000の整数を表す。)で表されるポリ(グリシジル メタクリレート)鎖セグメント(vii)。
式:
(Here, n represents an integer of 3 to 1,000.) Poly (glycidyl methacrylate) chain segment (vii).
formula:

(ここで、nは3〜1,000の整数を表す。)で表されるポリ(2−ヒドロキシエチル
メタクリレート)鎖セグメント(viii)。
式:
(Here, n represents an integer of 3 to 1,000). Poly (2-hydroxyethyl methacrylate) chain segment (viii).
formula:

(ここで、nは3〜1,000の整数を表す。)で表されるポリエピクロロヒドリン鎖セグメント(ix)。
式:
(Here, n represents an integer of 3 to 1,000.) Polyepichlorohydrin chain segment (ix).
formula:

(ここで、nは3〜1,000の整数を表す。)で表されるポリ−3,3−ビスクロロメチルオキセタン鎖セグメント(x)。 (Here, n represents an integer of 3 to 1,000.) A poly-3,3-bischloromethyloxetane chain segment (x) represented by:

環状ニトロキシドラジカルの上記反復単位を含むポリマーへの導入は、例えば、前者のラジカル以外の官能基(例えば、アミノ基、アミノメチル基、ヒドロキシル基、ヒドロキシメチル基、カルキシル基またはカルボメチル基)と上記反復単位における反応性基(ハロゲン原子、カルボキシル基、エステル基、酸無水物基、マレイミド基またはエポキシド基)を介して、それ自体公知の縮合または不可反応等を実施することにより達成できる。   The introduction of the cyclic nitroxide radical into the polymer containing the repeating unit may be performed by, for example, functional groups other than the former radical (for example, amino group, aminomethyl group, hydroxyl group, hydroxymethyl group, carboxyl group or carbomethyl group) and the repeating unit. It can be achieved by carrying out a per se known condensation or non-reaction through a reactive group (halogen atom, carboxyl group, ester group, acid anhydride group, maleimide group or epoxide group) in the unit.

本発明で使用できるポリマーが環状ニトロキシドラジカル部分を担持する反復単位((a)〜(p))以外の反復単位を有するコポリマーである場合、該コポリマーは、上記(a)〜(p)で表される反復単位のRが水素原子を表す反復単位、上記(i)〜(x)、あるいはまた、より具体的には、下記式(nは3〜1,000の整数を表し、pは3〜5,000の整数を表す。)で表される反復単位よりなる群から選ばれる反復単位であることができる。環状ニトロキシドラジカル部分を担持する反復単位((a)〜(p))のいずれかと、それ以外の反復単位は、ランダムに存在するかもしくはブロックを形成して存
在することができるが、好ましくはランダムに存在することができる。
When the polymer that can be used in the present invention is a copolymer having a repeating unit other than the repeating unit ((a) to (p)) carrying a cyclic nitroxide radical moiety, the copolymer is represented by the above (a) to (p). Wherein the repeating unit R represents a hydrogen atom, the above (i) to (x), or more specifically, the following formula (n represents an integer of 3 to 1,000, p is 3 Represents an integer of ˜5,000.) And a repeating unit selected from the group consisting of repeating units represented by: Any of the repeating units ((a) to (p)) carrying the cyclic nitroxide radical moiety and the other repeating units may be present at random or in a block form, but preferably at random. Can exist.

本発明にいう、生体適合性は、上記の定義の範疇内のものであれば、限定されるものでないが、血液適合性に注目している。本発明にいう、かような血液適合性の改質とは、より具体的には、血液と対応する未処理の表面が接触した場合に生じる該表面への血球吸着が上記ポリマーの塗布された表面では抑制され(表面と接触する血液の血小板および/または白血球の減少が抑制される)、または、血液中の活性酸素量の増加が抑制されることを意図している。   The biocompatibility referred to in the present invention is not limited as long as it is within the above definition, but attention is paid to blood compatibility. More specifically, the improvement of blood compatibility referred to in the present invention means that the above-mentioned polymer is applied to adsorb blood cells on the surface when blood and a corresponding untreated surface come into contact with each other. It is intended to be suppressed at the surface (inhibition of blood platelets and / or leukocyte reduction in contact with the surface) or to increase the amount of active oxygen in the blood.

したがって、本発明に従えば、ポリ(クロロメチルスチレン)(PCMS)のような反応性高分子に任意の割合でTEMPOを導入し、残りの反応基を介して、例えば、ポリエチレングリコール(PEG)等をさらに導入した表面を形成することができる。これにより血液適合性だけでなく、ROSが関与していることが考えられているコンタクトレンズや培養シャーレなど様々な機器表面の改質が可能である。この残りの反応性基がハロゲン原子である場合、さらには発明者らが先に提案した、特願2008−238133に開示したような大気圧プラズマにより該ハロゲン原子を介して対応するポリマーを表面に固定することもできる。   Therefore, according to the present invention, TEMPO is introduced into a reactive polymer such as poly (chloromethylstyrene) (PCMS) at an arbitrary ratio, and the remaining reactive groups are used, for example, polyethylene glycol (PEG) or the like. Can be formed. As a result, not only blood compatibility but also various device surface modifications such as contact lenses and culture dishes that are considered to be involved in ROS are possible. When this remaining reactive group is a halogen atom, the corresponding polymer is introduced to the surface via the halogen atom by atmospheric pressure plasma as disclosed in Japanese Patent Application No. 2008-238133 previously proposed by the inventors. It can also be fixed.

本発明では、安定なニトロキシドラジカルを有するホモポリマー、ランダムコポリマー(NRP)の被膜を表面に固定することで血液と材料が接触した際の活性酸素を捕捉することが可能である。また、本発明によれば、上記ポリマーから本質的になり、遊離したTEMPOLやその他のヘモグロビン、アルブミン等を含めることなく形成したコーティングが上記の生体適合性を向上できるが、本発明の目的に悪影響を及ぼさない範囲でアルブミン等を併用してもよい。   In the present invention, it is possible to capture active oxygen when blood and material come into contact with each other by fixing a coating of a homopolymer or random copolymer (NRP) having a stable nitroxide radical on the surface. In addition, according to the present invention, a coating consisting essentially of the above polymer and formed without including free TEMPOL, other hemoglobin, albumin, etc. can improve the above biocompatibility, but adversely affects the purpose of the present invention. Albumin or the like may be used in combination as long as it does not affect the range.

以下、本発明を、具体例を挙げて説明するが、本発明をこれらに限定することを意味しない。   Hereinafter, the present invention will be described with specific examples, but it is not meant to limit the present invention thereto.

製造例1:
(1)MEA(2−メトキシメチルアクリレート)/CMS(クロロメチルスチレン)のランダムコポリマー(PCM)の合成
Production Example 1:
(1) Synthesis of MEA (2-methoxymethyl acrylate) / CMS (chloromethylstyrene) random copolymer (PCM)

反応容器に撹拌子と反応開始剤としてのアゾビスイソブチロニトリル(AIBN)を加え、窒素置換を行った。そこに20分窒素バブリングを行った1,4−ジオキサン、2−メトキシメチルアクリレート(MEA)、クロロメチルスチレン(CMS)、ガスクロマトグラフィー(GC)測定用の内部標準物質デカンを加えた。スターラーで撹拌しながら65℃に加熱したオイルバスに反応容器を入れ重合を開始した。GC測定のため1時間毎にサンプルを0.5mL採取し、氷浴で冷却した後GC測定を行った。重合の停止はGC測定によるMEA、CMSモノマーどちらかの転化率が8割程度になったところで行った。重合反応の停止は反応容器をオイルバスから取り出し、氷浴に浸けることにより行った。生成物は、冷却した大過剰のイソプロピルアルコール(IPA)に沈殿させ、デカンテーションを行った。この過程を3回繰り返すことで精製した。沈殿物をナスフラスコに回収し、IPAをエバポレーターにより蒸発させた後、少量のベンゼンに溶解させ、液体窒素で凍結させ、減圧下で凍結乾燥を行った。ベンゼン凍結乾燥後GPC、およびCDClを用いてH NMR測定を行った。GPC測定に関しては、PS検量線を用いて分子量を決定した。表1に実際に行った重合の仕込み量を示す。 A stirrer and azobisisobutyronitrile (AIBN) as a reaction initiator were added to the reaction vessel, and nitrogen substitution was performed. 1,4-Dioxane, 2-methoxymethyl acrylate (MEA), chloromethylstyrene (CMS), and internal standard substance decane for gas chromatography (GC) measurement, which were subjected to nitrogen bubbling for 20 minutes, were added thereto. While stirring with a stirrer, the reaction vessel was placed in an oil bath heated to 65 ° C. to initiate polymerization. A 0.5 mL sample was taken every hour for GC measurement, cooled in an ice bath, and then GC measurement was performed. The polymerization was stopped when the conversion rate of either MEA or CMS monomer by GC measurement was about 80%. The polymerization reaction was stopped by removing the reaction vessel from the oil bath and immersing it in an ice bath. The product was precipitated into a cooled large excess of isopropyl alcohol (IPA) and decanted. This process was purified three times. The precipitate was collected in an eggplant flask, IPA was evaporated by an evaporator, dissolved in a small amount of benzene, frozen with liquid nitrogen, and lyophilized under reduced pressure. After lyophilization of benzene, 1 H NMR measurement was performed using GPC and CDCl 3 . For GPC measurement, the molecular weight was determined using a PS calibration curve. Table 1 shows the amount of polymerization actually performed.

得られたPCMのH NMRおよびPC測定結果を表2に示す。組成比についてはH NMR測定より求めた値である。 Table 2 shows the 1 H NMR and PC measurement results of the obtained PCM. The composition ratio is a value determined from 1 H NMR measurement.

(2)反応容器に撹拌子とPCM 20mgを加え窒素置換を3回行った(容器[1])。これと並行して別の容器に撹拌子、4−ヒドロキシ−TEMPO(TEMPOL)、NaH(TEMPOLに対し2当量)を加え窒素置換を3回行った(容器[2])。続いて両容器にそれぞれジメチルホルムアミド(DMF)2mlを加え、撹拌した。試薬が完全に混ざり合ったところで容器[2]の混合液を容器[1]に加え、一晩撹拌し反応させた。反応後、NaHにより生じた塩を取り除くため反応溶液を吸引濾過した。濾液として得られた反応溶液はTEMPO含有ポリマー(NRPランダムコポリマー)溶液としてガラスビーズへのポリマーコーティングに用いた。 (2) A stirring bar and 20 mg of PCM were added to the reaction vessel, and nitrogen substitution was performed three times (container [1]). In parallel with this, a stir bar, 4-hydroxy-TEMPO (TEMPOL), and NaH (2 equivalents to TEMPOL) were added to another container, and nitrogen substitution was performed three times (container [2]). Subsequently, 2 ml of dimethylformamide (DMF) was added to both containers and stirred. When the reagents were completely mixed, the mixed solution in the container [2] was added to the container [1] and stirred overnight to react. After the reaction, the reaction solution was filtered with suction in order to remove the salt generated by NaH. The reaction solution obtained as a filtrate was used for polymer coating on glass beads as a TEMPO-containing polymer (NRP random copolymer) solution.

表面処理例1:NRPのガラスビーズへのコーティング
ガラスビーズへのポリマーのコーティングは溶媒留去法により行った。NRPランダムコポリマー溶液2mLに7gガラスビーズを加え、浸潤させた。このビーズをシャーレに均一に広げデシケータにより真空下完全に乾燥を行った。次にこのポリマーコートビーズ7gを150mLの蒸留水でソックスレー洗浄した。NRP溶液中には、未反応のTEMPOLが存在するためポリマーコーティング後、未反応TEMPOLを除去するためにソックスレー洗浄を行った。ソックスレー洗浄に関しては1時間毎に抽出液を0.5mL採取し、ESR測定を行った。抽出液のESRシグナルがプラトーに達した(つまりビーズよりTEMPOLが流れでなくなった)のを確認できたところで洗浄を終了した。洗浄後、ビーズをゆっくりと吸引濾過した。ビーズがほぼ乾燥したら、シャーレへ均一に広げデシケータにより真空下完全に乾燥させた。以上の操作によりNRPコートビーズを得た。
Surface Treatment Example 1: Coating of NRP on Glass Beads Polymer coating on glass beads was performed by a solvent distillation method. 7 g glass beads were added to 2 mL of NRP random copolymer solution and infiltrated. The beads were uniformly spread on a petri dish and completely dried under vacuum using a desiccator. Next, 7 g of this polymer-coated bead was Soxhlet washed with 150 mL of distilled water. Since there was unreacted TEMPOL in the NRP solution, Soxhlet washing was performed after the polymer coating to remove unreacted TEMPOL. For Soxhlet washing, 0.5 mL of the extract was collected every hour and ESR measurement was performed. Washing was terminated when it was confirmed that the ESR signal of the extract reached a plateau (that is, TEMPOL stopped flowing from the beads). After washing, the beads were slowly filtered with suction. When the beads were almost dry, they were spread evenly on a petri dish and completely dried under vacuum using a desiccator. NRP-coated beads were obtained by the above operation.

ソックスレー洗浄の抽出液を採取し、ESR測定を行った結果を図1に示す。またESR強度を縦軸、洗浄時間を横軸にプロットしたグラフを図2に示す。図2から7時間洗浄したところでESR強度はプラトーに達していることが明らかとなった。したがって8時間のソックスレー洗浄でビーズ表面に存在するフリーのTEMPOLは、完全に除去されたことが示された。さらに抽出液のシグナル強度から、ガラスビーズ表面に存在するTEMPO量を求めた。その結果TEMPOはCMS基に対し100%近く導入できていることが確認された。   FIG. 1 shows the result of collecting the extract of Soxhlet washing and performing ESR measurement. FIG. 2 is a graph in which the ESR intensity is plotted on the vertical axis and the cleaning time is plotted on the horizontal axis. From FIG. 2, it was revealed that the ESR intensity reached a plateau after 7 hours of washing. Therefore, it was shown that the free TEMPOL present on the bead surface was completely removed by the Soxhlet wash for 8 hours. Furthermore, the amount of TEMPO present on the glass bead surface was determined from the signal intensity of the extract. As a result, it was confirmed that TEMPO was introduced almost 100% with respect to the CMS group.

100mgのNRPコートビーズを1mLクロロホルムに浸すことでコーティング層を抽出し、ESR測定を行った結果を図3に示す。クロロホルム溶液からは、ESRシグナルが観察されソックスレー洗浄後もガラスビーズ表面にラジカルが存在することを確認した。通常、低分子TEMPOは希薄溶液中において、窒素核と不対電子の相互作用により3本線のスペクトルを示すが、検出されたESRシグナルは、溶液のラジカル(TEMPO)濃度が低いにも関わらずブロードな1本線のスペクトルを示した。これは、PCMSにTEMPOが固定化されたことによってTEMPOの運動性が低下し、スペクトルの線幅が増大した結果、スペクトルが3本線から1本線に変化したものと考えられる。したがってTEMPOはPCMSポリマーに結合しており、ガラスビーズ表面にはNRPランダムコポリマーがコートされていることが示唆された。   FIG. 3 shows the results of extracting the coating layer by immersing 100 mg of NRP-coated beads in 1 mL of chloroform and performing ESR measurement. From the chloroform solution, an ESR signal was observed, and it was confirmed that radicals were present on the glass bead surface even after Soxhlet washing. Normally, low-molecular-weight TEMPO shows a three-line spectrum due to the interaction between nitrogen nuclei and unpaired electrons in a dilute solution, but the detected ESR signal is broad despite the low radical (TEMPO) concentration in the solution. A single-line spectrum was shown. This is presumably because the TEMPO mobility was lowered by the TEMPO being immobilized on the PCMS, and the spectrum line width was increased. As a result, the spectrum was changed from three lines to one line. Therefore, it was suggested that TEMPO was bonded to the PCMS polymer, and the NRP random copolymer was coated on the glass bead surface.

試験例1:NRPランダムコポリマーの全血接触試験
100mgのポリマーコートビーズを500μLチューブへ入れたもの及びコントロールとしてビーズの入っていないチューブに生理食塩水40μLを添加。SDラット(オス、5−6週齢)から心臓採血により得たヘパリン濃度5 IU/mLの血液を、各ポリマーコートビーズが入ったチューブへ400μL分注し、室温にて20分間混和を行った。混和はロータリーミキサーを用いてチューブが1分間に1回の割合で回転するように行った。所定時間混和後、直ちにcelltac α(NIHON KOHDEN)にて血球数を測定した。血球数については、コントロール(容器のみ)の値を100%とし計算を行った。
Test Example 1: Whole Blood Contact Test of NRP Random Copolymer 40 μL of physiological saline was added to a tube containing 100 mg of polymer-coated beads in a 500 μL tube and a tube without beads as a control. 400 μL of heparin concentration of 5 IU / mL obtained by heart blood sampling from SD rats (male, 5-6 weeks old) was dispensed into tubes containing each polymer-coated bead and mixed at room temperature for 20 minutes. . Mixing was performed using a rotary mixer so that the tube was rotated once per minute. After mixing for a predetermined time, the blood cell count was immediately measured with celltac α (NIHON KOHDEN). The number of blood cells was calculated with the value of the control (container only) being 100%.

図4にビーズと血液を20分間接触混和させた際の血小板減少率示す。この結果から、PCMについてはMEAの組成比が増加することで血小板減少が抑制されていくことが明らかとなった。TEMPOの導入効果については、全ての組成比のサンプルについてもTEMPOを導入したPCMTの方がPCMに比べ血小板減少が抑制できていることが図より明らかとなった。またCMSの組成比が大きなポリマーほどTEMPO導入後の血小板減少抑制の効果が大きいことが分かった。これはCMSの組成比が大きなポリマーほどより多くのTEMPOが導入されたためだと考えられる。   FIG. 4 shows the platelet reduction rate when the beads and blood are mixed for 20 minutes. From this result, it was clarified that platelet reduction is suppressed by increasing the composition ratio of MEA for PCM. Regarding the effect of introducing TEMPO, it was clear from the figure that PCMT in which TEMPO was introduced was able to suppress thrombocytopenia as compared with PCM in all the composition ratio samples. It was also found that a polymer having a higher composition ratio of CMS has a greater effect of suppressing platelet reduction after introduction of TEMPO. This is considered to be because more TEMPO was introduced into a polymer having a higher composition ratio of CMS.

製造例2:
(1)ポリクロロメチルスチレン(PCMS)の合成
反応容器に撹拌子とAIBN(1mmol、164.2mg)を加えた。次に反応容器中を真空にした後、窒素雰囲気下とした。この操作を3回繰り返すことにより、反応容器内を窒素雰囲気にした。そこに20分間窒素バブリングを行ったジオキサン(50mL)、CMS(100mmol、14.2mg)、ガスクロマトグラフィー(GC)測定用の内部標準物質n−デカン(3mL)を加えた。スターラーで撹拌しながら65℃に熱したオイルバスに反応容器を入れ重合を開始した。GC測定のため1時間毎にサンプルを0.5mL採取し、氷浴で冷却した後GC測定を行った。18時間攪拌後、反応容器を氷浴につけ、重合反応を停止させた。生成物はメタノールを用いた再沈精製を行った。沈殿物をナスフラスコに回収し、メタノールをエバポレーターにより蒸発させた後、少量のベンゼンに溶解させ、液体窒素で凍結し、減圧下で凍結乾燥を行った。凍結乾燥後、白色の粉末状のポリマーが9.6グラム得られ、収率は63.2%となった。得られたポリマーはゲル透過クロマトグラフィー(GPC)測定およびCDClを用いてH NMR測定を行った。GPC測定に関しては、PS検量線を用いて分子量を決定した。ラジカル重合により得られたPCMSホモポリマーのH NMR測定結果よりPCMSホモポリマーが合成されていることが確認された(図5)。またGPC測定結果より数量平均分子量Mnは13000、多分散度Mw/Mnは2.1と決定された(図6)。
Production Example 2:
(1) Synthesis of polychloromethylstyrene (PCMS) A stirring bar and AIBN (1 mmol, 164.2 mg) were added to a reaction vessel. Next, the reaction vessel was evacuated and then placed in a nitrogen atmosphere. By repeating this operation three times, the inside of the reaction vessel was made a nitrogen atmosphere. Dioxane (50 mL), nitrogen gas bubbled for 20 minutes, CMS (100 mmol, 14.2 mg), and internal standard substance n-decane (3 mL) for gas chromatography (GC) measurement were added thereto. While stirring with a stirrer, the reaction vessel was placed in an oil bath heated to 65 ° C. to initiate polymerization. A 0.5 mL sample was taken every hour for GC measurement, cooled in an ice bath, and then GC measurement was performed. After stirring for 18 hours, the reaction vessel was placed in an ice bath to stop the polymerization reaction. The product was purified by reprecipitation using methanol. The precipitate was collected in an eggplant flask, methanol was evaporated by an evaporator, dissolved in a small amount of benzene, frozen with liquid nitrogen, and lyophilized under reduced pressure. After lyophilization, 9.6 grams of white powdery polymer was obtained, yielding 63.2%. The obtained polymer was subjected to gel permeation chromatography (GPC) measurement and 1 H NMR measurement using CDCl 3 . For GPC measurement, the molecular weight was determined using a PS calibration curve. From the 1 H NMR measurement result of the PCMS homopolymer obtained by radical polymerization, it was confirmed that the PCMS homopolymer was synthesized (FIG. 5). From the GPC measurement results, the number average molecular weight Mn was determined to be 13000 and the polydispersity Mw / Mn was determined to be 2.1 (FIG. 6).

製造例および表面処理例2:PCMS−TEMPO(NRPホモポリマー)の合成とコーティング
PCMS−TEMPOは、製造例1の(2)に記載の方法に準じて、以下のスキームにより合成した
Production Example and Surface Treatment Example 2: Synthesis and Coating of PCMS-TEMPO (NRP Homopolymer) PCMS-TEMPO was synthesized according to the following scheme according to the method described in (2) of Production Example 1.

ガラスビーズへのポリマーのコーティングは上記の表面処理例1と同様の方法を用いた。   The glass bead was coated with the polymer in the same manner as in the surface treatment example 1 described above.

ガラスビーズ表面へポリマーがコートされているかを確認するためXPS測定を行った。その結果を図7に示す。図7よりコーティングされていないガラスビーズに比べPCMSコートビーズ、PCMS−TEMO(NRP)コートビーズのC元素ピークが大きいことが確認できる。このことからガラスビーズ表面に確かにポリマーがコートされていることが確認された。またPCMSコートビーズではCl元素ピークが観察され、目的のポリマーがコート出来ていることが明らかとなった。   XPS measurement was performed to confirm whether the polymer was coated on the glass bead surface. The result is shown in FIG. From FIG. 7, it can be confirmed that the C element peak of the PCMS coated beads and the PCMS-TEMO (NRP) coated beads is larger than the uncoated glass beads. From this, it was confirmed that the polymer was surely coated on the glass bead surface. In addition, a Cl element peak was observed in the PCMS coated beads, which revealed that the target polymer was coated.

さらにPCMS−TEMPO(NRP)コートビーズでは、Cl元素ピークは見られず、TEMPO由来のN元素ピークが現れた。これはTEMPOLとCMS基が反応し、ポリマーからCl元素が抜け、TEMPOが導入されたことを示す結果である。したがってTEMPOはポリマーに結合した状態でガラスビーズ表面に存在していることが明らかとなった。以上の結果よりガラスビーズ表面にNRPがコートされたことが確認された。   Further, in the PCMS-TEMPO (NRP) coated beads, no Cl element peak was observed, and an N element peak derived from TEMPO appeared. This is a result showing that TEMPOL and CMS group reacted, Cl element was removed from the polymer, and TEMPO was introduced. Therefore, it was revealed that TEMPO was present on the glass bead surface in a state of being bonded to the polymer. From the above results, it was confirmed that NRP was coated on the glass bead surface.

各TEMPO仕込み比のNRPについてもXPS測定を行い、N元素とCl元素の比より、PCMSへのTEMPOの導入率を求めた。その結果を表3にまとめる。   XPS measurement was also performed for NRP at each TEMPO charging ratio, and the introduction rate of TEMPO into PCMS was determined from the ratio of N element to Cl element. The results are summarized in Table 3.

表3より、TEMPO仕込み比の増加に従いTEMPO導入量も増加していることがわかる。またESR測定より求めたTEMPO導入率とXPS測定より求めた導入率は同等の値を示し、目的のポリマーがガラスビーズにコート出来ていることが明らかとなった。   From Table 3, it can be seen that the amount of TEMPO introduced increases as the TEMPO preparation ratio increases. In addition, the TEMPO introduction rate determined from the ESR measurement and the introduction rate determined from the XPS measurement showed the same value, and it was revealed that the target polymer was coated on the glass beads.

試験例2:PCMS−TEMPO(NRPホモポリマー)コートビーズの全血接触試験
100mgのポリマーコートビーズを500μLチューブへ入れたもの及びコントロールとしてビーズの入っていないチューブに生理食塩水40μLを添加。SDラット(オス、5−6週齢)から心臓採血により得たヘパリン濃度5 IU/mLの血液を、各ポリマーコートビーズが入ったチューブへ400μL分注し、室温にて30分間混和を行った。混和はロータリーミキサーを用いてチューブが1分間に1回の割合で回転するように行った。所定時間混和後、直ちにcelltac α(NIHON KOHDEN)にて血球数を測定した。血球数については、コントロール(容器のみ)の値を100%とし計算を行った。
Test Example 2: Whole blood contact test of PCMS-TEMPO (NRP homopolymer) -coated beads 100 mg of polymer-coated beads was placed in a 500 μL tube, and 40 μL of physiological saline was added to a tube without beads as a control. 400 μL of heparin concentration 5 IU / mL obtained by heart blood sampling from SD rats (male, 5-6 weeks old) was dispensed into tubes containing each polymer-coated bead and mixed at room temperature for 30 minutes. . Mixing was performed using a rotary mixer so that the tube was rotated once per minute. After mixing for a predetermined time, the blood cell count was immediately measured with celltac α (NIHON KOHDEN). The number of blood cells was calculated with the value of the control (container only) being 100%.

ポリマーコートビーズに5IU/mL濃度ヘパリン化全血を接触させ、血小板数・白血球数を測定した結果を図8に示す。血小板減少はPCMSへのTEMPO導入率が増すにつれ、抑制されることが観察された。同様に白血球についてもTEMPO導入率が増すことで減少が抑制されることが観察された。これはビーズ表面に存在するTEMPOにより、材料への血球吸着が抑制できることを示唆する結果である(図9)。図9のSEM画像からもPCMS−TEMPOコートビーズは、PCMSコートビーズよりも明らかに血球吸着が少なく、TEMPO導入が表面と生体適合性を向上する効果をしめすことが確認された。   FIG. 8 shows the results of contacting the polymer-coated beads with 5 IU / mL concentration heparinized whole blood and measuring the platelet count and white blood cell count. It was observed that thrombocytopenia was suppressed as the TEMPO introduction rate into PCMS increased. Similarly, it was observed that the decrease in leukocytes was suppressed by increasing the TEMPO introduction rate. This is a result that suggests that TEMPO present on the bead surface can suppress blood cell adsorption to the material (FIG. 9). Also from the SEM image of FIG. 9, it was confirmed that the PCMS-TEMPO coated beads had significantly less blood cell adsorption than the PCMS coated beads, and that the introduction of TEMPO showed the effect of improving the surface and biocompatibility.

試験例3:活性酸素測定
ビーズと血液が接触した時に生じる活性酸素は、化学発光法により測定した。化学発光物質としては、スーパーオキシド特異的に発光を示す試薬MPECを用いた。96ウェルプレートに各ポリマーコートビー50mgを加え、そこにエタノールに溶解させた1mM
MPEC溶液50μLを分注した。次に終濃度が1%となるようにPBS(1mM pH7.4)で2%に薄めた血液(5−6週齢ラットより心臓採血で得た全血)を50μL分注し、直ちに発光量をマイクロプレートリーダーにより30秒のインターバルで測定した。ビーズと血液との接触によって生じた活性酸素産生量を求めるため、ビーズを入れていない血液のみの時に生じる発光量を目的のサンプルの発光量から差し引いてバックグラウンドを補正した。その結果を図10に示す。図10より、PCMSコートビーズ(T0−beads)では、血液と接触後、発光量は徐々に増加していき活性酸素が産生されていることが観察された。一方PCMS−TEMPOコートビーズ(T94−beads)では、血液を接触後も発光量の増加が見られず、ほとんど活性酸素が産生されていなことが確認された。
Test Example 3: Active Oxygen Measurement Active oxygen generated when the bead and blood contacted was measured by a chemiluminescence method. As the chemiluminescent substance, a reagent MPEC that emits light specifically for superoxide was used. 50 mM of each polymer coated bee was added to a 96 well plate, and 1 mM dissolved in ethanol there.
50 μL of MPEC solution was dispensed. Next, 50 μL of blood diluted to 2% with PBS (1 mM pH 7.4) so that the final concentration is 1% (whole blood obtained by heart blood sampling from 5-6 week-old rats) was dispensed, and the amount of luminescence immediately Was measured at 30 second intervals with a microplate reader. In order to determine the amount of active oxygen produced by the contact between the beads and blood, the background was corrected by subtracting the amount of luminescence generated when only blood without beads was added from the amount of luminescence of the target sample. The result is shown in FIG. From FIG. 10, it was observed that in PCMS coated beads (T0-beads), the amount of luminescence gradually increased after contact with blood and active oxygen was produced. On the other hand, in PCMS-TEMPO coated beads (T94-beads), no increase in the amount of luminescence was observed after contact with blood, and it was confirmed that almost no active oxygen was produced.

次に異なるTEMPO導入率のNRPコートビーズを用いて活性酸素産生量を測定した。96ウェルプレートに各NRPコートビーズを加え、そこに1mM MPEC 50mlを分注した。次に終濃度が1%になるように二%希釈血液50μLを分注し、マイクロプレートリーダーを用いて1分間の発光量積算値を測定した(図11)。図11より、TEMPOの導入率が増すほど、発光量は小さくなり活性酸素の産生が抑制されていることが確認された。   Next, the amount of active oxygen produced was measured using NRP-coated beads with different TEMPO introduction rates. Each NRP-coated bead was added to a 96-well plate, and 50 ml of 1 mM MPEC was dispensed therein. Next, 50 μL of 2% diluted blood was dispensed so that the final concentration was 1%, and the integrated amount of luminescence for 1 minute was measured using a microplate reader (FIG. 11). From FIG. 11, it was confirmed that the amount of luminescence decreased and the production of active oxygen was suppressed as the introduction rate of TEMPO increased.

本発明より安定ニトロキシラジカルを含むポリマーで一定の表面を処理することにより、無処理表面が血液と接触した際に生じる可能性のある血液の変性、例えば、活性酸素発生を抑制し血液の活性化を抑制することができる。したがって、本発明は、血液の吸着を防ぐため、血液と直接接触する人工血管や人工臓器などの表面コーティング剤に関連する技術分野の産業で利用できる。   By treating a certain surface with a polymer containing a stable nitroxy radical from the present invention, blood denaturation that may occur when an untreated surface comes into contact with blood, for example, the generation of active oxygen is suppressed. Can be suppressed. Therefore, the present invention can be used in industries in the technical field related to surface coating agents such as artificial blood vessels and artificial organs that are in direct contact with blood in order to prevent blood adsorption.

Claims (7)

生体または生体に由来する物質と接触する表面の生体適合性を改質する方法であって、該表面に
下記式で表される、環状ニトロキシドラジカル部分を担持する反復単位よりなる群から選ばれるいずれか1種の単位を、少なくとも、ポリマー主鎖の反復単位の15%以上含んでなり、他の反復単位が存在する場合には、対応する単位の環状ニトロキシドラジカル部分が水素原子もしくは他の官能基を形成し得る基である反復単位または該反復単位と一緒になってコポリマーを形成しうる反復単位を含む、ポリマーを固定する工程を含んでなる、上記方法:
上式中、Rは環状ニトロキシドラジカル部分を表し、
nは、5〜10,000の整数を表す。
A method for modifying the biocompatibility of a living body or a surface that comes into contact with a substance derived from a living body, which is selected from the group consisting of repeating units carrying a cyclic nitroxide radical moiety represented by the following formula on the surface: Or a single unit containing at least 15% or more of the repeating units of the polymer main chain, and when other repeating units are present, the cyclic nitroxide radical portion of the corresponding unit is a hydrogen atom or other functional group The method comprising the step of immobilizing a polymer comprising a repeating unit that is a group capable of forming a repeating unit or a repeating unit that can form a copolymer together with the repeating unit:
Wherein R represents a cyclic nitroxide radical moiety;
n represents an integer of 5 to 10,000.
環状ニトロキシドラジカル部分が、Rの環状ニトロキシラジカル部分は、必要により、連結基、−CHCHO−、−CHCHS−、−COCHCHO−、−COCHCHS−、−(CH−O−、−(CH−S−、−CO(CH−O−、−(CH−O−等を介して結合することができる、2,2,6,6−テトラメチルピペリジン−1−オキシル−4−イル、2,2,5,5−テトラメチルピロリジン−1−オキシル−3−イル、2,4,4,−トリメチル−1,3−チアゾリジン−3−オキシル−2−イル、および2,4,4−トリメチル−イミダゾリジン−3−オキシ−2−イルよりなる群から選ばれる,請求項1記載の方法。 If necessary, the cyclic nitroxy radical portion of R is a linking group, —CH 2 CH 2 O—, —CH 2 CH 2 S—, —COCH 2 CH 2 O—, —COCH 2 CH 2. S -, - (CH 2) 3 -O -, - (CH 2) 3 -S -, - CO (CH 2) 3 -O -, - (CH 2) 3 -O- or the like be attached via the 2,2,6,6-tetramethylpiperidin-1-oxyl-4-yl, 2,2,5,5-tetramethylpyrrolidin-1-oxyl-3-yl, 2,4,4,- The method of claim 1, wherein the method is selected from the group consisting of trimethyl-1,3-thiazolidin-3-oxyl-2-yl, and 2,4,4-trimethyl-imidazolidin-3-oxy-2-yl. 生体適合性が、血液適合性である、請求項1または2記載の方法。   The method according to claim 1 or 2, wherein the biocompatibility is blood compatible. 請求項1または2に記載の方法であって、生体適合性の改質が、血液と未処理の表面が接触した場合に生じる該表面への血球吸着の抑制または血液中の活性酸素量の増加の抑制する性質である、上記方法。   3. The method according to claim 1 or 2, wherein the biocompatibility modification is the suppression of blood cell adsorption to the surface or the increase in the amount of active oxygen in the blood that occurs when blood and an untreated surface come into contact with each other. The above method, which is a property of suppressing the above. 環状ニトロキシドラジカル部分を担持する反復単位が、ポリハロメチルスチレン(a):
のいずれかであり、該単位が少なくとも、ポリマー主鎖の反復単位の25%以上含んでなり、他の反復単位が存在する場合の反復単位が,上記式(a)のRが水素原子で表される、請求項1〜4のいずれかに記載の方法。
The repeating unit carrying a cyclic nitroxide radical moiety is a polyhalomethylstyrene (a):
Wherein the unit comprises at least 25% or more of the repeating unit of the polymer main chain, and when there is another repeating unit, the repeating unit represented by R in the above formula (a) is a hydrogen atom. The method according to any one of claims 1 to 4, wherein:
環状ニトロキシドラジカル部分を担持する反復単位が、ポリハロメチルスチレン由来の反復単位(a):
のいずれかであり、該単位が少なくとも、ポリマー主鎖の反復単位の25%以上含んでなり、他の反復単位が存在する場合の反復単位が下記式で表される反復単位よりなる群から選ばれる反復単位である、請求項1〜4のいずれかに記載の方法:
(上式中、nは3〜1,000の整数を表し、pは3〜5,000の整数を表す。)。
The repeating unit carrying a cyclic nitroxide radical moiety is a repeating unit derived from polyhalomethylstyrene (a):
And the unit comprises at least 25% of the repeating unit of the polymer main chain, and when another repeating unit is present, the repeating unit is selected from the group consisting of repeating units represented by the following formula The method according to any one of claims 1 to 4, wherein the repeating unit is:
(In the above formula, n represents an integer of 3 to 1,000, and p represents an integer of 3 to 5,000).
一般式I:
−A−B−
で表され、かつ、
Aが、式
(式中、nは5〜10,000の整数を表す。)
で表され、かつ、Rが式
(式中、R’はメチル基である。)のいずれかで表される、反復単位よりなる群から選ばれ、そして
Bが、式
(上式中、nは3〜1,000の整数を表し、pは3〜5,000の整数を表す。)
で表される反復単位よりなる群から選ばれる反復単位
を含んでなるランダムコポリマー。
Formula I:
-A-B-
And
A is the formula
(In the formula, n represents an integer of 5 to 10,000.)
And R is the formula
Wherein R ′ is a methyl group, selected from the group consisting of repeating units represented by
(In the above formula, n represents an integer of 3 to 1,000, and p represents an integer of 3 to 5,000.)
A random copolymer comprising repeating units selected from the group consisting of repeating units represented by:
JP2009235723A 2009-10-09 2009-10-09 Method for modifying surface biocompatibility Active JP5656241B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009235723A JP5656241B2 (en) 2009-10-09 2009-10-09 Method for modifying surface biocompatibility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009235723A JP5656241B2 (en) 2009-10-09 2009-10-09 Method for modifying surface biocompatibility

Publications (2)

Publication Number Publication Date
JP2011078706A true JP2011078706A (en) 2011-04-21
JP5656241B2 JP5656241B2 (en) 2015-01-21

Family

ID=44073428

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009235723A Active JP5656241B2 (en) 2009-10-09 2009-10-09 Method for modifying surface biocompatibility

Country Status (1)

Country Link
JP (1) JP5656241B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013111801A1 (en) 2012-01-24 2013-08-01 国立大学法人筑波大学 Triblock copolymer and use thereof
JP2015213446A (en) * 2014-05-08 2015-12-03 国立大学法人 筑波大学 Cell culture device provided with modified surface
WO2017094691A1 (en) 2015-11-30 2017-06-08 国立大学法人筑波大学 Nitroxy-radical-containing copolymer having phosphate residue, and use thereof
JP2018113928A (en) * 2017-01-19 2018-07-26 国立大学法人 筑波大学 Contact type materials with biological substance in which surface thereof is modified by biocompatible polymer

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009102461A (en) * 2007-10-19 2009-05-14 Univ Waseda Conductive water-containing gel
WO2009133647A1 (en) * 2008-05-02 2009-11-05 国立大学法人筑波大学 Polymerized cyclic nitroxide radical compound, and use thereof
JP2010070615A (en) * 2008-09-17 2010-04-02 Univ Of Tsukuba Crosslinked polymer composition for surface treatment of support

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009102461A (en) * 2007-10-19 2009-05-14 Univ Waseda Conductive water-containing gel
WO2009133647A1 (en) * 2008-05-02 2009-11-05 国立大学法人筑波大学 Polymerized cyclic nitroxide radical compound, and use thereof
JP2010070615A (en) * 2008-09-17 2010-04-02 Univ Of Tsukuba Crosslinked polymer composition for surface treatment of support

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JPN6013063443; 第55回応用物理学関係連合講演会予稿集 第1分冊, 2008, 202ページ 28p-T-5 *
JPN6013063445; Bioconjugate Chem. Vol.20, 20090817, p.1792-1798 *
JPN6013063447; 日本腎臓学会誌 Vol.51,No.3, 20090425, p.248 O1-11-19 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013111801A1 (en) 2012-01-24 2013-08-01 国立大学法人筑波大学 Triblock copolymer and use thereof
US9849186B2 (en) 2012-01-24 2017-12-26 University Of Tsukuba Triblock copolymer and use therefor
JP2015213446A (en) * 2014-05-08 2015-12-03 国立大学法人 筑波大学 Cell culture device provided with modified surface
WO2017094691A1 (en) 2015-11-30 2017-06-08 国立大学法人筑波大学 Nitroxy-radical-containing copolymer having phosphate residue, and use thereof
US10398803B2 (en) 2015-11-30 2019-09-03 University Of Tsukuba Nitroxylradical-containing copolymer which has phosphoric acid residue, and the use of the same
JP2018113928A (en) * 2017-01-19 2018-07-26 国立大学法人 筑波大学 Contact type materials with biological substance in which surface thereof is modified by biocompatible polymer

Also Published As

Publication number Publication date
JP5656241B2 (en) 2015-01-21

Similar Documents

Publication Publication Date Title
Balakrishnan et al. Chemical modification of poly (vinyl chloride) resin using poly (ethylene glycol) to improve blood compatibility
JP6400666B2 (en) Cross-linked zwitterionic hydrogel
US9572910B2 (en) pH responsive self-healing hydrogels formed by boronate-catechol complexation
JP6070573B2 (en) Cell adhesion inhibitor
Dey et al. Synthesis, characterization, and blood compatibility of polyamidoamines copolymers
CN105263536A (en) Immobilization of active agent on a substrate
EP3480283B1 (en) Slipperiness-imparting agent and slipperiness-imparting method
JP5656241B2 (en) Method for modifying surface biocompatibility
JP6195335B2 (en) Polymer compound, composition using the same, and medical device
JP4219154B2 (en) Medical devices using blood compatible polymers
JP2000279512A (en) Material for medical treatment and manufacture thereof
TW201800116A (en) Copolymer, antithrombotic coating agent using same and medical device
WO2008068868A1 (en) (meth)acrylate copolymer, process for producing the same and medical device
JP4824151B2 (en) Glass substrate and film forming agent having polymer film containing terminal functional phosphorylcholine-like group
Nie et al. Synthesis of copolymers using dendronized polyethylene glycol and assay of their blood compatibility and antibacterial adhesion activity
JP2018123275A (en) Cell adhesion inhibitor
WO2015170769A1 (en) Antibacterial polymer, production method therefor, and usage thereof
JP2004298223A (en) Biocompatible material
JPH11226113A (en) Blood compatible polyurethane-hydrophilic high polymer blend
TW202317652A (en) A bio-inert material and its application for preventing biofouling from metal surface
WO2023013410A1 (en) Polymer composition
JP2012029831A (en) Heparin coating and medical device
KR20230160907A (en) antithrombotic material
JP5146945B2 (en) Antithrombogenic coating agent and medical device
JP2012029834A (en) Antithrombotic coating agent and medical instrument

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121009

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141029

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141120

R150 Certificate of patent or registration of utility model

Ref document number: 5656241

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250