JP3880047B2 - Ultrasonic sensor - Google Patents

Ultrasonic sensor Download PDF

Info

Publication number
JP3880047B2
JP3880047B2 JP2002210828A JP2002210828A JP3880047B2 JP 3880047 B2 JP3880047 B2 JP 3880047B2 JP 2002210828 A JP2002210828 A JP 2002210828A JP 2002210828 A JP2002210828 A JP 2002210828A JP 3880047 B2 JP3880047 B2 JP 3880047B2
Authority
JP
Japan
Prior art keywords
ultrasonic sensor
bottomed cylindrical
cylindrical case
diaphragm
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002210828A
Other languages
Japanese (ja)
Other versions
JP2004056450A (en
Inventor
克人 富山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Corp filed Critical NEC Tokin Corp
Priority to JP2002210828A priority Critical patent/JP3880047B2/en
Publication of JP2004056450A publication Critical patent/JP2004056450A/en
Application granted granted Critical
Publication of JP3880047B2 publication Critical patent/JP3880047B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Geophysics And Detection Of Objects (AREA)
  • Transducers For Ultrasonic Waves (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、超音波信号を送信するとともに障害物からの反射波を受信して障害物の存在を検知する超音波センサに関するものであり、特に自動車のバックソナー、コーナーソナーに好適な防滴型超音波センサに関するものである。
【0002】
【従来の技術】
超音波センサは、超音波を利用してセンシングを行うものであり、圧電振動素子を駆動源として振動板を振動させることにより、超音波パルス信号を間欠的に送信し、前方に存在する被検出物体からの反射波を前記振動板を介し、前記圧電振動素子で受信することによって物体を検知するものである。
【0003】
従来、この種の超音波センサに関する公知文献としては、特開2001―169392がある。該公知文献に記載されている超音波センサの構造を図7に示す。該超音波センサは、アルミニウム等の金属で形成された有底筒状のケース25の底面が振動板26になっており、該振動板26の内面に圧電振動素子27が接合された構造となっている。前記圧電振動素子27からの電気的接続は、リード線32、33により行われる。一方のリード線32は、半田付けにより圧電振動素子27の接合面と対向する素子電極28aに接合されている。他方のリード線33は、金属ケース25に半田付けされており、該金属ケース25を介して前記圧電振動素子27の接合面の素子電極28bと電気的に導通している。有底筒状ケース25の内部には、圧電振動素子27を拘束しないようスポンジ等からなる吸音材29が充填されており、該吸音材29の上からケース内に雨滴などの進入を防止するためにシリコーン樹脂等の弾性体30が充填されている。前記リード線32,33は、樹脂内部で信号線34,35と半田付けにより電気的に接続されている。
【0004】
超音波センサは、以下の様に動作する。信号線34,35から圧電振動素子27に間欠的に駆動電圧を印加して、圧電振動素子27を振動させると、振動板26が膜振動し、振動板から前方へ超音波が放出される。駆動は間欠的に行われているので、送信が停止している時間内で所定の時間が経過した後、被検出物から反射してきた超音波が振動板26を介して圧電振動素子27に到達すると、この受波された超音波が圧電振動素子27によって電圧信号に変換され信号線34,35より出力される。ここで、反射波が戻ってくるまでの時間と被検出物までの距離は比例関係にあるので、送信から受信までの経過時間が観測することによって被検出物との距離を計測することができる。
【0005】
【発明が解決しようとする課題】
自動車の周囲の障害物を検知するのに用いられる超音波センサに要求される事項として、温度差や湿度などの環境変動により超音波センサの感度、指向角が変化しないことが求められている。また、雨滴の進入により上記諸特性が変化劣化しないこと、即ち防滴性が求められている。
【0006】
しかしながら、特開2001―169392にみられるようなアルミニウムなどの金属のケースに圧電振動素子を接着している構造では、熱膨張率が約10倍異なるアルミニウムと圧電セラミックスを接着するために、実際の使用環境では温度変化の繰り返しにより前記アルミニウムと圧電セラミックスの間の接着層に応力が集中し、接着力が徐々に低下する。この種の超音波センサでは、交流電圧による圧電セラミックスの伸縮を駆動源としてケース底面の振動板を膜振動させ超音波を放出しているため、圧電セラミックスと振動板の接着力が変化すると振動の伝達に変化を生じ、結果として超音波センサの音圧、感度、指向角等の性能が環境変動と時間によって初期値から変化して元に戻らないという問題があった。
【0007】
また、一般的に、このような金属のケースは削りだし加工により製造されるが、振動板になる有底筒状ケースの底面の厚み、うねりが超音波センサの共振周波数、感度、残響特性等の各種特性に大きな影響を与える。したがって、初期特性のばらつきを小さくするためには、金属ケースの加工を精度良く行う必要があり、結果として高価なものとなるという問題点があった。
【0008】
そこで、本発明は、前述の問題点を解決するためになされたもので、初期特性のばらつきが少なく、温度差の影響を受けにくく、環境による劣化を起こすことの少ない、安価な超音波センサ提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明によれば、有底筒状ケースの底面を振動板として超音波の送受波を行う超音波センサであって、該有底筒状ケースの底面と円筒部分を圧電セラミックス材料で一体成型し、前記底面の一部分に対向電極を形成し圧電性を付与し、前記底面の一部分を振動の駆動源及び反射波の受波源とした構造を特徴とする超音波センサが得られる。
【0010】
また、本発明によれば、有底筒状ケースの底面に、端部にランド電極を有する、3本以上の平行線状または同心円状の交差指電極または一対の渦巻き電極を有することを特徴とする超音波センサが得られる。
【0011】
本発明では、有底筒状ケースの底面と円筒部分を圧電セラミックスで一体成型し、この圧電セラミックスからなる有底筒状ケースの底面に対向電極を形成し、該対向電極を用いて対向電極間の圧電セラミックスを分極することで圧電性を付与し、振動板を構成し、前記対向電極間に交流電圧を印加して前記振動板を振動させる。該振動板の外面、及び周囲は圧電性が無いため、外周の固定された振動板の内面部にある圧電セラミックスの伸縮により振動板が凹凸に膜振動し外面の前方に超音波を放出、また、反射波を検知する事ができる。
【0012】
【発明の実施の形態】
以下に、本発明の実施の形態を、図面に基づいて、詳細に説明する。
【0013】
図1は、本発明による超音波センサの一実施の形態を示す断面図である。図1で、外径20mm、高さ10mmの有底筒状ケース1は、チタン酸ジルコン酸鉛系圧電セラミックス材料の成型体を焼成したもので、有底筒状ケース1の底部には厚さ1.5mmの振動板2が一体に形成され、前記振動板2の内面2aにスパッタリングによって交差指電極3、4を形成し、該交差指電極3、4の端部に形成したランド電極5、6にリード線9、10を半田付けし、更に、前記有底筒状ケース1の内部に前記リード線9、10を通すための穴を設けたスポンジやフェルトなどからなる吸音材7を充填し、該吸音材7の上に、湿度や雨滴の進入を防止するためにシリコーン樹脂やウレタン樹脂の絶縁性の弾性材料8を充填した構造である。
【0014】
図2は、前記吸音材7や弾性材料8を充填する前の図1に示した有底筒状ケースの平面図である。前記リード線9、10は、前記弾性材料8の中で信号線11、12に半田付けされている。
【0015】
図1の交差指電極3、4に電圧を印加した時、振動板の分極状態を図3に示した。図3に示す矢印21のように、振動板2の内面側の圧電セラミックスを分極することで、交差指電極3、4に交流電圧を印加すると、振動板の内面側の圧電セラミックスの伸縮により振動板が凹凸に膜振動し、振動を励起することができる。
【0016】
前述の実施の形態においては、振動板の内面に形成した電極が交差指電極について説明したが、2本以上の同心円状の交差指電極や一定間隔で配置された2本の渦巻き状の電極でも同じように、交流電圧の印加により振動板の内面側の圧電セラミックスの伸縮により振動板が凹凸に膜振動し、振動を励起する事が可能であり、超音波センサを構成することができる。前記2本以上の同心円状の交差指電極の一例を図4に示した。また、前記一定間隔で配置された2本の渦巻き状の電極の一例を図5に示した。
【0017】
前述の実施の形態において試作した超音波センサについて、静電容量と感度の初期特性を測定した。比較のため、同じ形状で図7に示した従来構造の超音波センサについても同様の測定を実施した。測定試料数は、それぞれ20個である。結果を表1に示した。前記静電容量は、圧電セラミックスの誘電率と電極間距離、電極面積で決まる値であるが、接着工程で接着剤の硬化に伴い応力が発生し、該応力が前記圧電セラミックスの誘電率に影響するので、前記静電容量が変化する傾向がある。
【0018】
【表1】

Figure 0003880047
【0019】
実施の形態は、従来構造と電極構成が異なるために、同じ値の静電容量と感度は得られないが、静電容量と感度のそれぞれの平均値に対するばらつきの大きさの比を比較すると、実施の形態は比較例の半分以下で、ばらつきが小さいことが分かる。
【0020】
また、前述の超音波センサについて、マイナス40℃とプラス100℃の温度を繰り返す熱衝撃試験を実施し、超音波センサの静電容量の変化を観測した。前記静電容量は、圧電セラミックスの誘電率と電極間距離、電極面積よって決まる値であるが、熱衝撃試験にて接着層に劣化があると振動子と振動板の間の拘束に変化が生じるため、前記静電容量が下がる傾向がある。比較のため、図7に示した従来構造の超音波センサについても、同様の試験を実施した。熱衝撃試験経過に伴う静電容量の変化率を図6に示す。
【0021】
図6から、従来構造では、500サイクル経過時点で5%程度の静電容量の変化があるのに対し、本発明による構造では、ほとんど劣化は見られなかった。この実験結果から、本構造では温度差による特性の劣化は従来構造に比し少ないことが確認された。
【0022】
更に、前述の超音波センサを1000個試作するときの1個当りの製造時間とコストを従来構造品と比較し、比較結果を表2に示した。
【0023】
【表2】
Figure 0003880047
【0024】
表2から、本発明の超音波センサは比較例に比べ、約60%の低コストで製造することが可能であることが分かる。
【0025】
【発明の効果】
上記のように、本発明によれば、ケースの底面と円筒部分を圧電セラミックスで一体成型することで、初期特性のばらつきが少ない超音波センサを安価に提供すると同時に、底面に交差指電極や渦巻き状の電極を形成して、電極間の圧電セラミックスを分極して駆動源とすることによって、温度差の影響を受けにくく、環境による劣化を起こすことの少ない超音波センサを得ることが可能となった。
【図面の簡単な説明】
【図1】本発明による超音波センサの一実施の形態を示す断面図。
【図2】吸音材や弾性材料を充填する前の図1に示した有底筒状ケースの平面図。
【図3】交差指電極に電圧を印加した時の振動板の分極状態を示す図。
【図4】2本以上の同心円状の交差指電極を示す図。
【図5】一定間隔で2本の渦巻き状の電極を示す図。
【図6】熱衝撃試験経過に伴う静電容量の変化率を示す図。
【図7】公知文献に記載されている超音波センサの構造を示す図。
【符号の説明】
1,25 有底筒状ケース
2 振動板
2a 振動板の内面
3,4 交差指電極
5,6 ランド電極
7 吸音材
8 弾性材料
9,10 リード線
11,12 信号線
21 分極方向を示す矢印
26 振動板
27 圧電振動素子
28a,28b 素子電極
29 吸音材
30 弾性体
31 はんだ点
32,33 リード線
34,35 信号線[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an ultrasonic sensor that transmits an ultrasonic signal and receives a reflected wave from an obstacle to detect the presence of the obstacle, and is particularly suitable for a drip-proof type suitable for back sonar and corner sonar of an automobile. The present invention relates to an ultrasonic sensor.
[0002]
[Prior art]
An ultrasonic sensor performs sensing using ultrasonic waves. By vibrating a diaphragm using a piezoelectric vibration element as a drive source, an ultrasonic pulse signal is intermittently transmitted, and a detected object existing ahead is detected. The reflected wave from the object is received by the piezoelectric vibration element through the diaphragm, and the object is detected.
[0003]
Conventionally, there is JP-A-2001-169392 as a known document regarding this type of ultrasonic sensor. FIG. 7 shows the structure of the ultrasonic sensor described in the known document. The ultrasonic sensor has a structure in which a bottom surface of a bottomed cylindrical case 25 made of a metal such as aluminum is a diaphragm 26, and a piezoelectric vibration element 27 is joined to the inner surface of the diaphragm 26. ing. Electrical connection from the piezoelectric vibration element 27 is performed by lead wires 32 and 33. One lead wire 32 is bonded to the element electrode 28a facing the bonding surface of the piezoelectric vibration element 27 by soldering. The other lead wire 33 is soldered to the metal case 25, and is electrically connected to the element electrode 28 b on the joint surface of the piezoelectric vibration element 27 via the metal case 25. The bottomed cylindrical case 25 is filled with a sound absorbing material 29 made of sponge or the like so as not to restrain the piezoelectric vibration element 27, and in order to prevent raindrops or the like from entering the case from above the sound absorbing material 29. Are filled with an elastic body 30 such as a silicone resin. The lead wires 32 and 33 are electrically connected to the signal wires 34 and 35 by soldering inside the resin.
[0004]
The ultrasonic sensor operates as follows. When a drive voltage is intermittently applied from the signal lines 34 and 35 to the piezoelectric vibration element 27 to vibrate the piezoelectric vibration element 27, the diaphragm 26 vibrates, and ultrasonic waves are emitted forward from the diaphragm. Since the drive is performed intermittently, the ultrasonic wave reflected from the detected object reaches the piezoelectric vibration element 27 via the vibration plate 26 after a predetermined time has elapsed within the time during which transmission is stopped. Then, the received ultrasonic wave is converted into a voltage signal by the piezoelectric vibration element 27 and output from the signal lines 34 and 35. Here, since the time until the reflected wave returns and the distance to the object to be detected are in a proportional relationship, the distance from the object to be detected can be measured by observing the elapsed time from transmission to reception. .
[0005]
[Problems to be solved by the invention]
As a matter required for an ultrasonic sensor used to detect obstacles around the automobile, it is required that the sensitivity and directivity angle of the ultrasonic sensor do not change due to environmental fluctuations such as a temperature difference and humidity. In addition, there is a demand for the above-mentioned characteristics not to be changed and deteriorated by the entry of raindrops, i.
[0006]
However, in the structure in which the piezoelectric vibration element is bonded to a metal case such as aluminum as disclosed in Japanese Patent Application Laid-Open No. 2001-169392, an actual thermal expansion coefficient of about 10 times is bonded to aluminum and piezoelectric ceramics. In a use environment, stress concentrates on the adhesive layer between the aluminum and the piezoelectric ceramic due to repeated temperature changes, and the adhesive force gradually decreases. In this type of ultrasonic sensor, the piezoelectric ceramic expansion and contraction due to AC voltage is used as a drive source to emit film by vibrating the diaphragm on the bottom of the case. Therefore, if the adhesive force between the piezoelectric ceramic and diaphragm changes, There is a problem that the transmission changes, and as a result, the performance of the ultrasonic sensor, such as sound pressure, sensitivity, and directivity, changes from the initial value due to environmental fluctuations and time and does not return.
[0007]
In general, such a metal case is manufactured by machining, but the thickness of the bottom of the bottomed cylindrical case that becomes the diaphragm, the undulation is the resonance frequency, sensitivity, reverberation characteristics, etc. of the ultrasonic sensor. It has a great influence on the various characteristics. Therefore, in order to reduce the variation in the initial characteristics, it is necessary to process the metal case with high accuracy, resulting in an increase in cost.
[0008]
Accordingly, the present invention has been made to solve the above-described problems, and provides an inexpensive ultrasonic sensor that has little initial characteristic variation, is less susceptible to temperature differences, and is less susceptible to environmental degradation. The purpose is to do.
[0009]
[Means for Solving the Problems]
According to the present invention, there is provided an ultrasonic sensor that transmits and receives ultrasonic waves using the bottom surface of a bottomed cylindrical case as a diaphragm, and the bottom surface and the cylindrical portion of the bottomed cylindrical case are integrally formed of a piezoelectric ceramic material. Thus, an ultrasonic sensor can be obtained, which has a structure in which a counter electrode is formed on a part of the bottom surface to impart piezoelectricity, and a part of the bottom surface is used as a vibration driving source and a reflected wave receiving source.
[0010]
Further, according to the present invention, the bottom surface of the bottomed cylindrical case has three or more parallel-line or concentric cross-finger electrodes or a pair of spiral electrodes having a land electrode at an end. An ultrasonic sensor is obtained.
[0011]
In the present invention, the bottom surface and the cylindrical portion of the bottomed cylindrical case are integrally formed of piezoelectric ceramics, a counter electrode is formed on the bottom surface of the bottomed cylindrical case made of this piezoelectric ceramic, and the counter electrodes are formed using the counter electrodes. The piezoelectric ceramic is polarized to impart piezoelectricity to form a diaphragm, and an AC voltage is applied between the counter electrodes to vibrate the diaphragm. Since the outer surface and the periphery of the diaphragm have no piezoelectricity, the diaphragm vibrates unevenly due to the expansion and contraction of the piezoelectric ceramics on the inner surface of the outer peripheral fixed diaphragm, and emits ultrasonic waves in front of the outer surface. The reflected wave can be detected.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below in detail with reference to the drawings.
[0013]
FIG. 1 is a cross-sectional view showing an embodiment of an ultrasonic sensor according to the present invention. In FIG. 1, a bottomed cylindrical case 1 having an outer diameter of 20 mm and a height of 10 mm is obtained by firing a molded body of a lead zirconate titanate piezoelectric ceramic material. The bottom of the bottomed cylindrical case 1 has a thickness. A 1.5 mm diaphragm 2 is integrally formed, cross finger electrodes 3 and 4 are formed on the inner surface 2a of the diaphragm 2 by sputtering, and land electrodes 5 formed at ends of the cross finger electrodes 3 and 4; 6 is soldered with lead wires 9 and 10 and is further filled with a sound absorbing material 7 made of sponge, felt or the like provided with a hole for passing the lead wires 9 and 10 inside the bottomed cylindrical case 1. The sound absorbing material 7 has a structure in which an insulating elastic material 8 made of silicone resin or urethane resin is filled in order to prevent moisture and raindrops from entering.
[0014]
FIG. 2 is a plan view of the bottomed cylindrical case shown in FIG. 1 before filling the sound absorbing material 7 and the elastic material 8. The lead wires 9 and 10 are soldered to the signal wires 11 and 12 in the elastic material 8.
[0015]
FIG. 3 shows the polarization state of the diaphragm when a voltage is applied to the interdigitated electrodes 3 and 4 in FIG. When an alternating voltage is applied to the crossed finger electrodes 3 and 4 by polarizing the piezoelectric ceramic on the inner surface side of the diaphragm 2 as shown by an arrow 21 in FIG. 3, the piezoelectric ceramic vibrates due to expansion and contraction of the piezoelectric ceramic on the inner surface side of the diaphragm. The plate can vibrate unevenly and excite vibration.
[0016]
In the above-described embodiment, the electrode formed on the inner surface of the diaphragm has been described as a cross finger electrode. However, two or more concentric cross finger electrodes or two spiral electrodes arranged at a fixed interval may be used. Similarly, it is possible to excite the vibration by exciting the vibration of the diaphragm by the expansion and contraction of the piezoelectric ceramics on the inner surface side of the diaphragm by application of the AC voltage, and an ultrasonic sensor can be configured. An example of the two or more concentric cross finger electrodes is shown in FIG. FIG. 5 shows an example of the two spiral electrodes arranged at regular intervals.
[0017]
The initial characteristics of capacitance and sensitivity were measured for the ultrasonic sensor prototyped in the above embodiment. For comparison, the same measurement was performed on the ultrasonic sensor having the same shape and the conventional structure shown in FIG. The number of measurement samples is 20 for each. The results are shown in Table 1. The capacitance is a value determined by the dielectric constant of the piezoelectric ceramic, the distance between the electrodes, and the electrode area, but stress is generated as the adhesive hardens in the bonding process, and the stress affects the dielectric constant of the piezoelectric ceramic. As a result, the capacitance tends to change.
[0018]
[Table 1]
Figure 0003880047
[0019]
In the embodiment, since the electrode structure is different from the conventional structure, the same value of capacitance and sensitivity cannot be obtained, but when comparing the ratio of the magnitude of variation to the average value of capacitance and sensitivity, It can be seen that the embodiment is less than half of the comparative example and the variation is small.
[0020]
In addition, the above-described ultrasonic sensor was subjected to a thermal shock test in which temperatures of minus 40 ° C. and plus 100 ° C. were repeated, and changes in the capacitance of the ultrasonic sensor were observed. The capacitance is a value determined by the dielectric constant of the piezoelectric ceramic, the distance between the electrodes, and the electrode area, but if the adhesive layer is deteriorated in the thermal shock test, the constraint between the vibrator and the diaphragm changes. There exists a tendency for the said electrostatic capacitance to fall. For comparison, the same test was performed on the ultrasonic sensor having the conventional structure shown in FIG. FIG. 6 shows the rate of change in capacitance with the course of the thermal shock test.
[0021]
FIG. 6 shows that the conventional structure has a capacitance change of about 5% after 500 cycles, whereas the structure according to the present invention hardly shows any deterioration. From this experimental result, it was confirmed that the deterioration of the characteristics due to the temperature difference is less in this structure than in the conventional structure.
[0022]
Furthermore, the manufacturing time and cost per 1000 prototypes of the above-described ultrasonic sensors were compared with those of the conventional structure, and the comparison results are shown in Table 2.
[0023]
[Table 2]
Figure 0003880047
[0024]
From Table 2, it can be seen that the ultrasonic sensor of the present invention can be manufactured at a low cost of about 60% as compared with the comparative example.
[0025]
【The invention's effect】
As described above, according to the present invention, by integrally molding the bottom surface and the cylindrical portion of the case with piezoelectric ceramics, an ultrasonic sensor with little variation in initial characteristics can be provided at a low cost, and at the same time, cross-finger electrodes and spirals are formed on the bottom surface. By forming a cylindrical electrode and polarizing the piezoelectric ceramic between the electrodes as a drive source, it is possible to obtain an ultrasonic sensor that is less susceptible to temperature differences and less susceptible to environmental degradation. It was.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an embodiment of an ultrasonic sensor according to the present invention.
FIG. 2 is a plan view of the bottomed cylindrical case shown in FIG. 1 before filling with a sound absorbing material or an elastic material.
FIG. 3 is a diagram illustrating a polarization state of a diaphragm when a voltage is applied to a crossed finger electrode.
FIG. 4 is a view showing two or more concentric cross finger electrodes.
FIG. 5 is a diagram showing two spiral electrodes at regular intervals.
FIG. 6 is a diagram showing the rate of change in capacitance with the course of a thermal shock test.
FIG. 7 is a diagram showing the structure of an ultrasonic sensor described in a known document.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1,25 Cylindrical case 2 with a bottom 2 Diaphragm 2a Inner surface 3,4 of crossing electrode 5,6 Land electrode 7, Sound absorbing material 8, Elastic material 9,10 Lead wire 11,12 Signal line 21 Arrow 26 which shows polarization direction Diaphragm 27 Piezoelectric vibration elements 28a and 28b Element electrode 29 Sound absorbing material 30 Elastic body 31 Solder points 32 and 33 Lead wires 34 and 35 Signal line

Claims (5)

有底筒状ケースの底面を振動板として超音波の送波、受波を行う超音波センサであって、該有底筒状ケースの底面と円筒部分を圧電セラミックス材料で一体成型し、前記底面の一部分に対向電極を形成し圧電性を付与し、前記底面の一部分を振動の駆動源及び反射波の受波源とした構造を特徴とする超音波センサ。An ultrasonic sensor for transmitting and receiving ultrasonic waves using a bottom surface of a bottomed cylindrical case as a diaphragm, wherein the bottom surface and the cylindrical portion of the bottomed cylindrical case are integrally formed of a piezoelectric ceramic material, and the bottom surface An ultrasonic sensor having a structure in which a counter electrode is formed on a part of the substrate to impart piezoelectricity, and a part of the bottom surface is used as a driving source for vibration and a receiving source for reflected waves. 請求項1に記載の超音波センサであって、前記有底筒状ケースの底面に3本以上の平行線状の交差指電極を有することを特徴とする超音波センサ。2. The ultrasonic sensor according to claim 1, wherein three or more parallel-fingered interdigitated electrodes are provided on a bottom surface of the bottomed cylindrical case. 請求項1に記載の超音波センサであって、前記有底筒状ケースの底面に2本以上の同心円状の交差指電極を有することを特徴とする超音波センサ。2. The ultrasonic sensor according to claim 1, wherein two or more concentric intersecting finger electrodes are provided on a bottom surface of the bottomed cylindrical case. 請求項1に記載の超音波センサであって、前記有底筒状ケースの底面に一定間隔で2本の渦巻き状の電極を有することを特徴とする超音波センサ。2. The ultrasonic sensor according to claim 1, wherein two spiral electrodes are provided at regular intervals on a bottom surface of the bottomed cylindrical case. 請求項2乃至4に記載の超音波センサであって、前記有底筒状ケースの底面に形成した電極の端部にランド電極を有することを特徴とする超音波センサ。5. The ultrasonic sensor according to claim 2, further comprising a land electrode at an end of an electrode formed on a bottom surface of the bottomed cylindrical case.
JP2002210828A 2002-07-19 2002-07-19 Ultrasonic sensor Expired - Fee Related JP3880047B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002210828A JP3880047B2 (en) 2002-07-19 2002-07-19 Ultrasonic sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002210828A JP3880047B2 (en) 2002-07-19 2002-07-19 Ultrasonic sensor

Publications (2)

Publication Number Publication Date
JP2004056450A JP2004056450A (en) 2004-02-19
JP3880047B2 true JP3880047B2 (en) 2007-02-14

Family

ID=31934232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002210828A Expired - Fee Related JP3880047B2 (en) 2002-07-19 2002-07-19 Ultrasonic sensor

Country Status (1)

Country Link
JP (1) JP3880047B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006135573A (en) * 2004-11-05 2006-05-25 Nippon Ceramic Co Ltd Ultrasonic wave transmitting and receiving device
JP2008271337A (en) * 2007-04-23 2008-11-06 Nippon Ceramic Co Ltd Ultrasonic wave transmitting/receiving apparatus
US20200316586A1 (en) * 2016-05-24 2020-10-08 Centre National De La Recherche Scientifique Acoustic tweezers

Also Published As

Publication number Publication date
JP2004056450A (en) 2004-02-19

Similar Documents

Publication Publication Date Title
US7732993B2 (en) Ultrasonic sensor and method for manufacturing the same
US8166824B2 (en) Ultrasonic sensor
KR100283846B1 (en) Ultrasonic sensor
US9636709B2 (en) Ultrasonic generation device
JPH10257595A (en) Ultrasonic sensor
WO2012164879A1 (en) Ultrasonic transducer and ultrasonic flow-meter
JP2007183185A (en) Ultrasonic sensor
JP5026770B2 (en) Ultrasonic probe and ultrasonic diagnostic apparatus
KR100762087B1 (en) Supersonic transducer drive method
WO2007091609A1 (en) Ultrasonic sensor
US11583896B2 (en) Sound transducer including a piezoceramic transducer element integrated in a vibratory diaphragm
JP3880047B2 (en) Ultrasonic sensor
JPH10224895A (en) Ultrasonic sensor
US7388317B2 (en) Ultrasonic transmitting/receiving device and method for fabricating the same
JP5658061B2 (en) Mechanical quantity sensor
WO2005032211A1 (en) Ultrasonic sensor and method of manufacturing the same
JP2004040614A (en) Ultrasonic sensor
JP3006861U (en) Ultrasonic probe
JP4106207B2 (en) Force sensor
US11965994B2 (en) Ultrasonic transducer for a measuring device
US20220393096A1 (en) Ultrasonic sensor
US11590533B2 (en) Sound transducer, having a transducer element integrated in a vibration-capable diaphragm including an electrically active polymer
JPH02116299A (en) Ultrasonic sensor
JPS635355Y2 (en)
Ibata et al. An air-coupled ultrasonic sensor applying a bimorph structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061101

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061106

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20091117

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20101117

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101117

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111117

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20121117

LAPS Cancellation because of no payment of annual fees