JP2011077006A - Manufacturing method of electrode catalyst layer for solid polymer fuel cell, electrode catalyst layer for solid polymer electrolyte fuel cell, manufacturing method of membrane-electrode assembly, and membrane-electrode assembly - Google Patents

Manufacturing method of electrode catalyst layer for solid polymer fuel cell, electrode catalyst layer for solid polymer electrolyte fuel cell, manufacturing method of membrane-electrode assembly, and membrane-electrode assembly Download PDF

Info

Publication number
JP2011077006A
JP2011077006A JP2009230327A JP2009230327A JP2011077006A JP 2011077006 A JP2011077006 A JP 2011077006A JP 2009230327 A JP2009230327 A JP 2009230327A JP 2009230327 A JP2009230327 A JP 2009230327A JP 2011077006 A JP2011077006 A JP 2011077006A
Authority
JP
Japan
Prior art keywords
catalyst layer
membrane
proton
electrode
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009230327A
Other languages
Japanese (ja)
Other versions
JP5463833B2 (en
Inventor
Madoka Teramoto
まどか 寺本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2009230327A priority Critical patent/JP5463833B2/en
Publication of JP2011077006A publication Critical patent/JP2011077006A/en
Application granted granted Critical
Publication of JP5463833B2 publication Critical patent/JP5463833B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of an electrode catalyst layer for a solid polymer fuel cell and the electrode catalyst layer for the solid polymer fuel cell, wherein when obtaining the solid polymer fuel cell, all of a gas channel, a proton conductive path, and a three-phase interface can be increased by using freeze-drying method. <P>SOLUTION: The method is carried out through a process which includes: (1) a step of coating a dispersion liquid containing proton conductive polymer on a base material surface, freezing it before a solvent is dried, and drying is carried out in a vacuum; (2) a step of impregnating and drying a dispersion liquid of catalyst-carrying carbon into a porous membrane of the proton conductive polymer obtained in the step (1); and (3) a step of impregnating and drying the dispersion liquid of the proton conductive polymer in an intermediate into which the catalyst-carrying carbon is impregnated in pores of the porous membrane of the proton conductive polymer obtained in the step (2). <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、固体高分子型燃料電池用電極触媒層の製造方法および固体高分子型燃料電池用電極触媒層とそれを用いた固体高分子型燃料電池に関するものである。   The present invention relates to a method for producing an electrode catalyst layer for a polymer electrolyte fuel cell, an electrode catalyst layer for a polymer electrolyte fuel cell, and a polymer electrolyte fuel cell using the same.

燃料電池は水素、酸素を燃料として、水の電気分解の逆反応を起こさせることにより電気を生み出す発電システムである。これは、従来の発電方式と比較して高効率、低環境負荷、低騒音といった特徴を持ち、将来のクリーンなエネルギー源として注目されている。中でも室温付近で使用可能な固体高分子型燃料電池は車載用電源や家庭用定置電源などへの使用が有望視されており、近年、様々な研究開発が行われている。   A fuel cell is a power generation system that generates electricity by using hydrogen and oxygen as fuel and causing reverse reaction of water electrolysis. This has features such as high efficiency, low environmental load and low noise compared with the conventional power generation method, and is attracting attention as a clean energy source in the future. In particular, polymer electrolyte fuel cells that can be used near room temperature are considered promising for use in in-vehicle power sources and household stationary power sources, and various research and development have been conducted in recent years.

燃料電池の実用化に向けての課題は、出力密度、ガス利用率、耐久性の向上、コスト削減などが挙げられる。出力密度、ガス利用率を向上させるためには、燃料ガス、プロトンの供給が十分であり、かつ触媒電極中での酸化還元反応サイトの表面積をより大きくする必要がある。コスト削減のために最も要求されているのは、電極に触媒として使用されている白金の使用量の低減である。   Issues for the practical application of fuel cells include power density, gas utilization, improved durability, and cost reduction. In order to improve the power density and the gas utilization rate, it is necessary to supply fuel gas and proton sufficiently and to increase the surface area of the oxidation-reduction reaction site in the catalyst electrode. The most demanded for cost reduction is a reduction in the amount of platinum used as a catalyst for the electrode.

固体高分子型燃料電池は、一般的に、多数の単セルが積層されて構成されている。単セルは、酸化極と還元極の二つの電極で固体高分子電解質膜を挟んで接合した膜・電極接合体を、ガス流路を有するセパレータで挟んだ構造をしている。酸化極では水素ガスの酸化、還元極では水素イオンの還元がそれぞれ起こる。この酸化還元反応は、電極内部において、電子伝導体であるカーボン粒子と、プロトン伝導体の両方に接し、かつ導入ガスが吸着しうる触媒の表面でのみ起こる。酸化還元反応が起こるこの部分は、三相界面と呼ばれている。この三相界面の面積が大きく、かつ三相界面へのプロトン、燃料ガスの供給パスを満足させることが、単セルの出力密度、ガス利用率の向上へとつながる。
このためには触媒層中のガスの拡散性や発生した水の排水性、プロトン伝導性高分子の含水率およびプロトン伝導性などを向上させる必要がある。また、三相界面ではないところに存在する白金触媒粒子は、電極の酸化還元反応に寄与しないため、全く機能しないことになる。白金使用量を低減させるためには、この機能しない白金の量をできるだけ減らし、使用した白金の有効利用率を高める必要がある。
A polymer electrolyte fuel cell is generally configured by laminating a large number of single cells. A single cell has a structure in which a membrane / electrode assembly formed by sandwiching a solid polymer electrolyte membrane between two electrodes, an oxidation electrode and a reduction electrode, is sandwiched by a separator having a gas flow path. Oxidation of hydrogen gas occurs at the oxidation electrode, and reduction of hydrogen ions occurs at the reduction electrode. This oxidation-reduction reaction occurs inside the electrode only on the surface of the catalyst that is in contact with both the carbon particles that are the electron conductor and the proton conductor and that can adsorb the introduced gas. This part where the redox reaction takes place is called the three-phase interface. The large area of the three-phase interface and satisfying the proton and fuel gas supply path to the three-phase interface lead to an improvement in the output density and gas utilization rate of the single cell.
For this purpose, it is necessary to improve the diffusibility of the gas in the catalyst layer, the drainage of the generated water, the water content of the proton conductive polymer, the proton conductivity, and the like. In addition, platinum catalyst particles that are not located at the three-phase interface do not contribute to the oxidation-reduction reaction of the electrode, and thus do not function at all. In order to reduce the amount of platinum used, it is necessary to reduce the amount of platinum that does not function as much as possible and increase the effective utilization rate of the platinum used.

従来、触媒層は、触媒担持カーボンとプロトン伝導性高分子と溶媒を混同したインクを各種塗布法やスクリーン印刷法などで基材上に形成することが多かった。この場合、塗工された触媒インクを乾燥させる際に触媒担持カーボンの凝集が起こりやすく、その結果、触媒とプロトン伝導性高分子との界面が減ったり、触媒層における空隙率が低下して燃料ガスの経路が遮断されたりして、セルの出力密度が低下するなどの傾向が見られた。   Conventionally, the catalyst layer is often formed on a base material by various coating methods, screen printing methods, or the like, by mixing a catalyst-supporting carbon, a proton conductive polymer, and a solvent. In this case, agglomeration of the catalyst-supported carbon is likely to occur when the coated catalyst ink is dried. As a result, the interface between the catalyst and the proton-conductive polymer is reduced, or the porosity in the catalyst layer is reduced to reduce the fuel. There was a tendency for the power density of the cell to decrease due to the gas path being cut off.

そこで、触媒担持カーボンの凝集を防ぎ三相界面を増やすために凍結乾燥を用いる試みがなされている(たとえば、特許文献1、2参照)。凍結乾燥は、水を含んだ材料を凍結し真空下で氷を昇華させることにより乾燥を行うもので、凍結乾燥後の材料は凍結した際の形状を保つことができ、従来は食品工業における保存食品製造や医学・薬学分野において利用されている乾燥方法である。特許文献1は、触媒担持カーボンとプロトン伝導性高分子と溶媒を混合したインクを凍結乾燥した後に熱処理を行い粉砕して触媒層構成粉末を得、その粉末をシート化することで触媒層を得るものである。しかしながら、特許文献1による方法では、反応点は増大してもプロトン伝導性高分子によるプロトン伝導パスの形成が不十分であり、プロトン伝導性の低下により触媒層抵抗が大きくなるために発電性能がそれほど伸びない懸念がある。また、特許文献2は、触媒担持カーボンとプロトン伝導性高分子と溶媒を混合したインクを凍結乾燥したものに溶媒を添加して再インク化し塗布することで触媒層を得るものである。特許文献2による方法では、再インク化の際の分散混合によりプロトン伝導性高分子の吸着が剥がれて触媒担持カーボンの凝集が起こったり、ガスチャネルとなる空孔が潰れたりして発電特性はやはりそれほど向上しない。   Thus, attempts have been made to use freeze-drying in order to prevent aggregation of the catalyst-supporting carbon and increase the three-phase interface (see, for example, Patent Documents 1 and 2). Freeze-drying is performed by freezing water-containing material and sublimating the ice under vacuum. The material after freeze-drying can maintain its shape when frozen, and is conventionally stored in the food industry. It is a drying method used in the food manufacturing and medical / pharmaceutical fields. Patent Document 1 discloses that a catalyst layer-constituting powder is obtained by freeze-drying an ink in which catalyst-supported carbon, proton conductive polymer, and a solvent are mixed, followed by heat treatment and pulverizing, and obtaining the catalyst layer by forming the powder into a sheet. Is. However, in the method according to Patent Document 1, the formation of a proton conduction path by the proton conducting polymer is insufficient even when the reaction point is increased, and the resistance of the catalyst layer increases due to the decrease in proton conductivity. There are concerns that it will not grow that much. In Patent Document 2, a catalyst layer is obtained by adding a solvent to a freeze-dried ink obtained by mixing catalyst-carrying carbon, a proton conductive polymer, and a solvent, and applying the ink again. In the method according to Patent Literature 2, the adsorption of the proton-conductive polymer is peeled off due to dispersion mixing during reinking, and the catalyst-carrying carbon is agglomerated or the pores serving as gas channels are crushed. Not much improvement.

特開平8−185865号公報JP-A-8-185865 特開2003−86190号公報JP 2003-86190 A

本発明は、上記問題を解決するためになされたものであり、固体高分子型燃料電池を得るに際して、凍結乾燥法を用いて、ガスチャネル、プロトン伝導パス、三相界面の全てを増大させることができる固体高分子型燃料電池用電極触媒層の製造方法および固体高分子型燃料電池用電極触媒層を提供することを目的とする。   The present invention has been made to solve the above problems, and in obtaining a polymer electrolyte fuel cell, the gas channel, the proton conduction path, and the three-phase interface are all increased using a freeze-drying method. It is an object of the present invention to provide a method for producing an electrode catalyst layer for a polymer electrolyte fuel cell and an electrode catalyst layer for a polymer electrolyte fuel cell.

上記の課題を解決するための手段として、請求項1に記載の発明は、(1)プロトン伝導性高分子を含む分散液を基材表面に塗布し溶媒が乾燥する前に凍結させ真空下で乾燥する工程と、(2)前記工程(1)で得たプロトン伝導性高分子の多孔膜に、触媒担持カーボンの分散液を含浸させ乾燥させる工程と、(3)前記工程(2)で得たプロトン伝導性高分子の多孔膜の細孔に触媒担持カーボンを含浸させた中間体に、プロトン伝導性高分子の分散液を含浸させ乾燥させる工程とを有することを特徴とする固体高分子型燃料電池用電極触媒層の製造方法である。   As means for solving the above-mentioned problems, the invention according to claim 1 is: (1) A dispersion containing a proton-conductive polymer is applied to the surface of a substrate and frozen before the solvent is dried. A step of drying, (2) a step of impregnating the porous membrane of the proton conductive polymer obtained in the step (1) with a dispersion of the catalyst-supporting carbon and drying, and (3) obtained in the step (2). A solid polymer type comprising a step of impregnating a catalyst-supported carbon in the pores of a porous membrane of a proton conductive polymer impregnated with a catalyst-supported carbon and impregnating the intermediate with a dispersion of the proton conductive polymer It is a manufacturing method of the electrode catalyst layer for fuel cells.

また、請求項2に記載の発明は、高分子電解質膜と前記高分子電解質膜を狭持した一対の電極触媒層とからなる膜電極接合体の製造方法であって、請求項1に記載の製造方法により得られた電極触媒層を少なくとも前記高分子電解質膜のカソード側に配置して、前記高分子電解質膜のガラス転移点である温度下で加圧することにより密着させることを特徴とする膜電極接合体の製造方法である。   The invention according to claim 2 is a method for producing a membrane electrode assembly comprising a polymer electrolyte membrane and a pair of electrode catalyst layers sandwiching the polymer electrolyte membrane, and the method according to claim 1. A membrane characterized in that an electrode catalyst layer obtained by a production method is disposed at least on the cathode side of the polymer electrolyte membrane, and is brought into close contact with the polymer electrolyte membrane by applying pressure at a temperature that is a glass transition point of the polymer electrolyte membrane. It is a manufacturing method of an electrode assembly.

また、請求項3に記載の発明は、請求項2に記載の製造方法により得られた膜電極接合体である。   The invention according to claim 3 is a membrane electrode assembly obtained by the manufacturing method according to claim 2.

また、請求項4に記載の発明は、触媒担持カーボン、プロトン伝導性高分子を含む固体高分子型燃料電池用電極触媒層であって、プロトン伝導性高分子を含む分散液を基材表面に塗布し溶媒が乾燥する前に凍結させ真空下で乾燥する工程を経ることにより、プロトン伝導性高分子が連続な多孔体であることを特徴とする固体高分子型燃料電池用電極触媒層である。   The invention according to claim 4 is an electrode catalyst layer for a polymer electrolyte fuel cell containing catalyst-supporting carbon and a proton conducting polymer, and a dispersion containing the proton conducting polymer is applied to the surface of the substrate. An electrode catalyst layer for a solid polymer fuel cell, wherein the proton-conductive polymer is a continuous porous body by passing through a step of freezing before drying the solvent and drying under vacuum .

請求項1に係る発明によれば、プロトン伝導性高分子から成る多孔体を得ることができ、これに触媒担持カーボンとプロトン伝導性高分子の分散液を含浸させることにより、プロトン伝導性高分子から成る多孔体の表面にプロトン伝導性高分子でコートされた触媒担持カーボンが吸着し、ガスチャネル、プロトン伝導パス、三相界面の全てが増大した固体高分子型燃料電池用電極触媒層を製造することができた。   According to the invention of claim 1, a porous body made of a proton conductive polymer can be obtained, and impregnated with a dispersion of catalyst-carrying carbon and proton conductive polymer to thereby obtain a proton conductive polymer. The catalyst-supported carbon coated with the proton conducting polymer is adsorbed on the surface of the porous material, and the electrode catalyst layer for the polymer electrolyte fuel cell is manufactured with the gas channel, proton conducting path, and three-phase interface all increased. We were able to.

請求項2に係る発明によれば、ガスチャネル、プロトン伝導パス、三相界面の全てが増大し、発電性能が向上した膜電極接合体を製造することができた。   According to the second aspect of the present invention, the gas channel, proton conduction path, and three-phase interface are all increased, and a membrane electrode assembly with improved power generation performance can be manufactured.

請求項3に係る発明によれば、ガスチャネル、プロトン伝導パス、三相界面の全てが増大した電極触媒層を用いたことにより、燃料電池の発電性能を向上させることができた。   According to the third aspect of the invention, the power generation performance of the fuel cell can be improved by using the electrode catalyst layer in which all of the gas channel, proton conduction path, and three-phase interface are increased.

請求項4に係る発明によれば、プロトン伝導性高分子から成る多孔体を得ることができ、これを電極触媒層に用いることにより、ガスチャネルおよびプロトン伝導パスを増大させることができた。   According to the invention of claim 4, a porous body made of a proton conductive polymer can be obtained, and by using this for the electrode catalyst layer, the gas channel and the proton conduction path can be increased.

本発明の製造方法による電極触媒層の各工程での様態変化の模式断面図である。It is a schematic cross section of a mode change in each process of an electrode catalyst layer by a manufacturing method of the present invention. 本発明の電極触媒層の三相界面の模式図である。It is a schematic diagram of the three-phase interface of the electrode catalyst layer of this invention. 本発明の電極触媒層を用いた膜電極接合体の模式断面図である。It is a schematic cross section of the membrane electrode assembly using the electrode catalyst layer of the present invention.

以下に本発明の実施の形態を詳細に説明する。なお、本実施の形態は本発明の一例であり、本発明を限定するものではない。lang=EN-US> 本発明は、触媒担持カーボン、プロトン伝導性高分子を含む固体高分子型燃料電池用電極触媒層を得るに際して、プロトン伝導性高分子を含む分散液を基材表面に塗布し溶媒が乾燥する前に凍結させ真空下で乾燥することによりプロトン伝導性高分子多孔体を得、該プロトン伝導性高分子多孔体に触媒担持カーボンの分散液を含浸させ乾燥させることで、細孔の表面に触媒担持カーボンが付着した中間体を得、さらに前記中間体にプロトン伝導性高分子の分散液を含浸させ乾燥させることにより、ガスチャネル、プロトンパス、三相界面を効率的に形成するものである。   Hereinafter, embodiments of the present invention will be described in detail. Note that this embodiment is an example of the present invention and does not limit the present invention. lang = EN-US> In the present invention, when obtaining an electrode catalyst layer for a solid polymer fuel cell containing a catalyst-supporting carbon and a proton conducting polymer, a dispersion containing the proton conducting polymer is applied to the substrate surface. Before the solvent is dried, it is frozen and dried under vacuum to obtain a proton conductive polymer porous material. The proton conductive polymer porous material is impregnated with a catalyst-supported carbon dispersion and dried. Efficient formation of gas channels, proton paths, and three-phase interfaces is achieved by obtaining an intermediate with catalyst-supported carbon adhering to the surface of the pores, and further impregnating the intermediate with a dispersion of proton-conducting polymer and drying. To do.

本発明で用いる触媒としては白金、パラジウム、ルテニウム、イリジウム、ロジウム、オスミウムの白金族元素の他、鉄、鉛、銅、クロム、コバルト、ニッケル、マンガン、バナジウム、モリブデン、ガリウム、アルミニウムなどの金属またはこれらの合金、または酸化物、複酸化物、炭化物などが使用できる。
またこれらの触媒の粒径は、大きすぎる場合、触媒の質量あたりの比表面積が低下し、その結果、触媒の単位質量当たりの得られる電流値が小さくなる。逆に小さすぎる場合は、触媒の安定性が低下するため、0.5〜50nmが、好ましく、更に好ましくは1〜5nmである。
As a catalyst used in the present invention, a platinum group element such as platinum, palladium, ruthenium, iridium, rhodium, osmium, a metal such as iron, lead, copper, chromium, cobalt, nickel, manganese, vanadium, molybdenum, gallium, aluminum or the like These alloys, oxides, double oxides, carbides, etc. can be used.
Moreover, when the particle size of these catalysts is too large, the specific surface area per mass of the catalyst decreases, and as a result, the current value obtained per unit mass of the catalyst becomes small. Conversely, when too small, since stability of a catalyst falls, 0.5-50 nm is preferable, More preferably, it is 1-5 nm.

本発明で用いるこれらの触媒を担持するカーボンは、微粉末状で導電性を有し、触媒に侵されないものであればどのようなものでも構わないが、カーボンブラック、グラファイト、黒鉛、活性炭、カーボンナノチューブ、フラーレンが好ましく使用できる。
カーボンの粒径は、小さすぎると電子伝導パスが形成されにくくなり、また大きすぎると触媒層のガス拡散性が低下したり触媒の利用率が低下したりするため、10〜1000nm程度が好ましく、更に好ましくは10〜100nmが良い。
The carbon supporting these catalysts used in the present invention may be any carbon as long as it is finely powdered and has conductivity and is not affected by the catalyst. Carbon black, graphite, graphite, activated carbon, carbon Nanotubes and fullerenes can be preferably used.
If the particle size of the carbon is too small, it becomes difficult to form an electron conduction path, and if it is too large, the gas diffusibility of the catalyst layer is reduced or the utilization factor of the catalyst is lowered. More preferably, 10-100 nm is good.

プロトン伝導性高分子には様々なものが用いられるが、高分子電解質膜と電極の界面抵抗や、湿度変化時の電極と電解質膜における寸法変化率の点から考慮すると、使用する電解質膜と触媒層中のプロトン伝導性高分子は同じ成分であるのが良い。   Various proton conductive polymers are used, but considering the interface resistance between the polymer electrolyte membrane and the electrode, and the dimensional change rate between the electrode and the electrolyte membrane when the humidity changes, the electrolyte membrane and catalyst to be used The proton conducting polymer in the layer should be the same component.

本発明の膜電極接合体に用いられるプロトン電導性高分子としては、プロトン伝導性を有するものであればよく、フッ素系高分子電解質、炭化水素系高分子電解質を用いることができる。フッ素系高分子電解質としては、例えば、デュポン社製Nafion(登録商標)、旭硝子(株)製Flemion(登録商標)、旭化成(株)製Aciplex(登録商標)、ゴア社製Gore Select(登録商標)などを用いることができる。炭化水素系高分子電解質としては、スルホン化ポリエーテルケトン、スルホン化ポリエーテルスルホン、スルホン化ポリエーテルエーテルスルホン、スルホン化ポリスルフィド、スルホン化ポリフェニレン等を用いることができる。中でも、高分子電解質膜としてデュポン社製Nafion(登録商標)系材料を好適に用いることができる。炭化水素系高分子電解質膜としては、スルホン化ポリエーテルケトン、スルホン化ポリエーテルスルホン、スルホン化ポリエーテルエーテルスルホン、スルホン化ポリスルフィド、スルホン化ポリフェニレン等の電解質膜を用いることができる。   The proton conductive polymer used in the membrane electrode assembly of the present invention is not limited as long as it has proton conductivity, and a fluorine-based polymer electrolyte and a hydrocarbon-based polymer electrolyte can be used. Examples of the fluoropolymer electrolyte include Nafion (registered trademark) manufactured by DuPont, Flemion (registered trademark) manufactured by Asahi Glass Co., Ltd., Aciplex (registered trademark) manufactured by Asahi Kasei Co., Ltd., and Gore Select (registered trademark) manufactured by Gore. Etc. can be used. As the hydrocarbon polymer electrolyte, sulfonated polyetherketone, sulfonated polyethersulfone, sulfonated polyetherethersulfone, sulfonated polysulfide, sulfonated polyphenylene and the like can be used. Among these, a Nafion (registered trademark) material manufactured by DuPont can be suitably used as the polymer electrolyte membrane. As the hydrocarbon polymer electrolyte membrane, electrolyte membranes such as sulfonated polyetherketone, sulfonated polyethersulfone, sulfonated polyetherethersulfone, sulfonated polysulfide, and sulfonated polyphenylene can be used.

本発明で分散媒として使用される溶媒は、触媒粒子やプロトン伝導性高分子を浸食することがなく、流動性の高い状態でプロトン伝導性高分子を溶解または微細ゲルとして分散できるものあれば特に制限はない。溶媒にはプロトン伝導性高分子となじみがよい水が含まれていてもよい。水の添加量は、プロトン伝導性ポリマーが分離して白濁を生じたり、ゲル化したりしない程度であれば特に制限はない。
工程(2)で触媒担持カーボンを分散する溶媒および工程(3)でプロトン伝導性高分子を分散する溶媒については、揮発性の液体有機溶媒が少なくとも含まれることが望ましいが、溶剤として低級アルコールを用いたものは発火の危険性が高く、このような溶媒を用いる際は水との混合溶媒にするのが好ましい。
The solvent used as the dispersion medium in the present invention is not particularly limited as long as it does not erode the catalyst particles and the proton conductive polymer and can dissolve or disperse the proton conductive polymer in a highly fluid state as a fine gel. There is no limit. The solvent may contain water that is compatible with the proton conductive polymer. The amount of water added is not particularly limited as long as the proton conductive polymer is not separated to cause white turbidity or gelation.
The solvent for dispersing the catalyst-supporting carbon in the step (2) and the solvent for dispersing the proton conductive polymer in the step (3) preferably include at least a volatile liquid organic solvent. Those used have a high risk of ignition, and when such a solvent is used, it is preferable to use a mixed solvent with water.

揮発性の液体有機溶媒は特に限定されるものではないが、具体的には、例えばメタノール、エタノール、1−プロパノール、2−プロパノール、1−ブタノール、2‐ブタノール、イソブチルアルコール、tert−ブチルアルコール、ペンタノールなどのアルコール類、アセトン、メチルエチルケトン、ペンタノン、メチルイソブチルケトン、へプタノン、シクロヘキサノン、メチルシクロヘキサノン、アセトニルアセトン、ジイソブチルケトンなどのケトン系溶剤、テトラヒドロフラン、ジオキサン、ジエチレングリコールジメチルエーテル、アニソール、メトキシトルエン、ジブチルエーテルなどのエーテル系溶剤、その他ジメチルホルムアミド、ジメチルアセトアミド、N−メチルピロリドン、エチレングリコール、ジエチレングリコール、ジアセトンアルコール、1−メトキシ−2−プロパノールなどの極性溶剤などを挙げることができる。
これらは単独で使用することもできるが、これらの溶剤のうち二種以上を混合させたものも使用できる。
The volatile liquid organic solvent is not particularly limited. Specifically, for example, methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, isobutyl alcohol, tert-butyl alcohol, Alcohols such as pentanol, acetone, methyl ethyl ketone, pentanone, methyl isobutyl ketone, heptanone, cyclohexanone, methyl cyclohexanone, acetonyl acetone, diisobutyl ketone and other ketone solvents, tetrahydrofuran, dioxane, diethylene glycol dimethyl ether, anisole, methoxytoluene, di Ether solvents such as butyl ether, other dimethylformamide, dimethylacetamide, N-methylpyrrolidone, ethylene glycol, diethylene glycol Lumpur, diacetone alcohol, 1 such as a polar solvent such as methoxy-2-propanol can be exemplified.
Although these can also be used independently, what mixed 2 or more types of these solvents can also be used.

分散処理は、様々な装置を用いて行うことができる。例えば、ボールミル、ロールミル、せん断ミル、湿式ミル、超音波分散処理などが挙げられる。また、遠心力で攪拌を行うホモジナイザーなどを用いてもよい。   Distributed processing can be performed using various apparatuses. Examples thereof include a ball mill, a roll mill, a shear mill, a wet mill, and an ultrasonic dispersion treatment. Moreover, you may use the homogenizer etc. which stir with centrifugal force.

図1は、本発明の製造方法による電極触媒層の工程ごとの様態変化の模式断面図である。プロトン伝導性高分子多孔体10は、プロトン伝導性高分子を含む分散液を基材12の表面に塗布し溶媒が乾燥する前に凍結し真空乾燥することにより得られる。   FIG. 1 is a schematic cross-sectional view of a state change for each step of an electrode catalyst layer according to the production method of the present invention. The proton-conductive polymer porous body 10 is obtained by applying a dispersion containing a proton-conductive polymer to the surface of the substrate 12 and freezing and vacuum-drying the solvent before the solvent is dried.

図1(a)は、プロトン伝導性高分子を含む分散液を基材12の表面に塗布し溶媒が乾燥する前に凍結させた状態を示す。凍結した溶媒11は、実際にはプロトン伝導性高分子を分散していた状態のまま三次元的に連続して存在している。   FIG. 1A shows a state in which a dispersion containing a proton conductive polymer is applied to the surface of the substrate 12 and frozen before the solvent is dried. The frozen solvent 11 actually exists three-dimensionally continuously in a state where the proton conductive polymer is dispersed.

図1(b)は、図1(a)に示される状態からさらに真空下で乾燥した状態を示し、凍結した溶媒11のあった部分から溶媒が昇華して空孔13となった。   FIG. 1 (b) shows a state dried further under vacuum from the state shown in FIG. 1 (a), and the solvent sublimated from the portion where the frozen solvent 11 was present to become pores 13.

図1(c)は、プロトン伝導性高分子多孔体10に、触媒担持カーボンの分散液を含浸させ乾燥させる工程およびプロトン伝導性高分子の分散液を含浸させ乾燥させる工程を経た状態を示す。これらの工程によってプロトン伝導性高分子多孔体10の表面に触媒担持カーボンとプロトン伝導性高分子が吸着し、三相界面を有する部分14が形成された電極触媒層1が得られる。実際にはプロトン伝導性高分子多孔体10および空孔13は三次元的に連続して存在しているため、三相界面を有する部分14も同様に三次元的に連続して存在している。   FIG. 1 (c) shows a state where the proton conductive polymer porous body 10 has been subjected to a step of impregnating and drying a catalyst-supporting carbon dispersion and a step of impregnating and drying the proton conductive polymer dispersion. By these steps, the catalyst-supporting carbon and the proton conductive polymer are adsorbed on the surface of the proton conductive polymer porous body 10, and the electrode catalyst layer 1 in which the portion 14 having a three-phase interface is formed is obtained. Actually, since the proton conductive polymer porous body 10 and the pores 13 exist three-dimensionally continuously, the portion 14 having a three-phase interface also exists three-dimensionally in the same manner. .

図2は、本発明の電極触媒層の三相界面の模式図であり、図1(c)に示す三相界面を有する部分14を詳細に示したものである。工程(2)で触媒担持カーボンを分散している溶媒がプロトン伝導性高分子多孔体の表面を適度に溶かすため、触媒粒子15を担持したカーボン粒子16はプロトン伝導性高分子多孔体10に一部埋まって固定される。さらにこれを工程(3)でプロトン伝導性高分子17により包埋することで、三相界面とプロトンパスが形成される。   FIG. 2 is a schematic view of the three-phase interface of the electrode catalyst layer of the present invention, and shows in detail the portion 14 having the three-phase interface shown in FIG. Since the solvent in which the catalyst-carrying carbon is dispersed in the step (2) appropriately dissolves the surface of the proton conductive polymer porous body, the carbon particles 16 carrying the catalyst particles 15 are bonded to the proton conductive polymer porous body 10. Part is buried and fixed. Further, by embedding it with the proton conductive polymer 17 in the step (3), a three-phase interface and a proton path are formed.

図3は、本発明の電極触媒層を用いた膜電極接合体の模式断面図である。基材12の表面に形成された電極触媒層1を高分子電解質膜18に配置して、ホットプレスすることにより電極触媒層1を高分子電解質膜18に密着させる。密着後は、基材12を電極触媒層1から剥離して膜電極接合体19を得る。   FIG. 3 is a schematic cross-sectional view of a membrane electrode assembly using the electrode catalyst layer of the present invention. The electrode catalyst layer 1 formed on the surface of the substrate 12 is placed on the polymer electrolyte membrane 18 and hot pressed to bring the electrode catalyst layer 1 into close contact with the polymer electrolyte membrane 18. After the adhesion, the substrate 12 is peeled from the electrode catalyst layer 1 to obtain a membrane electrode assembly 19.

なお、本発明の電極触媒層は高分子電解質膜のアノード側、カソード側両方に配置することができるが、カソード側に配置することがより好ましい。カソード側に配置することで、発電効率を高め、更に、生成水が詰まって細孔が塞がることによる電圧低下を抑制することができる。   The electrode catalyst layer of the present invention can be disposed on both the anode side and the cathode side of the polymer electrolyte membrane, but is more preferably disposed on the cathode side. By disposing on the cathode side, the power generation efficiency can be improved, and furthermore, a voltage drop due to clogging of generated water and blocking of the pores can be suppressed.

本発明で使用される基材12は、例えばエチレンテトラフルオロエチレン共重合体(ETFE)、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロパーフルオロアルキルビニルエーテル共重合体(PFA)、ポリテトラフルオロエチレン(PTFE)などの転写性に優れたフッ素系樹脂を用いることができる。また、ポリイミド、ポリエチレンテレフタラート、ポリアミド(ナイロン)、ポリサルホン、ポリエーテルサルホン、ポリフェニレンサルファイド、ポリエーテル・エーテルケトン、ポリエーテルイミド、ポリアリレート、ポリエチレンナフタレートなどの高分子フィルムも用いることができる。   The substrate 12 used in the present invention includes, for example, an ethylene tetrafluoroethylene copolymer (ETFE), a tetrafluoroethylene-hexafluoropropylene copolymer (FEP), a tetrafluoroperfluoroalkyl vinyl ether copolymer (PFA), A fluororesin excellent in transferability such as polytetrafluoroethylene (PTFE) can be used. Polymer films such as polyimide, polyethylene terephthalate, polyamide (nylon), polysulfone, polyethersulfone, polyphenylene sulfide, polyether ether ketone, polyetherimide, polyarylate, and polyethylene naphthalate can also be used.

基材12がガス拡散電極の場合、ホットプレス後に基材であるガス拡散層を剥離する必要は無い。ガス拡散層としては、通常の燃料電池に用いられているものを用いることができる。具体的にはガス拡散層としてはカーボンクロス、カーボンペーパー、不織布などのポーラスカーボン材を用いることができる。ガス拡散層と電極触媒層の間に目止め層を形成させたものでもよい。目止め層は、触媒インクがガス拡散層の中に染み込むことを防止する層であり、その塗布量が少ない場合でも目止め層上に堆積して三相界面を形成する。このような目止め層は、例えばカーボン粒子とフッ素系樹脂を混練してフッ素系樹脂の融点以上の温度で焼結させることにより形成することができる。フッ素系樹脂としては、ポリテトラフルオロエチレン(PTFE)等が利用できる。   When the substrate 12 is a gas diffusion electrode, it is not necessary to peel off the gas diffusion layer that is the substrate after hot pressing. As a gas diffusion layer, what is used for the normal fuel cell can be used. Specifically, porous carbon materials such as carbon cloth, carbon paper, and non-woven fabric can be used as the gas diffusion layer. A sealing layer may be formed between the gas diffusion layer and the electrode catalyst layer. The sealing layer is a layer that prevents the catalyst ink from permeating into the gas diffusion layer, and deposits on the sealing layer to form a three-phase interface even when the coating amount is small. Such a sealing layer can be formed, for example, by kneading carbon particles and a fluorine resin and sintering them at a temperature equal to or higher than the melting point of the fluorine resin. As the fluororesin, polytetrafluoroethylene (PTFE) or the like can be used.

ホットプレス工程で電極触媒層にかかる圧力は、膜電極接合体の電池性能に影響する。電池性能の良い膜電極接合体を得るには、基材12およびプロトン伝導性高分子多孔体10にかかる圧力Aは、0.5 MPa≦A≦20 MPaであることが望ましく、より望ましくは2 MPa≦A≦15 MPaである。これ以上の圧力では電極触媒層が圧縮されすぎ、またこれ以下の圧力では電極触媒層と高分子電解質膜の接合性が低下して、電池性能が低下する。   The pressure applied to the electrode catalyst layer in the hot pressing step affects the battery performance of the membrane electrode assembly. In order to obtain a membrane electrode assembly with good battery performance, the pressure A applied to the base material 12 and the proton conductive porous polymer body 10 is preferably 0.5 MPa ≦ A ≦ 20 MPa, more preferably 2 MPa ≦ A ≦ 15 MPa. When the pressure is higher than this, the electrode catalyst layer is excessively compressed, and when the pressure is lower than this, the bondability between the electrode catalyst layer and the polymer electrolyte membrane is lowered, and the battery performance is lowered.

膜電極接合体へのしわ発生には、ホットプレス工程での高分子電解質膜の部分にかかる圧力Bが影響する。Bが小さくAとの差が大きくなると、高分子電解質膜の部分にしわが発生しやすくなる。Bは、Bに対するAの割合A/Bで規定でき、1<A/B≦3であることが望ましい。より望ましくは1<A/B≦2である。   The generation of wrinkles in the membrane / electrode assembly is affected by the pressure B applied to the portion of the polymer electrolyte membrane in the hot pressing process. When B is small and the difference from A is large, wrinkles are likely to occur in the polymer electrolyte membrane. B can be defined by the ratio A / B of A to B, and preferably 1 <A / B ≦ 3. More preferably, 1 <A / B ≦ 2.

上記の圧力条件は、適切な圧縮率を持つ緩衝材を用いることで再現できる。緩衝材はホットプレスにかける積層体のすべてを覆う大きさであるとよい。また厚み方向に加圧されると加圧方向と平行な向きに圧縮されるものがよい。   The above pressure condition can be reproduced by using a buffer material having an appropriate compression rate. The cushioning material may be of a size that covers all of the laminate to be hot pressed. Moreover, what is compressed in the direction parallel to a pressurization direction when pressurized in the thickness direction is good.

ホットプレスの温度は、高分子電解質膜および電極触媒層のプロトン電導性高分子のガラス転移点付近に設定するのが高分子電解質膜と電極触媒層の界面の接合性が向上し、界面抵抗を抑えられる点で効果的であり、100℃以上であることが望ましい。   The hot pressing temperature is set near the glass transition point of the proton conducting polymer of the polymer electrolyte membrane and the electrode catalyst layer, which improves the bondability at the interface between the polymer electrolyte membrane and the electrode catalyst layer and reduces the interface resistance. It is effective in terms of suppression, and is desirably 100 ° C. or higher.

(実施例)
〈転写シートの作製〉
市販のプロトン伝導性高分子(ナフィオン:Nafion, デュポン社の登録商標)溶液をETFEシートに塗布し、溶媒が乾燥する前に液体窒素に浸して凍結させた。これを融解しないうちに凍結乾燥機(東京理化器械株式会社製FD−81−TA)で乾燥して、プロトン伝導性高分子多孔体シートを得た。一方で、白金担持カーボン触媒(商品名:TEC10E50E、田中貴金属工業製)と水、エタノールの混合溶媒を混合し、遊星型ボールミルで分散処理を行い、触媒担時カーボンの分散液を調製した。前記のプロトン伝導性高分子多孔体シートを触媒担時カーボンの分散液に浸漬した後、減圧乾燥にて溶媒を除去し、中間体を得た。続いてこの中間体を市販のプロトン伝導性高分子(ナフィオン:Nafion, デュポン社の登録商標)溶液に浸漬し、80℃のオーブンで乾燥させ、電極触媒層の転写シートを得た。
〈ホットプレス〉
電極触媒層の転写シートを正方形に打ち抜き、高分子電解質膜(ナフィオン212:登録商標、Dupont社製)の両面に対面するように転写シートを配置し積層体とし、120℃、60kgf/cm 、30分の条件でホットプレスを行い、接合・積層して、図3に示す膜電極結合体を得た。
〈評価1〉
作製した膜電極接合体の発電性能測定を行った。
反応ガス流通用のガス流路を備え、相対する主面に冷却水流通用の冷却水流路を備えた導電性でかつガス不透過性の材料よりなる一組のセパレータにより、作製した膜・電極接合体を挟持して、ボルトで両極を締め付けたものを測定セルとして用いた。
評価条件はセル温度80℃、反応ガスは酸化極が水素、還元極は空気とした。また反応ガスの相対湿度は30%および100%とした。電圧が0.7Vと0.3Vのときの電流密度により性能の評価を行った。
〈評価2〉
評価1で用いた測定セルを用いてサイクリックボルタンメトリー測定を行った。
評価条件はセル温度80℃、酸化極に水素ガス、還元極に窒素ガスを流し、反応ガスの相対湿度は30%および100%とした。性能の評価は、水素の酸化脱離のピーク電荷量Q値により行った。
(Example)
<Preparation of transfer sheet>
A commercially available proton conductive polymer (Nafion: registered trademark of DuPont) solution was applied to an ETFE sheet and immersed in liquid nitrogen and frozen before the solvent dried. Before this was melted, it was dried with a freeze dryer (FD-81-TA manufactured by Tokyo Rika Kikai Co., Ltd.) to obtain a proton conductive polymer porous sheet. On the other hand, a platinum-supported carbon catalyst (trade name: TEC10E50E, manufactured by Tanaka Kikinzoku Kogyo Co., Ltd.), a mixed solvent of water and ethanol was mixed, and dispersion treatment was performed using a planetary ball mill to prepare a carbon-supported dispersion liquid. The proton conductive polymer porous sheet was immersed in a carbon dispersion while supporting the catalyst, and then the solvent was removed by drying under reduced pressure to obtain an intermediate. Subsequently, this intermediate was immersed in a solution of a commercially available proton conductive polymer (Nafion: registered trademark of DuPont) and dried in an oven at 80 ° C. to obtain an electrode catalyst layer transfer sheet.
<hot press>
The transfer sheet of the electrode catalyst layer is punched into a square, and the transfer sheet is arranged so as to face both surfaces of the polymer electrolyte membrane (Nafion 212: registered trademark, manufactured by Dupont) to form a laminated body, 120 ° C., 60 kgf / cm 2 , Hot pressing was performed under conditions of 30 minutes, and bonding and lamination were performed to obtain a membrane electrode assembly shown in FIG.
<Evaluation 1>
The power generation performance of the produced membrane electrode assembly was measured.
Membrane / electrode joint made of a pair of separators made of a conductive and gas-impermeable material with a gas flow channel for reaction gas flow and a cooling water flow channel for cooling water flow on the opposite main surface A measurement cell that sandwiched the body and clamped both poles with bolts was used.
The evaluation conditions were a cell temperature of 80 ° C., the reaction gas was hydrogen at the oxidation electrode, and air at the reduction electrode. The relative humidity of the reaction gas was 30% and 100%. The performance was evaluated by the current density when the voltage was 0.7V and 0.3V.
<Evaluation 2>
Cyclic voltammetry measurement was performed using the measurement cell used in Evaluation 1.
The evaluation conditions were a cell temperature of 80 ° C., hydrogen gas was passed through the oxidation electrode, and nitrogen gas was passed through the reduction electrode, and the relative humidity of the reaction gas was 30% and 100%. The performance was evaluated by the peak charge amount Q value of hydrogen oxidative desorption.

(比較例)
〈転写シートの作製〉
白金担持カーボン触媒(商品名:TEC10E50E、田中貴金属工業製)と、20質量%高分子電解質溶液(ナフィオン:登録商標、Dupont社製)を、水、エタノールの混合溶媒で混合し、遊星型ボールミルで分散処理を行い、触媒インクを調製した。ETFEシートを基材として触媒インクを塗布し、80℃のオーブンで乾燥させ、転写シートを作製した。
〈ホットプレス〉
実施例と同様にして膜電極結合体を得た。
〈評価1〉
実施例と同様にして発電性能測定および性能の評価を行い、比較を行った。
〈評価2〉
実施例と同様にして発電性能測定および性能の評価を行い、比較を行った。
(Comparative example)
<Preparation of transfer sheet>
A platinum-supported carbon catalyst (trade name: TEC10E50E, manufactured by Tanaka Kikinzoku Kogyo Co., Ltd.) and a 20% by mass polymer electrolyte solution (Nafion: registered trademark, manufactured by Dupont) are mixed with a mixed solvent of water and ethanol, and a planetary ball mill is used. Dispersion treatment was performed to prepare a catalyst ink. A catalyst ink was applied using an ETFE sheet as a base material and dried in an oven at 80 ° C. to prepare a transfer sheet.
<hot press>
A membrane electrode assembly was obtained in the same manner as in Example.
<Evaluation 1>
The power generation performance was measured and the performance was evaluated and compared in the same manner as in the examples.
<Evaluation 2>
The power generation performance was measured and the performance was evaluated and compared in the same manner as in the examples.

実施例においては凍結乾燥して得たプロトン伝導性高分子多孔体を用いていることによりプロトン伝導パスが良好に形成されているため、相対湿度が低い場合にも高い電流密度が得られ、発電性能が優れていた。また、凍結乾燥して得たプロトン伝導性高分子多孔体を用いていることによりガスチャネルおよび生成水の抜け道が良好に形成されているため、相対湿度が高い場合にも水詰まりによる発電性能低下を生じていない。さらに、実施例においてはQ値が高く、三相界面が良好に形成されていることが示唆されている。   In the examples, the proton conducting path is well formed by using the proton conducting polymer porous material obtained by lyophilization, so that a high current density can be obtained even when the relative humidity is low, The performance was excellent. In addition, the use of a proton-conductive polymer porous material obtained by freeze-drying provides a good channel for gas channels and produced water, so that even when relative humidity is high, power generation performance is reduced due to water clogging. Has not occurred. Further, in the examples, the Q value is high, suggesting that the three-phase interface is well formed.

本発明の電極触媒層はガスチャネル、プロトン伝導パス、三相界面の全てが高効率で形成されており、本発明の電極触媒層を用いた固体高分子燃料電池は発電性能が良好である。したがって、本発明は高分子電解質膜を用いた燃料電池、特に定置型コジェネレーションシステムや電気自動車などに好適に用いることができる。さらに、三相界面の面積が大きくなり、かつ三相界面へのプロトン、燃料ガスの拡散性や発生した水の排水性が向上し、ガス利用率の向上へとつながるため、単セルの出力密度が向上し、白金の有効利用率が高められる。つまり白金使用量を低減させることが可能となりコスト削減が可能であるため、産業上の利用価値が大きい。   In the electrode catalyst layer of the present invention, the gas channel, the proton conduction path, and the three-phase interface are all formed with high efficiency, and the solid polymer fuel cell using the electrode catalyst layer of the present invention has good power generation performance. Therefore, the present invention can be suitably used for a fuel cell using a polymer electrolyte membrane, particularly a stationary cogeneration system and an electric vehicle. In addition, the area of the three-phase interface is increased, and the diffusibility of protons and fuel gas to the three-phase interface and the drainage of the generated water are improved, leading to an improvement in gas utilization. This improves the effective utilization rate of platinum. In other words, since the amount of platinum used can be reduced and the cost can be reduced, the industrial utility value is great.

1…電極触媒層
10…プロトン伝導性高分子多孔体
11…凍結した溶媒
12…基材
13…空孔
14…三相界面を有する部分
15…触媒粒子
16…カーボン粒子
17…プロトン伝導性高分子
18…高分子電解質膜
19…膜電極接合体
DESCRIPTION OF SYMBOLS 1 ... Electrode catalyst layer 10 ... Proton conductive polymer porous body 11 ... Frozen solvent 12 ... Base material 13 ... Pore 14 ... Part 15 which has a three-phase interface ... Catalyst particle 16 ... Carbon particle 17 ... Proton conductive polymer 18 ... Polymer electrolyte membrane 19 ... Membrane electrode assembly

Claims (4)

(1)プロトン伝導性高分子を含む分散液を基材表面に塗布し溶媒が乾燥する前に凍結させ真空下で乾燥する工程と、
(2)前記工程(1)で得たプロトン伝導性高分子の多孔膜に、触媒担持カーボンの分散液を含浸させ乾燥させる工程と、
(3)前記工程(2)で得たプロトン伝導性高分子の多孔膜の細孔に触媒担持カーボンを含浸させた中間体に、プロトン伝導性高分子の分散液を含浸させ乾燥させる工程と
を有することを特徴とする固体高分子型燃料電池用電極触媒層の製造方法。
(1) A step of applying a dispersion containing a proton-conducting polymer to the surface of a substrate and freezing the solvent before drying to dry under vacuum;
(2) a step of impregnating the proton-conductive polymer porous film obtained in the step (1) with a catalyst-supported carbon dispersion and drying;
(3) a step of impregnating a catalyst-supporting carbon impregnated with pores of the porous membrane of the proton conductive polymer obtained in the step (2) with a dispersion of the proton conductive polymer and drying the intermediate. A method for producing an electrode catalyst layer for a polymer electrolyte fuel cell, comprising:
高分子電解質膜と前記高分子電解質膜を狭持した一対の電極触媒層とからなる膜電極接合体の製造方法であって、
請求項1に記載の製造方法により得られた電極触媒層を少なくとも前記高分子電解質膜のカソード側に配置して、前記高分子電解質膜のガラス転移点である温度下で加圧することにより密着させることを特徴とする膜電極接合体の製造方法。
A method for producing a membrane / electrode assembly comprising a polymer electrolyte membrane and a pair of electrode catalyst layers sandwiching the polymer electrolyte membrane,
The electrode catalyst layer obtained by the production method according to claim 1 is disposed at least on the cathode side of the polymer electrolyte membrane, and is brought into close contact by pressurizing at a temperature that is a glass transition point of the polymer electrolyte membrane. A method for producing a membrane electrode assembly, comprising:
請求項2に記載の製造方法により得られた膜電極接合体。   A membrane electrode assembly obtained by the production method according to claim 2. 触媒担持カーボン、プロトン伝導性高分子を含む固体高分子型燃料電池用電極触媒層であって、
プロトン伝導性高分子を含む分散液を基材表面に塗布し溶媒が乾燥する前に凍結させ真空下で乾燥する工程を経ることにより、プロトン伝導性高分子が連続な多孔体であることを特徴とする固体高分子型燃料電池用電極触媒層。
An electrode catalyst layer for a polymer electrolyte fuel cell containing a catalyst-supporting carbon and a proton conducting polymer,
Proton-conducting polymer is a continuous porous material by applying a dispersion containing proton-conducting polymer to the surface of the substrate and freezing the solvent before drying, followed by drying under vacuum. An electrode catalyst layer for a polymer electrolyte fuel cell.
JP2009230327A 2009-10-02 2009-10-02 Method for producing electrode catalyst layer for polymer electrolyte fuel cell, method for producing membrane electrode assembly, and membrane electrode assembly Expired - Fee Related JP5463833B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009230327A JP5463833B2 (en) 2009-10-02 2009-10-02 Method for producing electrode catalyst layer for polymer electrolyte fuel cell, method for producing membrane electrode assembly, and membrane electrode assembly

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009230327A JP5463833B2 (en) 2009-10-02 2009-10-02 Method for producing electrode catalyst layer for polymer electrolyte fuel cell, method for producing membrane electrode assembly, and membrane electrode assembly

Publications (2)

Publication Number Publication Date
JP2011077006A true JP2011077006A (en) 2011-04-14
JP5463833B2 JP5463833B2 (en) 2014-04-09

Family

ID=44020764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009230327A Expired - Fee Related JP5463833B2 (en) 2009-10-02 2009-10-02 Method for producing electrode catalyst layer for polymer electrolyte fuel cell, method for producing membrane electrode assembly, and membrane electrode assembly

Country Status (1)

Country Link
JP (1) JP5463833B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014155929A1 (en) * 2013-03-27 2014-10-02 Jx日鉱日石エネルギー株式会社 Method for manufacturing catalyst layer for fuel cell, catalyst layer for fuel cell, and fuel cell
EP2811563A1 (en) * 2012-02-02 2014-12-10 Kyushu University, National University Corporation Catalyst layer constituting body and method for preparing catalyst layer constituting body
CN105762374A (en) * 2014-12-16 2016-07-13 中国科学院大连化学物理研究所 Fuel cell catalyst layer and membrane electrode subassembly and preparation method thereof
CN111162242A (en) * 2018-11-08 2020-05-15 康宁股份有限公司 Cathode for solid-state lithium-sulfur battery and method for manufacturing same
CN113629281A (en) * 2021-06-30 2021-11-09 嘉寓氢能源科技(辽宁)有限公司 Preparation method of fuel cell membrane electrode

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07326363A (en) * 1994-05-31 1995-12-12 Sanyo Electric Co Ltd Ion conductivity imparting electrode and jointing material for electrode and electrolyte and cell using the ion conductivity imparting electrode
JPH08106915A (en) * 1994-10-04 1996-04-23 Fuji Electric Co Ltd Electrode of solid polymer fuel cell and manufacture of fuel cell
JPH09199138A (en) * 1996-01-19 1997-07-31 Toyota Motor Corp Manufacture of electrode for fuel cell or electrode electrolytic film bonding body, and electrode for fuel cell
JP2005302694A (en) * 2004-03-17 2005-10-27 Nitto Denko Corp Fuel cell
JP2007207678A (en) * 2006-02-03 2007-08-16 Canon Inc Electrode for polymer electrolyte fuel cell, its manufacturing method, and polymer electrolyte fuel cell
JP2008177136A (en) * 2007-01-22 2008-07-31 Nissan Motor Co Ltd Catalyst electrode for fuel cell and its manufacturing method
JP2008277126A (en) * 2007-04-27 2008-11-13 Mitsubishi Electric Corp Film assembly for electrode of fuel cell and fuel cell
JP2008300321A (en) * 2007-06-04 2008-12-11 Toyota Motor Corp Manufacturing method of catalytic electrode layer

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07326363A (en) * 1994-05-31 1995-12-12 Sanyo Electric Co Ltd Ion conductivity imparting electrode and jointing material for electrode and electrolyte and cell using the ion conductivity imparting electrode
JPH08106915A (en) * 1994-10-04 1996-04-23 Fuji Electric Co Ltd Electrode of solid polymer fuel cell and manufacture of fuel cell
JPH09199138A (en) * 1996-01-19 1997-07-31 Toyota Motor Corp Manufacture of electrode for fuel cell or electrode electrolytic film bonding body, and electrode for fuel cell
JP2005302694A (en) * 2004-03-17 2005-10-27 Nitto Denko Corp Fuel cell
JP2007207678A (en) * 2006-02-03 2007-08-16 Canon Inc Electrode for polymer electrolyte fuel cell, its manufacturing method, and polymer electrolyte fuel cell
JP2008177136A (en) * 2007-01-22 2008-07-31 Nissan Motor Co Ltd Catalyst electrode for fuel cell and its manufacturing method
JP2008277126A (en) * 2007-04-27 2008-11-13 Mitsubishi Electric Corp Film assembly for electrode of fuel cell and fuel cell
JP2008300321A (en) * 2007-06-04 2008-12-11 Toyota Motor Corp Manufacturing method of catalytic electrode layer

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2811563A1 (en) * 2012-02-02 2014-12-10 Kyushu University, National University Corporation Catalyst layer constituting body and method for preparing catalyst layer constituting body
EP2811563A4 (en) * 2012-02-02 2015-11-11 Univ Kyushu Nat Univ Corp Catalyst layer constituting body and method for preparing catalyst layer constituting body
WO2014155929A1 (en) * 2013-03-27 2014-10-02 Jx日鉱日石エネルギー株式会社 Method for manufacturing catalyst layer for fuel cell, catalyst layer for fuel cell, and fuel cell
CN105762374A (en) * 2014-12-16 2016-07-13 中国科学院大连化学物理研究所 Fuel cell catalyst layer and membrane electrode subassembly and preparation method thereof
CN111162242A (en) * 2018-11-08 2020-05-15 康宁股份有限公司 Cathode for solid-state lithium-sulfur battery and method for manufacturing same
CN113629281A (en) * 2021-06-30 2021-11-09 嘉寓氢能源科技(辽宁)有限公司 Preparation method of fuel cell membrane electrode
CN113629281B (en) * 2021-06-30 2022-07-15 嘉寓氢能源科技(辽宁)有限公司 Method for preparing membrane electrode of fuel cell

Also Published As

Publication number Publication date
JP5463833B2 (en) 2014-04-09

Similar Documents

Publication Publication Date Title
WO2011001717A1 (en) Method for producing electrode catalyst layer for fuel cell, and electrode catalyst layer for fuel cell using same
WO2007026797A1 (en) Electrolytic membrane-electrode assembly
JP4655168B1 (en) Method for producing electrode catalyst layer for fuel cell
JP5532630B2 (en) Membrane electrode assembly, method for producing the same, and polymer electrolyte fuel cell
JP5463833B2 (en) Method for producing electrode catalyst layer for polymer electrolyte fuel cell, method for producing membrane electrode assembly, and membrane electrode assembly
JP5332294B2 (en) Manufacturing method of membrane electrode assembly
JP7314785B2 (en) Electrode catalyst layer, membrane electrode assembly and polymer electrolyte fuel cell
JP7363956B2 (en) Electrode catalyst layer, membrane electrode assembly, and polymer electrolyte fuel cell
JP2008077974A (en) Electrode
JP2007095582A (en) Manufacturing method of membrane electrode assembly
JP4798306B2 (en) Electrocatalyst layer production method, electrode catalyst layer, membrane electrode assembly, and polymer electrolyte fuel cell
JP6364821B2 (en) Catalyst ink production method, polymer electrolyte fuel cell production method, and platinum-supported carbon particles
JP5515902B2 (en) Polymer electrolyte fuel cell, membrane / electrode assembly, electrode catalyst layer, and production method thereof
JP5396730B2 (en) Membrane electrode assembly
JP2014053142A (en) Electrode catalyst layer for fuel cell and method for manufacturing the same, membrane electrode assembly for fuel cell and method for manufacturing the same, and solid polymer fuel cell
JP5326458B2 (en) Membrane electrode assembly, method for producing the same, and polymer electrolyte fuel cell
JP2008140703A (en) Composition material for battery, and film containing the same
JP5515959B2 (en) Membrane electrode assembly for polymer electrolyte fuel cell and method for producing the same
JP5439946B2 (en) Membrane electrode assembly, method for producing the same, and polymer electrolyte fuel cell
JP5369580B2 (en) Membrane electrode assembly, method for producing the same, and polymer electrolyte fuel cell
JP6620467B2 (en) Method for producing polymer electrolyte fuel cell
JP2010257669A (en) Membrane electrode assembly, method for manufacturing the same, and polymer electrolyte fuel cell
JP2010062062A (en) Method of manufacturing membrane electrode assembly, membrane electrode assembly, and polymer electrolyte fuel cell
KR20120136393A (en) Slurry for electrode catalyst layer of fuel cell, electrode catalyst layer, membrane electrode assembly, and fuel cell
JP2004063409A (en) Manufacturing method of solid high molecular fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131004

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131008

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140106

R150 Certificate of patent or registration of utility model

Ref document number: 5463833

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees