JP2011077935A - Optical receiver - Google Patents

Optical receiver Download PDF

Info

Publication number
JP2011077935A
JP2011077935A JP2009228730A JP2009228730A JP2011077935A JP 2011077935 A JP2011077935 A JP 2011077935A JP 2009228730 A JP2009228730 A JP 2009228730A JP 2009228730 A JP2009228730 A JP 2009228730A JP 2011077935 A JP2011077935 A JP 2011077935A
Authority
JP
Japan
Prior art keywords
polarized light
polarization
linearly polarized
branching
optical receiver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009228730A
Other languages
Japanese (ja)
Other versions
JP5375496B2 (en
Inventor
Kaoru Hikuma
薫 日隈
Yuuki Kanehara
勇貴 金原
Toshio Kataoka
利夫 片岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Osaka Cement Co Ltd
Original Assignee
Sumitomo Osaka Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Osaka Cement Co Ltd filed Critical Sumitomo Osaka Cement Co Ltd
Priority to JP2009228730A priority Critical patent/JP5375496B2/en
Publication of JP2011077935A publication Critical patent/JP2011077935A/en
Application granted granted Critical
Publication of JP5375496B2 publication Critical patent/JP5375496B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Communication System (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a low-cost optical receiver for suppressing signal degradation due to temperature change without using a Faraday rotator. <P>SOLUTION: The optical receiver for demodulating an optical signal having been subjected to DQPSK modulation to a multilevel phase modulation signal includes: polarization conversion/demultiplexing means (501, 511) to convert linearly-polarized light (a) to two circularly-polarized light rays (a1, a2) perpendicular to each other; a delay means (521) to provide a one-bit part and a phase difference equivalent to predetermined inclination of a polarization surface between the two circularly-polarized light rays (a1, a2); a multiplexing/demultiplexing means (541) to multiplex the two circularly-polarized light rays to be branched into linearly-polarized light rays (a3, a4) corresponding to the phase difference; and a 1/2 wavelength plate (551) for rotating the one-side linearly-polarized light ray (a4) having passed through the multiplexing/demultiplexing means at a predetermined angle. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、光受信器に関し、特に、DQPSK変調された光信号を多レベルの位相変調信号を復調する光受信器に関する。   The present invention relates to an optical receiver, and more particularly to an optical receiver that demodulates a DQPSK-modulated optical signal into a multilevel phase-modulated signal.

通信トラフィックの増大に伴い、高速・大容量化が求められる次世代長距離大容量光通信システムでは、多値変復調符号化技術の導入が検討されている。その代表的なものの一つに差動四相位相偏移変調(DQPSK変調,Differential Quadrature Phase Shift keying)方式がある。この方式では、従来の2値強度変調(OOK,On-Off keying)方式と比べ、信号帯域が狭く、周波数利用効率の向上や伝送距離の拡大が実現できるほか、高感度化も期待できる。   In a next-generation long-distance large-capacity optical communication system that requires high speed and large capacity as communication traffic increases, the introduction of multilevel modulation / demodulation coding technology is being studied. One typical example is a differential quadrature phase shift keying (DQPSK modulation) system. In this method, compared with the conventional binary intensity modulation (OOK, On-Off keying) method, the signal band is narrow, the frequency utilization efficiency can be improved and the transmission distance can be increased, and higher sensitivity can be expected.

まず、四相位相偏移変調(QPSK変調,Quadrature Phase Shift keying)方式は、2ビットのデータから構成される各シンボル「00」,「01」,「11」及び「10」に対して、「θ」,「θ+π/2」,「θ+π」及び「θ+3π/2」が割り当てられる。ここで、「θ」は任意の位相である。そして、受信器は、受信信号の位相を検出することにより、送信データを再生する。QPSK変調方式を比較的容易に実現する手段として、DQPSK変調方式があり、DQPSK変調では、先に送信したシンボルの値と次に送信するシンボルの値との間の搬送波の位相変化量(「0」,「π/2」,「π」及び「3π/2」)が送信情報の2ビットに対応付けられる。したがって、受信器は、隣接する2つのシンボル間の位相差を検出することにより、送信データを再生することができる。   First, in the quadrature phase shift keying (QPSK modulation) method, for each symbol “00”, “01”, “11”, and “10” composed of 2-bit data, “ “θ”, “θ + π / 2”, “θ + π”, and “θ + 3π / 2” are assigned. Here, “θ” is an arbitrary phase. Then, the receiver reproduces the transmission data by detecting the phase of the received signal. As a means for realizing the QPSK modulation method relatively easily, there is a DQPSK modulation method. In the DQPSK modulation, the phase change amount of the carrier wave between the value of the symbol transmitted first and the value of the symbol transmitted next (“0 ”,“ Π / 2 ”,“ π ”, and“ 3π / 2 ”) are associated with 2 bits of transmission information. Therefore, the receiver can recover the transmission data by detecting the phase difference between two adjacent symbols.

特許文献1又は2に示すように、DQPSK変調された光信号を復調するには、図1のようなI(In-phase)信号生成用とQ(Quadrature)信号生成用の2つの遅延干渉計(導波路102と103による遅延干渉計、または、導波路104と105による遅延干渉計)を必要とし、しかも、高精度で位相差を復調する必要がある。図1では、光信号αを2つの遅延干渉計に入れるため、分岐部101で2つに分岐されている。しかし、光受信器の周辺温度などの影響で、遅延干渉計内の光路長が変化し、位相が安定しないため、高精度な復調が困難となる。また、いずれの干渉計でどちらの信号成分を復調しているのかが識別できないなど問題があった。また、光信号を分岐し2つの干渉計に導入するまでの光路長差や、各干渉計を構成する光路長の差を、最適に調整する必要があり、制御系が極めて複雑化するという問題を生じていた。なお、光波a1とa2、又は光波a3とa4を、各々のバランスド受光素子に入射してI信号やQ信号が得られる。   As shown in Patent Document 1 or 2, in order to demodulate a DQPSK modulated optical signal, two delay interferometers for generating an I (In-phase) signal and generating a Q (Quadrature) signal as shown in FIG. (A delay interferometer using the waveguides 102 and 103 or a delay interferometer using the waveguides 104 and 105) is required, and the phase difference needs to be demodulated with high accuracy. In FIG. 1, the optical signal α is branched into two by the branching unit 101 in order to enter the two delay interferometers. However, the optical path length in the delay interferometer changes due to the influence of the ambient temperature of the optical receiver and the phase is not stable, so that it is difficult to perform highly accurate demodulation. In addition, there is a problem that which interferometer cannot identify which signal component is demodulated. In addition, it is necessary to optimally adjust the optical path length difference between the branching of the optical signal and introduction into the two interferometers, and the difference in optical path length constituting each interferometer, and the control system becomes extremely complicated. Was produced. The light waves a1 and a2 or the light waves a3 and a4 are incident on the respective balanced light receiving elements to obtain an I signal and a Q signal.

これに対し、特許文献3において、本出願人は、図2に示すように、偏波面に着目する光受信器を提案した。具体的には、DQPSK変調光αは、偏波面が一方向に揃えた状態入射し、1ビット遅延回路に導入される。1ビット遅延回路では、偏波保持型のファイバカプラ(1,2)で構成されるとともに、一方の分岐光の経路には偏波面を90度回転させる半波長板3が配置されている。これにより、合波された光波は、互いに1ビット遅延した2つの信号光が、偏波面が直交する状態で合成されている。   On the other hand, in Patent Document 3, the present applicant has proposed an optical receiver that focuses on the plane of polarization as shown in FIG. Specifically, the DQPSK modulated light α is incident with the plane of polarization aligned in one direction, and is introduced into the 1-bit delay circuit. The 1-bit delay circuit includes a polarization maintaining fiber coupler (1, 2), and a half-wave plate 3 that rotates the plane of polarization by 90 degrees is disposed in one branched light path. As a result, the combined optical wave is composed of two signal lights delayed by 1 bit with each other in a state where the planes of polarization are orthogonal.

そして、偏波分離回路4を用いて4つの信号光に分離され、例えば、光波b1とb2、又は光波b3とb4を、各々のバランスド受光素子に入射してI信号やQ信号を得ることができる。これにより、1ビット遅延回路が1つに集約でき、製造コストの削減や光学部品の調整の煩雑さを軽減することが可能となる。   Then, the signal is separated into four signal lights by using the polarization separation circuit 4. For example, the light waves b 1 and b 2 or the light waves b 3 and b 4 are incident on each balanced light receiving element to obtain an I signal or a Q signal. Can do. Thereby, the 1-bit delay circuit can be integrated into one, and it becomes possible to reduce the manufacturing cost and the complexity of adjusting the optical components.

しかしながら、1ビット遅延回路を、例えば、偏波保持型ファイバカプラを用いて作成すると、偏波保持型ファイバカプラは温度変化や外部応力などの外乱に対して非常に敏感であるため、装置としての安定性が乏しいという問題を生じる。また、ハーフミラーなどの空間光学系を利用する場合も、ハーフミラーに偏波依存性があるため、分岐した光波の光路長に誤差が生じ易く、I成分信号とQ成分信号との間に時間的なずれが発生する可能性が高い。   However, if a 1-bit delay circuit is made using, for example, a polarization maintaining fiber coupler, the polarization maintaining fiber coupler is very sensitive to disturbances such as temperature changes and external stress. This causes the problem of poor stability. Also, when using a spatial optical system such as a half mirror, the half mirror has a polarization dependency, so that an error is likely to occur in the optical path length of the branched light wave, and the time between the I component signal and the Q component signal is short. There is a high possibility that a gap will occur.

さらに、本出願人は、このような問題を解決し、DQPSK変調された光信号を多レベルの位相変調信号に復調する光受信器において、偏波無依存となる光受信器を提供するため、特許文献4において、以下のような光受信器を提案した。   Further, in order to solve such a problem, the present applicant provides an optical receiver that is independent of polarization in an optical receiver that demodulates a DQPSK-modulated optical signal into a multilevel phase-modulated signal. In patent document 4, the following optical receivers were proposed.

このような光受信器では、図3に示すように、DQPSK変調された光信号αを多レベルの位相変調信号に復調する光受信器において、DQPSK変調された光信号αを、偏波面が直交する2つの光波(A,B)に分岐する偏波分岐手段(201)と、一方の分岐光Aをさらに2つの光波(A1,A2)に分岐し、+45度の1/4波長板を通過させる分岐回転手段(211,221)と、他方の分岐光Bをさらに2つの光波(B1,B2)に分岐し、−45度の1/4波長板を通過させる分岐回転手段(212,222)と、各分岐回転手段を経た4つの光波(A1,A2,B1,B2)に対し、偏波面が直交する2つの光波に分離し、一方の光波を1ビット分の遅れを発生させた後に両者を互いに偏波面が直交する状態で合波する1ビット遅延回路手段(231〜254)を設け、1ビット遅延回路手段を経た2つの光波(A1,B2)は、各々の光波が−45度の1/4波長板(261,264)を通過し、さらに偏波面を22.5度回転(270)し、偏波面が直交する2つの光波((A11,A12)又は(B21,B22))毎に分岐(281,284)する回転分岐手段と、1ビット遅延回路手段を経た他の2つの光波(A2,B1)は、各々の光波が+45度の1/4波長板(262,263)を通過し、さらに偏波面を22.5度回転(270)し、偏波面が直交する2つの光波((A21,A22)又は(B11,B12))毎に分岐(282,283)する回転分岐手段と、回転分岐手段を経た特定の4つの光波(B11,B12,B21,B22)を+45度の半波長板(290)を通過させ、得られた8つの光波(A11,A12,A21,A22,B11,B12,B21,B22)を特定の組み合わせ((A11,B21),(A12,B22),(A21,B11)又は(A22,B12))で偏波面を維持した状態で合波する合波手段(301〜304)を有することを特徴とする。   In such an optical receiver, as shown in FIG. 3, in an optical receiver that demodulates a DQPSK-modulated optical signal α into a multilevel phase-modulated signal, the polarization plane of the DQPSK-modulated optical signal α is orthogonal. The polarization branching means (201) for branching into two light waves (A, B) and one of the split light A further split into two light waves (A1, A2) and passing through a +45 degree quarter wave plate Branch rotating means (211, 221) to be split, and branch rotating means (212, 222) to split the other split light B into two light waves (B 1, B 2) and pass through a −45 degree quarter wave plate Then, the four light waves (A1, A2, B1, B2) that have passed through each branch and rotation means are separated into two light waves whose polarization planes are orthogonal to each other, and one of the light waves is generated with a delay of 1 bit. 1 bit that multiplexes signals with their polarization planes orthogonal to each other The delay circuit means (231 to 254) are provided, and the two light waves (A1, B2) that have passed through the 1-bit delay circuit means pass through the quarter wave plates (261, 264) of -45 degrees, Further, a rotating / branching means that rotates the polarization plane by 22.5 degrees (270) and branches (281, 284) every two light waves ((A11, A12) or (B21, B22)) whose polarization planes are orthogonal to each other; The other two light waves (A2, B1) that have passed through the bit delay circuit means pass through the quarter wave plates (262, 263) of +45 degrees, and further rotate the plane of polarization by 22.5 degrees (270). ), A rotating / branching means for branching (282, 283) for every two light waves ((A21, A22) or (B11, B12)) having orthogonal planes of polarization, and four specific light waves (B11) that have passed through the rotating / branching means. , B12, B21, B22) +45 The eight light waves (A11, A12, A21, A22, B11, B12, B21, B22) obtained by passing through the half-wave plate (290) of the specific combination ((A11, B21), (A12, B22) , (A21, B11) or (A22, B12)), characterized in that it has multiplexing means (301-304) for multiplexing while maintaining the plane of polarization.

この光受信器を空間光学系で構成すると、図4に示すように、光受信器の一部は、ファラデーローテータ(FR)を含む光学系で構成される。図4では、図3における2つの光波(A1,A2)を、分岐回転手段(211)の一部を構成する+45度の1/4波長板(413)を通過させ、偏光ビームスプリッター414で偏光面が直交する2つ光波に分岐され、プリズムミラー416及び417で各々反射し、再度、偏光ビームスプリッター414に入射して、偏波面を直交状態に維持しながら合波される。   When this optical receiver is configured by a spatial optical system, as shown in FIG. 4, a part of the optical receiver is configured by an optical system including a Faraday rotator (FR). In FIG. 4, the two light waves (A 1, A 2) in FIG. 3 are passed through a +45 degree quarter-wave plate (413) constituting a part of the branch rotation means (211), and polarized by the polarization beam splitter 414. The light waves are branched into two light waves whose surfaces are orthogonal to each other, reflected by the prism mirrors 416 and 417, respectively, incident again on the polarization beam splitter 414, and combined while maintaining the polarization surfaces in an orthogonal state.

偏光ビームスプリッター414に対するプリズムミラー416及び417の設置位置は、光路差が1ビット分となるように設定されており、例えば、光路長を調整するため、ポリマーなどの光透過媒体415が、偏光ビームスプリッターとプリズムミラーとの間に配置される。   The installation positions of the prism mirrors 416 and 417 with respect to the polarization beam splitter 414 are set so that the optical path difference is 1 bit. For example, in order to adjust the optical path length, a light transmission medium 415 such as a polymer is used as a polarization beam. It arrange | positions between a splitter and a prism mirror.

1ビット遅延回路を出た光波は、−45度の1/4波長板420や+45度の1/4波長板421へ導かれる。±45度の1/4波長板(420,421)を通過した4つの光波は、さらに、22.5度の偏波面回転手段であるファラデーローテータ(FR)を通過するよう構成される。   The light wave exiting the 1-bit delay circuit is guided to a −45 degree quarter-wave plate 420 or a +45 degree quarter-wave plate 421. The four light waves that have passed through the ± 45 degree quarter-wave plates (420, 421) are further configured to pass through a Faraday rotator (FR) that is a 22.5 degree polarization plane rotating means.

しかしながら、偏波を回転させる手段としてファラデーローテータを利用する場合には、ファラデーローテータが温度によって回転角が変化するという温度依存性を有し、さらに、素子自体が高価となるという問題がある。特に温度依存性については、0.09°/℃程度であり、光受信器が使用される環境が0〜70℃程度の温度範囲で変化すると、直線偏波の回転角は所望の値より5°程度ずれることとなり、信号の精度が著しく劣化する原因となる。   However, when a Faraday rotator is used as means for rotating the polarization, there is a problem that the Faraday rotator has a temperature dependency that the rotation angle changes depending on the temperature, and the element itself becomes expensive. In particular, the temperature dependency is about 0.09 ° / ° C., and when the environment in which the optical receiver is used changes in the temperature range of about 0 to 70 ° C., the rotation angle of the linearly polarized wave is 5 from the desired value. This will cause a deviation of about 0 °, causing the signal accuracy to deteriorate significantly.

特開2006−295603号公報JP 2006-295603 A 特開2007−158852号公報JP 2007-158852 A 特願2008−255528号(2008年9月30日出願)Japanese Patent Application No. 2008-255528 (filed on September 30, 2008) 特願2009−80319(2009年3月27日出願)Japanese Patent Application No. 2009-80319 (filed on Mar. 27, 2009)

本発明が解決しようとする課題は、上述したような問題を解決し、ファラデーローテータを用いずに、温度変化による信号劣化を抑制し、かつ低コストな光受信器を提供することである。   The problem to be solved by the present invention is to provide a low-cost optical receiver that solves the above-described problems, suppresses signal deterioration due to temperature changes, and does not use a Faraday rotator.

上記課題を解決するため、請求項1に係る発明は、DQPSK変調された光信号を多レベルの位相変調信号に復調する光受信器において、直線偏光(a)を直交する2つの円偏光(a1,a2)に変換する偏波変換分岐手段と、2つの円偏光(a1,a2)の間に1ビット分と、偏波面の所定の傾きに相当する位相差を付与する遅延手段と、2つの円偏光を合波し、該位相差に対応する直線偏光(a3,a4)に分岐する合波分岐手段と、該合波分岐手段を経た一方の直線偏光(a4)を所定角度回転させる1/2波長板とを有することを特徴とする。   In order to solve the above-described problem, the invention according to claim 1 is an optical receiver that demodulates a DQPSK-modulated optical signal into a multilevel phase-modulated signal, and two circularly polarized light (a1) orthogonal to linearly polarized light (a). , A2), a polarization converting / branching means for converting the two circularly polarized lights (a1, a2), a delay means for giving a phase difference corresponding to a predetermined inclination of the polarization plane, Combined and branched means for combining circularly polarized light and branching into linearly polarized light (a3, a4) corresponding to the phase difference, and one linearly polarized light (a4) passed through the combined branching means rotated by a predetermined angle And a two-wavelength plate.

請求項2に係る発明は、請求項1に記載の光受信器において、該偏波変換分岐手段は、直線偏光(a)を円偏光に変換する1/4波長板と、該1/4波長板を通過した光波を2つの円偏光(a1,a2)に分岐する分岐手段と、一方の円偏光(a2)を反対回転の円偏光に変換する1/2波長板とから構成されることを特徴とする。   According to a second aspect of the present invention, in the optical receiver according to the first aspect, the polarization converting / branching means includes a quarter wavelength plate for converting linearly polarized light (a) into circularly polarized light, and the quarter wavelength. A branching means for splitting the light wave that has passed through the plate into two circularly polarized light (a1, a2) and a half-wave plate for converting one circularly polarized light (a2) into circularly polarized light of the opposite rotation. Features.

請求項3に係る発明は、請求項1に記載の光受信器において、該偏波変換分岐手段は、直線偏光(a)を2つの直線偏光(a10,a20)に分岐する分岐手段と、該分岐手段を通過した一方の直線偏光(a10)を所定の円偏光(a1)に変換する1/4波長板と、もう一方の直線偏光(a20)を該円偏光(a1)と直交する円偏光に変換する1/4波長板とから構成されることを特徴とする。   According to a third aspect of the present invention, in the optical receiver according to the first aspect, the polarization conversion branching unit includes a branching unit that branches the linearly polarized light (a) into two linearly polarized light (a10, a20), and A quarter-wave plate that converts one linearly polarized light (a10) that has passed through the branching means into a predetermined circularly polarized light (a1), and another linearly polarized light (a20) that is orthogonal to the circularly polarized light (a1). It is characterized by being comprised from the quarter wavelength plate converted into.

請求項4に係る発明は、請求項2又は3に記載の光受信器において、該分岐手段と該合波分岐手段とを単一のハーフミラーで構成し、該遅延手段を経る光路と該1/2波長板を経る光路とを、該ハーフミラーと2つのプリズムミラーとを用いて構成することを特徴とする。   According to a fourth aspect of the present invention, in the optical receiver according to the second or third aspect, the branching unit and the combining / branching unit are configured by a single half mirror, and the optical path passing through the delay unit and the 1 The optical path passing through the / 2 wavelength plate is configured using the half mirror and two prism mirrors.

請求項5に係る発明は、請求項1乃至4のいずれかに記載の光受信器において、DQPSK変調された光信号を、偏波面が直交する2つの直線偏光(a,b)に分岐する偏波分岐手段と、該直線偏光の各々に対し、該偏波変換分岐手段、該遅延手段、該合波分岐手段、及び該1/2波長板とを設け、該合波分岐手段を経た直線偏波(a3,b3)と該1/2波長板を経た直線偏波(a4,b4)とを、偏波面が直交する2つの光波(a31,a32,a41,a42,b31,b32,b41,b42)に各々分岐する直交偏波分岐手段と、該直交偏波分岐手段を経た一部の光波(b31,b32,b41,b42)を1/2波長板を通過させ、該直交偏波分岐手段を経た他の光波(a31,a32,a41,a42)と特定の組み合わせ((a31,b31),(a32,b32),(a41,b41)又は(a42,b42))で偏波面を維持した状態で合波する合波手段を有することを特徴とする。   According to a fifth aspect of the present invention, there is provided the optical receiver according to any one of the first to fourth aspects, wherein the DQPSK-modulated optical signal is branched into two linearly polarized lights (a, b) having orthogonal polarization planes. For each of the linearly polarized light, the polarization converting / branching means, the delaying means, the multiplexing / branching means, and the half-wave plate are provided for each of the linearly polarized lights. Two light waves (a31, a32, a41, a42, b31, b32, b41, b42) whose polarization planes are orthogonal to each other are the wave (a3, b3) and the linearly polarized wave (a4, b4) that has passed through the half-wave plate. ), And a part of the light waves (b31, b32, b41, b42) passing through the orthogonal polarization branching unit are passed through the half-wave plate, and the orthogonal polarization branching unit is Other light waves (a31, a32, a41, a42) passed through and a specific combination ( a31, b31), (a32, b32), characterized in that it has a multiplexing means for multiplexing while maintaining the polarization plane by (a41, b41) or (a42, b42)).

請求項1に係る発明により、直線偏光(a)を直交する2つの円偏光(a1,a2)に変換する偏波変換分岐手段と、2つの円偏光(a1,a2)の間に1ビット分と、偏波面の所定の傾きに相当する位相差を付与する遅延手段と、2つの円偏光を合波し、該位相差に対応する直線偏光(a3,a4)に分岐する合波分岐手段と、該合波分岐手段を経た一方の直線偏光(a4)を所定角度回転させる1/2波長板とを有する構成により、円偏光を利用することで、ファラデーローテータを用いずに、I信号成分とQ信号成分に対応した、所定の回転角の偏波面を有する光波を容易に得ることができる。これにより、温度変化による信号劣化を抑制し、かつ低コストな光受信器を提供することが可能となる。   According to the first aspect of the present invention, the polarization converting / branching means for converting the linearly polarized light (a) into the two circularly polarized lights (a1, a2) orthogonal to each other and the two circularly polarized lights (a1, a2) are provided for 1 bit. A delay unit that gives a phase difference corresponding to a predetermined inclination of the plane of polarization, and a multiplexing / branching unit that multiplexes two circularly polarized lights and branches the linearly polarized light (a3, a4) corresponding to the phase difference. By using circularly polarized light with a configuration having a half-wave plate that rotates one linearly polarized light (a4) that has passed through the multiplexing / branching means by a predetermined angle, without using a Faraday rotator, A light wave having a plane of polarization of a predetermined rotation angle corresponding to the Q signal component can be easily obtained. This makes it possible to provide a low-cost optical receiver that suppresses signal deterioration due to temperature changes.

請求項2に係る発明により、偏波変換分岐手段は、直線偏光(a)を円偏光に変換する1/4波長板と、該1/4波長板を通過した光波を2つの円偏光(a1,a2)に分岐する分岐手段と、一方の円偏光(a2)を反対回転の円偏光に変換する1/2波長板とから構成されるため、簡単な構成で偏波変換分岐手段が構成でき、低コストな光受信器を提供することができる。   According to the invention of claim 2, the polarization converting / branching means includes a quarter wave plate that converts the linearly polarized light (a) into circularly polarized light, and a light wave that has passed through the quarter wave plate is converted into two circularly polarized lights (a1). , A2) and a half-wave plate for converting one circularly polarized light (a2) to the oppositely rotated circularly polarized light, the polarization converting / branching means can be configured with a simple configuration. A low-cost optical receiver can be provided.

請求項3に係る発明により、偏波変換分岐手段は、直線偏光(a)を2つの直線偏光(a10,a20)に分岐する分岐手段と、該分岐手段を通過した一方の直線偏光(a10)を所定の円偏光(a1)に変換する1/4波長板と、もう一方の直線偏光(a20)を該円偏光(a1)と直交する円偏光に変換する1/4波長板とから構成されるため、2つの円偏光に変換する手段が共に1/4波長板であるため、温度依存性の少ない光受信器を得ることが可能となる。   According to the invention of claim 3, the polarization conversion branching means includes a branching means for branching the linearly polarized light (a) into two linearly polarized lights (a10, a20), and one linearly polarized light (a10) that has passed through the branching means. Is composed of a quarter wave plate that converts the circularly polarized light (a1) into a circularly polarized light orthogonal to the circularly polarized light (a1). Therefore, since both means for converting into two circularly polarized light are quarter wave plates, it is possible to obtain an optical receiver with little temperature dependence.

請求項4に係る発明により、分岐手段と合波分岐手段とを単一のハーフミラーと2つのプリズムミラーを利用して構成するため、光受信器に係る空間光学系を小型化することが可能となる。   According to the invention of claim 4, since the branching unit and the combining and branching unit are configured using a single half mirror and two prism mirrors, it is possible to reduce the size of the spatial optical system related to the optical receiver. It becomes.

請求項5に係る発明により、DQPSK変調された光信号を、偏波面が直交する2つの光波に分岐し、上述したように各々の光波において偏波面を利用したI信号成分とQ信号成分を生成した後に、各偏波面から対応する光波を抽出して特定の組み合わせで合波させることにより、偏波無依存化したI信号成分とQ信号成分を得ることが可能となる。   According to the fifth aspect of the present invention, the DQPSK-modulated optical signal is split into two light waves whose polarization planes are orthogonal to each other, and as described above, the I signal component and the Q signal component using the polarization plane are generated in each light wave. After that, by extracting the corresponding light wave from each polarization plane and combining it with a specific combination, it becomes possible to obtain the I signal component and the Q signal component that are polarization independent.

従来の2つの遅延干渉計で構成されるDQPSK変調の光受信器を示す図である。It is a figure which shows the optical receiver of the DQPSK modulation comprised by the conventional two delay interferometers. 本出願人が先の出願で提示した偏波面を利用したDQPSK変調の光受信器を示す図である。It is a figure which shows the optical receiver of the DQPSK modulation using the polarization plane which the present applicant presented by the previous application. 本出願人が先の出願で提示した光受信器に係る基本的な概念を説明する図である。It is a figure explaining the basic concept concerning the optical receiver which the present applicant presented in the previous application. 図3の光受信器に係る空間光学系の一部を説明するための平面図である。It is a top view for demonstrating a part of spatial optical system which concerns on the optical receiver of FIG. 本発明の光受信器に係る基本的な概念を説明する図である。It is a figure explaining the basic concept which concerns on the optical receiver of this invention. 図5の光受信器に係る空間光学系の一部を説明するための平面図である。It is a top view for demonstrating a part of spatial optical system which concerns on the optical receiver of FIG. 本発明の光受信器に利用される他の空間光学系の一部を説明するための平面図である。It is a top view for demonstrating a part of other spatial optical system utilized for the optical receiver of this invention.

以下、本発明の光受信器について、好適例を用いて詳細に説明する。
本発明は、図5に示すように、DQPSK変調された光信号を多レベルの位相変調信号に復調する光受信器において、直線偏光(a)を直交する2つの円偏光(a1,a2)に変換する偏波変換分岐手段(501,511)と、2つの円偏光(a1,a2)の間に1ビット分と、偏波面の所定の傾きに相当する位相差を付与する遅延手段(521)と、2つの円偏光を合波し、該位相差に対応する直線偏光(a3,a4)に分岐する合波分岐手段(541)と、該合波分岐手段を経た一方の直線偏光(a4)を所定角度回転させる1/2波長板(551)とを有することを特徴とする。
Hereinafter, the optical receiver of the present invention will be described in detail using preferred examples.
As shown in FIG. 5, in the optical receiver for demodulating a DQPSK modulated optical signal into a multi-level phase modulated signal, the present invention converts linearly polarized light (a) into two circularly polarized lights (a1, a2) orthogonal to each other. Polarization conversion branching means (501, 511) for conversion and delay means (521) for giving a phase difference corresponding to a predetermined inclination of the polarization plane between one circularly polarized light (a1, a2) and one bit And a multiplexing / branching means (541) for combining the two circularly polarized lights and branching them into linearly polarized light (a3, a4) corresponding to the phase difference, and one linearly polarized light (a4) having passed through the combining / branching means And a half-wave plate (551) that rotates the lens by a predetermined angle.

前記偏波変換分岐手段については、直線偏光(a)を円偏光に変換する1/4波長板(501)と、該1/4波長板を通過した光波を2つの円偏光(a1,a2)に分岐する分岐手段(511)と、一方の円偏光(a2)を反対回転の円偏光に変換する1/2波長板(531)とから構成することが可能である。   As for the polarization converting / branching means, a quarter wave plate (501) for converting linearly polarized light (a) into circularly polarized light and a light wave that has passed through the quarter wave plate are converted into two circularly polarized lights (a1, a2). And a half-wave plate (531) for converting one circularly polarized light (a2) into a reversely polarized circularly polarized light.

また、前記偏波変換分岐手段の他の構成として、後述するように、直線偏光(a)を2つの直線偏光(a10,a20)に分岐する分岐手段と、該分岐手段を通過した一方の直線偏光(a10)を所定の円偏光(a1)に変換する1/4波長板と、もう一方の直線偏光(a20)を該円偏光(a1)と直交する円偏光に変換する1/4波長板とから構成することも可能である。この場合には、円偏波(a1,a2)を発生させる各光学系は共に1/4波長板を用いているため、温度変化の影響を受けることが少なくなり、温度依存性の少ない光受信器を得ることができる。   As another configuration of the polarization converting / branching means, as will be described later, a branching means for branching the linearly polarized light (a) into two linearly polarized lights (a10, a20) and one straight line that has passed through the branching means. A quarter-wave plate for converting the polarized light (a10) into a predetermined circularly polarized light (a1), and a quarter-wave plate for converting the other linearly polarized light (a20) into a circularly polarized light orthogonal to the circularly polarized light (a1). It is also possible to configure from In this case, since each optical system that generates circularly polarized waves (a1, a2) uses a quarter-wave plate, it is less affected by temperature changes, and light reception with less temperature dependence is achieved. Can be obtained.

本発明の特徴は、直線偏光を円偏光に変換することで、ファラデーローテータを使用せず、2つの1/2波長板(531,551)、あるは2つの1/4波長板を用いて、I信号成分(a3)とQ信号成分(a4)に対応した、所定の回転角の偏波面を有する光波を容易に得ることができる。これにより、ファラデーローテータを使用した場合の温度変化による信号劣化を排除でき、かつファラデーローテータよりも格安な1/2波長板又は1/4波長板を使用するため、低コストな光受信器を提供することが可能となる。   A feature of the present invention is that by converting linearly polarized light into circularly polarized light, without using a Faraday rotator, two half-wave plates (531, 551) or two quarter-wave plates are used. A light wave having a plane of polarization of a predetermined rotation angle corresponding to the I signal component (a3) and the Q signal component (a4) can be easily obtained. This eliminates signal degradation due to temperature changes when using a Faraday rotator, and provides a low-cost optical receiver because it uses a cheaper half-wave plate or quarter-wave plate than the Faraday rotator. It becomes possible to do.

図6は、直線偏光(a)からI信号成分(a3)とQ信号成分(a4)を得る光学系を、空間光学系で構成した例を示している。I成分信号とQ成分信号が同じ偏波面に載っている直線偏光を、1/4波長板(600)で円偏光に変換する。符号601は分岐手段を構成するハーフミラー(スプリッタ)であり、図4で示した空間光学系の偏光ビームスプリッタ414とは異なっている。   FIG. 6 shows an example in which the optical system for obtaining the I signal component (a3) and the Q signal component (a4) from the linearly polarized light (a) is constituted by a spatial optical system. The linearly polarized light in which the I component signal and the Q component signal are on the same polarization plane is converted into circularly polarized light by the quarter wavelength plate (600). Reference numeral 601 denotes a half mirror (splitter) constituting a branching unit, which is different from the polarization beam splitter 414 of the spatial optical system shown in FIG.

ハーフミラー601で2つに分岐された円偏光の一方(a1)は、プリズムミラー603に向い、反射して、ハーフミラー601に戻ってくる。この間に、円偏光は遅延手段により、1ビットと所定の位相差だけ遅延される。1ビットは、DQPSK変調された光信号を復調する際に必要な遅延量であるが、所定の位相差は、ハーフミラーで2つの円偏光が重なり合った際の位相差であり、合波した光(直線偏光)の偏光面の角度を所望の角度に設定するために使用される。ただし、1ビット遅延と所定の位相差の遅延を、別々の遅延手段で構成することも可能であるが、部品点数の削減の観点からは両者を1つの部材で兼用することが可能である。   One (a1) of the circularly polarized light branched into two by the half mirror 601 is reflected toward the prism mirror 603 and returns to the half mirror 601. During this time, the circularly polarized light is delayed by a predetermined phase difference from 1 bit by the delay means. One bit is a delay amount necessary for demodulating a DQPSK-modulated optical signal. The predetermined phase difference is a phase difference when two circularly polarized lights are overlapped by a half mirror. It is used to set the angle of the polarization plane of (linearly polarized light) to a desired angle. However, although it is possible to configure the 1-bit delay and the delay of a predetermined phase difference by separate delay means, both can be shared by one member from the viewpoint of reducing the number of parts.

ハーフミラー601で分岐された他方の円偏光(a2)は、1/2波長板604により、反対回転の円偏光に変換される。プリズムミラー605で反射した円偏光は、ハーフミラーで遅延手段を経た円偏光と合波される。合波する2つの光波は、回転方向が互いに逆向きで所定の位相差を有しているため、合波した後の光波は所定角度だけ偏波面が傾いた直線偏光となっている。当該角度を22.5°とすることで、ファラデーローテータと同様の効果を得ることが可能となる。   The other circularly polarized light (a2) branched by the half mirror 601 is converted by the half-wave plate 604 into circularly polarized light of the opposite rotation. The circularly polarized light reflected by the prism mirror 605 is combined with the circularly polarized light that has passed through the delay means by the half mirror. Since the two light waves to be combined have opposite rotation directions and a predetermined phase difference, the combined light wave is linearly polarized light whose polarization plane is inclined by a predetermined angle. By setting the angle to 22.5 °, it is possible to obtain the same effect as the Faraday rotator.

合波分岐手段であるハーフミラー601を経た一方の直線偏光(a4)は、さらに所定角度回転させるため、もう一つの1/2波長板(606)を通過し、ミラー607(プリズムミラーでも良い)により、I成分信号の光波(a3)と同様の方向に出射される。   One linearly polarized light (a4) that has passed through the half mirror 601 serving as a multiplexing / branching means passes through another half-wave plate (606) and is further rotated by a predetermined angle, and then mirror 607 (or a prism mirror). Is emitted in the same direction as the light wave (a3) of the I component signal.

円偏光(a2)を反対方向の円偏光にするための1/2波長板(604)は、ハーフミラー601の出射光側に設置されているが、プリズムミラー(605)からハーフミラーに光波が戻ってくる光路上に設置することも可能である。また、遅延手段を配置した円偏光(a1)の光路上に配置することも可能である。   A half-wave plate (604) for converting the circularly polarized light (a2) into circularly polarized light in the opposite direction is installed on the outgoing light side of the half mirror 601, but light waves are transmitted from the prism mirror (605) to the half mirror. It is also possible to install it on the returning optical path. Moreover, it is also possible to arrange | position on the optical path of the circularly polarized light (a1) which has arrange | positioned the delay means.

図6に示すように、単一のハーフミラー(601)と2つのプリズムミラー(603,605)を利用して、空間光学系を構成することが可能であるため、光受信器の光学系を小型化することができる。   As shown in FIG. 6, a spatial optical system can be configured using a single half mirror (601) and two prism mirrors (603, 605). It can be downsized.

図6に示す空間光学系の代わりに、図7に示す空間光学系を利用することも可能である。図7は、2つの円偏波を得るため、直線偏光(a)を2つの直線偏光(a10,a20)に分岐する分岐手段(601)と、該分岐手段を通過した一方の直線偏光(a10)を所定の円偏光(a1)に変換する1/4波長板(611)と、もう一方の直線偏光(a20)を該円偏光(a1)と直交する円偏光に変換する1/4波長板(610)とから構成している。このように、2つの円偏光に変換する手段が共に1/4波長板であるため、温度依存性の少ない光受信器を得ることが可能となる。   Instead of the spatial optical system shown in FIG. 6, it is possible to use the spatial optical system shown in FIG. In FIG. 7, in order to obtain two circularly polarized waves, the branching means (601) for branching the linearly polarized light (a) into two linearly polarized lights (a10, a20) and one linearly polarized light (a10) that has passed through the branching means. ) To a predetermined circularly polarized light (a1) and a quarter wavelength plate to convert the other linearly polarized light (a20) to a circularly polarized light orthogonal to the circularly polarized light (a1). (610). Thus, since both means for converting into two circularly polarized light are quarter wave plates, it is possible to obtain an optical receiver with little temperature dependency.

図5では、直線偏光(a)のみではなく、直線偏光(b)についても同様に、1/4波長板(502)、分岐手段(512)、遅延手段(522)、1/2波長板(532)、合波分岐手段(542)、及び他の1/2波長板(552)を設けている。これは、特許文献4と同様に、偏波無依存となる光受信器を提供するためである。   In FIG. 5, not only the linearly polarized light (a) but also the linearly polarized light (b) is similarly applied to the ¼ wavelength plate (502), the branching means (512), the delaying means (522), and the ½ wavelength plate ( 532), multiplexing / branching means (542), and another half-wave plate (552). This is to provide an optical receiver that does not depend on polarization, as in Patent Document 4.

本発明の光受信器を偏波無依存化するには、受光する信号光αを、偏波分岐手段(500)を用いて偏波面が直交する2つの直線偏光(a,b)に分岐している。偏波分岐手段には、偏光ビームスプリッタが利用可能である。また、特許文献4と同様に、図6に示す空間光学系を2つの直線偏光(a,b)で兼用するためには、図6の紙面に垂直な方向に離れて直線偏光(a)と直線偏光(b)とが平行に進行するよう偏波分岐手段を配置する。   In order to make the optical receiver of the present invention polarization independent, the received signal light α is split into two linearly polarized lights (a, b) whose planes of polarization are orthogonal using the polarization branching means (500). ing. A polarization beam splitter can be used as the polarization branching means. Similarly to Patent Document 4, in order to share the spatial optical system shown in FIG. 6 with two linearly polarized light (a, b), the linearly polarized light (a) is separated from the plane of FIG. The polarization branching means is arranged so that the linearly polarized light (b) travels in parallel.

直線偏光(b)についても、直線偏光(a)と同様に、1/4波長板(502)、分岐手段(512)、遅延手段(522)、1/2波長板(532)、合波分岐手段(542)、及び他の1/2波長板(552)が設けられる。   As for the linearly polarized light (b), similarly to the linearly polarized light (a), the quarter wavelength plate (502), the branching means (512), the delaying means (522), the half wavelength plate (532), and the multiplexing branch. Means (542) and another half-wave plate (552) are provided.

次に、合波分岐手段(541,542)を経た直線偏波(a3,b3)と他の1/2波長板(551,552)を経た直線偏波(a4,b4)とを、偏光ビームスプリッタなどの直交偏波分岐手段により、偏波面が直交する2つの光波(a31,a32,a41,a42,b31,b32,b41,b42)に各々分岐する。   Next, the linearly polarized wave (a3, b3) passed through the combining / branching means (541, 542) and the linearly polarized wave (a4, b4) passed through the other half-wave plates (551, 552) are converted into a polarized beam. The light is branched into two light waves (a31, a32, a41, a42, b31, b32, b41, b42) having orthogonal polarization planes by means of orthogonal polarization branching means such as a splitter.

直交偏波分岐手段を経た一部の光波(b31,b32,b41,b42)を1/2波長板(571〜574)を通過させ、直交偏波分岐手段を経た他の光波(a31,a32,a41,a42)と、図5に示すような特定の組み合わせ((a31,b31),(a32,b32),(a41,b41)又は(a42,b42))で偏波面を維持した状態で合波する。合波手段には、偏光ビームスプリッタを用いることが可能である。   Part of the light waves (b31, b32, b41, b42) that have passed through the orthogonal polarization branching unit are passed through the half-wave plates (571-574), and the other light waves (a31, a32, a41, a42) and a specific combination ((a31, b31), (a32, b32), (a41, b41) or (a42, b42)) as shown in FIG. To do. A polarization beam splitter can be used as the multiplexing means.

なお、図6又は図7で示す光学系を2つの直線偏光(a,b)で兼用したり、各種光学部品を通過する際の位相変化などにより、各光路間において不要な位相差を生じる場合がある。このような位相差は、信号の復調精度に影響を与えるため、各光波の間で、不要な光路差を生じないよう適宜補正することが好ましい。   When the optical system shown in FIG. 6 or FIG. 7 is shared by two linearly polarized light (a, b), or an unnecessary phase difference is generated between the optical paths due to a phase change when passing through various optical components. There is. Since such a phase difference affects the demodulation accuracy of the signal, it is preferable to appropriately correct so as not to cause an unnecessary optical path difference between the light waves.

以上説明したように、本発明によれば、ファラデーローテータを用いずに、温度変化による信号劣化を抑制し、かつ低コストな光受信器を提供することが可能となる。   As described above, according to the present invention, it is possible to provide a low-cost optical receiver that suppresses signal deterioration due to a temperature change without using a Faraday rotator.

201,231〜234,251〜254,281〜284,301〜304,561〜564,581〜584 偏光ビームスプリッター
211,212 分岐手段(偏光ビームスプリッタ)
221,222,261〜264,501,502,610,611 1/4波長板
270 22.5度の偏波面回転手段
290,521,522,551,552,571〜574 1/2波長板
511,512 分岐手段(ハーフミラー)
541,542 合波分岐手段(ハーフミラー)
201,231-234,251-254,281-284,301-304,561-564,581-584 Polarizing beam splitter 211,212 Branch means (polarizing beam splitter)
221, 222, 261 to 264, 501, 502, 610, 611 ¼ wave plate 270 22.5 degree polarization plane rotating means 290, 521, 522, 551, 552, 571 to 574 ½ wave plate 511, 512 Branching means (half mirror)
541, 542 Combined branching means (half mirror)

Claims (5)

DQPSK変調された光信号を多レベルの位相変調信号に復調する光受信器において、
直線偏光(a)を直交する2つの円偏光(a1,a2)に変換する偏波変換分岐手段と、
2つの円偏光(a1,a2)の間に1ビット分と、偏波面の所定の傾きに相当する位相差を付与する遅延手段と、
2つの円偏光を合波し、該位相差に対応する直線偏光(a3,a4)に分岐する合波分岐手段と、
該合波分岐手段を経た一方の直線偏光(a4)を所定角度回転させる1/2波長板とを有することを特徴とする光受信器。
In an optical receiver that demodulates a DQPSK modulated optical signal into a multi-level phase modulated signal,
Polarization conversion branching means for converting linearly polarized light (a) into two circularly polarized lights (a1, a2) orthogonal to each other;
A delay means for providing a phase difference corresponding to a predetermined inclination of a plane of polarization and one bit between two circularly polarized lights (a1, a2);
A combining / branching means for combining two circularly polarized lights and branching them into linearly polarized light (a3, a4) corresponding to the phase difference;
An optical receiver comprising: a half-wave plate that rotates one linearly polarized light (a4) that has passed through the multiplexing and branching means by a predetermined angle.
請求項1に記載の光受信器において、
該偏波変換分岐手段は、
直線偏光(a)を円偏光に変換する1/4波長板と、
該1/4波長板を通過した光波を2つの円偏光(a1,a2)に分岐する分岐手段と、
一方の円偏光(a2)を反対回転の円偏光に変換する1/2波長板とから構成されることを特徴とする光受信器。
The optical receiver according to claim 1.
The polarization conversion branching means includes:
A quarter wave plate that converts linearly polarized light (a) into circularly polarized light;
Branching means for branching the light wave that has passed through the quarter-wave plate into two circularly polarized lights (a1, a2);
An optical receiver comprising: a half-wave plate that converts one circularly polarized light (a2) into circularly polarized light that rotates in the opposite direction.
請求項1に記載の光受信器において、
該偏波変換分岐手段は、
直線偏光(a)を2つの直線偏光(a10,a20)に分岐する分岐手段と、
該分岐手段を通過した一方の直線偏光(a10)を所定の円偏光(a1)に変換する1/4波長板と、
もう一方の直線偏光(a20)を該円偏光(a1)と直交する円偏光に変換する1/4波長板とから構成されることを特徴とする光受信器。
The optical receiver according to claim 1.
The polarization conversion branching means includes:
Branching means for branching the linearly polarized light (a) into two linearly polarized lights (a10, a20);
A quarter-wave plate for converting one linearly polarized light (a10) that has passed through the branching means into a predetermined circularly polarized light (a1);
An optical receiver comprising a quarter wave plate for converting the other linearly polarized light (a20) into circularly polarized light orthogonal to the circularly polarized light (a1).
請求項2又は3に記載の光受信器において、該分岐手段と該合波分岐手段とを単一のハーフミラーで構成し、該遅延手段を経る光路と該1/2波長板を経る光路とを、該ハーフミラーと2つのプリズムミラーとを用いて構成することを特徴とする光受信器。   4. The optical receiver according to claim 2, wherein the branching unit and the combining / branching unit are configured by a single half mirror, and an optical path passing through the delay unit and an optical path passing through the half-wave plate. Is configured using the half mirror and two prism mirrors. 請求項1乃至4のいずれかに記載の光受信器において、DQPSK変調された光信号を、偏波面が直交する2つの直線偏光(a,b)に分岐する偏波分岐手段と、該直線偏光の各々に対し、該偏波変換分岐手段、該遅延手段、該合波分岐手段、及び該1/2波長板とを設け、該合波分岐手段を経た直線偏波(a3,b3)と該1/2波長板を経た直線偏波(a4,b4)とを、偏波面が直交する2つの光波(a31,a32,a41,a42,b31,b32,b41,b42)に各々分岐する直交偏波分岐手段と、該直交偏波分岐手段を経た一部の光波(b31,b32,b41,b42)を1/2波長板を通過させ、該直交偏波分岐手段を経た他の光波(a31,a32,a41,a42)と特定の組み合わせ((a31,b31),(a32,b32),(a41,b41)又は(a42,b42))で偏波面を維持した状態で合波する合波手段を有することを特徴とする光受信器。   5. The optical receiver according to claim 1, wherein the DQPSK-modulated optical signal is branched into two linearly polarized lights (a, b) having orthogonal polarization planes, and the linearly polarized light Are provided with the polarization conversion branching means, the delay means, the multiplexing branching means, and the half-wave plate, and the linearly polarized waves (a3, b3) that have passed through the multiplexing and branching means and the Orthogonal polarization that branches the linearly polarized wave (a4, b4) that has passed through the half-wave plate into two light waves (a31, a32, a41, a42, b31, b32, b41, b42) whose polarization planes are orthogonal to each other. The branching means and a part of the light waves (b31, b32, b41, b42) that have passed through the orthogonal polarization branching means are passed through the half-wave plate, and the other light waves (a31, a32) that have passed through the orthogonal polarization branching means. , A41, a42) and a specific combination ((a31, b31), ( 32, b32), (a41, b41) or (a42, b42)) optical receiver, characterized in that it comprises a multiplexing means for multiplexing while maintaining the polarization plane in.
JP2009228730A 2009-09-30 2009-09-30 Optical receiver Expired - Fee Related JP5375496B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009228730A JP5375496B2 (en) 2009-09-30 2009-09-30 Optical receiver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009228730A JP5375496B2 (en) 2009-09-30 2009-09-30 Optical receiver

Publications (2)

Publication Number Publication Date
JP2011077935A true JP2011077935A (en) 2011-04-14
JP5375496B2 JP5375496B2 (en) 2013-12-25

Family

ID=44021401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009228730A Expired - Fee Related JP5375496B2 (en) 2009-09-30 2009-09-30 Optical receiver

Country Status (1)

Country Link
JP (1) JP5375496B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006211538A (en) * 2005-01-31 2006-08-10 Fujitsu Ltd Light receiver and light receiving method corresponding to differential quadrature phase shift keying method
JP2008014969A (en) * 2006-06-30 2008-01-24 Sharp Corp Detector, polarization control optical component and phase modulation optical communication system
JP2010087900A (en) * 2008-09-30 2010-04-15 Sumitomo Osaka Cement Co Ltd Optical receiver
JP2010233099A (en) * 2009-03-27 2010-10-14 Sumitomo Osaka Cement Co Ltd Optical receiver
JP2010539789A (en) * 2007-09-14 2010-12-16 アルカテル−ルーセント ユーエスエー インコーポレーテッド Restoration of two polarization components of optical signal field
JP2011077907A (en) * 2009-09-30 2011-04-14 Sumitomo Osaka Cement Co Ltd Method of controlling optical receiver
JP2011077582A (en) * 2009-09-29 2011-04-14 Sumitomo Osaka Cement Co Ltd Optical receiver

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006211538A (en) * 2005-01-31 2006-08-10 Fujitsu Ltd Light receiver and light receiving method corresponding to differential quadrature phase shift keying method
JP2008014969A (en) * 2006-06-30 2008-01-24 Sharp Corp Detector, polarization control optical component and phase modulation optical communication system
JP2010539789A (en) * 2007-09-14 2010-12-16 アルカテル−ルーセント ユーエスエー インコーポレーテッド Restoration of two polarization components of optical signal field
JP2010087900A (en) * 2008-09-30 2010-04-15 Sumitomo Osaka Cement Co Ltd Optical receiver
JP2010233099A (en) * 2009-03-27 2010-10-14 Sumitomo Osaka Cement Co Ltd Optical receiver
JP2011077582A (en) * 2009-09-29 2011-04-14 Sumitomo Osaka Cement Co Ltd Optical receiver
JP2011077907A (en) * 2009-09-30 2011-04-14 Sumitomo Osaka Cement Co Ltd Method of controlling optical receiver

Also Published As

Publication number Publication date
JP5375496B2 (en) 2013-12-25

Similar Documents

Publication Publication Date Title
JP4744616B2 (en) Optical receiver
JP5737874B2 (en) Demodulator and optical transceiver
US7529490B2 (en) Optical receiver and optical reception method compatible with differential quadrature phase shift keying
US9077454B2 (en) Optical detector for detecting optical signal beams, method to detect optical signals, and use of an optical detector to detect optical signals
US9236940B2 (en) High bandwidth demodulator system and method
JP5645374B2 (en) Interferometer, demodulator and optical communication module
JP2006287493A (en) Optical receiver corresponding to m-phase difference phase shift modulation system
JP4820854B2 (en) Optical receiver
US9130679B1 (en) Polarization-switched differential ternary phase-shift keying
JP5375496B2 (en) Optical receiver
JP5212203B2 (en) Optical receiver
JP5343878B2 (en) Optical receiver
WO2012059732A1 (en) Demodulator and optical arrangement therefor
US9071362B1 (en) Noise-tolerant optical modulation
JP2011077907A (en) Method of controlling optical receiver
JP2011077582A (en) Optical receiver
JP2011217056A (en) Light receiver
WO2011092862A1 (en) Light receiver
JP2012054831A (en) Optical demodulator
WO2013011549A1 (en) Optical demodulator
Li Optical delay interferometers and their application for self-coherent detection
JP2012013781A (en) Optical demodulator
WO2011105351A1 (en) Optical demodulator
JP2010139888A (en) Receiving device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130423

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130624

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130827

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130909

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees