JP2011077160A - Solar cell module - Google Patents

Solar cell module Download PDF

Info

Publication number
JP2011077160A
JP2011077160A JP2009224908A JP2009224908A JP2011077160A JP 2011077160 A JP2011077160 A JP 2011077160A JP 2009224908 A JP2009224908 A JP 2009224908A JP 2009224908 A JP2009224908 A JP 2009224908A JP 2011077160 A JP2011077160 A JP 2011077160A
Authority
JP
Japan
Prior art keywords
solar cell
insulating material
cell module
thermal conductivity
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009224908A
Other languages
Japanese (ja)
Inventor
Yukihisa Hoshino
幸久 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2009224908A priority Critical patent/JP2011077160A/en
Publication of JP2011077160A publication Critical patent/JP2011077160A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solar cell module in which temperature rise is moderate at the initial stage of heat generation. <P>SOLUTION: There is provided the solar cell module in which a non-light receiving surface of a photoelectric conversion cell is sealed with an insulating material having a thermal conductivity of 0.3 W/m K or more. The insulating material preferably has a volume resistivity of 10<SP>8</SP>Ω cm or more. The insulating material is, preferably, formed by containing 50-90 pts.mass of insulating inorganic filler, having a thermal conductivity of 5 W/m K or more and 10-50 pts.mass of resin having a glass transition point of 100°C or below. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、太陽電池モジュールに関し、特に局所的な温度上昇を抑え、局所過熱による不具合を緩和する太陽電池モジュールに関する。   The present invention relates to a solar cell module, and more particularly to a solar cell module that suppresses a local temperature increase and alleviates a problem caused by local overheating.

一般に太陽電池は、温度が高くなると発電効率が落ちる。特に結晶シリコン型セルが顕著で、最も影響が顕著なのは電圧で、0.4〜0.5%/℃の割合で低下し、結果的に出力も大幅に低下する。更に、電圧が低下するとセルが直列配線されている関係からこの部分が高電気抵抗となり、他の部分に比べて温度上昇が大きくなる。このため、日陰やゴミなどの何らかの原因で局所的に温度が高くなるとその部分が加速度的に温度上昇し、モジュール全体の発電効率を低下させる。極端な場合、セルの電極や封止材などを熱劣化させ、ホットスポットと呼ばれる故障の原因となる。 In general, the power generation efficiency of solar cells decreases as the temperature increases. In particular, the crystalline silicon type cell is remarkable, the voltage having the greatest effect is the voltage, which decreases at a rate of 0.4 to 0.5% / ° C., and as a result, the output is also greatly decreased. Further, when the voltage is lowered, this portion has a high electric resistance because of the relationship that the cells are connected in series, and the temperature rise is larger than that of the other portions. For this reason, when the temperature locally rises due to some cause such as shade or dust, the temperature of the portion increases at an accelerated rate, thereby reducing the power generation efficiency of the entire module. In an extreme case, the cell electrodes and the sealing material are thermally deteriorated, causing a failure called a hot spot.

ホットスポットを防止するため、いくつかのモジュール冷却手段が知られている。例えば、太陽電池モジュール裏面にフィンを設けるもの、太陽電池セルを水などの熱媒で冷却し同時にその熱で温水を利用するハイブリッドモジュール、放熱板を設けるもの、モジュール裏面に熱媒としての流体を満たすもの、水冷、空冷、放熱シート、ヒートパイプ等により冷却するものなどがある(例えば、特許文献1〜8)。 Several module cooling means are known to prevent hot spots. For example, a fin provided on the back surface of a solar cell module, a hybrid module that cools solar cells with a heat medium such as water and uses hot water at the same time, a heat radiation plate, a fluid as a heat medium on the back surface of the module There are those that are filled, water-cooled, air-cooled, those that are cooled by a heat radiating sheet, a heat pipe, etc. (for example, Patent Documents 1 to 8).

この他、光電変換セルの非受光面側の熱伝導性を良くして、熱を逃がすことも検討されている。例えば、特許文献9には光電変換セルを挟む樹脂シートに、受光面側より非受光面側に熱伝導性の良好なものを用いることで非受光面側から熱を放出することが提案されている。また、特許文献10では光電変換セルと非受光面側の充填材の間に熱伝導性の大きなシートを配設し、非受光面側の充填材に熱伝導性の大きな粒子を用いる技術が提案されている。   In addition, it has been studied to improve heat conductivity on the non-light-receiving surface side of the photoelectric conversion cell to release heat. For example, Patent Document 9 proposes that heat is released from the non-light-receiving surface side by using a resin sheet sandwiching the photoelectric conversion cell and having a good thermal conductivity from the light-receiving surface side to the non-light-receiving surface side. Yes. Patent Document 10 proposes a technique in which a sheet having high thermal conductivity is disposed between a photoelectric conversion cell and a filler on the non-light-receiving surface side, and particles having high thermal conductivity are used as the filler on the non-light-receiving surface side. Has been.

特開平11−36540号公報JP 11-36540 A 特開平10−62017号公報Japanese Patent Laid-Open No. 10-62017 特開2005−123452号公報Japanese Patent Laid-Open No. 2005-123452 特開平11−354819号公報Japanese Patent Laid-Open No. 11-354819 特開2005−18352号公報JP 2005-18352 A 特開2002−170974号公報JP 2002-170974 A 特開2005−136236号公報JP 2005-136236 A 特開平9−186353号公報JP-A-9-186353 特開平10−56189号公報JP-A-10-56189 特開2004−311455号公報JP 2004-31455 A

特許文献1〜8に開示されているように冷却装置を用いる場合は、大掛かりな付帯設備が必要となり、システムが複雑で大型化するだけでなく、コストアップとなる。このため、太陽熱温水とのハイブリッドなどを除けば採用になりにくい。太陽光による直接発電を主目的とするシステムでは、局所的な温度上昇が必至な集光型大型システムを除いて実用化されていない。また、非受光面側の熱伝導性を良好にする方法は簡便な方法だが、これまではシステムの最適化がなされていなかった。例えば、熱伝導性の良好な樹脂シートを用いても、その外層部が熱伝導性の低い層であれば、そこに熱が滞留する。このため、目的とするモジュール外部に熱を放出して、発電効率を上げる目的は達成されなかった。また、光電変換セルの非受光面に熱伝導性の大きなシートを配設する方法は、ホットスポットを抑制する有効な方法だが、光電変換セルを保護する機能は損なわれる。本発明の目的は、太陽電池モジュールの発熱初期の熱を拡散し、その温度上昇を緩やかにすることである。 When using a cooling device as disclosed in Patent Documents 1 to 8, a large incidental facility is required, which not only increases the system complexity and size but also increases the cost. For this reason, it is difficult to adopt except for a hybrid with solar hot water. A system mainly intended for direct power generation using sunlight has not been put into practical use except for a condensing large system that requires a local temperature rise. Moreover, the method for improving the thermal conductivity on the non-light-receiving surface side is a simple method, but the system has not been optimized so far. For example, even if a resin sheet with good thermal conductivity is used, if the outer layer portion is a layer with low thermal conductivity, heat stays there. For this reason, the purpose of releasing heat to the outside of the target module to increase the power generation efficiency has not been achieved. Moreover, the method of disposing a sheet having a large thermal conductivity on the non-light-receiving surface of the photoelectric conversion cell is an effective method for suppressing hot spots, but the function of protecting the photoelectric conversion cell is impaired. An object of the present invention is to diffuse the initial heat of the solar cell module and moderate its temperature rise.

本発明は、上記課題を解決するために、以下の手段を採用する。
(1)熱伝導率が0.3W/m・K以上の絶縁性材料で光電変換セルの非受光面側を封止した太陽電池モジュール。
(2)体積抵抗率が10Ω・cm以上の絶縁性材料である前記(1)に記載の太陽電池モジュール。
(3)絶縁性材料が、熱伝導率が5W/m・K以上の絶縁性無機充填材50〜90質量部とガラス転移温度が100℃以下の樹脂10〜50質量部を含有してなる絶縁性材料である前記(1)又(2)に記載の太陽電池モジュール。
(4)封止した絶縁性材料の厚さが0.1mm以上である前記(1)〜(3)のいずれか一項に記載の太陽電池モジュール。
The present invention employs the following means in order to solve the above problems.
(1) A solar cell module in which the non-light-receiving surface side of the photoelectric conversion cell is sealed with an insulating material having a thermal conductivity of 0.3 W / m · K or more.
(2) The solar cell module according to (1), which is an insulating material having a volume resistivity of 10 8 Ω · cm or more.
(3) Insulation in which the insulating material contains 50 to 90 parts by mass of an insulating inorganic filler having a thermal conductivity of 5 W / m · K or more and 10 to 50 parts by mass of a resin having a glass transition temperature of 100 ° C. or less. The solar cell module according to (1) or (2), wherein the solar cell module is a conductive material.
(4) The solar cell module according to any one of (1) to (3), wherein a thickness of the sealed insulating material is 0.1 mm or more.

本発明にかかる太陽電池モジュールは、簡便且つ安価な方法で、太陽電池モジュールの発熱初期の温度上昇を抑制することができる。 The solar cell module according to the present invention can suppress a temperature rise in the initial heat generation of the solar cell module by a simple and inexpensive method.

本発明において光電変換セルとは、光のエネルギーを電気エネルギーに変換する素子を示し、単結晶シリコン型、多結晶シリコン型、アモルファスシリコン型、化合物半導体型、有機半導体型、光増感型など多様な種類が知られている。本発明では特に限定しないが、最も普及が進んでいて実用データが豊富であり、最も温度上昇の影響が大きな単結晶や多結晶シリコン型太陽電池を主な対象とする。 In the present invention, the photoelectric conversion cell refers to an element that converts light energy into electric energy, and includes various types such as single crystal silicon type, polycrystalline silicon type, amorphous silicon type, compound semiconductor type, organic semiconductor type, and photosensitized type. Various types are known. Although not particularly limited in the present invention, the main target is a single crystal or polycrystalline silicon solar cell that is most popular, has abundant practical data, and has the greatest influence of temperature rise.

本発明において非受光面とは太陽光を受光する受光面の逆面を示す。受光面は太陽光を多く取り入れるために光透過性が必要だが、非受光面はこの必要性が少なく、むしろ入射した太陽光の変換効率を高めるために不透明にして光を散乱させることも行われている。 In the present invention, the non-light-receiving surface indicates the reverse surface of the light-receiving surface that receives sunlight. The light-receiving surface needs to be light transmissive in order to take in a lot of sunlight, but the non-light-receiving surface is less necessary. Rather, it is made opaque to scatter light to increase the conversion efficiency of incident sunlight. ing.

本発明において光電変換セルの非受光面を封止する絶縁性材料には、熱伝導性が0.3W/m・k以上、好ましくは0.5W/m・K、さらに好ましくは1.0W/m・K以上の絶縁性材料が用いられる。ここで熱伝導性が低ければ熱を拡散する効果が低下する。   In the present invention, the insulating material for sealing the non-light-receiving surface of the photoelectric conversion cell has a thermal conductivity of 0.3 W / m · k or more, preferably 0.5 W / m · K, more preferably 1.0 W / An insulating material of m · K or more is used. Here, if the thermal conductivity is low, the effect of diffusing heat decreases.

本発明において光電変換セルの非受光面を封止する絶縁性材料には、好ましくは10Ω・cm以上、さらに好ましくは1010Ω・cm以上の体積抵抗率を持つ絶縁性材料が用いられる。体積抵抗値が小さければ電流漏れや不必要な通電を起こしやすく、発電量の低減や故障の原因となる。 In the present invention, as the insulating material for sealing the non-light-receiving surface of the photoelectric conversion cell, an insulating material having a volume resistivity of preferably 10 8 Ω · cm or more, more preferably 10 10 Ω · cm or more is used. . If the volume resistance value is small, current leakage and unnecessary energization are likely to occur, resulting in a reduction in power generation and failure.

本発明の絶縁性材料に用いられる絶縁性無機充填材としては、熱伝導率が5W/m・K以上、好ましくは10W/m・K以上、かつ体積抵抗率が好ましくは10Ω・cm以上、さらに好ましくは1010Ω・cm以上の絶縁性無機充填材が用いられる。このような無機充填材としては、好ましくはB、Al、Mg、Ca、Si、Zn、Sn、Ti、Fe、Cu、Ni、Zrなどの金属元素の酸化物や水酸化物、窒化物、炭化物、硼化物などが用いられる。これらの中でも熱伝導性や吸湿性、化学的な安定性や価格などを考慮すると、Al、Mgの酸化物であるAlやMgO、水酸化物であるAl(OH)やMg(OH)、窒化物のAlNやBNなどが特に好ましい。これらの絶縁性無機充填材は、単独で用いることもできるが2種類以上の複数で用いることができる。この場合の熱伝導性は絶縁性無機充填材個々の熱伝導率を体積分率で加重平均して求められる。 The insulating inorganic filler used in the insulating material of the present invention has a thermal conductivity of 5 W / m · K or more, preferably 10 W / m · K or more, and a volume resistivity of preferably 10 8 Ω · cm or more. More preferably, an insulating inorganic filler of 10 10 Ω · cm or more is used. Such inorganic fillers are preferably oxides, hydroxides, nitrides and carbides of metal elements such as B, Al, Mg, Ca, Si, Zn, Sn, Ti, Fe, Cu, Ni, and Zr. , Borides and the like are used. Among these, in consideration of thermal conductivity, hygroscopicity, chemical stability and price, Al 2 O 3 and MgO which are oxides of Al and Mg, Al (OH) 3 and Mg (which are hydroxides) OH) 2 and nitrides such as AlN and BN are particularly preferred. These insulating inorganic fillers can be used alone, but can be used in a plurality of two or more. In this case, the thermal conductivity is obtained by weighted averaging the thermal conductivity of each insulating inorganic filler by the volume fraction.

本発明における絶縁性材料は絶縁性無機充填材とガラス転移温度が100℃以下、好ましくは80℃以下、さらに好ましくは60℃以下の樹脂を含むものである。樹脂のガラス転移温度が高ければ絶縁性材料が硬く、脆くなり、光電変換セルを保護する封止機能が低下する。このため、本発明では、樹脂と絶縁性無機充填材と共に樹脂を軟化させる可塑剤を用いることも可能である。この場合、絶縁性材料のガラス転移点は樹脂のガラス転移温度が適用される。 The insulating material in the present invention contains an insulating inorganic filler and a resin having a glass transition temperature of 100 ° C. or lower, preferably 80 ° C. or lower, more preferably 60 ° C. or lower. If the glass transition temperature of the resin is high, the insulating material is hard and brittle, and the sealing function for protecting the photoelectric conversion cell is lowered. For this reason, in this invention, it is also possible to use the plasticizer which softens resin with resin and an insulating inorganic filler. In this case, the glass transition temperature of the insulating material is the glass transition temperature of the resin.

本発明において用いられる樹脂としては、特に限定されないが、エチレン/酢酸ビニル共重合体(EVA)やエチレンやプロピレンなどのオレフィン系モノマーとアクリル酸、アクリル酸エチル、アクリル酸ブチル、アクリル酸オクチルなどのアクリル系やメタクリル酸、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチル、メタクリル酸オクチルなどのメタクリル系のモノマーやスチレンなどとの共重合体、エチレンやプロピレンとマレイン酸や無水マレイン酸、マレイン酸メチル、マレイン酸エチルエなどのマレイン酸系モノマーとの共重合体、エチレンやプロピレンとブタジエンやアクリロニトリルなどの共重合体、ポリエチレングリコールやポリプロピレングリコールなどの単独または共重合の高分子量樹脂、アクリル系やメタクリル系やスチレンなどのモノマーの単独または共重合体、ポリビニルブチラール樹脂、シリコーン樹脂やエポキシ樹脂などが用いられる。これらの樹脂は光電変換セルを保護の効果や絶縁性無機系充填材の安定保持などの効果などから分子量は大きい方が好ましく、一般には重量平均分子量が1万以上の樹脂を用いる。この他、低分子量の樹脂を用いて絶縁性材料を作製し、光電変換セルとの位置関係を固定しながら架橋結合を形成することも可能である。   The resin used in the present invention is not particularly limited, but includes ethylene / vinyl acetate copolymer (EVA), olefinic monomers such as ethylene and propylene, acrylic acid, ethyl acrylate, butyl acrylate, octyl acrylate, and the like. Acrylic, methacrylic acid, methyl methacrylate, ethyl methacrylate, butyl methacrylate, methacrylic monomers such as octyl methacrylate, copolymers with styrene, ethylene, propylene and maleic acid, maleic anhydride, methyl maleate , Copolymers with maleic monomers such as ethyl maleate, copolymers such as ethylene, propylene and butadiene, acrylonitrile, high molecular weight resins such as polyethylene glycol and polypropylene glycol, either alone or copolymerized, acrylic Homo or copolymers and methacrylic and monomers such as styrene, polyvinyl butyral resins, silicone resins and epoxy resin is used. These resins preferably have a large molecular weight in view of the effect of protecting the photoelectric conversion cell and the stable retention of the insulating inorganic filler. Generally, a resin having a weight average molecular weight of 10,000 or more is used. In addition, it is also possible to produce an insulating material using a low molecular weight resin and form a crosslink while fixing the positional relationship with the photoelectric conversion cell.

本発明における絶縁性材料で用いられる可塑剤は樹脂に応じて選択されるが、実質的に揮発性しないものが好ましい。実質的に揮発しないとは太陽電池モジュールが使用される環境では100℃程度の高温になることがあるが、この温度でも蒸気圧が無いものを言う。一般的に用いられる可塑剤としては、樹脂と類似した組成の低分子量体やポリエチレングリコールやポリプロレングリーコール、長鎖脂肪族アルコール、グリセリン、糖類などや長鎖脂肪酸、ソルビタン酸、フタル酸、マレイン酸、リン酸、アジピン酸、トリメリット酸、クエン酸などのエステル類やエーテル類などが用いられる。   The plasticizer used in the insulating material in the present invention is selected depending on the resin, but is preferably substantially non-volatile. The fact that it does not substantially volatilize means that the temperature may be as high as about 100 ° C. in an environment where the solar cell module is used, but there is no vapor pressure at this temperature. Commonly used plasticizers include low molecular weight compounds having a composition similar to that of resins, polyethylene glycol, polyprolene col, long chain fatty alcohols, glycerin, saccharides, etc., long chain fatty acids, sorbitan acid, phthalic acid, malein Acids, phosphoric acid, adipic acid, trimellitic acid, citric acid, and other esters and ethers are used.

本発明における絶縁性材料は、絶縁性無機充填材50〜90質量部と樹脂10〜50質量部を含むものである。ここで絶縁性無機充填材が少なければ熱導電性が低くなり、多ければ脆くなって光電変換セルを保護する機能が低下する。樹脂が少ないと脆くなり、多ければ熱伝導性が低くなる。また、本発明では熱伝導性や絶縁性などの特性が外れない範囲で絶縁性有機充填材や導電性無機充填材などを併用することができる。 The insulating material in this invention contains 50-90 mass parts of insulating inorganic fillers and 10-50 mass parts of resin. Here, if there are few insulating inorganic fillers, thermal conductivity will become low, and if there are many, it will become weak and the function which protects a photoelectric conversion cell will fall. If there is little resin, it will become weak, and if there is much resin, thermal conductivity will become low. Moreover, in this invention, an insulating organic filler, a conductive inorganic filler, etc. can be used together in the range in which characteristics, such as heat conductivity and insulation, do not deviate.

本発明の太陽電池モジュールは、封止した絶縁性材料の厚さが、最も薄い部分で0.1mm以上、好ましくは0.2mm以上、さらに好ましくは0.3mm以上である。絶縁性材料が薄ければ熱伝導の隘路となり、熱拡散性を阻害し、厚過ぎれば高価格な絶縁性材料の使用量が増え、コストアップになる。   In the solar cell module of the present invention, the thickness of the sealed insulating material is 0.1 mm or more at the thinnest portion, preferably 0.2 mm or more, and more preferably 0.3 mm or more. If the insulating material is thin, it becomes a bottleneck for heat conduction, impairing the thermal diffusivity, and if it is too thick, the amount of expensive insulating material used increases and the cost increases.

本発明の太陽電池モジュールは、封止した絶縁性材料の熱伝導率の異方性が少ないものが好ましく、光電変換セルに対する水平面と垂直面の熱伝導率の比率が好ましくは5以下、さらに好ましくは3以下である。これは、光電変換セルで発生した熱は垂直方向で伝わった後、水平方向の伝熱で拡散されることから、熱伝導性の異方性が大きければ熱伝導率の伝達が小さな方に制約されることになる。また、 The solar cell module of the present invention preferably has a low thermal conductivity anisotropy of the sealed insulating material, and the ratio of the thermal conductivity between the horizontal plane and the vertical plane with respect to the photoelectric conversion cell is preferably 5 or less, more preferably. Is 3 or less. This is because the heat generated in the photoelectric conversion cell is transferred in the vertical direction and then diffused in the horizontal direction, so if the thermal conductivity anisotropy is large, the transfer of thermal conductivity is limited to the smaller one. Will be. Also,

本発明の太陽電池モジュールは、封止した絶縁性材料の絶縁性の異方性が少ないものが好ましく、光電変換セルに対する水平面と垂直面の電気抵抗の比率が好ましくは5以下、さらに好ましくは3以下である。これは、絶縁性の異方性が大きい場合は異方導電性が存在することであり、封止工程や使用中のモジュールに応力がかかった場合に異方性が乱れて、故障や不具合の原因となりやすい。 The solar cell module of the present invention preferably has a low insulation anisotropy of the sealed insulating material, and the ratio of the electrical resistance between the horizontal plane and the vertical plane with respect to the photoelectric conversion cell is preferably 5 or less, more preferably 3 It is as follows. This is because anisotropic conductivity exists when the anisotropy of insulation is large, and the anisotropy is disturbed when stress is applied to the sealing process or the module being used, causing failure or malfunction. Prone to cause.

本発明の太陽電池モジュールの受光面側は特に限定されない。太陽光を受光するために透明であることは必須だが、最も多く用いられている構造は、最外層に強化ガラスを用い、エチレン/酢ビ共重合樹脂やエチレン/アクリル酸共重合樹脂、ポリビニルブチラール樹脂で封止している。本発明でもこのまま用いることが好ましいが、特に限定されない。   The light receiving surface side of the solar cell module of the present invention is not particularly limited. It is essential to be transparent in order to receive sunlight, but the most commonly used structure uses tempered glass as the outermost layer, ethylene / vinyl acetate copolymer resin, ethylene / acrylic acid copolymer resin, polyvinyl butyral Sealed with resin. Although it is preferable to use it as it is in the present invention, it is not particularly limited.

以下、実施例によって本発明を詳細に説明する。
1)絶縁性材料の作製
表1に示した配合で、EVA樹脂エバフレックスEV250(三井デュポンポリケミカル社製、酢酸ビニル含有量28重量%、ガラス転移温度−28℃、軟化温度39℃)と熱伝導率32W/m・Kのアルミナ充填材DAW70(電気化学工業社製、平均粒径70μm)及び熱伝導率32W/m・KのDAW05(電気化学工業社製、平均粒径5μm)を加熱ロールを用いて、150℃で混練し、絶縁性材料を作製した。これを油圧プレス機で温度120℃/10mPaで成形し、厚さ1.0mmのシートとした。
2)熱伝導率、体積抵抗率、硬度の測定
作製したシートの熱伝導率と体積抵抗率(JIS K 7194準拠)、硬度(アスカーC)を測定した。
(熱伝導率)
熱伝導性シートの熱伝導率はTO−3型銅製ヒーターケースと銅板の間にシート厚さが10%圧縮されるようにネジ止めした後、ヒーターケースに電力15Wをヒーターケースと銅板との温度差が一定になるまでかけ、その温度差を測定し下記式(1)より熱抵抗を算出した。
熱抵抗(℃/W)=温度差(℃)/印加電圧(W) 式(1)
得られた熱抵抗の値をもとに下記式(2)より熱伝導率を算出した。なお、ここでの熱伝導性シートの厚みは熱抵抗測定時の厚み(シート厚さが10%圧縮されるようにネジ止めし、熱抵抗を測定した厚み)である。また伝熱面積は、TO−3型の伝熱面積0.0006mmである。
熱伝導率(W/m・K)=
熱伝導性シート厚み(m)/{熱抵抗(℃/W)×伝熱面積(m)} 式(2)
(アスカーC硬度)
作製したシートの温度23℃でのアスカー硬度Cを測定した。ここでアスカーC硬度とは、日本ゴム協会標準規格で定めるSRIS0l0lである。
2)モジュール作製
500mm×500mm×3mm(厚さ)の太陽電池用カバーガラス上に、受光面側充填材として厚さが0.8mmの太陽電池封止材用EVAシート(SOLAR EVA、三井化学ファブロ社製)を敷き、その上にモジュール外部に電気を取り出せるように直列に接続した3枚の光電変換セル(多結晶シリコン、150mm×150mm×0.25mm)を中心に1cm間隔で直列に載せ、さらにその上に非受光面側充填材としてのシート1〜4及び比較例として受光面側充填材と同じEVAシートを敷き、更に裏面材としてフッ素樹脂フィルムとPET樹脂のラミネートシートをフッ素樹脂面が最上部になるように重ね、太陽電池製造用ラミネーターで封止処理した。処理条件は温度120℃で真空2分の後、大気圧加圧10分、更に大気圧加圧下150℃で30分圧着した。端面処理は特に行わなかった。
3)モジュールの初期評価
得られた太陽電池モジュールをJIS C 8917の参考1 ホットスポット試験(第1)A−6に準拠した方法で評価した。但し、評価対象を中心のセルのみとし、全体遮蔽の有無による温度上昇を5分毎に測定し、最大温度とそれに達した時間を記録した。結果を表2にまとめた。
Hereinafter, the present invention will be described in detail by way of examples.
1) Production of insulating material EVA resin EVAflex EV250 (manufactured by Mitsui DuPont Polychemical Co., Ltd., vinyl acetate content 28% by weight, glass transition temperature -28 ° C, softening temperature 39 ° C) with the composition shown in Table 1 and heat Heating roll of alumina filler DAW70 (made by Denki Kagaku Kogyo Co., Ltd., average particle size 70 μm) with conductivity 32 W / m · K and DAW05 (made by Denki Kagaku Kogyo Co., Ltd., average particle size 5 μm) with a thermal conductivity of 32 W / m · K Was used and kneaded at 150 ° C. to produce an insulating material. This was molded with a hydraulic press at a temperature of 120 ° C./10 mPa to obtain a sheet having a thickness of 1.0 mm.
2) Measurement of thermal conductivity, volume resistivity, and hardness The thermal conductivity, volume resistivity (based on JIS K 7194), and hardness (Asker C) of the prepared sheet were measured.
(Thermal conductivity)
The thermal conductivity of the heat conductive sheet is fixed between the TO-3 type copper heater case and the copper plate so that the sheet thickness is compressed by 10%, and then the heater case is supplied with electric power of 15 W between the heater case and the copper plate. The temperature difference was measured until the difference became constant, and the thermal resistance was calculated from the following formula (1).
Thermal resistance (° C./W)=Temperature difference (° C.) / Applied voltage (W) Equation (1)
Based on the obtained thermal resistance value, the thermal conductivity was calculated from the following formula (2). In addition, the thickness of a heat conductive sheet here is the thickness at the time of a thermal resistance measurement (The thickness which screwed so that sheet thickness might be compressed 10%, and measured thermal resistance). The heat transfer area is a TO-3 type heat transfer area of 0.0006 mm 2 .
Thermal conductivity (W / m · K) =
Thermally conductive sheet thickness (m) / {thermal resistance (° C./W)×heat transfer area (m 2 )} Formula (2)
(Asker C hardness)
The Asker hardness C at a temperature of 23 ° C. of the produced sheet was measured. Here, the Asker C hardness is SRISOlOl defined by the Japan Rubber Association standard.
2) Module production EVA sheet for solar cell sealing material (SOLAR EVA, Mitsui Chemicals Fabro Inc.) having a thickness of 0.8 mm as a light-receiving surface side filler on a 500 mm × 500 mm × 3 mm (thickness) solar cell cover glass Placed in series at a 1 cm interval around three photoelectric conversion cells (polycrystalline silicon, 150 mm × 150 mm × 0.25 mm) connected in series so that electricity can be taken out of the module. Further, sheets 1 to 4 as the non-light-receiving surface side filler and the same EVA sheet as the light-receiving surface side filler as a comparative example are laid thereon, and a fluorine resin film and a laminate sheet of PET resin are further used as the back material. They were stacked so as to be at the top and sealed with a solar cell laminator. The treatment conditions were as follows: a temperature of 120 ° C., a vacuum for 2 minutes, an atmospheric pressure press for 10 minutes, and an atmospheric pressure press at 150 ° C. for 30 minutes. No end face treatment was performed.
3) Initial evaluation of module The obtained solar cell module was evaluated by a method based on Reference 1 hot spot test (first) A-6 of JIS C 8917. However, the evaluation target was only the central cell, the temperature rise due to the presence or absence of the entire shielding was measured every 5 minutes, and the maximum temperature and the time reached were recorded. The results are summarized in Table 2.

Figure 2011077160
Figure 2011077160

Figure 2011077160
Figure 2011077160

実施例と比較例から本発明の太陽電池モジュールは、太陽電池モジュールの発熱初期の温度上昇を緩やかにすることができた。従って、ホットスポット現象の発生を抑制することが期待できる。
From the examples and comparative examples, the solar cell module of the present invention was able to moderate the temperature rise in the initial heat generation of the solar cell module. Therefore, it can be expected to suppress the occurrence of the hot spot phenomenon.

Claims (4)

熱伝導率が0.3W/m・K以上の絶縁性材料で光電変換セルの非受光面側を封止した太陽電池モジュール。 A solar cell module in which a non-light-receiving surface side of a photoelectric conversion cell is sealed with an insulating material having a thermal conductivity of 0.3 W / m · K or more. 体積抵抗率が10Ω・cm以上の絶縁性材料である請求項1に記載の太陽電池モジュール。 The solar cell module according to claim 1, which is an insulating material having a volume resistivity of 10 8 Ω · cm or more. 絶縁性材料が、熱伝導率が5W/m・K以上の絶縁性無機充填材50〜90質量部とガラス転移温度が100℃以下の樹脂10〜50質量部を含有してなる絶縁性材料である請求項1又2に記載の太陽電池モジュール。 The insulating material is an insulating material comprising 50 to 90 parts by mass of an insulating inorganic filler having a thermal conductivity of 5 W / m · K or more and 10 to 50 parts by mass of a resin having a glass transition temperature of 100 ° C. or less. The solar cell module according to claim 1 or 2. 封止した絶縁性材料の厚さが0.1mm以上である請求項1〜3のいずれか一項に記載の太陽電池モジュール。


The solar cell module according to any one of claims 1 to 3, wherein the sealed insulating material has a thickness of 0.1 mm or more.


JP2009224908A 2009-09-29 2009-09-29 Solar cell module Pending JP2011077160A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009224908A JP2011077160A (en) 2009-09-29 2009-09-29 Solar cell module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009224908A JP2011077160A (en) 2009-09-29 2009-09-29 Solar cell module

Publications (1)

Publication Number Publication Date
JP2011077160A true JP2011077160A (en) 2011-04-14

Family

ID=44020865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009224908A Pending JP2011077160A (en) 2009-09-29 2009-09-29 Solar cell module

Country Status (1)

Country Link
JP (1) JP2011077160A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013120817A (en) * 2011-12-07 2013-06-17 Bridgestone Corp Solar battery-sealing film and solar battery using the same
JP2014022428A (en) * 2012-07-13 2014-02-03 Sharp Corp Solar cell and solar cell module
JPWO2013089047A1 (en) * 2011-12-12 2015-04-27 シャープ株式会社 Solar cell module and solar power generation system
KR20180115269A (en) * 2016-02-25 2018-10-22 니폰 제온 가부시키가이샤 HEAT CONDUCTIVE SHEET, METHOD FOR MANUFACTURING THE SAME,
JPWO2017145954A1 (en) * 2016-02-25 2018-12-13 日本ゼオン株式会社 HEAT CONDUCTIVE SHEET, PROCESS FOR PRODUCING THE SAME, AND HEAT DISSULATING DEVICE

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013120817A (en) * 2011-12-07 2013-06-17 Bridgestone Corp Solar battery-sealing film and solar battery using the same
JPWO2013089047A1 (en) * 2011-12-12 2015-04-27 シャープ株式会社 Solar cell module and solar power generation system
JP2014022428A (en) * 2012-07-13 2014-02-03 Sharp Corp Solar cell and solar cell module
KR20180115269A (en) * 2016-02-25 2018-10-22 니폰 제온 가부시키가이샤 HEAT CONDUCTIVE SHEET, METHOD FOR MANUFACTURING THE SAME,
JPWO2017145957A1 (en) * 2016-02-25 2018-12-13 日本ゼオン株式会社 HEAT CONDUCTIVE SHEET, PROCESS FOR PRODUCING THE SAME, AND HEAT DISSULATING DEVICE
JPWO2017145954A1 (en) * 2016-02-25 2018-12-13 日本ゼオン株式会社 HEAT CONDUCTIVE SHEET, PROCESS FOR PRODUCING THE SAME, AND HEAT DISSULATING DEVICE
KR102567381B1 (en) 2016-02-25 2023-08-14 니폰 제온 가부시키가이샤 Thermal conduction sheet, manufacturing method thereof, and heat dissipation device

Similar Documents

Publication Publication Date Title
JP2011077310A (en) Solar cell module
TWI396290B (en) Photovoltaic cell module
JP5385666B2 (en) Manufacturing method of solar cell module
WO2011105389A1 (en) Solar cell module
JP2011077160A (en) Solar cell module
JP2014514524A5 (en)
JP5587659B2 (en) Solar cell sealing film and solar cell using the same
JP2009032852A (en) Solar-battery module
JP2010141156A (en) Solar battery module
US20160013343A1 (en) Integrated photovoltaic and thermal module (pvt)
EP2360741A2 (en) Photovoltaic module and method for manufacturing the same
US20140332074A1 (en) Solar cell module
KR20130056115A (en) Solar cell module
KR101575177B1 (en) Solar cell module with internal heat-transfer element
JP6054664B2 (en) Solar cell sealing film and method for selecting the same
JP4740101B2 (en) Solar cell sealing film and solar cell using the same
KR101004029B1 (en) Photo Voltaic module with heat radiating EVA layer
JP2004311455A (en) Solar cell module
JP5893908B2 (en) Solar cell sealing film and solar cell using the same
NL2012989B1 (en) Photovoltaic panels.
JP3184620U (en) Solar cell module
JP2013008761A (en) Solar cell sealing film and solar cell using the same
JP2006278709A (en) Solar battery module
JP2011192694A (en) Sealing film for solar cell, and solar cell using the same
JPH1056189A (en) Solar battery module