JP2011077916A - Ultrasonic transducer - Google Patents

Ultrasonic transducer Download PDF

Info

Publication number
JP2011077916A
JP2011077916A JP2009228460A JP2009228460A JP2011077916A JP 2011077916 A JP2011077916 A JP 2011077916A JP 2009228460 A JP2009228460 A JP 2009228460A JP 2009228460 A JP2009228460 A JP 2009228460A JP 2011077916 A JP2011077916 A JP 2011077916A
Authority
JP
Japan
Prior art keywords
piezoelectric body
side wall
ultrasonic transducer
case
wall portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009228460A
Other languages
Japanese (ja)
Inventor
Junji Ota
順司 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2009228460A priority Critical patent/JP2011077916A/en
Publication of JP2011077916A publication Critical patent/JP2011077916A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an ultrasonic transducer capable of improving temperature stability while preventing deterioration in reliability caused by an ambient temperature, and performing bending vibration at the bottom surface section. <P>SOLUTION: The ultrasonic transducer 1 is equipped with a piezoelectric body 2 and driving electrodes 3A and 3B. The piezoelectric body 2 is integrally formed with a cylindrical side wall section 2A and a bottom surface section 2B for closing at least one open end of the side wall section 2A. The driving electrodes 3A and 3B impress an electric field onto the piezoelectric body 2 to drive the piezoelectric body 2 in a mode where the side wall section 2A expands/contracts in the radial direction. According to the configuration, bending vibration is excited at the bottom face section 2B, since the bottom face section 2B is coupled physically to the side wall section 2A. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

この発明は、圧電体を駆動することで超音波の送信または受信を行う超音波トランスデューサに関する。   The present invention relates to an ultrasonic transducer that transmits or receives ultrasonic waves by driving a piezoelectric body.

従来の超音波トランスデューサとして、例えば有底筒状のケース底面に圧電体を設け、圧電体の駆動によりケース底面の全体をベンディング振動させるものがある(例えば、特許文献1および特許文献2参照。)。板状のケース底面と圧電体とで振動板部を構成することで、圧電体の広がり振動により間接的にケース底面をベンディング振動させて、ケース底面の大きな変位を確保できる。   As a conventional ultrasonic transducer, for example, a piezoelectric body is provided on the bottom surface of a bottomed cylindrical case, and the entire bottom surface of the case is bent and vibrated by driving the piezoelectric body (see, for example, Patent Document 1 and Patent Document 2). . By configuring the vibration plate portion with the plate-like case bottom surface and the piezoelectric body, the case bottom surface is indirectly bent by the spreading vibration of the piezoelectric body, thereby ensuring a large displacement of the case bottom surface.

特開2001−326987号公報JP 2001-326987 A 特開2007−036301号公報Japanese Patent Laid-Open No. 2007-036301

一般にケース底面と圧電体とは接着剤で接着されるため、ケース底面と圧電体との線膨張係数の差により、熱応力が作用して圧電体が剥がれるなど信頼性が低下する。また、用いられる接着剤は、温度特性を有するので十分な精度で動作する温度範囲が狭まる。例えば、超音波トランスデューサが150℃以上などの高温下に長時間放置されると、接着剤の種類によっては接着剤に軟化や炭化が生じ信頼性が低下する。   Generally, since the case bottom surface and the piezoelectric body are bonded with an adhesive, the difference in linear expansion coefficient between the case bottom surface and the piezoelectric body reduces the reliability, for example, the thermal stress acts to peel off the piezoelectric body. Moreover, since the adhesive used has temperature characteristics, the temperature range in which it operates with sufficient accuracy is narrowed. For example, when the ultrasonic transducer is left at a high temperature of 150 ° C. or higher for a long time, depending on the type of the adhesive, the adhesive is softened or carbonized, and the reliability is lowered.

本願発明の目的は、環境温度に起因する信頼性の低下を防ぎつつ温度安定性を高められる超音波トランスデューサを提供することにある。   An object of the present invention is to provide an ultrasonic transducer capable of improving temperature stability while preventing a decrease in reliability due to environmental temperature.

この発明の超音波トランスデューサは圧電体と駆動電極とを備える。圧電体は、筒状の側壁部と、側壁部の少なくとも一方の開口端を塞ぐ底面部とを一体に形成したものである。駆動電極は、圧電体に電界を印加し、圧電体の側壁部が径方向に拡縮するモードで圧電体が駆動される。
この構成では、側壁部が径方向に拡縮することで、底面部にベンディング振動が励振される。このベンディング振動は、底面部が側壁部の振動に物理的に結合して励振されるもので、例えば平板状の圧電素子を厚み縦振動又は広がり振動等により振動させる場合よりも変位が大きい。このように圧電素子とケース底面とを接合させて振動板部とする構造を採用することなく側壁部と底面部とが一体となった構造を振動板部として機能させることで、線膨張係数の差や接着剤の熱劣化などの影響を回避して、超音波トランスデューサの環境温度に起因する信頼性の低下を防ぎつつ温度安定性を高められる。
The ultrasonic transducer according to the present invention includes a piezoelectric body and a drive electrode. The piezoelectric body is formed by integrally forming a cylindrical side wall portion and a bottom surface portion that closes at least one opening end of the side wall portion. The drive electrode applies an electric field to the piezoelectric body, and the piezoelectric body is driven in a mode in which the side wall portion of the piezoelectric body expands and contracts in the radial direction.
In this configuration, the side wall portion expands and contracts in the radial direction, so that bending vibration is excited on the bottom surface portion. The bending vibration is excited by being physically coupled to the vibration of the side wall portion, and has a larger displacement than a case where, for example, a plate-like piezoelectric element is vibrated by thickness longitudinal vibration or spread vibration. By adopting a structure in which the side wall portion and the bottom surface portion are integrated as a vibrating plate portion without adopting a structure in which the piezoelectric element and the bottom surface of the case are joined in this manner to form a vibrating plate portion, the linear expansion coefficient is reduced. Temperature stability can be improved while avoiding a decrease in reliability due to the environmental temperature of the ultrasonic transducer by avoiding the influence of differences and thermal deterioration of the adhesive.

この発明の超音波トランスデューサはケースと緩衝体とをさらに備えると好適である。ケースは、ケース内部から底面部を露出させて圧電体を収容する。緩衝体は、圧電体とケースとの接触部分に設けられ、圧電体からケースに伝わる振動を緩衝する。
この構成では、ケースによる圧電体の拘束を、緩衝体によって防げる。したがって、側壁部の拡縮や底面部の変位が小さくなることを防ぐことができ、また、圧電体の振動がケースに伝わって生じる残響を抑制できる。さらには、圧電体がケース内部に収容されることにより、圧電体が保護されるので、超音波トランスデューサの耐環境性を高められる。
It is preferable that the ultrasonic transducer of the present invention further includes a case and a buffer. The case accommodates the piezoelectric body by exposing the bottom surface portion from the inside of the case. The buffer is provided at a contact portion between the piezoelectric body and the case, and buffers vibration transmitted from the piezoelectric body to the case.
In this configuration, the buffer can prevent the piezoelectric body from being restrained by the case. Therefore, the expansion / contraction of the side wall portion and the displacement of the bottom surface portion can be prevented, and reverberation caused by the vibration of the piezoelectric body being transmitted to the case can be suppressed. Furthermore, since the piezoelectric body is protected by being accommodated in the case, the environment resistance of the ultrasonic transducer can be improved.

この発明の底面部の底面視形状は、底面部の中心を通る長辺に対して、底面部の中心を通る短辺のアスペクト比が1よりも大きい形状であることが好適である。
この構成では、超音波の指向性に異方性を持たせられる。
The bottom view shape of the bottom surface portion of the present invention is preferably a shape in which the aspect ratio of the short side passing through the center of the bottom surface portion is larger than 1 with respect to the long side passing through the center of the bottom surface portion.
In this configuration, the directivity of the ultrasonic waves is made anisotropic.

この発明によれば、側壁部が径方向に拡縮することで底面部をベンディング振動させられる。このベンディング振動は、底面部が側壁部の振動に物理的に結合して励振されるもので変位が大きい。このように圧電素子とケース底面とを接合させて振動板部とする構造を採用することなく側壁部と底面部とが一体となった構造を振動板部として機能させることで、変位の大きなベンディング振動を利用しつつも、線膨張係数の差や接着剤の熱劣化などの影響を回避して、超音波トランスデューサの環境温度に基づく信頼性の低下を防ぎ温度安定性を高められる。   According to the present invention, the bottom surface portion can be bent and vibrated by expanding and contracting the side wall portion in the radial direction. This bending vibration is excited because the bottom surface portion is physically coupled to the vibration of the side wall portion and is greatly displaced. Bending with a large displacement can be achieved by using a structure in which the side wall and bottom surface are integrated as a diaphragm without adopting a structure in which the piezoelectric element and the bottom of the case are joined to form a diaphragm. While utilizing the vibration, it is possible to avoid the influence of the difference in the linear expansion coefficient and the thermal deterioration of the adhesive, thereby preventing the reliability of the ultrasonic transducer from being lowered based on the environmental temperature and improving the temperature stability.

本発明の実施形態に係る超音波トランスデューサの構成例を示す概略の図である。1 is a schematic diagram illustrating a configuration example of an ultrasonic transducer according to an embodiment of the present invention. 図1の超音波トランスデューサの有限要素解析の結果を例示する図である。It is a figure which illustrates the result of the finite element analysis of the ultrasonic transducer of FIG. 図1の超音波トランスデューサの周波数特性を例示する図である。It is a figure which illustrates the frequency characteristic of the ultrasonic transducer of FIG. 図1の超音波トランスデューサの温度特性を例示する図である。It is a figure which illustrates the temperature characteristic of the ultrasonic transducer of FIG. 図1の超音波トランスデューサの圧電体分極処理を説明する図である。It is a figure explaining the piezoelectric material polarization process of the ultrasonic transducer of FIG. 本発明の実施形態に係る超音波トランスデューサの他の構成例を説明する図である。It is a figure explaining the other structural example of the ultrasonic transducer which concerns on embodiment of this invention. 本発明の実施形態に係る超音波トランスデューサの他の構成例を説明する図である。It is a figure explaining the other structural example of the ultrasonic transducer which concerns on embodiment of this invention. 本発明の実施形態に係る超音波トランスデューサの他の構成例を説明する図である。It is a figure explaining the other structural example of the ultrasonic transducer which concerns on embodiment of this invention.

以下、本願発明の実施形態に係る超音波トランスデューサについて説明する。
図1(A)は、本実施形態に係る超音波トランスデューサ1の概略の断面図である。
この超音波トランスデューサ1は、自動車のバックソナー、コーナーソナー、パーキングスポット等に利用され、物標に超音波を送信する送波器、または物標からの反射波を検出する受波器として測距装置などに利用される。
Hereinafter, an ultrasonic transducer according to an embodiment of the present invention will be described.
FIG. 1A is a schematic cross-sectional view of an ultrasonic transducer 1 according to this embodiment.
This ultrasonic transducer 1 is used for automobile back sonar, corner sonar, parking spot, etc., and is used as a transmitter for transmitting ultrasonic waves to a target or as a receiver for detecting a reflected wave from the target. Used for devices.

この超音波トランスデューサ1は、圧電体2、駆動電極3A,3B、ケース4、緩衝体5、および端子部6A,6Bを備える。図1(B)は圧電体2の底面図である。圧電体2は有底筒状であり、側壁部2Aと底面部2Bとからなる。側壁部2Aは円筒状である。底面部2Bは、側壁部2Aの軸方向に対して垂直な平板状で、側壁部2Aの天面側開口端を閉塞する。圧電体2は側壁部2Aの軸方向を分極方向としている。駆動電極3Aは底面部2Bの天面に設け、駆動電極3Bは側壁部2Aの底面に設けている。ケース4は開口内に圧電体2を収容する有底円筒状であり、底面側の開口端が閉塞する。なお、ケース4は圧電体の開口部に連通する孔を底面に設けた構成であってもよい。また、圧電体2およびケース4に囲まれる空間に、吸音材を設ける構成であってもよい。緩衝体5はシリコーンゴム等の弾性体であり、ケース4と側壁部2Aの側面との間およびケース4と側壁部2Aの底面との間に設け、ケース4の開口内で圧電体2とケース4とが直接接触することを防いで圧電体2の振動を緩衝する。なお、緩衝体5は側壁部2Aの側面に設けず、側壁部2Aの底面にのみ設けてもよい。端子部6Aは、駆動電極3Aに天面側の端部で接続し、ケース4の底面から底面側の端部が突出する。端子部6Bは、駆動電極3Bに天面側の端部で接続され、ケース4の底面から底面側の端部が突出する。端子部6A,6Bは、金属端子板やインサートモールド等を用いて形成し、端子部6A,6Bが接続された圧電体2をケース4の開口部に収容し、その際に、ケース4に予め設けた孔に端子部6A,6Bを嵌め込んで作製する。   The ultrasonic transducer 1 includes a piezoelectric body 2, driving electrodes 3A and 3B, a case 4, a buffer body 5, and terminal portions 6A and 6B. FIG. 1B is a bottom view of the piezoelectric body 2. The piezoelectric body 2 has a bottomed cylindrical shape and includes a side wall portion 2A and a bottom surface portion 2B. Side wall 2A is cylindrical. The bottom surface portion 2B is a flat plate shape perpendicular to the axial direction of the side wall portion 2A, and closes the top surface side opening end of the side wall portion 2A. The piezoelectric body 2 has the axial direction of the side wall 2A as the polarization direction. The drive electrode 3A is provided on the top surface of the bottom surface portion 2B, and the drive electrode 3B is provided on the bottom surface of the side wall portion 2A. The case 4 has a bottomed cylindrical shape that accommodates the piezoelectric body 2 in the opening, and the opening end on the bottom side is closed. The case 4 may have a structure in which a hole communicating with the opening of the piezoelectric body is provided on the bottom surface. In addition, a sound absorbing material may be provided in a space surrounded by the piezoelectric body 2 and the case 4. The buffer body 5 is an elastic body such as silicone rubber, and is provided between the case 4 and the side surface of the side wall portion 2 </ b> A and between the case 4 and the bottom surface of the side wall portion 2 </ b> A. The vibration of the piezoelectric body 2 is buffered by preventing direct contact with 4. The buffer body 5 may not be provided on the side surface of the side wall portion 2A, but only on the bottom surface of the side wall portion 2A. The terminal portion 6 </ b> A is connected to the driving electrode 3 </ b> A at the top surface side end portion, and the bottom surface side end portion projects from the bottom surface of the case 4. The terminal portion 6B is connected to the drive electrode 3B at the end on the top surface side, and the end portion on the bottom surface side protrudes from the bottom surface of the case 4. The terminal portions 6A and 6B are formed using a metal terminal plate, an insert mold or the like, and the piezoelectric body 2 to which the terminal portions 6A and 6B are connected is accommodated in the opening portion of the case 4, and the case 4 The terminal portions 6A and 6B are fitted into the provided holes.

この超音波トランスデューサ1は、送波器として利用する際には、駆動電極3A,3B間に駆動信号を印加することで、分極方向である側壁部2Aの軸方向に電界が印加されて、側壁部2Aが径方向に拡縮する広がり振動が生じる。すると、側壁部2Aの軸方向の厚みに対して、底面部2Bの軸方向の厚みが薄いので、底面部2Bにベンディング振動が励振され超音波を送波する。受波器として利用する際には、圧電体2が超音波を受波して振動することで、駆動電極3A,3B間に受波信号が生じる。   When this ultrasonic transducer 1 is used as a transmitter, an electric field is applied in the axial direction of the side wall portion 2A, which is the polarization direction, by applying a drive signal between the drive electrodes 3A and 3B. A spreading vibration occurs in which the portion 2A expands and contracts in the radial direction. Then, since the thickness in the axial direction of the bottom surface portion 2B is smaller than the thickness in the axial direction of the side wall portion 2A, bending vibration is excited in the bottom surface portion 2B and ultrasonic waves are transmitted. When used as a wave receiver, the piezoelectric body 2 receives an ultrasonic wave and vibrates to generate a received signal between the drive electrodes 3A and 3B.

圧電体2はケース4に収容するので、超音波トランスデューサ1は耐環境性が高い。また、圧電体2とケース4との間に緩衝体5を設けて振動を緩衝するので、ケース4が圧電体2を拘束することを回避できる。また、圧電体2の振動がケース4に伝わることにより生じるケース内での残響を抑制できるとともに、底面部2Bの変位が妨げられることを防げる。   Since the piezoelectric body 2 is accommodated in the case 4, the ultrasonic transducer 1 has high environmental resistance. Further, since the buffer body 5 is provided between the piezoelectric body 2 and the case 4 to buffer the vibration, it is possible to avoid the case 4 from restraining the piezoelectric body 2. Further, reverberation in the case caused by the vibration of the piezoelectric body 2 being transmitted to the case 4 can be suppressed, and displacement of the bottom surface portion 2B can be prevented from being hindered.

図2は、超音波トランスデューサ1の有限要素解析の結果を例示する図である。
側壁部2Aと底面部2Bとは一体構造である。側壁部2Aが広がり振動することで、底面部2Bは側壁部2Aに比べて厚みが薄いため変形し易く、側壁部2Aから引っ張り応力が加わる。これにより、側壁部2Aと底面部2Bとの境界付近を振動の節とするベンディング振動が底面部2Bに励振される。
FIG. 2 is a diagram illustrating the result of the finite element analysis of the ultrasonic transducer 1.
The side wall portion 2A and the bottom surface portion 2B have an integral structure. When the side wall portion 2A spreads and vibrates, the bottom surface portion 2B has a smaller thickness than the side wall portion 2A, and thus is easily deformed, and tensile stress is applied from the side wall portion 2A. As a result, bending vibration having a vibration node near the boundary between the side wall portion 2A and the bottom surface portion 2B is excited to the bottom surface portion 2B.

このベンディング振動は、側壁部2Aと底面部Bとの物理的な結合により励振されるものなので、例えば平板状の圧電素子を厚み縦振動又は広がり振動等により振動変位が大きく、超音波の振幅を大きくできる。   Since this bending vibration is excited by physical coupling between the side wall portion 2A and the bottom surface portion B, for example, a plate-like piezoelectric element has a large vibration displacement due to thickness longitudinal vibration or spreading vibration, and the amplitude of the ultrasonic wave is increased. Can be big.

図3は、超音波トランスデューサ1における周波数特性を例示する図である。図中の実線はインピーダンス特性を示し、図中の破線は位相特性を示す。なお、左側の縦軸はインピーダンス|Z|を、右側の縦軸は位相θzを、横軸は周波数を示す。
超音波トランスデューサ1は、周波数約55kHz,100kHz,157kHz付近に共振反共振周波数を有する。周波数約55kHzは底面部2Bにおけるベンディング振動の共振周波数であり、周波数約157kHzは側壁部2Aにおける広がり振動の共振周波数である。なお、周波数約100kHzは上記2つの振動によるスプリアスモードである。このような周波数特性を有するため、超音波トランスデューサ1を周波数157kHz の駆動信号で駆動することにより、側壁部2Aが広がり振動し、底面部2Bに周波数約55kHzでベンディング振動が励振される。
FIG. 3 is a diagram illustrating frequency characteristics in the ultrasonic transducer 1. The solid line in the figure indicates the impedance characteristic, and the broken line in the figure indicates the phase characteristic. The left vertical axis represents impedance | Z |, the right vertical axis represents phase θz, and the horizontal axis represents frequency.
The ultrasonic transducer 1 has resonance antiresonance frequencies in the vicinity of frequencies of about 55 kHz, 100 kHz, and 157 kHz. The frequency of about 55 kHz is the resonance frequency of bending vibration in the bottom surface portion 2B, and the frequency of about 157 kHz is the resonance frequency of spread vibration in the side wall portion 2A. The frequency of about 100 kHz is a spurious mode due to the above two vibrations. Due to such frequency characteristics, when the ultrasonic transducer 1 is driven with a drive signal having a frequency of 157 kHz, the side wall portion 2A spreads and vibrates, and bending vibration is excited on the bottom surface portion 2B at a frequency of about 55 kHz.

図4は、従来の圧電素子とケース底面とを接合させて振動板部とする構造を採用した超音波トランスデューサと本実施形態の超音波トランスデューサとの温度特性を説明する図である。図4(A)は20℃を基準とした共振周波数の変化割合を、図4(B)は20℃を基準とした感度の変化割合を示す図である。図中の実線は本実施形態の超音波トランスデューサの温度特性を示し、図中の破線は従来の超音波トランスデューサの温度特性を示す。   FIG. 4 is a diagram for explaining temperature characteristics of an ultrasonic transducer that employs a structure in which a conventional piezoelectric element and a bottom surface of a case are joined to form a diaphragm, and the ultrasonic transducer of this embodiment. 4A is a graph showing the change rate of the resonance frequency based on 20 ° C., and FIG. 4B is a graph showing the change rate of the sensitivity based on 20 ° C. The solid line in the figure shows the temperature characteristic of the ultrasonic transducer of this embodiment, and the broken line in the figure shows the temperature characteristic of the conventional ultrasonic transducer.

従来構造は圧電素子とケース底面との材料、及び、圧電素子とケース底面との間に用いられる接着剤の線膨張係数の差から、温度変化に略比例して共振周波数が変化する温度特性を有するが、本実施形態は単一の圧電体を用いる構成であり温度変化があっても共振周波数が一定である。   The conventional structure has a temperature characteristic in which the resonance frequency changes approximately in proportion to the temperature change due to the difference in the linear expansion coefficient of the material used between the piezoelectric element and the case bottom and the adhesive used between the piezoelectric element and the case bottom. However, in this embodiment, a single piezoelectric body is used, and the resonance frequency is constant even when there is a temperature change.

また、従来構造は接着剤により異素材を接合する構造であり環境温度がガラス転移点を超えると接着剤が変質して、感度が大幅に低下してしまう。これに対して、本実施形態は単一の圧電体を用いる構成であるために接着剤を利用する必要が無く、温度変化があっても感度が略一定である。   In addition, the conventional structure is a structure in which different materials are joined by an adhesive, and when the environmental temperature exceeds the glass transition point, the adhesive is denatured and the sensitivity is greatly reduced. On the other hand, since the present embodiment uses a single piezoelectric body, it is not necessary to use an adhesive, and the sensitivity is substantially constant even when there is a temperature change.

したがって、本実施形態の超音波トランスデューサでは、環境温度に基づく信頼性の低下を防ぎつつ温度安定性を高められる。   Therefore, in the ultrasonic transducer of this embodiment, temperature stability can be improved while preventing a decrease in reliability based on the environmental temperature.

図5は超音波トランスデューサ1における圧電体分極方法を説明する状態図である。
圧電体2は、例えばチタン酸ジルコン酸鉛等の圧電セラミック材料の未焼成体を焼成することで作製され、焼成体を分極して使用する。その分極時には、電界の印加により開口内の隅部に分極ひずみが集中し、クラックが入る危険性がある。そこで、本実施形態では、圧電体2の開口の軸方向に対して交差する全ての平面に電極を形成し、軸方向の寸法に応じて相違する電圧V1,V2を印加することで、局所的な電界強度が所定範囲に収まるようにコントロールしながら分極を行う。分極後には開口底面に設けた電極を除去する。これにより、分極時にクラックが発生する危険性を抑えることができる。
FIG. 5 is a state diagram for explaining a piezoelectric body polarization method in the ultrasonic transducer 1.
The piezoelectric body 2 is produced by firing an unfired body of a piezoelectric ceramic material such as lead zirconate titanate, for example, and the fired body is polarized and used. At the time of polarization, there is a risk that polarization strain concentrates at the corners in the opening due to the application of an electric field and cracks occur. Therefore, in the present embodiment, electrodes are formed on all the planes that intersect the axial direction of the opening of the piezoelectric body 2, and voltages V1 and V2 that differ according to the dimensions in the axial direction are applied. Polarization is performed while controlling the electric field intensity to be within a predetermined range. After polarization, the electrode provided on the bottom of the opening is removed. Thereby, the danger that a crack will generate | occur | produce at the time of polarization can be suppressed.

なお、板状の圧電体の両主面に電極を形成しておき、電界を印加して分極した後に開口を刳り抜くことで圧電体2を作製することも可能である。したがって本願発明の超音波トランスデューサは、上述した分極方法に限らず、どのような分極方法を採用して製造してもよい。また、圧電体に形成する電極は、導電性ペーストを塗布後に焼付けて製造しても、レジストを用いてパターン形成しても、スパッタ・蒸着等の薄膜形成法やめっき等の方法で製造してもよく、どのような電極形成方法を採用してもよい。   It is also possible to produce the piezoelectric body 2 by forming electrodes on both main surfaces of the plate-like piezoelectric body, and applying an electric field to polarize and then punching out the opening. Therefore, the ultrasonic transducer of the present invention is not limited to the polarization method described above, and any polarization method may be adopted. In addition, the electrode to be formed on the piezoelectric body can be manufactured by baking after applying the conductive paste, patterning using a resist, thin film forming method such as sputtering or vapor deposition, or plating method. Any electrode forming method may be employed.

次に、圧電体の他の構成例について説明する。   Next, another configuration example of the piezoelectric body will be described.

図6は、圧電体の断面形状のバリエーション例を説明する図である。   FIG. 6 is a diagram illustrating a variation example of the cross-sectional shape of the piezoelectric body.

図6(A)は、開口底面にテーパを付けた構成の圧電体の断面図である。図6(B)は、開口底面に突起を付けた構成の圧電体の断面図である。図6(C)は、開口底面を凹形状にした構成の圧電体の断面図である。図6(D)は、開口底面を凸形状にした構成の圧電体の断面図である。図6(E)は、底面部天面を凸形状にした構成の圧電体の断面図である。図6(F)は、底面部天面を凹形状にした構成の圧電体の断面図である。   FIG. 6A is a cross-sectional view of a piezoelectric body having a configuration in which the opening bottom surface is tapered. FIG. 6B is a cross-sectional view of a piezoelectric body having a configuration in which a protrusion is attached to the bottom surface of the opening. FIG. 6C is a cross-sectional view of a piezoelectric body having a configuration in which the bottom surface of the opening has a concave shape. FIG. 6D is a cross-sectional view of a piezoelectric body having a configuration in which the bottom surface of the opening is convex. FIG. 6E is a cross-sectional view of a piezoelectric body having a configuration in which the top surface of the bottom surface portion is convex. FIG. 6F is a cross-sectional view of a piezoelectric body having a concave bottom surface.

以上のような圧電体を用いて本発明の超音波トランスデューサを構成してもよく、これらの圧電体を利用することで超音波の指向性を制御できる。   The ultrasonic transducer of the present invention may be configured using the piezoelectric body as described above, and the directivity of the ultrasonic waves can be controlled by using these piezoelectric bodies.

図7は、駆動電極のバリエーション例を説明する図である。
図7(A)は、底面部天面および側壁部底面それぞれに駆動電極を配置した例である。図7(B)は、底面部天面、底面部底面、および側壁部底面それぞれに駆動電極を配置した例である。図7(C)は、底面部天面−側壁部外側面と、底面部底面−側壁部内側面と、のそれぞれに駆動電極を配置した例である。図7(C)のように圧電体の全表面に電極が形成された構成であっても、分極時の電極及び駆動時の電極をそれぞれ選択することによって、駆動可能である。
FIG. 7 is a diagram illustrating a variation example of the drive electrode.
FIG. 7A shows an example in which drive electrodes are arranged on the bottom surface top surface and the side wall surface bottom. FIG. 7B shows an example in which drive electrodes are arranged on the bottom surface top surface, bottom surface bottom surface, and side wall surface bottom surfaces. FIG. 7C shows an example in which drive electrodes are arranged on the bottom surface top surface-side wall portion outer surface and the bottom surface bottom surface-side wall inner surface. Even when the electrodes are formed on the entire surface of the piezoelectric body as shown in FIG. 7C, the electrodes can be driven by selecting the electrodes for polarization and the electrodes for driving.

いずれの例であっても、側壁部の広がり振動を大きく確保しておくことで、底面部にベンディング振動を励振させることが可能である。   In any of the examples, it is possible to excite the bending vibration on the bottom surface portion by ensuring a large spread vibration of the side wall portion.

図8は、圧電体の底面視形状のバリエーション例を説明する図である。
図8(A)は、底面視形状が正方形である圧電体の底面図である。図8(B)は、底面視形状が長方形である圧電体の底面図である。図8(C)は、底面視形状が楕円形である圧電体の底面図である。
正方形や円形等の、底面部の底面視形状では、底面部の中心を通る長辺に対して、底面部の中心を通る短辺のアスペクト比が1であると、超音波の指向性に等方性を持たせられる。一方、長方形や楕円形等の底面部の底面視形状では、底面部の中心を通る長辺に対して、底面部の中心を通る短辺のアスペクト比が1よりも大きいと、超音波の指向性に異方性を持たせられる。
FIG. 8 is a diagram for explaining a variation of the shape of the piezoelectric body viewed from the bottom.
FIG. 8A is a bottom view of a piezoelectric body whose bottom view shape is a square. FIG. 8B is a bottom view of the piezoelectric body whose bottom view shape is a rectangle. FIG. 8C is a bottom view of a piezoelectric body whose bottom view shape is elliptical.
In a bottom view shape such as a square or a circle, when the aspect ratio of the short side passing through the center of the bottom surface part is 1 with respect to the long side passing through the center of the bottom surface part, the directivity of the ultrasonic wave is equal It has a direction. On the other hand, in a bottom view shape such as a rectangle or an ellipse, if the aspect ratio of the short side passing through the center of the bottom surface part is greater than 1 with respect to the long side passing through the center of the bottom surface part, the direction of the ultrasonic wave Anisotropy can be given to sex.

1…超音波トランスデューサ
2,12,22,32,42,52,62,72,82,92…圧電体
2A…側壁部
2B…底面部
3A,3B…駆動電極
4…ケース
5…緩衝体
6A,6B…端子部
DESCRIPTION OF SYMBOLS 1 ... Ultrasonic transducer 2, 12, 22, 32, 42, 52, 62, 72, 82, 92 ... Piezoelectric body 2A ... Side wall part 2B ... Bottom face part 3A, 3B ... Drive electrode 4 ... Case 5 ... Buffer 6A, 6B ... Terminal part

Claims (4)

筒状の側壁部と、前記側壁部の少なくとも一方の開口端を塞ぐ底面部とを一体に形成した圧電体、
および、前記圧電体に電界を印加するための駆動電極と、を備えたことを特徴とする超音波トランスデューサ。
A piezoelectric body integrally formed with a cylindrical side wall and a bottom surface that closes at least one open end of the side wall;
An ultrasonic transducer comprising: a drive electrode for applying an electric field to the piezoelectric body.
前記圧電体の前記側壁部が径方向に拡縮するモードで駆動されることを特徴とする請求項1に記載の超音波トランスデューサ。 The ultrasonic transducer according to claim 1, wherein the side wall portion of the piezoelectric body is driven in a mode in which the side wall portion expands and contracts in a radial direction. ケース内部から前記底面部を露出させて前記圧電体を収容するケースと、
前記圧電体と前記ケースとの接触部分に設けられ、前記圧電体から前記ケースに伝わる振動を緩衝する緩衝体と、をさらに備える請求項1または2に記載の超音波トランスデューサ。
A case in which the bottom surface portion is exposed from inside the case and the piezoelectric body is accommodated;
The ultrasonic transducer according to claim 1, further comprising a buffer provided at a contact portion between the piezoelectric body and the case and buffering vibration transmitted from the piezoelectric body to the case.
前記底面部は、底面視形状で、底面部の中心を通る長辺に対して、底面部の中心を通る短辺のアスペクト比が1よりも大きい、請求項1〜3のいずれかに記載の超音波トランスデューサ。   The said bottom face part is bottom view shape, and the aspect ratio of the short side which passes along the center of a bottom face part is larger than 1 with respect to the long side which passes along the center of a bottom face part. Ultrasonic transducer.
JP2009228460A 2009-09-30 2009-09-30 Ultrasonic transducer Pending JP2011077916A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009228460A JP2011077916A (en) 2009-09-30 2009-09-30 Ultrasonic transducer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009228460A JP2011077916A (en) 2009-09-30 2009-09-30 Ultrasonic transducer

Publications (1)

Publication Number Publication Date
JP2011077916A true JP2011077916A (en) 2011-04-14

Family

ID=44021389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009228460A Pending JP2011077916A (en) 2009-09-30 2009-09-30 Ultrasonic transducer

Country Status (1)

Country Link
JP (1) JP2011077916A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04207900A (en) * 1990-11-30 1992-07-29 Sekisui Plastics Co Ltd Piezoelectric sounding body and production thereof
JP2000217821A (en) * 1999-02-01 2000-08-08 Toshiba Ceramics Co Ltd Manufacture of high-frequency, ultrasonic probe
JP2001289939A (en) * 2000-02-02 2001-10-19 Mitsubishi Electric Corp Ultrasonic wave transmitter/receiver and peripheral obstacle detector for vehicle
JP2002315096A (en) * 2001-04-09 2002-10-25 Nippon Soken Inc Ultrasonic sensor
JP2007027856A (en) * 2005-07-12 2007-02-01 Tdk Corp Piezoelectric sounder

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04207900A (en) * 1990-11-30 1992-07-29 Sekisui Plastics Co Ltd Piezoelectric sounding body and production thereof
JP2000217821A (en) * 1999-02-01 2000-08-08 Toshiba Ceramics Co Ltd Manufacture of high-frequency, ultrasonic probe
JP2001289939A (en) * 2000-02-02 2001-10-19 Mitsubishi Electric Corp Ultrasonic wave transmitter/receiver and peripheral obstacle detector for vehicle
JP2002315096A (en) * 2001-04-09 2002-10-25 Nippon Soken Inc Ultrasonic sensor
JP2007027856A (en) * 2005-07-12 2007-02-01 Tdk Corp Piezoelectric sounder

Similar Documents

Publication Publication Date Title
EP2076062B1 (en) Ultrasonic sensor
US9636709B2 (en) Ultrasonic generation device
US6232702B1 (en) Flextensional metal-ceramic composite transducer
US20120269031A1 (en) Ultrasonic transmitter and receiver with compliant membrane
JP2009260723A (en) Transducer
WO2007102460A1 (en) Ultrasonic sensor, and its manufacturing method
US11601762B2 (en) Sound transducer and method for operating the sound transducer
EP2661102A1 (en) Vibration device and electronic apparatus
CN105492924A (en) Sensor arrangement
US9968966B2 (en) Electroacoustic transducer
US20210101179A1 (en) Sound transducer including a piezoceramic transducer element integrated in a vibratory diaphragm
US11594671B2 (en) Ultrasonic device and ultrasonic sensor
CN109848021B (en) Ultrasonic device and ultrasonic measuring apparatus
Xia et al. High-SPL and low-driving-voltage pMUTs by sputtered potassium sodium niobate
JP2020156015A (en) Ultrasonic device and ultrasonic apparatus
JP2011077916A (en) Ultrasonic transducer
JP7088099B2 (en) Ultrasonic sensor
JP2011077919A (en) Ultrasonic transducer
JP3006861U (en) Ultrasonic probe
JP3880047B2 (en) Ultrasonic sensor
JP7409249B2 (en) ultrasonic transducer
JP5574050B2 (en) Ultrasonic transducer
JP4158354B2 (en) Comparator
JP7048474B2 (en) Ultrasonic sensor
JP6971939B2 (en) Ultrasonic sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120620

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130528

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131105