JP2011075516A - Inspection apparatus - Google Patents

Inspection apparatus Download PDF

Info

Publication number
JP2011075516A
JP2011075516A JP2009230086A JP2009230086A JP2011075516A JP 2011075516 A JP2011075516 A JP 2011075516A JP 2009230086 A JP2009230086 A JP 2009230086A JP 2009230086 A JP2009230086 A JP 2009230086A JP 2011075516 A JP2011075516 A JP 2011075516A
Authority
JP
Japan
Prior art keywords
lens
optical system
image
inspection apparatus
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009230086A
Other languages
Japanese (ja)
Other versions
JP5641278B2 (en
Inventor
Mitsuaki Wada
充晃 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2009230086A priority Critical patent/JP5641278B2/en
Publication of JP2011075516A publication Critical patent/JP2011075516A/en
Application granted granted Critical
Publication of JP5641278B2 publication Critical patent/JP5641278B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inspection apparatus capable of inspecting the optical performance of a lens to be inspected although the inspection apparatus is of a small type. <P>SOLUTION: The inspection apparatus 20 includes a projection optical system 21 for projecting an image of a light source (opening 3a of a light shielding plate 3) which is a point light source or a line light source on a focal plane of a lens 30 to be inspected, a rotating mirror 7 which reflects the light from an image of a light source penetrating through the lens 30 to be inspected and forming an image again at substantially the same position as the image of the light source on the focal plane by the lens 30 to be inspected, and a relay optical system 22 for relaying the image of the light source whose image is formed again by the lens 30 to be inspected on an image sensor 9. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、検査装置に関する。   The present invention relates to an inspection apparatus.

一眼レフ用交換レンズはデジタルカメラが全盛となり、銀塩フイルム時代に比べてより高い性能が求められている。ユーザーの多くはパソコン画面で等倍のサイズで画像データ(デジタル写真)を鑑賞するので、写真レンズにとって従来より性能の良し悪しやピントの甘さがはっきりと現れるようになった。これに対し、DCモーターや超音波モーターを搭載したオートフォーカスの写真レンズが主流となり、手振れ補正を行う為に角速度をモニターして、光学系の一部のレンズあるいはレンズ群を光軸に垂直な面内での位置を検出し発生した角速度を打ち消すように制動させる防振レンズも増えてきている。従来、長い焦点距離のレンズに要望の多かったこの機能は、標準系レンズ、広角系レンズにも求める声が大きくなっている。さらに、アマチュア層ではワイドからテレまでカバーするズーム比10倍強のレンズが人気を博しており、光学設計、機構設計の難易度が高くなってきている。   Interchangeable lenses for single-lens reflex cameras are becoming popular, and higher performance is required compared to the silver salt film era. Many users view image data (digital photographs) at the same size on a personal computer screen, so that the performance and sweetness of the photographic lens has become clearer than before. On the other hand, autofocus photographic lenses equipped with DC motors and ultrasonic motors have become the mainstream, and angular velocities are monitored for camera shake correction, and some lenses or lens groups of the optical system are perpendicular to the optical axis. An anti-vibration lens that detects the position in the surface and brakes the generated angular velocity to cancel is increasing. Conventionally, this function, which has been frequently requested for lenses with long focal lengths, is increasingly demanded for standard lenses and wide-angle lenses. Furthermore, in the amateur layer, lenses with a zoom ratio of more than 10 times covering from wide to tele are gaining popularity, and the difficulty of optical design and mechanism design is increasing.

光学設計はモーターユニットや防振レンズユニットのようなアクチュエータを搭載する為にフォーカス群の小型軽量化および移動量の縮小化、防振レンズ群の小型軽量化を求められている。そのため、機構設計もより複雑な構造で剛性を保たなければならず樹脂部品の多用がさらに厳しい状況にしている。様々な制約を受けながらも、非球面の面数の増加や形状の自由度拡大、異常分散ガラスの多用でそれなりの設計性能を達成でき、効果的な光学調整のルーチンや操作性の良い調整機構、詳細な光学性能評価手段により品質の良いレンズの量産が可能となっている。このように量産で安定した光学性能を達成する為には、被検レンズの光学性能を短時間かつ高精度で測定できる量産検査装置が必須となる。また、最終的な光学性能の判断だけでなく組み立て調整時のレンズ群の調芯においてもこの種の測定器が必要である。   In order to mount an actuator such as a motor unit or an anti-vibration lens unit, the optical design is required to reduce the size and weight of the focus group, reduce the amount of movement, and reduce the size and weight of the anti-vibration lens group. For this reason, the mechanism design must maintain rigidity with a more complicated structure, making the use of resin parts more severe. Despite various restrictions, it is possible to achieve reasonable design performance by increasing the number of aspheric surfaces, expanding the degree of freedom of shape, and using a lot of anomalous dispersion glass, and an effective optical adjustment routine and adjustment mechanism with good operability The detailed optical performance evaluation means enables mass production of high quality lenses. Thus, in order to achieve stable optical performance in mass production, a mass production inspection apparatus capable of measuring the optical performance of the lens to be examined in a short time with high accuracy is essential. This type of measuring device is required not only for final optical performance determination but also for alignment of the lens group during assembly adjustment.

こうして一般的に使われる焦点域の撮影レンズの量産性能は銀塩時代に比べてかなり向上してきたが、焦点距離の長い撮影レンズにおいては評価装置が大型になる為に従来の解像力チャートを用いて判定しているのが現状であるが、人為的な判断となるので読み取る人の体調や疲労度、読み取る人夫々で結果にばらつきが多かった。デジタルカメラの高画素化が急速に進む中、目視による解像力判定は製品検査能力が低いと言わざるを得ない。そのため、MTF等を測定して光学性能を最終判定する測定器を導入することでこうしたばらつきを減少させている(例えば、特許文献1参照)。なお、この特許文献1に開示されている逆投影タイプの検査装置が量産では多用されている。   In this way, mass production performance of commonly used focal-range photographic lenses has improved considerably compared to the silver salt era. However, for photographic lenses with a long focal length, the evaluation device becomes large, so the conventional resolution chart is used. The current situation is to judge, but since it is an artificial judgment, there were many variations in the results of the physical condition and fatigue level of the reader, and the reader. As the number of pixels in digital cameras is rapidly increasing, it must be said that the visual resolving power judgment is low in product inspection capability. For this reason, such a variation is reduced by introducing a measuring instrument that finally measures optical performance by measuring MTF or the like (see, for example, Patent Document 1). The back projection type inspection apparatus disclosed in Patent Document 1 is frequently used in mass production.

特開2007−093243号公報JP 2007-093243 A

しかしながら長焦点域の撮影レンズ(例えば600mm)で横倍率β=−1/30〜−1/50の拡大投影を行うと、検査距離は18m〜30mとなり非現実的になる。仮に15m程度の検査距離で評価を行うと焦点距離が長いために至近距離に近い評価となってしまう。超望遠レンズはその用途目的から無限での光学性能が高いことが求められるので、至近距離に近い検査距離での評価は望ましくない。一方、無限での評価を実現する為に逆投影でデコリメータを用いるとすると、デコリメータの残存収差が無視できる大きさにするためには少なくとも被検レンズの5倍以上の焦点距離が必要とされ、例えば被検レンズの焦点距離が600mmとすれば、デコリメータの焦点距離は3000mm以上となってしまう。このような超望遠レンズの最大径φは140mm以上あり、デコリメータレンズの径もこれより大きくしなければならなくなる。さらに、軸上と少なくとも4つの軸外を同時に測定するには5本のデコリメータを配置しなければならないが3000mmのデコリメータを5本配置すること自体現実性に欠ける。仮に実現しようとするとデコリメータの径が大きい為に被検レンズよりかなり離さないと5本のデコリメータが干渉してしまう。有限系として被検レンズから収束光を射出させたとしてもβ=−1/30程度では光束は殆ど細くならず、デコリメータ5本を被検レンズより遠く離すことを避けられない。そのため、画角が小さく前玉径の大きい望遠レンズの軸上と軸外の光学性能を同時に測定するには、巨大な空間が必須である。また軸外のデコリメータの位置合わせは困難を極める。有限であれば光軸方向にずれれば横倍率に影響し、デコリメータの焦平面に置かれたセンサーの座標の原点より乖離した方向と量を読み取りデコリメータの角度を調整するのだが、そもそもセンサーの基準をどこまでとれるかで測定像高の精度が変わってしまう。さらに正投影にしても装置の巨大化、軸外のコリメータの位置合わせの難易度の問題は解決されない。   However, when an enlarged projection with a lateral magnification β = −1 / 30 to −1/50 is performed with a photographing lens (for example, 600 mm) in a long focal region, the inspection distance becomes 18 m to 30 m, which is unrealistic. If the evaluation is performed at an inspection distance of about 15 m, the evaluation is close to the closest distance because the focal length is long. Since the super telephoto lens is required to have infinite optical performance for its intended purpose, evaluation at an inspection distance close to a close distance is not desirable. On the other hand, if a decolimator is used for back projection to realize infinite evaluation, a focal length at least five times that of the lens to be measured is required to make the residual aberration of the decollimator negligible. For example, if the focal length of the lens to be tested is 600 mm, the focal length of the decorremeter will be 3000 mm or more. The maximum diameter φ of such a super telephoto lens is 140 mm or more, and the diameter of the decorremeter lens must be larger than this. Furthermore, in order to measure on-axis and at least four off-axis simultaneously, five decorometers must be arranged. However, it is not practical to arrange five 3000 mm decorrimators. If it is to be realized, the decorremeter has a large diameter, and the five decorimators will interfere unless they are separated from the lens to be measured. Even if convergent light is emitted from the test lens as a finite system, the light flux is hardly reduced at about β = −1 / 30, and it is inevitable that the five decollimators are separated from the test lens. Therefore, a huge space is essential to simultaneously measure the on-axis and off-axis optical performance of a telephoto lens having a small angle of view and a large front lens diameter. In addition, alignment of the off-axis decorremeter is extremely difficult. If it is finite, it will affect the lateral magnification if it shifts in the optical axis direction, and adjusts the angle of the decorometer by reading the direction and amount deviated from the origin of the coordinates of the sensor placed on the focal plane of the decorometer. The accuracy of the measured image height changes depending on how far the sensor reference can be taken. Further, even with orthographic projection, the problem of enlarging the apparatus and the difficulty in aligning the off-axis collimator cannot be solved.

本発明はこのような課題に鑑みてなされたものであり、小型でありながら、被検レンズの光学性能を高精度に検査することができる検査装置を提供することを目的とする。   The present invention has been made in view of such a problem, and an object of the present invention is to provide an inspection apparatus capable of inspecting the optical performance of a lens to be measured with high accuracy while being small in size.

前記課題を解決するために、本発明に係る検査装置は、点光源又は線光源である光源の像を被検レンズの焦平面上に投影する投影光学系と、被検レンズを透過した光源の像からの光を反射して、この被検レンズにより焦平面上の光源の像と略同一の位置に再度結像させる回転ミラーと、被検レンズにより再度結像された光源の像を撮像素子上にリレーするリレー光学系と、を有する。   In order to solve the above problems, an inspection apparatus according to the present invention includes a projection optical system that projects an image of a light source that is a point light source or a line light source onto a focal plane of a test lens, and a light source that has passed through the test lens. A rotating mirror that reflects light from the image and re-images the image of the light source on the focal plane by the test lens, and an image of the light source re-imaged by the test lens. A relay optical system for relaying upward.

このような検査装置は、投影光学系及びリレー光学系を一体にしたユニットとし、被検レンズの光軸と直交する面内で当該ユニットをシフトすることにより、光源の像を被検レンズの焦平面内で移動させるように構成されることが好ましい。   Such an inspection apparatus is a unit in which the projection optical system and the relay optical system are integrated, and the unit is shifted in a plane orthogonal to the optical axis of the lens to be tested so that the image of the light source is focused on the lens to be tested. It is preferably configured to move in a plane.

また、このような検査装置において、回転ミラーは、当該回転ミラー上の被検レンズの光軸から、当該光軸と上記ユニットのシフト方向とを含む面に直交するように延びる回転軸を中心に回転されることにより、光源の像からの光を反射して、被検レンズにより焦平面上の光源の像と略同一の位置に再度結像させるように構成されることが好ましい。   In such an inspection apparatus, the rotating mirror is centered on a rotating shaft extending from the optical axis of the lens to be tested on the rotating mirror so as to be orthogonal to a plane including the optical axis and the shift direction of the unit. It is preferable to be configured to reflect light from the image of the light source by being rotated and to form an image again at a position substantially the same as the image of the light source on the focal plane by the test lens.

また、このような検査装置において、上記ユニットは、被検レンズの光軸に対して直交する方向に移動可能に構成され、且つ、このユニットと被検レンズとをこの被検レンズの光軸を中心に相対回転可能に構成されることが好ましい。   In such an inspection apparatus, the unit is configured to be movable in a direction orthogonal to the optical axis of the test lens, and the unit and the test lens are connected to the optical axis of the test lens. It is preferable to be configured to be rotatable relative to the center.

このとき、回転ミラーは、上記ユニットと一体に、被検レンズに対して相対回転するように構成されることが好ましい。   At this time, it is preferable that the rotating mirror is configured to rotate relative to the test lens integrally with the unit.

また、このような検査装置において、投影光学系及びリレー光学系の各々は、コリメートレンズ及びデコリメートレンズの少なくとも2群を有して構成され、コリメートレンズとデコリメートレンズとの間に、被検レンズに対する投影光学系及びリレー光学系の光路を分割する光路分割素子を有することが好ましい。   In such an inspection apparatus, each of the projection optical system and the relay optical system includes at least two groups of a collimating lens and a decorimating lens, and a test object is disposed between the collimating lens and the decorating lens. It is preferable to have an optical path splitting element that splits the optical path of the projection optical system and the relay optical system with respect to the lens.

このとき、投影光学系のデコリメートレンズとリレー光学系のコリメートレンズとを一つのデコリメート・コリメートレンズで構成することが好ましい。   At this time, it is preferable that the decorating lens of the projection optical system and the collimating lens of the relay optical system are constituted by one decorating / collimating lens.

さらにこのとき、デコリメート・コリメートレンズを撮像光学系及びリレー光学系の光軸に沿って移動させることにより、光源の像をデフォーカス可能に構成されることが好ましい。   Further, at this time, it is preferable that the image of the light source can be defocused by moving the decorimating / collimating lens along the optical axes of the imaging optical system and the relay optical system.

またこのような検査装置は、投影光学系の投影倍率をβtとしたとき、次式
(−βt) ≦ 2.0
の条件を満足することが好ましい。
Further, such an inspection apparatus has the following formula (−βt) ≦ 2.0, where βt is the projection magnification of the projection optical system.
It is preferable to satisfy the following conditions.

またこのような検査装置は、リレー光学系の横倍率をβrとしたとき、次式
1 ≦ βr < 20
の条件を満足することが好ましい。
Also, such an inspection apparatus has the following formula 1 ≦ βr <20, where βr is the lateral magnification of the relay optical system.
It is preferable to satisfy the following conditions.

本発明に係る検査装置を以上のように構成すると、小型でありながら、被検レンズの光学性能を高精度に検査することができる検査装置を提供することができる。   When the inspection apparatus according to the present invention is configured as described above, it is possible to provide an inspection apparatus that can inspect the optical performance of the lens to be measured with high accuracy while being small.

検査装置の構成を示す説明図である。It is explanatory drawing which shows the structure of an inspection apparatus. 上記検査装置において被検レンズの光軸方向の光学性能を測定するためにデフォーカスする場合の動作を示す説明である。It is description which shows operation | movement in the case of defocusing in order to measure the optical performance of the optical axis direction of a to-be-tested lens in the said inspection apparatus. 上記検査装置において被検レンズの軸外光に対する光学性能を測定する場合の動作を示す説明図である。It is explanatory drawing which shows operation | movement in the case of measuring the optical performance with respect to the off-axis light of a to-be-tested lens in the said inspection apparatus.

以下、本発明の好ましい実施形態について図面を参照して説明する。まず、図1〜図3を用いて本実施形態に係る検査装置20の構成について説明する。この検査装置20は、被検レンズ30に点光源又は線光源からの光を照射する投影光学系21と、被検レンズ30を透過した光を撮像素子9に集光するリレー光学系22と、を有している。ここで、投影光学系21は、光源1と被検レンズ30との間に配置されており、光源1側から順に、コンデンサレンズ2と、ピンホール又はスリットからなる開口部3aが形成された遮光板3と、投影光学系コリメートレンズ4と、ビームスプリッタ或いはハーフミラーからなる光路分割素子5と、デコリメート・コリメートレンズ(投影光学系デコリメートレンズ)6と、から構成される。また、リレー光学系22は、被検レンズ30と撮像素子9との間に配置され、投影光学系21と光路分割素子5及びデコリメート・コリメートレンズ6を共用するものであり、被検レンズ30側から順に、デコリメート・コリメートレンズ(リレー光学系コリメートレンズ)6と、光路分割素子5と、リレー光学系デコリメートレンズ8と、から構成される。なお、被検レンズ30を挟んでデコリメート・コリメートレンズ6の反対側には、回転ミラー7が配置されている。また、デコリメート・コリメートレンズ6は、投影光学系21においてデコリメートレンズとして機能し、リレー光学系22においてコリメートレンズとして機能する。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. First, the configuration of the inspection apparatus 20 according to the present embodiment will be described with reference to FIGS. The inspection apparatus 20 includes a projection optical system 21 that irradiates the test lens 30 with light from a point light source or a line light source, a relay optical system 22 that condenses the light transmitted through the test lens 30 on the image sensor 9, have. Here, the projection optical system 21 is disposed between the light source 1 and the lens 30 to be tested, and is a light shielding device in which the condenser lens 2 and an opening 3a made of a pinhole or a slit are formed in order from the light source 1 side. A plate 3, a projection optical system collimating lens 4, an optical path splitting element 5 comprising a beam splitter or a half mirror, and a decorimating / collimating lens (projecting optical system decorating lens) 6 are included. The relay optical system 22 is disposed between the test lens 30 and the image sensor 9 and shares the projection optical system 21, the optical path splitting element 5, and the decorimating / collimating lens 6. , In order, a decorating / collimating lens (relay optical system collimating lens) 6, an optical path splitting element 5, and a relay optical system decorating lens 8. A rotating mirror 7 is disposed on the opposite side of the decorimating / collimating lens 6 with the test lens 30 interposed therebetween. The decorimating / collimating lens 6 functions as a decorating lens in the projection optical system 21 and functions as a collimating lens in the relay optical system 22.

ここで、コンデンサレンズ2は、光源1からの光を遮光板3の開口部3aに集光するように配置されており、また、この開口部3aにその焦点が略一致するように投影光学系コリメートレンズ4が配置されている。さらに、リレー光学系デコリメートレンズ8の焦点上に撮像素子9の撮像面が略一致するように配置されている。また、本実施の形態に係る投影光学系21は、光源1から放射された光を光路分割素子5の透過反射面5aで反射させて被検レンズ30に導くように配置されており、リレー光学系22は、被検レンズ30からの光を透過反射面5aを透過させて撮像素子9に導くように配置されている。さらに、遮光板3の開口部3aがピンホールの場合は、このピンホールの像を検出するために撮像素子9としてエリアセンサーを配置し、開口部3aがスリットの場合は、このスリットの像を検出するために撮像素子9としてラインセンサーを配置することが望ましい(ラインセンサーの場合には、ラインセンサーの延びる方向をスリット状に延びる像と略直交するように配置することが望ましい)。   Here, the condenser lens 2 is disposed so as to collect the light from the light source 1 in the opening 3a of the light shielding plate 3, and the projection optical system so that the focal point thereof substantially coincides with the opening 3a. A collimating lens 4 is arranged. Further, the image pickup surface of the image pickup device 9 is arranged on the focal point of the relay optical system decorimating lens 8 so as to substantially coincide. In addition, the projection optical system 21 according to the present embodiment is arranged so that the light emitted from the light source 1 is reflected by the transmission / reflection surface 5a of the optical path splitting element 5 and guided to the lens 30 to be tested. The system 22 is arranged so that the light from the lens 30 to be tested is transmitted to the imaging element 9 through the transmission / reflection surface 5a. Further, when the opening 3a of the light-shielding plate 3 is a pinhole, an area sensor is arranged as the image sensor 9 to detect the image of this pinhole. When the opening 3a is a slit, the image of this slit is displayed. In order to detect, it is desirable to arrange a line sensor as the image sensor 9 (in the case of a line sensor, it is desirable to arrange the direction in which the line sensor extends so as to be substantially orthogonal to the slit-shaped image).

なお、投影光学系21及びリレー光学系22を構成する光学素子は、所定の精度内でその光軸が一致するように配置されており、図3に示すように、この光軸を以降の説明では「機構軸A」と呼ぶ。ここで、この検査装置20において、光源1、コンデンサレンズ2、遮光板3、投影光学系コリメートレンズ4、光路分割素子5、デコリメート・コリメートレンズ6、リレー光学系デコリメートレンズ8及び撮像素子9は、機構軸Aと直交する方向に移動可能(シフト可能)な一つのユニット10として構成されている。すなわち、図3に示すように、機構軸Aの延びる方向をX軸とし、このX軸に直交する方向(例えば、光路分割素子5に対して光源1が位置する方向)をY軸とすると、このユニット10は、Y軸方向にシフト可能に構成されている。また、被検レンズ30の光軸は、この機構軸Aと同じ方向に(一致しているか、若しくは略平行に延びるように)配置されており、この光軸を以降の説明では「基準軸B」と呼ぶ。さらに、回転ミラー7は、上述のXY平面に直交する方向をZ′としたとき、この回転ミラー7上で、基準軸Bを通りZ′軸方向に延びる回転軸を中心に回転可能に構成されている。   The optical elements constituting the projection optical system 21 and the relay optical system 22 are arranged so that their optical axes coincide with each other within a predetermined accuracy. As shown in FIG. Then, it is called “mechanism axis A”. Here, in the inspection apparatus 20, the light source 1, the condenser lens 2, the light shielding plate 3, the projection optical system collimating lens 4, the optical path dividing element 5, the decorating / collimating lens 6, the relay optical system decorating lens 8, and the imaging element 9 are The unit 10 is configured to be movable (shiftable) in a direction orthogonal to the mechanism axis A. That is, as shown in FIG. 3, when the direction in which the mechanism axis A extends is the X axis, and the direction orthogonal to the X axis (for example, the direction in which the light source 1 is located with respect to the optical path dividing element 5) is the Y axis, The unit 10 is configured to be shiftable in the Y-axis direction. Further, the optical axis of the lens 30 to be examined is arranged in the same direction as the mechanism axis A (coincides with or extends substantially in parallel), and this optical axis is referred to as “reference axis B” in the following description. " Further, the rotation mirror 7 is configured to be rotatable about a rotation axis passing through the reference axis B and extending in the Z′-axis direction on the rotation mirror 7 when the direction orthogonal to the XY plane is Z ′. ing.

このような構成の検査装置20において、光源1から放射された光はコンデンサレンズ2で遮光板3の開口部3aに集光される。すなわち、遮光板3の開口部3aがピンホールの場合は、この開口部3aは点光源として機能し、スリットの場合は線光源として機能する。そして、この開口部3aを透過した光は投影光学系コリメートレンズ4で集光されて略平行光に変換された後、光路分割素子5の透過反射面5aで反射され、さらにデコリメート・コリメートレンズ6で集光されて遮光板3の開口部3aの一次像IMとして結像される。そして、この一次像IMに像側焦点(焦平面)が略一致するように配置された被検レンズ30(図1に示すように機構軸Aと基準軸Bとは略一致している場合)に入射した光は、この被検レンズ30で略平行光に変換されて回転ミラー7に入射して反射される(この場合、回転ミラー7の反射面は、機構軸Aに略垂直に配置されている)。そして、この回転ミラー7で反射された光は、被検レンズ30で集光されて一次像IMの位置に開口部3aの像を再度形成した後、デコリメート・コリメートレンズ6で略平行光に変換される。さらに、この略平行光は、光路分割素子5の透過反射面5aを透過して、リレー光学系デコリメートレンズ8で撮像素子9の撮像面上に集光される。以上のようにして撮像素子9で取得された点像分布関数(PSF)若しくは線像分布関数(LSF)から、被検レンズ30の光学性能(OTF、MTP及びPTF)を算出することができる。   In the inspection apparatus 20 having such a configuration, the light emitted from the light source 1 is condensed on the opening 3 a of the light shielding plate 3 by the condenser lens 2. That is, when the opening 3a of the light shielding plate 3 is a pinhole, the opening 3a functions as a point light source, and when it is a slit, it functions as a line light source. The light transmitted through the opening 3a is condensed by the projection optical system collimating lens 4 and converted into substantially parallel light, then reflected by the transmission / reflection surface 5a of the optical path dividing element 5, and further, the decorimating / collimating lens 6 And is formed as a primary image IM of the opening 3 a of the light shielding plate 3. The test lens 30 is arranged so that the image side focal point (focal plane) substantially coincides with the primary image IM (when the mechanism axis A and the reference axis B substantially coincide as shown in FIG. 1). Is incident on and reflected by the rotating mirror 7 (in this case, the reflecting surface of the rotating mirror 7 is arranged substantially perpendicular to the mechanism axis A). ing). Then, the light reflected by the rotating mirror 7 is condensed by the lens 30 to be tested, and after the image of the opening 3a is formed again at the position of the primary image IM, it is converted into substantially parallel light by the decorimating / collimating lens 6. Is done. Further, the substantially parallel light passes through the transmission / reflection surface 5 a of the optical path splitting element 5 and is condensed on the imaging surface of the imaging element 9 by the relay optical system decorating lens 8. As described above, the optical performance (OTF, MTP, and PTF) of the test lens 30 can be calculated from the point spread function (PSF) or the line spread function (LSF) acquired by the image sensor 9.

以上のように、本実施形態に係る検査装置20は、古くから簡易的に回折像を観察する方法であるオートコリメーション法を用いている。この方法はコリメーターが不要であるので装置の小型化につながる。また、被検レンズ30を2度光が通過する(ダブルパスである)ので収差量が2倍となって現れ、収差の少ない超望遠レンズの評価には適している検査法と言える。また高価なコリメータを使用しないのでコスト面でも有利になる。また、図1に示すように、焦点距離の長い被検レンズ30の場合は、焦平面と共役な位置にピンホール或いはスリットの像(一次像IM)を投影し、被検レンズ30を通過させ、さらに回転ミラー7で反射させて焦平面(一次像IMの位置)に戻った光をリレー光学系22で撮像素子9に導くことにより、被検レンズ30の光学性能を測定することができるので、測定感度の高さ及び省空間化につながる。   As described above, the inspection apparatus 20 according to the present embodiment uses the autocollimation method, which is a method for simply observing a diffraction image from the old days. Since this method does not require a collimator, it leads to downsizing of the apparatus. Further, since the light passes through the lens 30 twice (double pass), the amount of aberration appears twice, which can be said to be an inspection method suitable for evaluation of a super telephoto lens with little aberration. Further, since an expensive collimator is not used, it is advantageous in terms of cost. Further, as shown in FIG. 1, in the case of the test lens 30 having a long focal length, a pinhole or slit image (primary image IM) is projected at a position conjugate with the focal plane and passed through the test lens 30. Further, by guiding the light reflected by the rotating mirror 7 and returning to the focal plane (position of the primary image IM) to the image sensor 9 by the relay optical system 22, the optical performance of the lens 30 to be measured can be measured. , Leading to high measurement sensitivity and space saving.

ところで、この検査装置20を用いて被検レンズ30の光軸方向の光学性能を測定するには、図2に示すように、デコリメート・コリメートレンズ6を光軸方向に(機構軸Aに沿って)動かす構造とすることが望ましい。図2のごとく、デフォーカスによる光軸方向の像変位をその直後のデコリメート・コリメートレンズ6のデフォーカスの変位で1対1でキャンセルすることができる。   By the way, in order to measure the optical performance of the test lens 30 in the optical axis direction using this inspection apparatus 20, as shown in FIG. 2, the decorimating / collimating lens 6 is moved in the optical axis direction (along the mechanism axis A). ) It is desirable to have a moving structure. As shown in FIG. 2, the image displacement in the optical axis direction due to defocusing can be canceled one-to-one by the defocusing displacement of the decorimating / collimating lens 6 immediately after that.

また、この検査装置20を用いて被検レンズ30の軸上の光学性能を測定するには、機構軸Aと基準軸Bとを略一致させて測定行う。一方、被検レンズ30の軸外の光学性能を測定するには、上述のユニット10を機構軸Aに垂直な平面内(XY平面内)でシフトさせることにより行われる。ここで、被検レンズ30の焦点距離をf、画角をθ、像高をyとして、y=ftanθの関係が成り立つ。すなわち、ユニット10をシフトしたことにより、基準軸Bに対して機構軸Aが平行移動する。このとき、被検レンズ30の焦平面内における移動した一次像IMの基準軸Bからの距離を像高yとすると、回転ミラー7を回転軸Z′を中心にθ/2だけ機構軸Aと測定像高を含む平面内(XY平面内)で回転させることにより、図3に示すように、この回転ミラー7で反射した光が被検レンズ30で集光されて、上述の像高yの位置に再度集光される。さらに、リレー光学系22により撮像素子9上に集光されるため、PSF又はLSFを取得して軸外像高の光学性能を測定することができる。例えば、被検レンズ30の焦点距離を300mmとし、像高15.1mmの光学性能を測定する場合、被検レンズ30の半画角はθ=2.9°となり、このとき回転ミラー7は1/2×θ=1.45°だけ傾け、図3のユニット10全体をy=15.1mmシフトさせる。このように、ユニット10全体を機構軸Aに垂直な平面(XY平面)でシフト可能に構成することにより、被検レンズ30の軸上及び軸外の光学性能を測定することが可能となる。   Further, in order to measure the optical performance on the axis of the lens 30 to be tested using the inspection apparatus 20, the measurement is performed with the mechanism axis A and the reference axis B substantially coincided with each other. On the other hand, the off-axis optical performance of the lens 30 to be measured is measured by shifting the above-described unit 10 in a plane perpendicular to the mechanism axis A (in the XY plane). Here, assuming that the focal length of the lens 30 to be examined is f, the angle of view is θ, and the image height is y, the relationship y = ftanθ holds. That is, the mechanism axis A moves in parallel with the reference axis B by shifting the unit 10. At this time, if the distance from the reference axis B of the primary image IM moved in the focal plane of the lens 30 to be tested is an image height y, the rotating mirror 7 is moved from the mechanism axis A by θ / 2 about the rotation axis Z ′. By rotating in the plane including the measurement image height (in the XY plane), as shown in FIG. 3, the light reflected by the rotating mirror 7 is collected by the test lens 30, and the above-described image height y is obtained. It is condensed again at the position. Furthermore, since it is condensed on the image sensor 9 by the relay optical system 22, it is possible to acquire PSF or LSF and measure the optical performance of the off-axis image height. For example, when measuring the optical performance when the focal length of the test lens 30 is 300 mm and the image height is 15.1 mm, the half angle of view of the test lens 30 is θ = 2.9 °. By tilting by 2 × θ = 1.45 °, the entire unit 10 in FIG. 3 is shifted by y = 15.1 mm. Thus, by configuring the entire unit 10 so as to be shiftable in a plane (XY plane) perpendicular to the mechanism axis A, it is possible to measure the on-axis and off-axis optical performance of the lens 30 to be tested.

なお、基準軸Bを中心軸として、被検レンズ30とユニット10及び回転ミラー7の組とを相対的に回転させる(例えば、基準軸Bを中心に被検レンズ30を回転させるか、若しくは、被検レンズ30に対してユニット10及び回転ミラー7を一体に基準軸Bを中心に回転させる)ことにより、基準軸Bの回りの任意の像高からの軸外光による被検レンズ30の光学性能を測定することができる。ここで、軸外から被検レンズ30に遮光板3の開口部3aの像を入射させる焦平面上の位置は、基準軸Bを中心として少なくとも4方向であることが望ましい。さらに、この焦平面内において、これら4つの方向は、基準軸Bに対して対称に配置されていることが望ましい。   Note that the lens 30 and the set of the unit 10 and the rotating mirror 7 are relatively rotated with the reference axis B as the center axis (for example, the lens 30 to be tested is rotated around the reference axis B, or The unit 10 and the rotating mirror 7 are integrally rotated about the reference axis B with respect to the test lens 30), whereby the optical power of the test lens 30 by off-axis light from an arbitrary image height around the reference axis B is obtained. Performance can be measured. Here, the position on the focal plane where the image of the opening 3a of the light shielding plate 3 is incident on the lens 30 to be examined from the off-axis direction is preferably at least four directions with the reference axis B as the center. Furthermore, it is desirable that these four directions are arranged symmetrically with respect to the reference axis B in this focal plane.

このような検査装置20において、投影光学系コリメートレンズ4の焦点距離をFtdとし、投影光学系デコリメートレンズ(デコリメート・コリメートレンズ6)の焦点距離をFtcとして定義される投影光学系21の投影倍率βtは、等倍近辺か縮小倍率、すなわち、次式(1)を満足することが望ましい。   In such an inspection apparatus 20, the projection magnification of the projection optical system 21 is defined such that the focal length of the projection optical system collimating lens 4 is defined as Ftd and the focal length of the projection optical system decorating lens (decorimating / collimating lens 6) is defined as Ftc. It is desirable that βt be near the same magnification or a reduction ratio, that is, satisfy the following expression (1).

(−βt)=Ftd/Ftc ≦ 2.0 (1) (−βt) = Ftd / Ftc ≦ 2.0 (1)

投影光学系21の投影倍率βtを、条件式(1)を満足するように構成することにより、遮光板3の開口部(ピンホール若しくはスリット)3aの製造精度が緩和される方向になる。小径の穴の真円度、又は、小さいスリットでエッジの連続性を求めることは難しく、かといって大きいピンホール、スリット幅では高い空間周波数が得られない。100lp/mmの空間周波数を得るには、被検レンズ30の焦平面に0.005mm相当のピンホール或いはスリットの像を投影しなければならない。これをβt<−2.0で投影しようとすると、遮光板3(チャートやメカスリット)の製作が非常に困難である。なお、条件式(1)の上限値を1.0とするとより好ましく、上限値を0.5とするとさらに好ましい。   By configuring the projection magnification βt of the projection optical system 21 so as to satisfy the conditional expression (1), the manufacturing accuracy of the opening (pinhole or slit) 3a of the light shielding plate 3 is reduced. It is difficult to obtain the roundness of a small-diameter hole or the continuity of an edge with a small slit. However, a high spatial frequency cannot be obtained with a large pinhole and slit width. In order to obtain a spatial frequency of 100 lp / mm, a pinhole or slit image corresponding to 0.005 mm must be projected onto the focal plane of the lens 30 to be examined. If this is projected with βt <−2.0, it is very difficult to manufacture the light shielding plate 3 (chart or mechanical slit). In addition, it is more preferable when the upper limit of conditional expression (1) is 1.0, and it is more preferable when the upper limit is 0.5.

また、リレー光学系デコリメートレンズ8の焦点距離をFrcとし、リレー光学系コリメートレンズ(デコリメート・コリメートレンズ6)の焦点距離をFrdとして定義されるリレー光学系22の横倍率βrは、等倍か拡大倍率、すなわち、次式(2)を満足することが望ましい。   Further, the lateral magnification βr of the relay optical system 22 defined as Frc as the focal length of the relay optical system decorimating lens 8 and Frd as the focal length of the relay optical system collimating lens (decorimating / collimating lens 6) is equal to or equal to It is desirable to satisfy the magnification ratio, that is, the following expression (2).

1 ≦ βr=Frc/Frd < 20 (2) 1 ≦ βr = Frc / Frd <20 (2)

リレー光学系22の横倍率βrを、条件式(2)を満足するように構成することにより、要望される高周波数を光学系で拡大リレーする為、撮像素子9上での空間周波数を低く設定でき、撮像素子9として、ダイナミックレンジの広いセンサーを選択することができる。なお、撮像素子9での照度は、横倍率βrの二乗に反比例する。そのため、条件式(2)の上限を超えると、撮像素子9上での照度が、βr=−1のときの1/202になってしまうので像面照度が低下し、それに応じてこの撮像素子9での光の蓄積時間が長くなりすぎて実用的でなくなる。 By configuring the lateral magnification βr of the relay optical system 22 to satisfy the conditional expression (2), the desired high frequency is enlarged and relayed by the optical system, so the spatial frequency on the image sensor 9 is set low. A sensor having a wide dynamic range can be selected as the image sensor 9. It should be noted that the illuminance at the image sensor 9 is inversely proportional to the square of the lateral magnification βr. Therefore, if the upper limit of condition (2), illuminance on the image pickup device 9, image plane illuminance is lowered so becomes 1/20 second when .beta.r = -1, the imaging accordingly The light storage time in the element 9 becomes too long and becomes impractical.

さらに投影光学系21の光路分割素子(ビームスプリッターあるいはハーフミラー)5における透過反射面5aの透過及び反射の比は、ほぼ半分である事が望ましい。但し、光源1の輝度と撮像素子9上での照度が一番大きく寄与するので、光源1の投影倍率と撮像素子9へのリレー倍率の設定によっても最適な比率は変わってくる。   Further, it is desirable that the transmission / reflection ratio of the transmission / reflection surface 5a in the optical path splitting element (beam splitter or half mirror) 5 of the projection optical system 21 is approximately half. However, since the luminance of the light source 1 and the illuminance on the image sensor 9 contribute the most, the optimum ratio varies depending on the setting of the projection magnification of the light source 1 and the relay magnification to the image sensor 9.

なお、被検レンズ30が超望遠系の場合、その半画角は6度程度以下であり、被検レンズ30の前方に配置する回転ミラー7の設定角度は上述の通り少なくともその半分以下は必要となる。そのため、半画角が小さい為に、この回転ミラー7として、軸上用ミラーと軸外用ミラーを同時に配置するのは困難である。よって軸上と軸外の測定を同時ではなく個別に行うことが望ましい。さらに、デフォーカスする際に光軸方向の位置を読み取る手段を持ち、軸上と軸外数箇所を個別にスキャンして、軸上のある空間周波数のベストとなる位置をスプライン関数等で補間して求め、その光軸方向の位置を基準として軸外像高の光学性能(MTF等)を判定することが望ましい。   When the test lens 30 is a super telephoto system, its half angle of view is about 6 degrees or less, and the setting angle of the rotating mirror 7 arranged in front of the test lens 30 is required to be at least half or less as described above. It becomes. Therefore, since the half angle of view is small, it is difficult to simultaneously arrange the on-axis mirror and the off-axis mirror as the rotating mirror 7. It is therefore desirable to perform on-axis and off-axis measurements individually rather than simultaneously. In addition, it has a means to read the position in the optical axis direction when defocusing, scans on-axis and several off-axis locations separately, and interpolates the best position on the axis with a spline function etc. It is desirable to determine the optical performance (such as MTF) of the off-axis image height based on the position in the optical axis direction.

また、以上の実施形態では、光源1から出た光を光路分割素子5で反射させて被検レンズ30に導き、この被検レンズ30を透過した光を光路分割素子5を透過させて撮像素子9に導くように構成した場合について説明したが、光源1から出た光は光路分割素子5を透過させ、被検レンズ30を透過した光は光路分割素子5で反射させるように、投影光学系21及びリレー光学系22を配置しても良い。   In the above embodiment, the light emitted from the light source 1 is reflected by the optical path splitting element 5 and guided to the test lens 30, and the light transmitted through the test lens 30 is transmitted through the optical path splitting element 5 to obtain an image sensor. The projection optical system is described so that the light emitted from the light source 1 is transmitted through the optical path dividing element 5 and the light transmitted through the test lens 30 is reflected by the optical path dividing element 5. 21 and the relay optical system 22 may be disposed.

1 光源 3 遮光板 3a 開口部(点光源又は線光源)
4 投影光学系コリメートレンズ 5 光路分割素子
6 デコリメート・コリメートレンズ 7 回転ミラー
8 リレー光学系デコリメートレンズ 9 撮像素子 10 ユニット
20 検査装置 21 投影光学系 22 リレー光学系 30 被検レンズ
DESCRIPTION OF SYMBOLS 1 Light source 3 Light-shielding plate 3a Opening part (point light source or line light source)
DESCRIPTION OF SYMBOLS 4 Projection optical system collimating lens 5 Optical path division | segmentation element 6 Decolimate collimating lens 7 Rotating mirror 8 Relay optical system decorimating lens 9 Image sensor 10 Unit 20 Inspection apparatus 21 Projection optical system 22 Relay optical system 30 Test lens

Claims (10)

点光源又は線光源である光源の像を被検レンズの焦平面上に投影する投影光学系と、
前記被検レンズを透過した前記光源の像からの光を反射して、前記被検レンズにより前記焦平面上の前記光源の像と略同一の位置に再度結像させる回転ミラーと、
前記被検レンズにより再度結像された前記光源の像を撮像素子上にリレーするリレー光学系と、を有する検査装置。
A projection optical system that projects an image of a light source that is a point light source or a line light source onto a focal plane of a lens to be examined;
A rotating mirror that reflects light from the image of the light source that has passed through the test lens and re-forms the light at the same position as the image of the light source on the focal plane by the test lens;
An inspection apparatus comprising: a relay optical system that relays an image of the light source formed again by the lens to be examined onto an image sensor.
前記投影光学系及び前記リレー光学系を一体にしたユニットとし、前記被検レンズの光軸と直交する面内で当該ユニットをシフトすることにより、前記光源の像を前記被検レンズの前記焦平面内で移動させるように構成された請求項1に記載の検査装置。   The projection optical system and the relay optical system are integrated into a unit, and the unit is shifted in a plane orthogonal to the optical axis of the lens to be tested, whereby the image of the light source is converted to the focal plane of the lens to be tested. The inspection apparatus according to claim 1, wherein the inspection apparatus is configured to be moved within the apparatus. 前記回転ミラーは、当該回転ミラー上の前記被検レンズの光軸から、当該光軸と前記ユニットのシフト方向とを含む面に直交するように延びる回転軸を中心に回転されることにより、前記光源の像からの光を反射して、前記被検レンズにより前記焦平面上の前記光源の像と略同一の位置に再度結像させるように構成された請求項2に記載の検査装置。   The rotating mirror is rotated about an axis of rotation extending from the optical axis of the lens to be tested on the rotating mirror so as to be orthogonal to a plane including the optical axis and the shift direction of the unit. The inspection apparatus according to claim 2, configured to reflect light from an image of a light source and form the image again at a position substantially the same as the image of the light source on the focal plane by the lens to be examined. 前記ユニットは、前記被検レンズの光軸に対して直交する方向に移動可能に構成され、且つ、前記ユニットと前記被検レンズとを前記被検レンズの前記光軸を中心に相対回転可能に構成された請求項2または3に記載の検査装置。   The unit is configured to be movable in a direction perpendicular to the optical axis of the test lens, and is capable of relative rotation between the unit and the test lens around the optical axis of the test lens. The inspection apparatus according to claim 2 or 3, wherein the inspection apparatus is configured. 前記回転ミラーは、前記ユニットと一体に、前記被検レンズに対して相対回転するように構成された請求項4に記載の検査装置。   The inspection apparatus according to claim 4, wherein the rotating mirror is configured to rotate relative to the lens to be measured integrally with the unit. 前記投影光学系及び前記リレー光学系の各々は、コリメートレンズ及びデコリメートレンズの少なくとも2群を有して構成され、前記コリメートレンズと前記デコリメートレンズとの間に、前記被検レンズに対する前記投影光学系及び前記リレー光学系の光路を分割する光路分割素子を有する請求項1〜5いずれか一項に記載の検査装置。   Each of the projection optical system and the relay optical system includes at least two groups of a collimating lens and a decorimating lens, and the projection with respect to the test lens is between the collimating lens and the decorimating lens. The inspection apparatus according to claim 1, further comprising an optical path splitting element that splits an optical path of the optical system and the relay optical system. 前記投影光学系のデコリメートレンズと前記リレー光学系のコリメートレンズとを一つのデコリメート・コリメートレンズで構成した請求項6に記載の検査装置。   The inspection apparatus according to claim 6, wherein the decorating lens of the projection optical system and the collimating lens of the relay optical system are configured by a single decorating / collimating lens. 前記デコリメート・コリメートレンズを前記撮像光学系及び前記リレー光学系の光軸に沿って移動させることにより、前記光源の像をデフォーカス可能に構成された請求項7に記載の検査装置。   The inspection apparatus according to claim 7, wherein the image of the light source is configured to be defocused by moving the decorimating / collimating lens along the optical axes of the imaging optical system and the relay optical system. 前記投影光学系の投影倍率をβtとしたとき、次式
(−βt) ≦ 2.0
の条件を満足する請求項1〜8いずれか一項に記載の検査装置。
When the projection magnification of the projection optical system is βt, the following formula (−βt) ≦ 2.0
The inspection apparatus according to any one of claims 1 to 8, which satisfies the following condition.
前記リレー光学系の横倍率をβrとしたとき、次式
1 ≦ βr < 20
の条件を満足する請求項1〜9いずれか一項に記載の検査装置。
When the lateral magnification of the relay optical system is βr, the following formula 1 ≦ βr <20
The inspection apparatus according to any one of claims 1 to 9, which satisfies the following condition.
JP2009230086A 2009-10-02 2009-10-02 Inspection device Expired - Fee Related JP5641278B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009230086A JP5641278B2 (en) 2009-10-02 2009-10-02 Inspection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009230086A JP5641278B2 (en) 2009-10-02 2009-10-02 Inspection device

Publications (2)

Publication Number Publication Date
JP2011075516A true JP2011075516A (en) 2011-04-14
JP5641278B2 JP5641278B2 (en) 2014-12-17

Family

ID=44019645

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009230086A Expired - Fee Related JP5641278B2 (en) 2009-10-02 2009-10-02 Inspection device

Country Status (1)

Country Link
JP (1) JP5641278B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110568704A (en) * 2019-09-02 2019-12-13 歌尔股份有限公司 Ultra-short-focus lens detection system and detection method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09288038A (en) * 1996-04-20 1997-11-04 Ricoh Co Ltd Apparatus for measuring optical system coupling performance
JP2001296206A (en) * 2000-04-13 2001-10-26 Nikon Corp Apparatus and method for double refraction measuring
JP2007093339A (en) * 2005-09-28 2007-04-12 Nikon Corp Inspection device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09288038A (en) * 1996-04-20 1997-11-04 Ricoh Co Ltd Apparatus for measuring optical system coupling performance
JP2001296206A (en) * 2000-04-13 2001-10-26 Nikon Corp Apparatus and method for double refraction measuring
JP2007093339A (en) * 2005-09-28 2007-04-12 Nikon Corp Inspection device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110568704A (en) * 2019-09-02 2019-12-13 歌尔股份有限公司 Ultra-short-focus lens detection system and detection method

Also Published As

Publication number Publication date
JP5641278B2 (en) 2014-12-17

Similar Documents

Publication Publication Date Title
JP6087993B2 (en) Method and apparatus for image scanning
KR100654248B1 (en) Eccentricity measuring method and eccentricity measuring apparatus
JP5677473B2 (en) Focus adjustment device and focus adjustment method
JP2002071513A (en) Interferometer for immersion microscope objective and evaluation method of the immersion microscope objective
JP2005098933A (en) Instrument for measuring aberrations
CN101339002B (en) Large angle Michelson type shearing speckle interferometer
KR101826127B1 (en) optical apparatus for inspecting pattern image of semiconductor wafer
JP3597222B2 (en) Eccentricity measurement method for lenses, reflectors, etc., and machines using it
JP3782303B2 (en) Epi-illumination microscope
JP5641278B2 (en) Inspection device
JP2006084545A (en) Camera, photographing lens, and camera system
JP4835091B2 (en) Position detection device
JP7191632B2 (en) Eccentricity measurement method
KR100790706B1 (en) Device for detecting focal lenghth of lenses
JPH1068674A (en) Measuring device of lens system and mtf measuring method of lens system
JP2014145684A (en) Measuring device
JPH075397A (en) Schlieren microscope device
JP2010014463A (en) Method of measuring optical element and method of manufacturing optical element
JP5380802B2 (en) Inspection system
JP5217350B2 (en) Eccentricity measuring device
JP2006250675A (en) Mach-zehnder interferometer
JP2004132858A (en) System and method of measuring optical performance of optical system
JP2001042223A (en) Optical device equipped with accurate fine adjusting function
JP2001330418A (en) Planar shape measuring apparatus
JP2004163207A (en) Instrument and method for measuring lens

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120921

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131002

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140618

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140811

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141015

R150 Certificate of patent or registration of utility model

Ref document number: 5641278

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees