JP2011073038A - Cylindrical sliding member and method for manufacturing the same - Google Patents

Cylindrical sliding member and method for manufacturing the same Download PDF

Info

Publication number
JP2011073038A
JP2011073038A JP2009226492A JP2009226492A JP2011073038A JP 2011073038 A JP2011073038 A JP 2011073038A JP 2009226492 A JP2009226492 A JP 2009226492A JP 2009226492 A JP2009226492 A JP 2009226492A JP 2011073038 A JP2011073038 A JP 2011073038A
Authority
JP
Japan
Prior art keywords
iron
aluminum alloy
sliding member
cylindrical
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009226492A
Other languages
Japanese (ja)
Other versions
JP5383410B2 (en
Inventor
Kiyoyuki Kawai
清行 川合
Yasutomo Takahashi
康智 高橋
Daisuke Araki
大介 荒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TEIPI KOGYO KK
Teikoku Piston Ring Co Ltd
Original Assignee
TEIPI KOGYO KK
Teikoku Piston Ring Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TEIPI KOGYO KK, Teikoku Piston Ring Co Ltd filed Critical TEIPI KOGYO KK
Priority to JP2009226492A priority Critical patent/JP5383410B2/en
Publication of JP2011073038A publication Critical patent/JP2011073038A/en
Application granted granted Critical
Publication of JP5383410B2 publication Critical patent/JP5383410B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cylindrical sliding member excellent in wear resistance, sliding characteristics of scuffing resistance, and workability and having less aggressiveness to a counter sliding member, and also to provide a method for manufacturing the same. <P>SOLUTION: The cylindrical sliding member contains ferrous particles in an aluminum alloy substrate. The ferrous particles are dispersed and exposed at an inner circumferential sliding surface at the rate of &ge;25% and &le;60% by an area ratio. The screen mesh of the particle size of the ferrous particle is preferably &ge;0.5 mm and &le;2.36 mm. The ferrous particle is preferably cast iron or steel. A cylinder liner is suggested as the cylindrical sliding member. The cylindrical sliding member is manufactured by centrifugal casting. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、シリンダライナ等の円筒状摺動部材に関する。   The present invention relates to a cylindrical sliding member such as a cylinder liner.

シリンダライナに代表される円筒状摺動部材は、その内周壁がピストンリングにより繰り返しの摺動摩擦を受けることや高温に晒されること等から、耐摩耗性、耐スカッフ性、強度を考慮して、鋳鉄により製造されていた。最近になり、自動車部品の軽量化が急務となってきたことや熱伝導性の改良が要求されていること等から、シリンダライナの材料としてアルミニウム合金が提案されている。   Cylindrical sliding members typified by cylinder liners are subjected to repeated sliding friction by the piston ring and exposed to high temperatures. It was made of cast iron. Recently, aluminum alloys have been proposed as a material for cylinder liners due to the urgent need to reduce the weight of automobile parts and the need for improved thermal conductivity.

特許文献1は、遠心鋳造により作製した中空部材を記載している。回転する円筒状金型内にアルミニウム合金粉末を供給して外側円筒形状体を先ず成形し、次に、外側円筒形状体の内部にAl−Si系合金の溶湯を供給して、外側円筒形状体に内側円筒形状体を積層した中空部材を作製する。これにより、微細な初晶Siが略均等に分散した組織を内周側に得られる。特許文献2は、内周にアルミ系金属部分とセラミックス部分が露呈したアルミシリンダを記載している。   Patent document 1 has described the hollow member produced by centrifugal casting. An aluminum alloy powder is supplied into a rotating cylindrical mold to form an outer cylindrical body first, and then an Al-Si alloy melt is supplied into the outer cylindrical body to form an outer cylindrical body. A hollow member in which an inner cylindrical body is laminated is prepared. Thereby, the structure | tissue in which the fine primary crystal Si was disperse | distributed substantially uniformly is obtained on the inner peripheral side. Patent Document 2 describes an aluminum cylinder in which an aluminum metal part and a ceramic part are exposed on the inner periphery.

アルミニウム合金製のシリンダボアは良好な摺動特性を得るため、内周面の仕上げに電解エッチング処理(ECM)を施す場合が多い。この手法によれば、アルミニウムマトリックス部分のみが優先的にエッチングされるため、晶出したSiが僅かに突出した表面を得ることができる。これによって、良好な耐摩耗性と耐スカッフ性とを得ることができる。   In order to obtain good sliding characteristics, an aluminum alloy cylinder bore is often subjected to electrolytic etching (ECM) for finishing the inner peripheral surface. According to this method, since only the aluminum matrix portion is preferentially etched, a surface in which crystallized Si slightly protrudes can be obtained. Thereby, good wear resistance and scuff resistance can be obtained.

特開2008−221308号公報JP 2008-221308 A 特公平4−038947号公報Japanese Patent Publication No. 4-038947

特許文献1の中空部材は、内周に強化材を含んでおらず、Al−Si系合金のみから構成されているため、耐摩耗性や耐スカッフ性が十分でない場合がある。特許文献2のシリンダは、摺動特性が優れているが、難加工材であるセラミックスを複合するため、加工性が悪く、加工に用いる刃具を摩耗させる欠点を有している。また、硬質なセラミックスにより、ピストンリングに対する攻撃性が増し、ピストンリングの摩耗が増加する場合がある。電解エッチング処理(ECM)は、工数自体の増加や廃液処理によって製造コストが増すことが避けられない。   Since the hollow member of Patent Document 1 does not include a reinforcing material on the inner periphery and is composed only of an Al—Si based alloy, the wear resistance and scuff resistance may not be sufficient. Although the cylinder of patent document 2 is excellent in sliding characteristics, since it is composed of ceramics which are difficult to process, it has poor workability and has the disadvantage of wearing a blade used for processing. Further, the hard ceramics may increase the aggressiveness against the piston ring and may increase the wear of the piston ring. Electrolytic etching (ECM) inevitably increases manufacturing costs due to an increase in man-hours and waste liquid treatment.

本発明の目的は、耐摩耗性と耐スカッフ性の摺動特性及び加工性に優れ、しかも相手摺動部材に対する攻撃性も小さい円筒状摺動部材、及びその製造方法を提供することである。   An object of the present invention is to provide a cylindrical sliding member that is excellent in wear resistance and scuff resistance sliding characteristics and workability, and that also has a low aggression against a mating sliding member, and a method for manufacturing the same.

上記課題を解決するために本発明は次の解決手段を採る。すなわち、
本発明は、アルミニウム合金基材中に鉄系粒子を含んでいる円筒状摺動部材であって、鉄系粒子が面積率25%以上、60%以下の割合で内周摺動面に分散して露出していることを特徴とする。
In order to solve the above problems, the present invention employs the following means. That is,
The present invention is a cylindrical sliding member containing iron-based particles in an aluminum alloy base material, and the iron-based particles are dispersed on the inner peripheral sliding surface at a rate of 25% or more and 60% or less. It is characterized by being exposed.

内周摺動面に分散して露出している鉄系粒子の面積率を25%以上、60%以下とすることにより、優れた耐摩耗性と耐スカッフ性の摺動特性を得られる(図7、図8参照)。鉄系粒子の面積率が25%未満であると、充分な耐スカッフ性の向上効果が得られない。面積率が60%を越えると、遠心鋳造による製造時に、鉄系粒子間へのアルミニウム合金溶湯の含浸性が低下するため、その後の加工時に鉄系粒子が脱落しやすい問題を生じる。   By making the area ratio of the iron-based particles dispersed and exposed on the inner sliding surface 25% or more and 60% or less, it is possible to obtain excellent wear resistance and scuff resistance sliding characteristics (see FIG. 7, see FIG. When the area ratio of the iron-based particles is less than 25%, a sufficient scuff resistance improving effect cannot be obtained. When the area ratio exceeds 60%, the impregnation property of the molten aluminum alloy between the iron-based particles decreases during the production by centrifugal casting, which causes a problem that the iron-based particles are easily dropped during subsequent processing.

鉄系粒子の粒度の篩目開きが0.5mm以上、2.36mm以下であることが好ましい。鉄系粒子の粒度の篩目開きを上記の値とすることにより、必要とされる複合材厚さを確保でき、鉄系粒子の脱落を防ぎ、加工性を良好にする。粒度の篩目開きが0.5mm未満であると、アルミニウム合金溶湯が鉄系粒子の間に浸透しにくくなり、必要とされる複合材厚さを確保することが困難になる。また、鉄系粒子がアルミニウム合金基材に強固に保持されないため、その後の加工時に鉄系粒子が脱落しやすい問題を生じる。粒度の篩目開きが2.36mmを越えると、複合材作製後の加工時における切削抵抗が増し、加工効率が低下する他、鉄系粒子の脱落も生じやすくなる。   The sieve opening of the iron-based particles is preferably 0.5 mm or more and 2.36 mm or less. By setting the sieve opening of the particle size of the iron-based particles to the above value, the required composite material thickness can be ensured, the iron-based particles are prevented from falling off, and the workability is improved. If the sieve opening of the particle size is less than 0.5 mm, the aluminum alloy molten metal will not easily penetrate between the iron-based particles, and it will be difficult to ensure the required composite material thickness. Further, since the iron-based particles are not firmly held by the aluminum alloy base material, there arises a problem that the iron-based particles are easily dropped during subsequent processing. When the sieve opening of the particle size exceeds 2.36 mm, the cutting resistance at the time of processing after producing the composite material is increased, the processing efficiency is lowered, and iron-based particles are easily dropped off.

鉄系粒子は、摺動特性の点から、鋳鉄又は鋼であることが好ましい。鋼粒子にはJIS SUS304に代表されるオーステナイト系ステンレス鋼粒子も含まれるが、一般にオーステナイト系の鋼はマルテンサイト系の鋼やフェライト系の鋼と比較して摺動特性が劣る場合が多いため、より高い摺動特性を望む場合は、マルテンサイト系やフェライト系の鋼粒子を選定することが望ましい。   The iron-based particles are preferably cast iron or steel from the viewpoint of sliding characteristics. The austenitic stainless steel particles represented by JIS SUS304 are also included in the steel particles, but generally austenitic steels often have poor sliding characteristics compared to martensitic steels and ferritic steels. When higher sliding characteristics are desired, it is desirable to select martensitic or ferritic steel particles.

本発明においては、基材となるアルミニウム合金中のSi含有量は特に規定しないが、3%以上、25%以下とすることにより、耐スカッフ性の向上及び鋳造欠陥の減少を図ることができる(図9参照)。一般的には、基材となるアルミニウム合金中に鉄系粒子が存在しない場合は、Si含有量が9%未満であると、アルミニウムのデンドライト(α相)の晶出量が増し、シリンダライナ等の摺動部材の耐スカッフ性が低下する。しかしながら、鉄系粒子が存在すると、アルミニウム合金基材中のSi含有量は3%以上あれば、Si含有量が14%で鉄系粒子が存在しない場合に比べて耐スカッフ性が向上する。耐スカッフ性は、鉄系粒子が存在する場合、Si含有量が6%以上で効果が大きく、14%以上では更に効果が高い。他方、アルミニウム合金基材中のSi含有量が25%を越えると、高温溶解が必要となるばかりか、製造時にピットなどの鋳造欠陥が増加しやすくなることから、アルミニウム合金基材中のSi含有量は25%以下が望ましい。   In the present invention, the Si content in the aluminum alloy serving as a base material is not particularly specified, but by setting it to 3% or more and 25% or less, it is possible to improve scuff resistance and reduce casting defects ( (See FIG. 9). In general, when no iron-based particles are present in the base aluminum alloy, if the Si content is less than 9%, the crystallization amount of aluminum dendrite (α phase) increases, and a cylinder liner, etc. The scuff resistance of the sliding member is reduced. However, when iron-based particles are present, if the Si content in the aluminum alloy substrate is 3% or more, the scuff resistance is improved as compared with the case where the Si content is 14% and no iron-based particles are present. In the presence of iron-based particles, the scuff resistance is more effective when the Si content is 6% or more, and more effective when the content is 14% or more. On the other hand, if the Si content in the aluminum alloy substrate exceeds 25%, not only high-temperature melting is required, but also casting defects such as pits are likely to increase during production. The amount is desirably 25% or less.

前記円筒状摺動部材としてはシリンダライナが挙げられるが、これに限られることはない。   The cylindrical sliding member includes a cylinder liner, but is not limited thereto.

前記円筒状摺動部材は遠心鋳造によって製造できる。   The cylindrical sliding member can be manufactured by centrifugal casting.

遠心鋳造によって円筒状摺動部材を作製する本発明の円筒状摺動部材の製造方法は、
回転する円筒状金型の内部に粒度の篩目開きが0.5mm以上、2.36mm以下の鉄系粒子を供給して、金型の内周面に鉄系粒子層を形成する工程と、
溶融したアルミニウム合金を鉄系粒子層が形成された回転する金型内部に供給して、鉄系粒子層の粒子間の隙間に遠心力によってアルミニウム合金の溶湯を含浸させ、円筒状部材を鋳造する工程と、
を有することを特徴とする。
The method for producing a cylindrical sliding member of the present invention for producing a cylindrical sliding member by centrifugal casting is as follows.
Supplying iron-based particles having a sieve opening of a particle size of 0.5 mm or more and 2.36 mm or less into a rotating cylindrical mold, and forming an iron-based particle layer on the inner peripheral surface of the mold;
A molten aluminum alloy is supplied into a rotating mold in which an iron-based particle layer is formed, and a gap between particles of the iron-based particle layer is impregnated with a molten aluminum alloy by centrifugal force to cast a cylindrical member. Process,
It is characterized by having.

本発明は次の製造方法を採用してもよい。すなわち、
遠心鋳造によって円筒状摺動部材を作製する本発明の円筒状摺動部材の製造方法は、
回転する円筒状金型の内部に粒度の篩目開きが0.5mm以上、2.36mm以下のアルミニウム合金粒子を供給して、金型の内周面にアルミニウム合金粒子層を形成する工程と、
アルミニウム合金粒子層が形成された回転する円筒状金型の内部に粒度の篩目開きが0.5mm以上、2.36mm以下の鉄系粒子を供給して、金型の内周面のアルミニウム合金粒子層上に鉄系粒子層を形成する工程と、
溶融したアルミニウム合金をアルミニウム合金粒子層と鉄系粒子層とが形成された回転する金型内部に供給して、鉄系粒子層の粒子間の隙間とアルミニウム合金粒子層の粒子間の隙間とに遠心力によってアルミニウム合金の溶湯を含浸させ、円筒状部材を鋳造する工程と、
を有することを特徴とする。
The present invention may employ the following manufacturing method. That is,
The method for producing a cylindrical sliding member of the present invention for producing a cylindrical sliding member by centrifugal casting is as follows.
Supplying aluminum alloy particles having a sieve opening of a particle size of 0.5 mm or more and 2.36 mm or less into a rotating cylindrical mold, and forming an aluminum alloy particle layer on the inner peripheral surface of the mold;
An aluminum alloy on the inner peripheral surface of the mold is provided by supplying iron-based particles having a particle size of 0.5 mm or more and 2.36 mm or less into a rotating cylindrical mold having an aluminum alloy particle layer formed therein. Forming an iron-based particle layer on the particle layer;
The molten aluminum alloy is supplied into a rotating mold in which an aluminum alloy particle layer and an iron-based particle layer are formed, so that a gap between particles of the iron-based particle layer and a gap between particles of the aluminum alloy particle layer are provided. Impregnating a molten aluminum alloy by centrifugal force and casting a cylindrical member;
It is characterized by having.

最初にアルミニウム合金粒子を投入することで、円筒状部材の最外周部をアルミニウム合金層とすることができる。その結果、鉄系粒子を最外周面に露出せずに済むため、製造される円筒状摺動部材の外周を防錆処理する必要がなくなる。また、鉄系粒子の量も減らせることができるため、円筒状摺動部材の重量を軽減できる。最初に投入するアルミニウム合金粒子の種類は特に限定されないが、シリンダライナの場合、低融点のものがダイカスト時におけるシリンダブロック材との接合に有利であり好ましい。   By first introducing aluminum alloy particles, the outermost peripheral portion of the cylindrical member can be made an aluminum alloy layer. As a result, since it is not necessary to expose the iron-based particles to the outermost peripheral surface, there is no need to rust prevent the outer periphery of the manufactured cylindrical sliding member. Moreover, since the amount of iron-based particles can be reduced, the weight of the cylindrical sliding member can be reduced. The type of aluminum alloy particles to be initially charged is not particularly limited, but in the case of a cylinder liner, a low melting point is preferable because it is advantageous for joining with a cylinder block material during die casting.

本発明の円筒状摺動部材は、耐摩耗性、耐スカッフ性の摺動特性に優れる。本発明を適用したシリンダライナは、従来の過共晶Al−Si合金製シリンダライナと比較して耐摩耗性、耐スカッフ性に優れる。また、本発明の円筒状摺動部材は、加工性に優れ、相手材に対する攻撃性も小さい。本発明を適用したシリンダライナは、セラミックス系強化材を含んだアルミニウム合金製のシリンダライナと比較して加工性に優れ、ピストンリングに対する攻撃性が小さい。本発明の円筒状摺動部材は、遠心鋳造法によって簡単に製造できる。   The cylindrical sliding member of the present invention is excellent in abrasion resistance and scuff resistance sliding characteristics. The cylinder liner to which the present invention is applied is superior in wear resistance and scuff resistance as compared with a conventional hypereutectic Al-Si alloy cylinder liner. Moreover, the cylindrical sliding member of this invention is excellent in workability, and its attack property with respect to a counterpart material is also small. The cylinder liner to which the present invention is applied is superior in workability and less aggressive to the piston ring than an aluminum alloy cylinder liner containing a ceramic reinforcing material. The cylindrical sliding member of the present invention can be easily manufactured by centrifugal casting.

本発明の一実施形態であるシリンダライナを示す縦断面図である。It is a longitudinal section showing a cylinder liner which is one embodiment of the present invention. 本発明の円筒状摺動部材の内周摺動面の一部分を示す写真である。It is a photograph which shows a part of inner peripheral sliding surface of the cylindrical sliding member of this invention. 遠心鋳造において鉄系粒子を供給する工程を示す縦断面図である。It is a longitudinal cross-sectional view which shows the process of supplying iron-type particle | grains in centrifugal casting. 鉄系粒子供給後の円筒状金型の縦断面図である。It is a longitudinal cross-sectional view of the cylindrical metal mold | die after iron-type particle | grain supply. 遠心鋳造においてアルミニウム合金溶湯を供給する工程を示す縦断面図である。It is a longitudinal cross-sectional view which shows the process of supplying an aluminum alloy molten metal in centrifugal casting. 円筒状金型から取り出された円筒状部材を示す縦断面図である。It is a longitudinal cross-sectional view which shows the cylindrical member taken out from the cylindrical metal mold | die. 鉄系粒子の面積率と耐摩耗性との関係を示すグラフである。It is a graph which shows the relationship between the area ratio of iron-type particle | grains, and abrasion resistance. 鉄系粒子の面積率と耐スカッフ性との関係を示すグラフである。It is a graph which shows the relationship between the area ratio of iron-type particle | grains, and scuff resistance. アルミニウム合金中のSi含有量と耐スカッフ性との関係を示すグラフである。It is a graph which shows the relationship between Si content in an aluminum alloy, and scuff resistance. 遠心鋳造においてアルミニウム合金粒子を供給する工程を示す縦断面図である。It is a longitudinal cross-sectional view which shows the process of supplying aluminum alloy particle | grains in centrifugal casting. アルミニウム合金粒子供給後の円筒状金型の縦断面図である。It is a longitudinal cross-sectional view of the cylindrical metal mold | die after aluminum alloy particle supply. 遠心鋳造において鉄系粒子を供給する工程を示す縦断面図である。It is a longitudinal cross-sectional view which shows the process of supplying iron-type particle | grains in centrifugal casting. 鉄系粒子供給後の円筒状金型の縦断面図である。It is a longitudinal cross-sectional view of the cylindrical metal mold | die after iron-type particle | grain supply. 遠心鋳造においてアルミニウム合金溶湯を供給する工程を示す縦断面図である。It is a longitudinal cross-sectional view which shows the process of supplying an aluminum alloy molten metal in centrifugal casting. 円筒状金型から取り出された円筒状部材を示す縦断面図である。It is a longitudinal cross-sectional view which shows the cylindrical member taken out from the cylindrical metal mold | die.

以下、本発明に係る円筒状摺動部材及びその製造方法について好適な実施形態を図面を参照して説明する。     DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, preferred embodiments of a cylindrical sliding member and a manufacturing method thereof according to the invention will be described with reference to the drawings.

図1は、本発明の円筒状摺動部材であるシリンダライナ1を示す縦断面図である。このシリンダライナ1はアルミニウム合金基材中に、粒度の篩目開きが0.5mm以上、2.36mm以下の鉄系粒子を含んでいる。鉄系粒子は面積率25%以上、60%以下の割合でシリンダライナ1の内周摺動面2に分散して露出している。   FIG. 1 is a longitudinal sectional view showing a cylinder liner 1 which is a cylindrical sliding member of the present invention. The cylinder liner 1 includes iron-based particles having a sieve opening of a particle size of 0.5 mm or more and 2.36 mm or less in an aluminum alloy base material. The iron-based particles are dispersedly exposed on the inner peripheral sliding surface 2 of the cylinder liner 1 at an area ratio of 25% or more and 60% or less.

実際に作製した円筒状摺動部材の内周摺動面の写真を図2に示す。濃色部分が鉄系粒子であり、淡色部分が生地であるアルミニウム合金である。   A photograph of the inner peripheral sliding surface of the actually produced cylindrical sliding member is shown in FIG. The dark colored portion is an iron-based particle, and the light colored portion is an aluminum alloy that is a fabric.

以下、本発明のシリンダライナを遠心鋳造法により作製する一例を説明する。   Hereinafter, an example of producing the cylinder liner of the present invention by centrifugal casting will be described.

図3に示されているように、回転する円筒状金型10の内部に挿入された上面開口の樋状部材である粒子フィーダ11によって鉄系粒子12Aが円筒状金型10の内部に供給される。鉄系粒子は、粒度の篩目開きが0.5mm以上、2.36mm以下である。粒子フィーダ11は円筒状金型10の長手方向に沿って移動され、鉄系粒子が円筒状金型10の長手方向に略均等に供給される。鉄系粒子は遠心力によって円筒状金型10の内周に張り付き、円筒状金型10の内周面に鉄系粒子層12(図4参照)が形成される。   As shown in FIG. 3, iron-based particles 12 </ b> A are supplied to the inside of the cylindrical mold 10 by the particle feeder 11 which is a bowl-shaped member having an upper surface opening inserted into the rotating cylindrical mold 10. The The iron-based particles have a sieve opening of a particle size of 0.5 mm or more and 2.36 mm or less. The particle feeder 11 is moved along the longitudinal direction of the cylindrical mold 10, and the iron-based particles are supplied substantially evenly in the longitudinal direction of the cylindrical mold 10. The iron-based particles stick to the inner periphery of the cylindrical mold 10 by centrifugal force, and an iron-based particle layer 12 (see FIG. 4) is formed on the inner peripheral surface of the cylindrical mold 10.

次に、図5に示されているように、回転する円筒状金型10の内部にアルミニウム合金溶湯13がトラフ14の注湯管から流し込まれる。アルミニウム合金溶湯は流動性があり、また遠心力の作用によって鉄系粒子層に均一に分散してゆく。このとき、アルミニウム合金溶湯は、鉄系粒子間の隙間に含浸して、アルミニウム合金基材中に鉄系粒子を含んだ円筒状部材が鋳造される。   Next, as shown in FIG. 5, molten aluminum alloy 13 is poured into the rotating cylindrical mold 10 from the pouring pipe of the trough 14. The molten aluminum alloy has fluidity and is uniformly dispersed in the iron-based particle layer by the action of centrifugal force. At this time, the molten aluminum alloy is impregnated in the gaps between the iron-based particles, and a cylindrical member containing the iron-based particles in the aluminum alloy base material is cast.

この際、鉄系粒子の粒度の篩目開きが細かすぎると、アルミニウム合金溶湯が鉄系粒子の間に浸透しにくくなり、複合材である円筒状部材の必要な厚さを確保することが困難になる。また、鉄系粒子がアルミニウム合金基材に強固に保持されないため、内周仕上げ等の加工時に粒子が脱落しやすくなる問題を生じる。そのため、鉄系粒子の粒度の篩目開きは0.5mm以上とする。   At this time, if the sieve opening of the particle size of the iron-based particles is too fine, the molten aluminum alloy is difficult to penetrate between the iron-based particles, and it is difficult to ensure the necessary thickness of the cylindrical member that is a composite material. become. Further, since the iron-based particles are not firmly held by the aluminum alloy base material, there arises a problem that the particles are easily dropped during processing such as inner peripheral finishing. Therefore, the sieve opening of the iron-based particles is 0.5 mm or more.

他方、鉄系粒子の粒度の篩目開きが大きすぎると、内周仕上げ等の加工時に切削抵抗が増し、加工効率が低下する他、鉄系粒子の脱落も生じやすくなるため、鉄系粒子の粒度の篩目開きは2.36mm以下とする。   On the other hand, if the sieve opening of the particle size of the iron-based particles is too large, the cutting resistance increases during processing such as inner peripheral finishing, the processing efficiency is lowered, and the iron-based particles are liable to fall off. The sieve opening of the particle size is 2.36 mm or less.

なお、鉄系粒子のサイズや所望する円筒状部材の厚さによって、付与する遠心力を変化させる必要があるが、概ね90G以上が好適である。   Although it is necessary to change the centrifugal force to be applied depending on the size of the iron-based particles and the desired thickness of the cylindrical member, approximately 90 G or more is preferable.

円筒状部材が凝固した後、円筒状金型10から蓋体10aが取り外され、円筒状部材15(図6参照)が円筒状金型10から取り出される。図6の円筒状部材15において、16は鉄系粒子層の粒子間の隙間にアルミニウム合金溶湯が含浸して形成された層、13Bは層16の内側に形成されたアルミニウム合金溶湯による層である。   After the cylindrical member is solidified, the lid 10a is removed from the cylindrical mold 10, and the cylindrical member 15 (see FIG. 6) is taken out from the cylindrical mold 10. In the cylindrical member 15 of FIG. 6, 16 is a layer formed by impregnating a gap between particles of an iron-based particle layer with molten aluminum alloy, and 13 </ b> B is a layer made of molten aluminum alloy formed inside the layer 16. .

その後、所定の長さで切断され、シリンダライナが製造される。その後、シリンダライナの内周面に仕上加工が施されて、アルミニウム合金溶湯による層13Bは削除され、鉄系粒子が面積率25%以上、60%以下の割合で分散した面を内周面に露出させる。   Thereafter, the cylinder liner is manufactured by cutting with a predetermined length. Thereafter, the inner peripheral surface of the cylinder liner is finished, the layer 13B made of molten aluminum alloy is deleted, and the surface on which the iron-based particles are dispersed at a rate of 25% to 60% is used as the inner peripheral surface. Expose.

図7は、鉄系粒子として鋳鉄の粒子を用いた場合のアルミニウム合金製のシリンダライナと、窒化ピストンリングとの往復動摩擦試験の結果を示している。図7において、縦軸は、鉄系粒子が無添加(0%)の場合のシリンダライナの摩耗量を1としたときの各シリンダライナの摩耗量を相対値で示しており、横軸は摺動面上の鉄系粒子の面積率を表している。すなわち、縦軸の値が小さいほど、シリンダライナの耐摩耗性は優れる。   FIG. 7 shows the result of a reciprocating friction test between a cylinder liner made of an aluminum alloy and a nitrided piston ring when cast iron particles are used as iron-based particles. In FIG. 7, the vertical axis shows the wear amount of each cylinder liner as a relative value when the wear amount of the cylinder liner when the iron-based particles are not added (0%) is 1, and the horizontal axis shows the sliding value. It represents the area ratio of iron-based particles on the moving surface. That is, the smaller the value on the vertical axis, the better the wear resistance of the cylinder liner.

図7により、鉄系粒子の面積率の増加に伴い、シリンダライナの摩耗量が減少することがわかる。鉄系粒子の面積率が21%でも、鉄系粒子の面積率が0%の場合と比較して、約2割の摩耗量の低減効果が得られる。耐摩耗性だけが必要な場合は、鉄系粒子の面積率は20%前後でも効果がある。しかしながら、耐スカッフ性を必要とする場合は、次に示すように必ずしも充分とは言えない。   FIG. 7 shows that the wear amount of the cylinder liner decreases as the area ratio of the iron-based particles increases. Even if the area ratio of iron-based particles is 21%, the effect of reducing the wear amount by about 20% can be obtained as compared with the case where the area ratio of iron-based particles is 0%. If only wear resistance is required, the area ratio of the iron-based particles is effective even at around 20%. However, when scuff resistance is required, it is not always sufficient as shown below.

図8は、鉄系粒子として鋳鉄の粒子を用いた場合のアルミニウム合金製のシリンダライナと、窒化ピストンリングとの往復動スカッフ試験の結果を示している。図8において、縦軸は、鉄系粒子が無添加(0%)の場合のシリンダライナのスカッフ発生までの時間を1としたときの各シリンダライナのスカッフ時間を相対値で示しており、横軸は摺動面上の鉄系粒子の面積率を表している。すなわち、縦軸の値が大きいほど、シリンダライナの耐スカッフ性は優れる。   FIG. 8 shows the result of a reciprocating scuff test between a cylinder liner made of an aluminum alloy and a nitrided piston ring when cast iron particles are used as the iron-based particles. In FIG. 8, the vertical axis indicates the scuff time of each cylinder liner as a relative value when the time until the occurrence of scuffing of the cylinder liner is 1 when no iron-based particles are added (0%). The axis represents the area ratio of iron-based particles on the sliding surface. That is, the greater the value on the vertical axis, the better the scuff resistance of the cylinder liner.

図8により、鉄系粒子の面積率の増加に伴い、シリンダライナの耐スカッフ性が向上することがわかる。しかしながら、鉄系粒子の面積率が21%の場合、耐スカッフ性向上効果は僅かであり、効果不充分である。したがって、鉄系粒子の面積率は25%以上と規定した。特に、鉄系粒子の面積率が40%以上で良好な結果を得られる。   FIG. 8 shows that the scuff resistance of the cylinder liner is improved as the area ratio of the iron-based particles increases. However, when the area ratio of the iron-based particles is 21%, the effect of improving the scuff resistance is slight and the effect is insufficient. Therefore, the area ratio of iron-based particles is defined as 25% or more. In particular, good results can be obtained when the area ratio of the iron-based particles is 40% or more.

鉄系粒子の面積率は大きいほど、耐摩耗性と耐スカッフ性は向上する傾向にある。しかしながら、面積率が60%を越えると、製造時の溶湯含浸性が低下し、その後の加工時に鉄系粒子が脱落しやすくなる問題を生ずるため、鉄系粒子の面積率は60%以下と規定した。   As the area ratio of the iron-based particles increases, the wear resistance and scuff resistance tend to improve. However, if the area ratio exceeds 60%, the melt impregnation property at the time of manufacture is reduced, and there is a problem that the iron-based particles are likely to fall off during the subsequent processing. Therefore, the area ratio of the iron-based particles is defined as 60% or less. did.

図7、図8においては、基材となるアルミニウム合金中のSi含有量は14%であり、鉄系粒子の粒度の篩目開きは1.0mm〜1.5mmである。   7 and 8, the Si content in the aluminum alloy serving as the base material is 14%, and the sieve opening of the particle size of the iron-based particles is 1.0 mm to 1.5 mm.

図9は、アルミニウム合金中のSi含有量と耐スカッフ性との関係について、鉄系粒子を含む場合と含まない場合とにおけるアルミニウム合金製のシリンダライナと窒化ピストンリングとの往復動スカッフ試験の結果を示している。図9において、縦軸は、鉄系粒子が存在せず、Si含有量が14%の場合のシリンダライナのスカッフ発生までの時間を1としたときの各シリンダライナのスカッフ時間を相対値で示しており、横軸はアルミニウム合金中のSi含有量を表している。すなわち、縦軸の値が大きいほど、シリンダライナの耐スカッフ性は優れる。図9において、鉄系粒子は鋳鉄粒子であり、鉄系粒子の粒度の篩目開きは1.0mm〜1.5mm、鉄系粒子の面積率は25%である。   FIG. 9 shows the results of a reciprocating scuffing test between a cylinder liner made of an aluminum alloy and a nitrided piston ring with and without iron-based particles regarding the relationship between the Si content in the aluminum alloy and the scuff resistance. Is shown. In FIG. 9, the vertical axis shows the scuff time of each cylinder liner as a relative value when the time until the scuff generation of the cylinder liner is 1 when no iron-based particles are present and the Si content is 14%. The horizontal axis represents the Si content in the aluminum alloy. That is, the greater the value on the vertical axis, the better the scuff resistance of the cylinder liner. In FIG. 9, the iron-based particles are cast iron particles, the sieve opening of the particle size of the iron-based particles is 1.0 mm to 1.5 mm, and the area ratio of the iron-based particles is 25%.

図9により、鉄系粒子が存在することにより、アルミニウム合金基材中のSi含有量は3%以上あれば、鉄系粒子が存在せず、Si含有量が14%の場合よりも耐スカッフ性が向上することがわかる。耐スカッフ性は、鉄系粒子が存在する場合、Si含有量が6%以上で効果が大きく、14%以上では非常に効果がある。 As shown in FIG. 9, when iron-based particles are present, if the Si content in the aluminum alloy substrate is 3% or more, the iron-based particles are not present, and the scuff resistance is higher than when the Si content is 14%. Can be seen to improve. In the presence of iron-based particles, scuff resistance is very effective when the Si content is 6% or more, and very effective when the content is 14% or more.

図7〜図9においては、鉄系粒子として鋳鉄粒子を用いた例を示したが、他の鋼の粒子を用いることもできる。本発明に用いる鉄系粒子には、JIS SUS304に代表されるオーステナイト系ステンレス鋼の粒子なども含まれるが、一般にオーステナイト系の鋼はマルテンサイト系の鋼やフェライト系の鋼と比較して摺動特性が劣る場合が多いため、より高い摺動特性を望むのであれば、マルテンサイト系やフェライト系の粒子を用いる方がよい。   7 to 9 show examples in which cast iron particles are used as the iron-based particles, but other steel particles can also be used. The iron-based particles used in the present invention include austenitic stainless steel particles represented by JIS SUS304. Generally, austenitic steel slides compared to martensitic steel and ferritic steel. Since the characteristics are often inferior, if higher sliding characteristics are desired, it is better to use martensite or ferrite particles.

また、一般に、セラミックスの多くは難加工材である。したがって、セラミックスの繊維や粒子を強化材とする複合材からなるシリンダの加工は困難であることは想像に難くない。アルミニウム合金を基材とする本発明のシリンダライナは、強化材としてセラミックス材料を用いず、鉄系粒子を用いているため、セラミックスを含んだ複合材からなるシリンダライナと比較して加工性に優れている。   In general, many ceramics are difficult to process materials. Therefore, it is not difficult to imagine that it is difficult to process a cylinder made of a composite material using ceramic fibers and particles as reinforcing materials. Since the cylinder liner of the present invention based on an aluminum alloy does not use a ceramic material as a reinforcing material but uses iron-based particles, it has excellent workability compared to a cylinder liner made of a composite material containing ceramics. ing.

また、一般に硬質なセラミックスを含む複合材からなるシリンダは、ピストンリングの摩耗を促進する場合がある。しかし、アルミニウム合金を基材とする本発明のシリンダライナは、強化材としてセラミックス材料を用いず、鉄系粒子を用いているため、ピストンリングに対する攻撃性が小さい。   In general, a cylinder made of a composite material containing hard ceramics may promote wear of the piston ring. However, since the cylinder liner of the present invention based on an aluminum alloy does not use a ceramic material as a reinforcing material but uses iron-based particles, it has a low attack on the piston ring.

本発明における円筒状摺動部材は、摺動特性に優れるため、本発明をシリンダライナに適用する場合、従来の過共晶Al−Si合金製シリンダライナやセラミックス複合材からなるシリンダライナにおいて施されることの多かったECM処理を省略することができる。   Since the cylindrical sliding member of the present invention is excellent in sliding characteristics, when the present invention is applied to a cylinder liner, it is applied to a conventional cylinder liner made of a hypereutectic Al-Si alloy cylinder liner or a ceramic composite material. ECM processing that is often performed can be omitted.

本発明における鉄系粒子には、各種のショット材、切り粉、粉砕粉等を適用することができる。特に、切り粉や粉砕粉の活用は、廃材の活用という点からも有意義である。なお、扁平な粒子は溶湯の浸透性に劣るため、できるだけ丸い粒子を選定することが好ましい。   Various shot materials, cutting powder, pulverized powder, and the like can be applied to the iron-based particles in the present invention. In particular, the use of cutting powder and pulverized powder is significant from the viewpoint of using waste materials. In addition, since flat particle | grains are inferior to the permeability of a molten metal, it is preferable to select a round particle | grain as much as possible.

更に、本発明の円筒状摺動部材のアルミニウム合金基材にはCu、Fe、Ni、Mn、Mg、Ti、Cr等の金属元素を適量加えてもよい。これらの金属元素は鋳造用およびダイカスト用アルミニウム合金に広く添加されている。Cu等が添加される場合は、T6処理に代表される熱処理を施した際、アルミニウム合金基材を強化することが可能であり、鉄系粒子がより強固に保持されるようになる。   Furthermore, an appropriate amount of a metal element such as Cu, Fe, Ni, Mn, Mg, Ti, or Cr may be added to the aluminum alloy substrate of the cylindrical sliding member of the present invention. These metal elements are widely added to aluminum alloys for casting and die casting. When Cu or the like is added, it is possible to reinforce the aluminum alloy substrate when heat treatment typified by T6 treatment is performed, and iron-based particles are more firmly held.

本発明の円筒状摺動部材の摺動特性は、鉄系粒子の面積率に最も大きく左右されるため、上記金属元素の添加量の影響は比較的少ない。したがって、基材となるアルミニウム合金には様々なリサイクルアルミニウム合金材を用いることができる。ただし、粗大な金属間化合物が晶出すると、基材の機械的性質が損なわれる場合があるため注意を必要とする。   Since the sliding characteristics of the cylindrical sliding member of the present invention are greatly influenced by the area ratio of the iron-based particles, the influence of the addition amount of the metal element is relatively small. Therefore, various recycled aluminum alloy materials can be used for the aluminum alloy serving as the base material. However, when coarse intermetallic compounds are crystallized, the mechanical properties of the substrate may be impaired, so care must be taken.

以下、本発明のシリンダライナを遠心鋳造法により作製する別の例を説明する。   Hereinafter, another example of producing the cylinder liner of the present invention by centrifugal casting will be described.

図10に示されているように、回転する円筒状金型10の内部に挿入された上面開口の樋状部材である粒子フィーダ11Aによってアルミニウム合金粒子17Aが円筒状金型10の内部に供給される。アルミニウム合金粒子は、粒度の篩目開きが0.5mm以上、2.36mm以下である。粒子フィーダ11Aは円筒状金型10の長手方向に沿って移動され、アルミニウム合金粒子が円筒状金型10の長手方向に略均等に供給される。アルミニウム合金粒子は円筒状金型10の遠心力によって円筒状金型10の内周に張り付き、円筒状金型10の内周面にアルミニウム合金粒子層17(図11参照)が形成される。   As shown in FIG. 10, the aluminum alloy particles 17 </ b> A are supplied to the inside of the cylindrical mold 10 by the particle feeder 11 </ b> A that is a bowl-shaped member having an upper surface opening inserted into the rotating cylindrical mold 10. The The aluminum alloy particles have a sieve opening of 0.5 to 2.36 mm. The particle feeder 11 </ b> A is moved along the longitudinal direction of the cylindrical mold 10, and the aluminum alloy particles are supplied substantially evenly in the longitudinal direction of the cylindrical mold 10. The aluminum alloy particles stick to the inner periphery of the cylindrical mold 10 by the centrifugal force of the cylindrical mold 10, and an aluminum alloy particle layer 17 (see FIG. 11) is formed on the inner peripheral surface of the cylindrical mold 10.

次に、図12に示されているように、回転する円筒状金型10の内部に挿入された上面開口の樋状部材である粒子フィーダ11によって鉄系粒子12Aが円筒状金型10の内部に供給される。鉄系粒子は、粒度の篩目開きが0.5mm以上、2.36mm以下である。粒子フィーダ11は円筒状金型10の長手方向に沿って移動され、鉄系粒子が円筒状金型10の長手方向に略均等に供給される。鉄系粒子は回転する円筒状金型10の遠心力によってアルミニウム合金粒子層17の内周に張り付き、円筒状金型10の内周面のアルミニウム合金粒子層17上に鉄系粒子層12(図13参照)が形成される。   Next, as shown in FIG. 12, the iron-based particles 12 </ b> A are brought into the interior of the cylindrical mold 10 by the particle feeder 11 which is a bowl-shaped member having an upper surface opening inserted into the rotating cylindrical mold 10. To be supplied. The iron-based particles have a sieve opening of a particle size of 0.5 mm or more and 2.36 mm or less. The particle feeder 11 is moved along the longitudinal direction of the cylindrical mold 10, and the iron-based particles are supplied substantially evenly in the longitudinal direction of the cylindrical mold 10. The iron-based particles stick to the inner periphery of the aluminum alloy particle layer 17 by the centrifugal force of the rotating cylindrical mold 10, and the iron-based particle layer 12 (see FIG. 13) is formed.

次に、図14に示されているように、回転する円筒状金型10の内部にアルミニウム合金溶湯13がトラフ14の注湯管から流し込まれる。アルミニウム合金溶湯は流動性があり、また遠心力の作用によって鉄系粒子層とアルミニウム合金粒子層に均一に分散してゆく。このとき、アルミニウム合金溶湯は、鉄系粒子間の隙間とアルミニウム合金粒子間の隙間とに含浸して、アルミニウム合金基材中に鉄系粒子とアルミニウム合金粒子とを含んだ円筒状部材が鋳造される。   Next, as shown in FIG. 14, molten aluminum alloy 13 is poured into the rotating cylindrical mold 10 from the pouring pipe of the trough 14. The molten aluminum alloy has fluidity and is uniformly dispersed in the iron-based particle layer and the aluminum alloy particle layer by the action of centrifugal force. At this time, the molten aluminum alloy is impregnated into the gap between the iron-based particles and the gap between the aluminum alloy particles, and a cylindrical member containing the iron-based particles and the aluminum alloy particles is cast in the aluminum alloy base material. The

円筒状部材が凝固した後、円筒状金型10の蓋体10aが取り外され、円筒状部材18(図15参照)が円筒状金型10から取り出される。図15の円筒状部材18において、16は鉄系粒子層の粒子間の隙間にアルミニウム合金溶湯が含浸して形成された層、13Bは層16の内側に形成されたアルミニウム合金溶湯による層、19は層16の外側に形成され、アルミニウム合金粒子層の粒子間の隙間にアルミニウム合金溶湯が含浸して形成された層である。   After the cylindrical member is solidified, the lid 10a of the cylindrical mold 10 is removed, and the cylindrical member 18 (see FIG. 15) is taken out from the cylindrical mold 10. In the cylindrical member 18 of FIG. 15, 16 is a layer formed by impregnating a gap between particles of an iron-based particle layer with molten aluminum alloy, 13B is a layer formed by molten aluminum alloy formed inside the layer 16, 19 Is a layer formed outside the layer 16 and impregnated with molten aluminum alloy in the gaps between the particles of the aluminum alloy particle layer.

その後、所定の長さで切断され、シリンダライナが製造される。その後、シリンダライナの内周面に仕上加工が施されて、アルミニウム合金溶湯による層13Bは削除され、鉄系粒子が面積率25%以上、60%以下の割合で分散した面を内周面に露出させる。   Thereafter, the cylinder liner is manufactured by cutting with a predetermined length. Thereafter, the inner peripheral surface of the cylinder liner is finished, the layer 13B made of molten aluminum alloy is deleted, and the surface on which the iron-based particles are dispersed at a rate of 25% to 60% is used as the inner peripheral surface. Expose.

上記製造方法によると、シリンダライナの最外周部をアルミニウム合金層とすることができるので、鉄系粒子を最外周面に露出させずに済む。その結果、製造されるシリンダライナの外周を防錆処理する必要がなくなる。また、鉄系粒子の量も減らせることができるため、シリンダライナの重量を軽減できる。   According to the above manufacturing method, the outermost peripheral portion of the cylinder liner can be made of an aluminum alloy layer, so that it is not necessary to expose the iron-based particles to the outermost peripheral surface. As a result, there is no need to rust prevent the outer periphery of the manufactured cylinder liner. Further, since the amount of iron-based particles can be reduced, the weight of the cylinder liner can be reduced.

1 シリンダライナ
2 内周摺動面
10 円筒状金型
10a 蓋体
11,11A 粒子フィーダ
12A 鉄系粒子
12 鉄系粒子層
13 アルミニウム合金溶湯
13B アルミニウム合金溶湯による層
14 トラフ
15 円筒状部材
16 鉄系粒子層の粒子間の隙間にアルミニウム合金溶湯が含浸して形成された層
17A アルミニウム合金粒子
17 アルミニウム合金粒子層
18 円筒状部材
19 アルミニウム合金粒子層の粒子間の隙間にアルミニウム合金溶湯が含浸して形成された層
DESCRIPTION OF SYMBOLS 1 Cylinder liner 2 Inner peripheral sliding surface 10 Cylindrical metal mold | die 10a Cover body 11,11A Particle feeder 12A Iron type particle | grains 12 Iron type particle layer 13 Aluminum alloy molten metal 13B Layer 14 by molten aluminum alloy Trough 15 Cylindrical member 16 Iron type Layer 17A formed by impregnating gap between particles of particle layer with molten aluminum alloy Aluminum alloy particle 17 Aluminum alloy particle layer 18 Cylindrical member 19 The gap between particles of aluminum alloy particle layer is impregnated with molten aluminum alloy. Formed layer

Claims (7)

アルミニウム合金基材中に鉄系粒子を含んでいる円筒状摺動部材であって、鉄系粒子が面積率25%以上、60%以下の割合で内周摺動面に分散して露出していることを特徴とする円筒状摺動部材。   A cylindrical sliding member containing iron-based particles in an aluminum alloy base material, wherein the iron-based particles are dispersed and exposed on the inner peripheral sliding surface at a rate of 25% or more and 60% or less. A cylindrical sliding member. 前記鉄系粒子の粒度の篩目開きが0.5mm以上、2.36mm以下であることを特徴とする請求項1記載の円筒状摺動部材。   The cylindrical sliding member according to claim 1, wherein the sieve opening of the iron-based particles is 0.5 mm or more and 2.36 mm or less. 前記鉄系粒子が鋳鉄又は鋼であることを特徴とする請求項1又は2記載の円筒状摺動部材。   The cylindrical sliding member according to claim 1 or 2, wherein the iron-based particles are cast iron or steel. 前記円筒状摺動部材が遠心鋳造によって形成されていることを特徴とする請求項1、2又は3記載の円筒状摺動部材。   The cylindrical sliding member according to claim 1, 2 or 3, wherein the cylindrical sliding member is formed by centrifugal casting. 前記円筒状摺動部材がシリンダライナであることを特徴とする請求項1〜4のいずれかに記載の円筒状摺動部材。   The cylindrical sliding member according to claim 1, wherein the cylindrical sliding member is a cylinder liner. 遠心鋳造によって円筒状摺動部材を作製する円筒状摺動部材の製造方法であって、
回転する円筒状金型の内部に粒度の篩目開きが0.5mm以上、2.36mm以下の鉄系粒子を供給して、金型の内周面に鉄系粒子層を形成する工程と、
溶融したアルミニウム合金を鉄系粒子層が形成された回転する金型内部に供給して、鉄系粒子層の粒子間の隙間に遠心力によってアルミニウム合金の溶湯を含浸させ、円筒状部材を鋳造する工程と、
を有することを特徴とする円筒状摺動部材の製造方法。
A cylindrical sliding member manufacturing method for producing a cylindrical sliding member by centrifugal casting,
Supplying iron-based particles having a sieve opening of a particle size of 0.5 mm or more and 2.36 mm or less into a rotating cylindrical mold, and forming an iron-based particle layer on the inner peripheral surface of the mold;
A molten aluminum alloy is supplied into a rotating mold in which an iron-based particle layer is formed, and a gap between particles of the iron-based particle layer is impregnated with a molten aluminum alloy by centrifugal force to cast a cylindrical member. Process,
The manufacturing method of the cylindrical sliding member characterized by having.
遠心鋳造によって円筒状摺動部材を作製する円筒状摺動部材の製造方法であって、
回転する円筒状金型の内部に粒度の篩目開きが0.5mm以上、2.36mm以下のアルミニウム合金粒子を供給して、金型の内周面にアルミニウム合金粒子層を形成する工程と、
アルミニウム合金粒子層が形成された回転する円筒状金型の内部に粒度の篩目開きが0.5mm以上、2.36mm以下の鉄系粒子を供給して、金型の内周面のアルミニウム合金粒子層上に鉄系粒子層を形成する工程と、
溶融したアルミニウム合金をアルミニウム合金粒子層と鉄系粒子層とが形成された回転する金型内部に供給して、鉄系粒子層の粒子間の隙間とアルミニウム合金粒子層の粒子間の隙間とに遠心力によってアルミニウム合金の溶湯を含浸させ、円筒状部材を鋳造する工程と、
を有することを特徴とする円筒状摺動部材の製造方法。
A cylindrical sliding member manufacturing method for producing a cylindrical sliding member by centrifugal casting,
Supplying aluminum alloy particles having a sieve opening of a particle size of 0.5 mm or more and 2.36 mm or less into a rotating cylindrical mold, and forming an aluminum alloy particle layer on the inner peripheral surface of the mold;
An aluminum alloy on the inner peripheral surface of the mold is provided by supplying iron-based particles having a particle size of 0.5 mm or more and 2.36 mm or less into a rotating cylindrical mold having an aluminum alloy particle layer formed therein. Forming an iron-based particle layer on the particle layer;
The molten aluminum alloy is supplied into a rotating mold in which an aluminum alloy particle layer and an iron-based particle layer are formed, so that a gap between particles of the iron-based particle layer and a gap between particles of the aluminum alloy particle layer are provided. Impregnating a molten aluminum alloy by centrifugal force and casting a cylindrical member;
The manufacturing method of the cylindrical sliding member characterized by having.
JP2009226492A 2009-09-30 2009-09-30 Manufacturing method of cylindrical sliding member Active JP5383410B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009226492A JP5383410B2 (en) 2009-09-30 2009-09-30 Manufacturing method of cylindrical sliding member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009226492A JP5383410B2 (en) 2009-09-30 2009-09-30 Manufacturing method of cylindrical sliding member

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2013124250A Division JP5550084B2 (en) 2013-06-13 2013-06-13 Cylindrical sliding member and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2011073038A true JP2011073038A (en) 2011-04-14
JP5383410B2 JP5383410B2 (en) 2014-01-08

Family

ID=44017592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009226492A Active JP5383410B2 (en) 2009-09-30 2009-09-30 Manufacturing method of cylindrical sliding member

Country Status (1)

Country Link
JP (1) JP5383410B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012110926A (en) * 2010-11-24 2012-06-14 Honda Motor Co Ltd Sliding member and method of manufacturing the same
CN110142747A (en) * 2019-06-18 2019-08-20 温州中壹技术研究院有限公司 A kind of high load is wear-resistant robotic arm and preparation method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08232755A (en) * 1995-02-27 1996-09-10 Aisin Seiki Co Ltd Aluminum casting
JP2003013163A (en) * 2001-07-03 2003-01-15 Toyota Motor Corp Sliding member made from powder aluminum alloy, and combination of cylinder and piston ring
JP2008221308A (en) * 2007-03-15 2008-09-25 Honda Motor Co Ltd Hollow member and method for manufacturing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08232755A (en) * 1995-02-27 1996-09-10 Aisin Seiki Co Ltd Aluminum casting
JP2003013163A (en) * 2001-07-03 2003-01-15 Toyota Motor Corp Sliding member made from powder aluminum alloy, and combination of cylinder and piston ring
JP2008221308A (en) * 2007-03-15 2008-09-25 Honda Motor Co Ltd Hollow member and method for manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012110926A (en) * 2010-11-24 2012-06-14 Honda Motor Co Ltd Sliding member and method of manufacturing the same
CN110142747A (en) * 2019-06-18 2019-08-20 温州中壹技术研究院有限公司 A kind of high load is wear-resistant robotic arm and preparation method

Also Published As

Publication number Publication date
JP5383410B2 (en) 2014-01-08

Similar Documents

Publication Publication Date Title
CN1053130C (en) Microstructurally refined multiphase castings
CN105899311B (en) Composite metal product
US7442261B2 (en) Iron-base alloy containing chromium-tungsten carbide and a method of producing it
JP6948556B2 (en) Manufacturing method of composite roll for hot rolling made by centrifugal casting
CA2949352A1 (en) Hypereutectic white iron alloys comprising chromium and nitrogen and articles made therefrom
AU2001258982A1 (en) Iron-base alloy containing chromium-tungsten carbide and a method of producing it
JP2012067740A (en) Cylinder liner for insert casting
JP2012041571A (en) Flake graphite cast iron for large-sized casting product and method for producing the same
JP5383410B2 (en) Manufacturing method of cylindrical sliding member
JP2009197270A (en) Iron-based alloy powder to be sintered
JP2010515582A (en) Method for strengthening low melting point cast metal
JP5550084B2 (en) Cylindrical sliding member and manufacturing method thereof
CN103352978A (en) Al3Ti/Al3Ni particles synergetic enhancement silicon aluminum matrix composite piston and preparation method thereof
WO2017155331A1 (en) Alloy cast iron having improved wear resistance, and piston ring comprising same
JP6086444B2 (en) Alloy composition for aluminum die-cast mold and method for producing the same
JP2008246550A (en) Method for manufacturing preform, preform, and cast-in product using preform
JP5409475B2 (en) Cylindrical sliding member and manufacturing method thereof
JP6754671B2 (en) Overlay alloy and overlay member
JP2005256088A (en) Spheroidal graphite cast-iron member
JP2010247212A (en) Cylinder lining material for centrifugal casting and centrifugal casting method for manufacturing cylinder lining material
JP2009019261A (en) Coating method for amorphous alloy
JP2011190719A (en) Wear resistant ring using particle reinforced aluminum alloy composite material, aluminum alloy piston with the same, and method of manufacturing the same
JP3151556B2 (en) Composite casting method
JP2010099693A (en) Method for producing wear resistant lining layer and composite cylinder
KR20170105332A (en) cast iron alloy for manufacturing piston and piston ring

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130416

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130613

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131001

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131001

R150 Certificate of patent or registration of utility model

Ref document number: 5383410

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250