JP6754671B2 - Overlay alloy and overlay member - Google Patents

Overlay alloy and overlay member Download PDF

Info

Publication number
JP6754671B2
JP6754671B2 JP2016214505A JP2016214505A JP6754671B2 JP 6754671 B2 JP6754671 B2 JP 6754671B2 JP 2016214505 A JP2016214505 A JP 2016214505A JP 2016214505 A JP2016214505 A JP 2016214505A JP 6754671 B2 JP6754671 B2 JP 6754671B2
Authority
JP
Japan
Prior art keywords
overlay
alloy
copper
matrix
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2016214505A
Other languages
Japanese (ja)
Other versions
JP2018070972A (en
Inventor
大島 正
正 大島
加藤 元
元 加藤
田中 浩司
浩司 田中
斎藤 卓
卓 斎藤
稔 河崎
稔 河崎
夏樹 杉山
夏樹 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Toyota Motor Corp
Priority to JP2016214505A priority Critical patent/JP6754671B2/en
Publication of JP2018070972A publication Critical patent/JP2018070972A/en
Application granted granted Critical
Publication of JP6754671B2 publication Critical patent/JP6754671B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Description

本発明は、肉盛部を備えた肉盛部材と、その肉盛部となり得る肉盛合金に関する。 The present invention relates to a build-up member provided with a build-up portion and a build-up alloy that can serve as the build-up portion.

機械部材は、部位によって要求される機械的特性が異なる。例えば、内燃機関(「エンジン」という。)のシリンダーヘッドやエンジンブロックは、摺動部において、高耐摩耗性や低摩擦特性等が要求される。最近のシリンダーヘッド等は、軽量で熱伝導性や鋳造性等に優れるアルミニウム合金(「Al合金」という。)からなるが、Al合金(鋳物)自体は耐摩耗性等が必ずしも十分ではない。このため、その摺動部(例えば軸受、ライナー等)には、別部材が設けられたり、改質処理がなされたりする。 Mechanical members have different required mechanical properties depending on the part. For example, a cylinder head or an engine block of an internal combustion engine (referred to as an "engine") is required to have high wear resistance and low friction characteristics in sliding portions. Recent cylinder heads and the like are made of an aluminum alloy (referred to as "Al alloy") that is lightweight and has excellent thermal conductivity and castability, but the Al alloy (casting) itself does not necessarily have sufficient wear resistance and the like. Therefore, the sliding portion (for example, bearing, liner, etc.) is provided with a separate member or is subjected to a modification treatment.

このような摺動部の別例として、シリンダーヘッドの吸排気ポート周縁部に設けられ、緩やかに回転する吸排気バルブの傘部外周縁部と当接を繰り返すバルブシートがある。吸気側バルブシートは、高速で流入する空気や多様な燃料成分を含む混合気に曝され、排気側バルブシートは高速で流出する高温燃焼ガスに曝される。このような過酷な環境下でも、バルブシートには、高い耐摩耗性(特に耐凝着摩耗性)や潤滑性等が要求される。 As another example of such a sliding portion, there is a valve seat provided on the peripheral edge of the intake / exhaust port of the cylinder head, which repeatedly contacts the outer peripheral edge of the umbrella portion of the slowly rotating intake / exhaust valve. The intake side valve seat is exposed to air flowing in at high speed and an air-fuel mixture containing various fuel components, and the exhaust side valve seat is exposed to high temperature combustion gas flowing out at high speed. Even in such a harsh environment, the valve seat is required to have high wear resistance (particularly adhesion wear resistance) and lubricity.

このようなバルブシートは、一般的に、特許文献1にあるような鉄基焼結合金からなるシートリングを、シリンダーヘッドのポート外周縁部に形成したリング溝へ圧入(打ち込み)して形成されている。これに対して、レーザークラッド法を用いた肉盛によりバルブシートを形成することも提案されている。前者の打込み式バルブシートから後者の肉盛り式バルブシートに変更すれば、吸排気ポート径の拡大等のみならず、バルブシート自体の熱伝導性向上やシリンダーヘッド側のウォータージャケットとの距離短縮等による動弁系周辺の冷却性向上も可能となる。 Such a valve seat is generally formed by press-fitting (driving) a seat ring made of an iron-based sintered alloy as described in Patent Document 1 into a ring groove formed on the outer peripheral edge of a port of a cylinder head. ing. On the other hand, it has also been proposed to form a valve seat by overlaying using a laser clad method. If the former drive-in type valve seat is changed to the latter built-in type valve seat, not only the intake / exhaust port diameter can be increased, but also the thermal conductivity of the valve seat itself can be improved and the distance from the water jacket on the cylinder head side can be shortened. It is also possible to improve the cooling performance around the valve train.

肉盛り式バルブシートは、例えば、次のようにして形成される。先ず、銅基合金粉末(原料粉末)にレーザー照射で溶融した後に急冷凝固する。こうして銅基マトリックス中に略球状の硬質粒子が分散した急冷凝固組織からなる肉盛部が、ポート周縁部に形成される。次に、その肉盛部をバルブガイドと同軸で切削加工等することにより、所望の寸法・表面粗さのバルブシートが得られる。 The built-up valve seat is formed, for example, as follows. First, the copper-based alloy powder (raw material powder) is melted by laser irradiation and then rapidly cooled and solidified. In this way, a built-up portion composed of a rapidly cooled solidified structure in which substantially spherical hard particles are dispersed in the copper base matrix is formed on the peripheral portion of the port. Next, a valve seat having a desired size and surface roughness can be obtained by cutting the built-up portion coaxially with the valve guide.

下記の特許文献2〜7には、そのような肉盛部またはその原料粉末に適した銅基合金に関する記載がある。なお、特許文献7には、Agを含む銅基合金に関する記載がある。この銅基合金は、耐酸化性を高めるCrを必須元素として、Crを少なくとも1重量%以上含んでいる。 The following Patent Documents 2 to 7 describe a copper-based alloy suitable for such a built-up portion or a raw material powder thereof. In addition, Patent Document 7 describes a copper-based alloy containing Ag. This copper-based alloy contains Cr as an essential element, which enhances oxidation resistance, and contains at least 1% by weight or more of Cr.

特開2006−307331号公報Japanese Unexamined Patent Publication No. 2006-307331 特公平7−17978号公報Special Fair 7-17978 Gazette 特許第3305738号公報Japanese Patent No. 3305738 特許第4114922号公報Japanese Patent No. 4114922 特許第4472979号公報Japanese Patent No. 4472979 特許第4603808号公報Japanese Patent No. 4603808 特開2002−194462号公報Japanese Unexamined Patent Publication No. 2002-194462

本発明はこのような事情に鑑みて為されたものであり、従来の肉盛合金とは異なり、Cr含有量を抑制しつつ摺動性と肉盛性を両立できる新たな肉盛合金と、その肉盛合金からなる肉盛部を有する肉盛部材とを提供することを目的とする。 The present invention has been made in view of such circumstances, and unlike the conventional overlay alloy, a new overlay alloy capable of achieving both slidability and overlay while suppressing the Cr content is provided. It is an object of the present invention to provide an overlay member having an overlay portion made of the overlay alloy.

本発明者は、上記の課題を解決すべく鋭意研究した結果、Agを含有させつつCrを抑制することにより、摺動性と肉盛性の両立を図れる新たな肉盛合金を見出した。この成果を発展させることにより、以降に述べる本発明を完成するに至った。 As a result of diligent research to solve the above problems, the present inventor has found a new overlay alloy capable of achieving both slidability and overlay by suppressing Cr while containing Ag. By developing this result, the present invention described below has been completed.

《肉盛合金》
(1)本発明の肉盛合金は、Cu、Fe、NiおよびSiからなる第1元素群と、Mo、WおよびVからなる第2元素群より選択された一種以上の第2元素とを含み、溶融時にCuを含む合金液相と該第2元素およびFeを含む合金液相とが分離した状態となり得る銅基合金からなる肉盛合金であって、該銅基合金は、全体を100質量%(単に「%」という。)として、下記の組成を満たすことを特徴とする。
Cr:1%未満
Ag、Bi、Sn、Zn、InおよびPbからなる第3元素群より選択された一種以上の第3元素:0.1〜25%
《Overlay alloy》
(1) The built-up alloy of the present invention contains a first element group consisting of Cu, Fe, Ni and Si and one or more second elements selected from the second element group consisting of Mo, W and V. , A build-up alloy composed of a copper-based alloy in which the alloy liquid phase containing Cu and the alloy liquid phase containing the second element and Fe can be separated at the time of melting, and the copper-based alloy has a total mass of 100 mass. It is characterized by satisfying the following composition as% (simply referred to as "%").
Cr: Less than 1% One or more third elements selected from the third element group consisting of Ag, Bi, Sn, Zn, In and Pb: 0.1 to 25%

(2)本発明の肉盛合金は、先ず、所定の温度範囲内で、Cuを含む合金液相(「Cu系合金液相」ともいう。)とFeを含む合金液相(「Fe系合金液相」ともいう。)とが分離した状態(「液相分離状態」という。)となる。このまま急冷凝固がなされると、その液相分離状態が凍結された金属組織が得られる。特に、液相分離状態時に強撹拌されて急冷凝固すると、Cu系合金液相が凝固したマトリックス(「銅基マトリックス」という。)中に、Fe系合金液相が凝固した略球状粒子(硬質粒子)が分散した複合組織が得られる。 (2) The built-up alloy of the present invention first has an alloy liquid phase containing Cu (also referred to as "Cu-based alloy liquid phase") and an alloy liquid phase containing Fe ("Fe-based alloy") within a predetermined temperature range. It is in a state of being separated from the "liquid phase" (also referred to as "liquid phase") (referred to as "liquid phase separated state"). When rapid solidification is performed as it is, a metal structure in which the liquid phase separated state is frozen can be obtained. In particular, substantially spherical particles (hard particles) in which the Fe-based alloy liquid phase is solidified in a matrix (referred to as "copper-based matrix") in which the Cu-based alloy liquid phase is solidified when the liquid phase is strongly stirred and rapidly cooled and solidified in the liquid phase separated state. ) Is dispersed to obtain a complex structure.

次に本発明の肉盛合金は、Ag等の第3元素を含んでいる。第3元素は、基本的に軟質な金属元素であり、銅基マトリックス(単に「マトリックス」ともいう。)中に濃化部(相)を形成し、固体潤滑作用を発現し得る。この結果、Mo等の第2元素が固体潤滑性に富む酸化物を本来生成し難い低酸素雰囲気下でも、本発明の肉盛合金(肉盛部)は、優れた摺動性(耐摩耗性や相手材への低攻撃性等)を発揮し得る。 Next, the overlay alloy of the present invention contains a third element such as Ag. The third element is basically a soft metal element, and can form a concentrated portion (phase) in a copper-based matrix (also simply referred to as "matrix") to exhibit a solid lubricating action. As a result, the overlay alloy (overlaid portion) of the present invention has excellent slidability (wear resistance) even in a low oxygen atmosphere in which it is difficult for the second element such as Mo to form an oxide having a high solid lubricity. And low aggression to the other material).

また、マトリックス中に第3元素からなる軟質な濃化部が存在することにより、マトリックスの靱性が向上し、本発明の肉盛合金は優れた肉盛性(肉盛時の割れ低減、品質安定化、歩留り向上等)も発揮し得る。 Further, the presence of a soft concentrated portion composed of the third element in the matrix improves the toughness of the matrix, and the overlay alloy of the present invention has excellent overlay properties (reduction of cracks during overlay, quality stability). (Improvement of yield, etc.) can also be demonstrated.

このような第3元素に起因した摺動性や肉盛性の向上効果は、Crが少ないほど生じ易い。この理由は次のように推察される。Crは、マトリックスの主成分であるCuにほとんど固溶せず、Ni−Si−Cr化合物およびCrSiとしてマトリックス中に析出する。これらの析出物は硬質なため、摺動時にその軟質な第3元素濃化相に混入し研削剤として働き得る。このためCrが少ない方が好ましいと考えられる。 The effect of improving slidability and build-up due to the third element is more likely to occur as the amount of Cr decreases. The reason for this can be inferred as follows. Cr is hardly solid-solved in Cu as the main component of the matrix, precipitated in the matrix as a Ni-Si-Cr compound and Cr 3 Si. Since these precipitates are hard, they can be mixed with the soft third element concentrated phase during sliding and act as a grinding agent. Therefore, it is considered preferable that the amount of Cr is small.

また、第2元素は固体潤滑性に富む酸化物を生成して、肉盛合金の耐摩耗性の向上や相手攻撃性の低減に寄与し得るが、第2元素以上に安定した酸化物を形成するCrが多くなると、第2元素の酸化が妨げられて第2元素の酸化物による固体潤滑効果が発現され難くなる。この傾向は、低酸素雰囲気中で特に生じ易い。このため、Crは少ないほど好ましい。さらに、Crが少ないほど、肉盛に用いる原料粉末も製造時等に酸化され難くなり、原料粉末の製造性や収率の向上も図られるようになる。 In addition, the second element can generate an oxide rich in solid lubricity, which can contribute to improving the wear resistance of the overlay alloy and reducing the aggression against the opponent, but forms an oxide more stable than the second element. When the amount of Cr is increased, the oxidation of the second element is hindered and the solid lubricating effect of the oxide of the second element is less likely to be exhibited. This tendency is particularly likely to occur in a low oxygen atmosphere. Therefore, the smaller the amount of Cr, the more preferable. Further, as the amount of Cr decreases, the raw material powder used for overlay is less likely to be oxidized at the time of production or the like, and the manufacturability and yield of the raw material powder can be improved.

《肉盛部材》
本発明は、上述した肉盛合金としてのみならず、その肉盛合金からなる肉盛部を有する肉盛部材としても把握できる。すなわち、本発明は、基材と、基材に形成された肉盛部とを備える肉盛部材であって、この肉盛部が上述した肉盛合金からなることを特徴とする肉盛部材でもよい。
<< Overlay member >>
The present invention can be grasped not only as the above-mentioned overlay alloy but also as an overlay member having an overlay portion made of the overlay alloy. That is, the present invention is a build-up member including a base material and a build-up portion formed on the base material, and the build-up member is characterized in that the build-up portion is made of the above-mentioned build-up alloy. Good.

《その他》
(1)本発明に係る「硬質」粒子は、銅基マトリックスよりも硬さが大きい粒子という意味であるが、適宜、分散粒子またはケイ化物粒子、鉄基粒子と換言してもよい。
<< Other >>
(1) The "hard" particles according to the present invention mean particles having a hardness larger than that of the copper-based matrix, but may be appropriately paraphrased as dispersed particles, silicide particles, or iron-based particles.

本明細書でいう「X基〜」は、原子割合(原子%)で、その全体組成中でX元素が他のいずれの構成元素よりも多く含まれていることを意味する。具体的にいうと、銅基合金は、その合金全体中でCuが他元素よりも多いことを意味する。また銅基マトリックスは、そのマトリックス全体中でCuが他元素よりも多いことを意味する。 As used herein, "X group ~" is an atomic ratio (atomic%) and means that the X element is contained in a larger amount than any other constituent elements in the overall composition. Specifically, a copper-based alloy means that the entire alloy contains more Cu than other elements. The copper-based matrix also means that the entire matrix contains more Cu than other elements.

硬質粒子は、第1元素と第2元素との金属間化合物粒子である。但し、硬質粒子は、通常、Siを多く含む。このため硬質粒子は、ケイ化物粒子ということもできる。 Hard particles are intermetallic compound particles of a first element and a second element. However, the hard particles usually contain a large amount of Si. Therefore, the hard particles can also be called silicide particles.

本発明の肉盛合金は、肉盛前と肉盛後の両方を含む。例えば、肉盛合金は、肉盛に供される原料粉末でもよいし、肉盛されて銅基マトリックス中に硬質粒子が分散した金属組織を有する肉盛部でもよい。 The overlay alloy of the present invention includes both before and after overlay. For example, the overlay alloy may be a raw material powder used for overlay, or may be an overlay portion having a metal structure in which hard particles are dispersed in a copper-based matrix.

液相分離状態となる銅基合金は、本発明で規定する元素(組成)からなり、少なくとも、Cu系合金液相とFe系合金液相の二液相分離状態となるものであればよく、偏晶系合金に限らず、包晶系合金等でもよい。 The copper-based alloy in the liquid phase separated state is composed of the elements (composition) specified in the present invention, and may be at least in the two liquid phase separated state of the Cu-based alloy liquid phase and the Fe-based alloy liquid phase. Not limited to the orbital alloy, a perite alloy or the like may be used.

本発明の肉盛合金は、種々の改質元素(例えば、合計で5%以下さらには2%以下)や技術的またはコスト的に除去困難な不可避不純物を含む。なお、本明細書でいう成分組成に関する「%」は、特に断らない限り「質量%」を意味する。 The overlay alloy of the present invention contains various modifying elements (for example, 5% or less in total, further 2% or less) and unavoidable impurities that are technically or costly difficult to remove. In addition, "%" regarding a component composition referred to in this specification means "mass%" unless otherwise specified.

(2)本明細書では、肉盛合金(肉盛部)の耐摩耗性や相手材への攻撃性(相手攻撃性)を、単に「摺動性」ともいう。また、肉盛合金の肉盛時の割れ性、品質安定性、歩留り性等を、単に「肉盛性」ともいう。 (2) In the present specification, the abrasion resistance of the overlay alloy (overlaid portion) and the aggression to the mating material (counterpart aggression) are also simply referred to as "sliding property". Further, the crackability, quality stability, yield, etc. at the time of overlaying the overlay alloy are also simply referred to as "overlayability".

(3)特に断らない限り本明細書でいう「x〜y」は下限値xおよび上限値yを含む。本明細書に記載した種々の数値または数値範囲に含まれる任意の数値を新たな下限値または上限値として「a〜b」のような範囲を新設し得る。 (3) Unless otherwise specified, "x to y" in the present specification includes a lower limit value x and an upper limit value y. A range such as "ab" may be newly established with any numerical value included in the various numerical values or numerical ranges described in the present specification as a new lower limit value or upper limit value.

試料3の肉盛部の金属組織を示す光学顕微鏡写真である。It is an optical micrograph which shows the metal structure of the overlay part of a sample 3. 試料3のマトリックスをEPMA分析した結果である。This is the result of EPMA analysis of the matrix of Sample 3. 試料C0のマトリックスをEPMA分析した結果である。This is the result of EPMA analysis of the matrix of sample C0. 試料3のマトリックスをEPMAで定量分析した位置を示す。The position where the matrix of sample 3 was quantitatively analyzed by EPMA is shown. 試料C0のマトリックスをEPMAで定量分析した位置を示す。The position where the matrix of sample C0 was quantitatively analyzed by EPMA is shown. 摩耗試験中の酸素濃度と肉盛部の摩耗量との関係を示す棒グラフである。It is a bar graph which shows the relationship between the oxygen concentration in a wear test and the wear amount of a built-up part. 摩耗試験中の酸素濃度と相手材の摩耗量との関係を示す棒グラフである。It is a bar graph which shows the relationship between the oxygen concentration in a wear test and the wear amount of a mating material. レーザークラッド法による肉盛の様子を模式的に示した説明図である。It is explanatory drawing which showed the state of the build-up by the laser clad method schematically. 耐摩耗試験装置を模式的に示した概要図である。It is a schematic diagram which shows typically the wear resistance test apparatus.

上述した本発明の構成要素に、本明細書中から任意に選択した一つまたは二つ以上の構成要素を付加し得る。本明細書で説明する内容は、本発明の肉盛合金のみならず肉盛部材やその製造方法にも該当し得る。また方法的な構成要素も、一定の場合、物に関する構成要素となり得る。いずれの実施形態が最良であるか否かは、対象、要求性能等によって異なる。 One or more components arbitrarily selected from the present specification may be added to the components of the present invention described above. The contents described in the present specification may apply not only to the overlay alloy of the present invention but also to the overlay member and its manufacturing method. Also, a methodical component can, in certain cases, be a component of an object. Whether or not which embodiment is the best depends on the target, required performance, and the like.

《合金組成》
(1)第3元素群
本発明に係る銅基合金は、Ag、Bi、Sn、Zn、InおよびPbからなる第3元素群より選択された一種以上の第3元素を含む。第3元素は、硬質粒子中に存在してもよいが、主にマトリックス中に濃化して存在することにより、本発明の肉盛合金は優れた摺動性または肉盛性を発揮する。
《Alloy composition》
(1) Third Element Group The copper-based alloy according to the present invention contains one or more third elements selected from the third element group consisting of Ag, Bi, Sn, Zn, In and Pb. The third element may be present in the hard particles, but the overlay alloy of the present invention exhibits excellent slidability or overlayability mainly because it is concentrated and present in the matrix.

第3元素の存在形態は、マトリックス中への固溶、単独での晶出、他元素と化合物(金属間化合物を含む)を形成して晶出等のいずれでもよい。AgCu化合物としてはAgCuの存在が知られているが、CuはAgに固溶するためマトリックス中に晶出する第3元素の形態として、例えば、Ag−Cu固溶体、特にAg−Cu−Ni固溶体が好ましい。 The existence form of the third element may be any of solid solution in a matrix, crystallization by itself, crystallization by forming a compound (including an intermetallic compound) with another element, and the like. The existence of Ag 3 Cu 2 is known as an Ag x Cu y compound, but Cu is a form of a third element that crystallizes in the matrix because it dissolves in Ag, for example, an Ag-Cu solid solution, particularly Ag. -Cu-Ni solid solution is preferable.

第3元素は、銅基合金全体に対して0.1〜25%、0.5〜18%、1〜13%さらには3〜8%含まれると好ましい。第3元素は、過少ならその効果が乏しく、過多になるとマトリックス自体が軟質化して耐摩耗性が却って低下し得る。 The third element is preferably contained in an amount of 0.1 to 25%, 0.5 to 18%, 1 to 13%, and further 3 to 8% with respect to the entire copper-based alloy. If the amount of the third element is too small, its effect is poor, and if it is too large, the matrix itself becomes soft and the wear resistance may rather decrease.

第3元素は、入手が容易で安定なAgが特に好ましい。Agは銅基合金中に1〜18%、2〜14%さらには4〜7%含まれていると好ましい。 As the third element, Ag, which is easily available and stable, is particularly preferable. Ag is preferably contained in the copper-based alloy in an amount of 1 to 18%, 2 to 14%, and further 4 to 7%.

(2)第1元素群
本発明の肉盛合金は、上述した第3元素の他、第1元素群(Cu、Fe、NiおよびSi)を含む。Cuは、主たる元素であり残部を構成する。NiおよびSiは、Cuと共に銅基マトリックスを構成する主要元素である。Feは、Cuと共に、溶融時に液相分離状態となるために重要な元素である。またFeは、Si(さらにはNi)および第2元素と共に銅基マトリックス中に分散した硬質粒子を構成する元素である。
(2) Group 1 of the first element The overlay alloy of the present invention contains a group of first elements (Cu, Fe, Ni and Si) in addition to the above-mentioned third element. Cu is the main element and constitutes the balance. Ni and Si, together with Cu, are the main elements that make up the copper-based matrix. Fe, together with Cu, is an important element for being in a liquid phase separated state when melted. Fe is an element that constitutes hard particles dispersed in a copper-based matrix together with Si (further Ni) and a second element.

各元素の選択および割合は、肉盛部に要求される特性または組織に応じて調整されるが、例えば、下記のような組成が好ましい。なお、ここで述べる組成は、肉盛合金(銅基合金)全体を100質量%としている。 The selection and proportion of each element is adjusted according to the characteristics or structure required for the overlay, but for example, the following composition is preferable. The composition described here is based on 100% by mass of the entire overlay alloy (copper-based alloy).

Feは3〜20%、4〜10%さらには5〜8%含まれると好ましい。Feが過少では、硬質粒子の生成が不十分となり耐摩耗性が低下し得る。Feが過多になると硬質粒子は粗大化し、肉盛性、被削性が低下する。 Fe is preferably contained in an amount of 3 to 20%, 4 to 10%, more preferably 5 to 8%. If Fe is too small, the formation of hard particles is insufficient and the wear resistance may be lowered. When Fe is excessive, the hard particles become coarse and the build-up property and machinability decrease.

Niは5〜30%、10〜20%さらには12〜18%であると好ましい。Niは銅基マトリックスに固溶して、その強度を高め得る。また、Ni量は二液相分離傾向に影響を与え、硬質粒子の大きさに影響して、肉盛合金の耐摩耗性を左右する。Niが過少ではマトリックス強度向上の効果が乏しく、Niが過多になると二液相分離傾向は低下し、硬質粒子が微細化するため耐摩耗性が低下する。 Ni is preferably 5 to 30%, 10 to 20%, more preferably 12 to 18%. Ni can be dissolved in a copper-based matrix to increase its strength. In addition, the amount of Ni affects the tendency of two-component phase separation, affects the size of hard particles, and affects the wear resistance of the overlay alloy. If the amount of Ni is too small, the effect of improving the matrix strength is poor, and if the amount of Ni is too large, the tendency of two-component phase separation decreases, and the hard particles become finer, so that the wear resistance decreases.

Siは0.5〜5%、1〜4%さらには2〜3%であると好ましい。Siは銅基マトリックスの強化または肉盛性の向上に寄与する。またSiは、Feおよび第2元素とケイ化物(シリサイド)を形成し、硬質粒子の形成に寄与する。Siが過少ではそれらの効果が乏しく、Siが過多になると硬質粒子の靱性が低下し、割れ発生を誘発する。 Si is preferably 0.5 to 5%, 1 to 4%, more preferably 2 to 3%. Si contributes to strengthening the copper-based matrix or improving the build-up. Si also forms a silicide with Fe and the second element, contributing to the formation of hard particles. If the amount of Si is too small, these effects are poor, and if the amount of Si is too large, the toughness of the hard particles decreases, which induces cracking.

(3)第2元素群
本発明の肉盛合金は、さらに第2元素群(Mo、WおよびVの一種以上)を含む。それらは合計で、3〜20%、5〜15%さらには6〜10%であると好ましい。第2元素は、FeやSiとともに、硬質粒子を形成し易くする。特にMoは、Feよりもさらに高温までCuと反発して、二液相分離状態を生成し易くすると共に、自己潤滑性(固体潤滑性)を発揮して肉盛部の耐摩耗性を高める。第2元素が過少ではそれらの効果が乏しく、第2元素が過多になると硬質粒子は粗大化し、肉盛性、被削性が低下する。
(3) Second element group The overlay alloy of the present invention further includes a second element group (one or more of Mo, W and V). They are preferably 3-20%, 5-15% and even 6-10% in total. The second element, together with Fe and Si, facilitates the formation of hard particles. In particular, Mo repels Cu to a higher temperature than Fe, facilitating the formation of a two-component phase separated state, and exhibits self-lubricating property (solid lubricity) to enhance the wear resistance of the built-up portion. If the amount of the second element is too small, their effects are poor, and if the amount of the second element is too large, the hard particles become coarse and the build-up property and machinability deteriorate.

(4)C、Mn、Cr、Co
銅基合金は、Cを0.01〜0.5%さらに0.02〜0.3%含んでもよい。Cは高温でより安定した炭化物の形成に寄与し得る。Cは第2元素の炭化物として銅基合金中に存在してもよい。このような炭化物は硬質粒子の微細化や、銅基合金の耐摩耗性や耐割れ性の向上に寄与し得る。
(4) C, Mn, Cr, Co
The copper-based alloy may contain 0.01 to 0.5% of C and further 0.02 to 0.3%. C can contribute to the formation of more stable carbides at high temperatures. C may be present in the copper-based alloy as a carbide of the second element. Such carbides can contribute to the miniaturization of hard particles and the improvement of wear resistance and crack resistance of copper-based alloys.

銅基合金は、Coを含んでもよい。CoはFeと同様にCuに殆ど固溶せず、溶融時に液相分離状態を促進する元素である。Coを含有することにより銅基合金の靱性等の向上を図れる。但し、Coは稀少元素で高価であり、資源リスクを伴う。このため銅基合金は、Coを実質的に含まないか(不純物として含む場合を除く)、Coを含むなら0.1〜2%さらには0.5〜1.9%であるとよい。これらの意味を含めて、Coは2%未満、1%以下さらには0.1%以下であると好ましい。 The copper-based alloy may contain Co. Like Fe, Co is an element that hardly dissolves in Cu and promotes the liquid phase separation state at the time of melting. By containing Co, the toughness of the copper-based alloy can be improved. However, Co is a rare element, expensive, and involves resource risk. Therefore, the copper-based alloy is preferably substantially free of Co (except when it is contained as an impurity), or if it contains Co, it is preferably 0.1 to 2% and further 0.5 to 1.9%. Including these meanings, Co is preferably less than 2%, 1% or less, and even 0.1% or less.

Crは、FeやCoと同様に、Cuに殆ど固溶せず、溶融時に液相分離状態を促進する元素である。しかし、低酸素環境下での使用、肉盛性、原料粉末の収率、環境負荷等を考慮すると、本発明の肉盛合金は、不純物として含む場合を除き、Crを実質的に含まない方がよい。そこでCrは、1%未満さらには0.1%未満であると好ましい。 Like Fe and Co, Cr is an element that hardly dissolves in Cu and promotes a liquid phase separation state at the time of melting. However, considering the use in a low oxygen environment, overlayability, yield of raw material powder, environmental load, etc., the overlay alloy of the present invention is one that does not substantially contain Cr except when it is contained as an impurity. Is good. Therefore, Cr is preferably less than 1%, more preferably less than 0.1%.

なお、本発明の肉盛合金(肉盛部)は、表面または内部に不純物として酸素(O)を少量(例えば、0.01〜0.1%)含んでもよい。Oは、原料粉末の製造過程等で粉末粒子表面に吸着等したり、肉盛時に肉盛部の表面や内部に導入される。 The overlay alloy (overlaid portion) of the present invention may contain a small amount (for example, 0.01 to 0.1%) of oxygen (O) as an impurity on the surface or inside. O is adsorbed on the surface of the powder particles in the manufacturing process of the raw material powder or the like, or is introduced into the surface or the inside of the overlay portion at the time of overlaying.

《合金組織》
(1)本発明の肉盛合金は、溶融から凝固に至る形成過程を調整することにより、種々の金属組織をとり得る。肉盛部の耐摩耗性と肉盛性を両立する観点から、その金属組織は、銅基マトリックス(Cu−Ni−Si系マトリックス)と、この銅基マトリックス中に分散している略球状の硬質粒子(Fe−Mo−Si等の化合物粒子)と、主に銅基マトリックスに分散している第3元素の濃化部(単体または化合物)とからなると好ましい。
《Alloy structure》
(1) The built-up alloy of the present invention can have various metal structures by adjusting the forming process from melting to solidification. From the viewpoint of achieving both wear resistance and overlayability of the overlay portion, the metal structure thereof is a copper-based matrix (Cu-Ni-Si based matrix) and a substantially spherical hard material dispersed in the copper-based matrix. It is preferable that the particles (compound particles such as Fe-Mo-Si) and the concentrated portion (single substance or compound) of the third element mainly dispersed in the copper group matrix are composed.

(2)硬質粒子は、平均粒径が10μm〜10mm、50μm〜5mmさらには100μm〜1mmであると好ましい。硬質粒子が過小では銅基合金(肉盛部)の耐摩耗性が不十分となり、硬質粒子が過大では相手材の摩耗(攻撃性)が大きくなったり、被削性が低下するため好ましくない。ここでいう各硬質粒子の粒径は面積円相当径とする。第3元素の濃化部はマトリックスの中の占有面積率が、5〜30%さらには10〜20%であると好ましい。各平均値は、17×19ミクロンを観察したときの相加平均値とする。 (2) The average particle size of the hard particles is preferably 10 μm to 10 mm, 50 μm to 5 mm, and more preferably 100 μm to 1 mm. If the hard particles are too small, the abrasion resistance of the copper-based alloy (built-up portion) becomes insufficient, and if the hard particles are excessive, the mating material wears (aggression) increases and the machinability decreases, which is not preferable. The particle size of each hard particle referred to here is the diameter equivalent to the area circle. The area occupied by the concentrated portion of the third element in the matrix is preferably 5 to 30%, more preferably 10 to 20%. Each average value is an arithmetic mean value when observing 17 × 19 microns.

(3)耐摩耗性と肉盛性を両立するため、例えば、銅基マトリックスは150〜350Hvさらには200〜300Hvであり、硬質粒子は400〜1500Hvさらには600〜1200Hvであり、第3元素の濃化部は50〜250Hvさらには100〜200Hvであると好ましい。 (3) In order to achieve both wear resistance and build-up property, for example, the copper base matrix is 150 to 350 Hv and further 200 to 300 Hv, and the hard particles are 400 to 1500 Hv and further 600 to 1200 Hv, and the third element. The concentrated portion is preferably 50 to 250 Hv, more preferably 100 to 200 Hv.

ここでいう各硬さは、圧子の押し付け荷重(試験力)を500gfとして測定したときのマイクロビッカース硬さである。硬さの測定は、銅基合金(肉盛部)の最表面について行い、約0.5mm間隔で測定した10点の平均値とする。 Each hardness referred to here is the Micro Vickers hardness when the pressing load (test force) of the indenter is measured as 500 gf. The hardness is measured on the outermost surface of the copper-based alloy (overlaid portion), and is the average value of 10 points measured at intervals of about 0.5 mm.

《基材/肉盛部材》
本発明の肉盛合金を肉盛する相手材(基材)は、鉄系材(ステンレス鋼を含む。)、非鉄系材(アルミニウム系材、マグネシウム系材、チタン系材、銅系材等)など、種々考えられる。
<< Base material / Overlay member >>
The mating material (base material) for overlaying the overlay alloy of the present invention is an iron-based material (including stainless steel) and a non-ferrous material (aluminum-based material, magnesium-based material, titanium-based material, copper-based material, etc.). And so on.

Cuベースの肉盛合金は、純AlまたはAl合金からなる基材に肉盛されても、過度に基材と反応することはないため、例えば、アルミニウム合金(鋳造材、展伸材等)からなる基材上にも、欠陥(ボイドや割れ等)の少ない健全な肉盛部の形成が可能である。 Cu-based overlay alloys do not react excessively with the substrate even when overlayed on a substrate made of pure Al or Al alloy, so for example, from aluminum alloys (casting materials, wrought materials, etc.) It is possible to form a sound build-up portion with few defects (voids, cracks, etc.) on the base material.

例えば、アルミニウム合金からなる内燃機関用のシリンダーヘッド(鋳物/基材)の吸気ポートおよび/または排気ポートに形成されたバルブシート(肉盛部)を、本発明の肉盛合金で形成すると好ましい。吸気側バルブシートと排気側バルブシートは、各要求特性に応じて、各肉盛部の組成や組織が異なってもよい。例えば、従来よりも硬質粒子を増加・増大等させてバルブシートの耐摩耗性を高めてもよい。本発明の肉盛合金を用いれば、その耐摩耗性が低酸素雰囲気中でも確保される。 For example, it is preferable that the valve seat (overlay portion) formed in the intake port and / or the exhaust port of the cylinder head (casting / base material) for an internal combustion engine made of an aluminum alloy is formed of the overlay alloy of the present invention. The intake side valve seat and the exhaust side valve seat may have different configurations and structures of each overlay portion according to the required characteristics. For example, the wear resistance of the valve seat may be improved by increasing or increasing the number of hard particles as compared with the conventional case. When the overlay alloy of the present invention is used, its abrasion resistance is ensured even in a low oxygen atmosphere.

なお、本発明でいう肉盛部材は、肉盛により形成されたバルブシートを有するシリンダーヘッドに限らず、種々の材質からなる様々な部材(基材)に肉盛されたものでもよい。 The overlay member referred to in the present invention is not limited to a cylinder head having a valve seat formed by overlay, and may be overlaid on various members (base materials) made of various materials.

《レーザークラッド法》
本発明では肉盛部の形成過程を問わないが、例えば、レーザークラッド法により、所望の金属組織または特性を有する肉盛部を形成することができる。
《Laser clad method》
In the present invention, the formation process of the overlay portion is not limited, but for example, the overlay portion having a desired metal structure or characteristics can be formed by a laser clad method.

レーザークラッド法は、レーザービームまたは電子ビーム等の高密度エネルギー熱源を用いて、供給された肉盛合金素材(原料)を所定温度域で溶融し、その溶融液を基材表面で急冷凝固させて、所定の金属組織(急冷凝固組織)からなる肉盛部を形成する方法である。 In the laser clad method, the supplied overlay alloy material (raw material) is melted in a predetermined temperature range using a high-density energy heat source such as a laser beam or an electron beam, and the melt is rapidly cooled and solidified on the surface of the base material. , A method of forming a built-up portion composed of a predetermined metal structure (quenched solidified structure).

原料として、ワイヤ材または棒材を用いることも考えられるが、所望する金属組織を均一的または安定的に形成する観点から、粉末を用いると好ましい。このような原料粉末は、例えば、(ガス)アトマイズ法により得られる。アトマイズ粉末の構成粒子も本発明の肉盛合金の一形態である。但し、アトマイズ粉末の製造時、その溶融液(噴霧前の溶湯)は一液相状態でもよい。 Although it is conceivable to use a wire material or a bar material as a raw material, it is preferable to use a powder from the viewpoint of uniformly or stably forming a desired metal structure. Such raw material powders are obtained, for example, by the (gas) atomizing method. The constituent particles of the atomized powder are also a form of the overlay alloy of the present invention. However, at the time of producing the atomized powder, the molten liquid (molten metal before spraying) may be in a one-component phase state.

レーザークラッド法に供される原料粉末は、例えば、粒度が32〜180μmさらには63〜106μmであると好ましい。この粒度は篩い分けにより特定される(JIS Z 8801に準拠)。具体的にいうと、粒度:a〜bμmは、公称目開きがaμmの篩いを通過せず、公称目開きがbμmの篩いを通過した粒子からなることを意味する。なお、原料粉末は、成分組成の異なる複数種の粉末を混合した混合粉末でも、単一粉末でもよい。但し、取扱性に優れる単一粉末を用いる方が、均一的な肉盛部を容易に形成できる。 The raw material powder used in the laser clad method preferably has a particle size of, for example, 32 to 180 μm and further preferably 63 to 106 μm. This particle size is specified by sieving (according to JIS Z 8801). Specifically, the particle size: a to bμm means that the particles do not pass through a sieve with a nominal opening of aμm and are composed of particles having a nominal opening through a sieve of bμm. The raw material powder may be a mixed powder in which a plurality of types of powders having different component compositions are mixed, or a single powder. However, it is easier to form a uniform overlay portion by using a single powder having excellent handleability.

レーザとして、炭酸ガスレーザ、YAGレーザ、半導体レーザー等を用いることもできる。銅基マトリックス中に略球状の硬質粒子が均一的に分散した金属組織を得るために、液相分離状態にある溶融プールが強撹拌されつつ急冷されることが望ましい。このような強撹拌は、例えば、原料粉末へ照射するレーザーを周期的に、断続またはその強度を変化させることにより行える。具体的にいうと、半導体レーザーの出力を電子制御したり、上記した特許文献4(特許第4114922号公報)、特許文献5(特許第4472979号公報)等に記載されているようなオッシレーターを用いて行える。 As the laser, a carbon dioxide gas laser, a YAG laser, a semiconductor laser or the like can also be used. In order to obtain a metal structure in which substantially spherical hard particles are uniformly dispersed in the copper-based matrix, it is desirable that the molten pool in the liquid phase separated state is rapidly cooled while being strongly stirred. Such strong stirring can be performed, for example, by periodically intermittently or changing the intensity of a laser that irradiates the raw material powder. Specifically, an oscillator such as that described in Patent Document 4 (Patent No. 4114922) and Patent Document 5 (Patent No. 4472979) described above, such as electronically controlling the output of a semiconductor laser, can be used. Can be done using.

成分組成の異なる原料粉末を用いて、レーザークラッド法により基材上に肉盛を行った。こうして得られた肉盛部について、組織観察、耐摩耗性および相手攻撃性をそれぞれ評価した。これらの具体例に基づいて本発明をさらに詳しく説明する。 Using raw material powders having different component compositions, overlaying was performed on the substrate by the laser clad method. The structure observed, abrasion resistance, and opponent aggression of the built-up portion thus obtained were evaluated. The present invention will be described in more detail based on these specific examples.

《試料の製造》
(1)基材
肉盛する基材として、アルミニウム合金(JIS AC2C)を用意した。基材の形状は、組織観察:板状(100mm×100mm×20mm)、摩耗試験:リング状(外径φ80mm×内径φ20mm×高さ50mm)とした。
<< Production of sample >>
(1) Base material An aluminum alloy (JIS AC2C) was prepared as a base material for overlaying. The shape of the base material was as follows: tissue observation: plate shape (100 mm × 100 mm × 20 mm), wear test: ring shape (outer diameter φ80 mm × inner diameter φ20 mm × height 50 mm).

(2)原料粉末
先ず、表1の試料C0に示す成分組成を有するガスアトマイズ粉末を用意した。このガスアトマイズ粉末は、1800℃で調製された合金溶湯を、不活性ガス雰囲気に噴霧して製造した。入手したガスアトマイズ粉末を篩い分けにより分級した。こうして粒度:32〜180μmに調整した。試料C0では、こうして得られた粉末(これを「基準粉末」という。)を原料粉末として肉盛を行った。
(2) Raw Material Powder First, a gas atomized powder having the component composition shown in sample C0 in Table 1 was prepared. This gas atomized powder was produced by spraying a molten alloy prepared at 1800 ° C. in an inert gas atmosphere. The obtained gas atomized powder was classified by sieving. In this way, the particle size was adjusted to 32 to 180 μm. In sample C0, the powder thus obtained (this is referred to as “reference powder”) was used as a raw material powder for overlaying.

試料1〜3は、基準粉末にAg粉末(粒度:6〜13mm)を混合した混合粉末を、原料粉末として肉盛を行った。各試料の混合粉末は、基準粉末:100重量部に対して、表1に示す割合のAg粉末を添加したものである。なお、各試料に係る原料粉末(100質量%)の全体組成も表1に併せて示した。 Samples 1 to 3 were built up using a mixed powder obtained by mixing Ag powder (particle size: 6 to 13 mm) with the reference powder as a raw material powder. The mixed powder of each sample is obtained by adding Ag powder in the ratio shown in Table 1 to 100 parts by weight of the reference powder. The overall composition of the raw material powder (100% by mass) related to each sample is also shown in Table 1.

(3)肉盛
肉盛は、図5に示すように、炭酸ガスレーザービームを熱源としたレーザークラッド法により行った。具体的にいうと、炭酸ガスレーザのレーザービーム55を、基材50に対して相対的に移動させつつ、被肉盛部51に形成した原料粉末の粉末層53へ照射する。肉盛は、ガス供給管65からシールドガス(アルゴンガス)を吹き付けつつ行う。レーザービーム55は、ビームオシレータ57により粉末層53の幅方向(矢印W方向)へ揺動させつつ照射する。このレーザー照射により、粉末層53は溶融して二液相分離状態となり、強撹拌された後、基材等への放熱により急速凝固して、被肉盛部51に肉盛部60(肉盛厚み:約2mm、肉盛幅:約6mm)が形成される。
(3) Overlay Overlay was performed by a laser clad method using a carbon dioxide laser beam as a heat source, as shown in FIG. Specifically, the laser beam 55 of the carbon dioxide gas laser is irradiated to the powder layer 53 of the raw material powder formed on the overlay portion 51 while moving relative to the base material 50. The overlay is performed while spraying a shield gas (argon gas) from the gas supply pipe 65. The laser beam 55 is irradiated while being swung in the width direction (arrow W direction) of the powder layer 53 by the beam oscillator 57. By this laser irradiation, the powder layer 53 is melted into a two-component phase separated state, and after being strongly stirred, it is rapidly solidified by heat dissipation to the substrate or the like, and the overlay portion 60 (overlay portion 60) is formed on the overlay portion 51. Thickness: about 2 mm, overlay width: about 6 mm) is formed.

処理条件は、レーザ出力:4.5kW、レーザースポット径:2.0mm、レーザービームと基材の相対走行速度:15.0mm/秒、シールドガス流量:10L/分とした。肉盛に際して、特許文献4(特許第4114922号公報)等の記載も参考にした。 The treatment conditions were a laser output: 4.5 kW, a laser spot diameter: 2.0 mm, a relative traveling speed between the laser beam and the base material: 15.0 mm / sec, and a shield gas flow rate: 10 L / min. At the time of overlaying, the description of Patent Document 4 (Patent No. 4114922) and the like was also referred to.

《観察・試験》
(1)組織観察
試料3の肉盛部の1.4×2.4mmの領域を走査型電子顕微鏡(SEM)で観察して得られた金属組織を図1に示した。
《Observation / Test》
(1) Structure Observation The metallographic structure obtained by observing a 1.4 × 2.4 mm region of the overlay portion of Sample 3 with a scanning electron microscope (SEM) is shown in FIG.

試料3と試料C0のマトリックス領域を、電子線マイクロアナライザ(EPMA)で分析した結果をそれぞれ図2Aと図2B(両者を併せて単に「図2」という。)に示した。さらに、試料3と試料C0について、各マトリックス組織中における成分構成をEPMAで定量分析した結果を表2に示した。定量分析した各部の観察位置は、図3Aと図3B(両者を併せて単に「図3」という。)にそれぞれ示した。 The results of analyzing the matrix regions of Sample 3 and Sample C0 with an electron probe microanalyzer (EPMA) are shown in FIGS. 2A and 2B (both are simply referred to as "FIG. 2"), respectively. Further, Table 2 shows the results of quantitative analysis of the component composition in each matrix structure of Sample 3 and Sample C0 by EPMA. The observation positions of each part that were quantitatively analyzed are shown in FIGS. 3A and 3B (both are simply referred to as "FIG. 3"), respectively.

(2)摩耗試験
摩耗試験は、図6に示すような試験装置を用いて、次のようにして行った。先ず、肉盛部101をもつ試験片100を第1ホルダ102に保持する。次に、誘導コイル104が外周囲に巻回された円筒形状の相手材106を第2ホルダ108に保持する。誘導コイル104で高周波誘導加熱した相手材106の端面を、試験片100の肉盛部101に押し付けつつ回転させて、摩耗試験を行う。
(2) Wear test The wear test was carried out as follows using a test device as shown in FIG. First, the test piece 100 having the build-up portion 101 is held in the first holder 102. Next, the second holder 108 holds the cylindrical mating material 106 around which the induction coil 104 is wound. A wear test is performed by rotating the end face of the mating material 106, which has been subjected to high-frequency induction heating by the induction coil 104, while pressing it against the built-up portion 101 of the test piece 100.

試験条件は、押し付け荷重:150N(面圧:5MPa)、回転数:383rpm、試験時間:30分間、相手材の温度:600℃、相手材の材質:Co系合金(ステライト相当材)、雰囲気:0.5%O+N、7.5%O+Nまたは21%O+N(大気)のいずれか、とした。 The test conditions are pressing load: 150 N (surface pressure: 5 MPa), rotation speed: 383 rpm, test time: 30 minutes, mating material temperature: 600 ° C., mating material material: Co-based alloy (stellite equivalent material), atmosphere: It was either 0.5% O + N 2 , 7.5% O + N 2 or 21% O + N 2 (atmosphere).

摩耗試験後に、試験片(肉盛部)と相手材の摩耗量を試験前後の重量変化(減量)として測定した。こうして各試料について得られた各摩耗量を図4A、図4B(両者を併せて単に「図4」という。)に示した。 After the wear test, the amount of wear of the test piece (building part) and the mating material was measured as a weight change (weight loss) before and after the test. The amount of wear obtained for each sample in this manner is shown in FIGS. 4A and 4B (both are simply referred to as "FIG. 4").

《評価》
(1)金属組織
図1から明らかなように、試料3の肉盛部は、マトリックス中に、球状の(硬質)粒子が分散した複合組織となっていた。なお、他の試料の肉盛部でも、同様な金属組織となることを確認している。これらから、レーザーで加熱された原料粉末は、溶融して二液相分離状態となった後に、急冷凝固したことがわかる。
<< Evaluation >>
(1) Metal structure As is clear from FIG. 1, the built-up portion of sample 3 was a composite structure in which spherical (hard) particles were dispersed in the matrix. It has been confirmed that the overlay portion of other samples has a similar metal structure. From these, it can be seen that the raw material powder heated by the laser was rapidly cooled and solidified after being melted into a two-component phase separated state.

いずれの試料も、マトリックスはCu−Ni−Si系合金であり、硬質粒子はFe−Mo−Si系化合物(合金)であった。但し、図2から明らかなように、試料3と試料C0のマトリックス組織は大きく相違していた。図3と表2から明らかなように、試料3のマトリックスは、Ag(第3元素)の濃化部(相)が分散した金属組織となっていた。なおAgは、硬質粒子(100%)中に殆ど存在しない(Ag:0.2%未満)ことも確認している。 In each sample, the matrix was a Cu—Ni—Si based alloy and the hard particles were a Fe—Mo—Si based compound (alloy). However, as is clear from FIG. 2, the matrix structures of sample 3 and sample C0 were significantly different. As is clear from FIGS. 3 and 2, the matrix of Sample 3 had a metallic structure in which the concentrated portion (phase) of Ag (third element) was dispersed. It has also been confirmed that Ag is almost absent in the hard particles (100%) (Ag: less than 0.2%).

ちなみに、いずれの試料も硬質粒子の硬さは800〜1200Hvであった。試料1〜3のマトリックスは硬さが230〜280Hvであり、試料C0のマトリックスは硬さが200〜230Hvであった。 By the way, the hardness of the hard particles in each sample was 800 to 1200 Hv. The matrix of Samples 1 to 3 had a hardness of 230 to 280 Hv, and the matrix of Sample C0 had a hardness of 200 to 230 Hv.

(2)耐摩耗性
図4Aから明らかなように、酸素濃度が大気よりも低い雰囲気中では、Agを含む試料1〜3の方が、Agを含まない試料C0よりも、耐摩耗性に優れることがわかった。また、雰囲気中の酸素濃度が低いほど、Agを多くむ試料の方が耐摩耗性に優れることもわかった。但し、酸素濃度が大気レベルである雰囲気中での使用も考慮すると、肉盛部全体に対してAgは3〜15%であると好ましいといえる。このような傾向は、相手攻撃性に関しても同様であることが図4Bからわかる。
(2) Abrasion resistance As is clear from FIG. 4A, in an atmosphere where the oxygen concentration is lower than that of the atmosphere, the samples 1 to 3 containing Ag have better abrasion resistance than the sample C0 containing no Ag. I understood it. It was also found that the lower the oxygen concentration in the atmosphere, the better the wear resistance of the sample containing more Ag. However, considering the use in an atmosphere where the oxygen concentration is at the atmospheric level, it can be said that the Ag is preferably 3 to 15% with respect to the entire overlay portion. It can be seen from FIG. 4B that such a tendency is the same with respect to the opponent's aggression.

(3)肉盛性
試料1〜3と試料C0の原料粉末を用いて、Al合金製シリンダーヘッドの吸排気ポートに、バルブシートとなる肉盛部を実際に形成した。その際、試料1〜3の原料粉末を用いた場合、肉盛時に割れは発生しなかった。一方、試料C0の原料粉末を用いた場合、肉盛時に割れが発生した。これらの結果から、Agは、低酸素環境下での高耐摩耗性や低相手攻撃性に寄与するのみならず、肉盛性の向上にも寄与することがわかった。
(3) Overlaying Using the raw material powders of Samples 1 to 3 and Sample C0, an overlay portion to be a valve seat was actually formed at the intake / exhaust port of the cylinder head made of Al alloy. At that time, when the raw material powders of Samples 1 to 3 were used, cracks did not occur during overlaying. On the other hand, when the raw material powder of sample C0 was used, cracks occurred during overlaying. From these results, it was found that Ag not only contributes to high wear resistance and low opponent aggression in a low oxygen environment, but also contributes to improvement of build-up.

なお、上述した各試料の製造には、Ag粉末と基準粉末の混合粉末を用いたが、所望する成分組成で調製された単種粉末を原料粉末として用いることにより、安定した品質で効率的な肉盛が可能となる。このような単種粉末をアトマイズ法により製造できることも、実際に確認している。 Although a mixed powder of Ag powder and a reference powder was used for the production of each of the above-mentioned samples, stable quality and efficiency can be achieved by using a single powder prepared with a desired component composition as a raw material powder. Overlaying is possible. It has also been actually confirmed that such a single powder can be produced by the atomization method.

Claims (9)

Cu、Fe、Ni、Si、MoおよびAgを含み、
溶融時にCuを含む合金液相とMoおよびFeを含む合金液相とが分離した状態となり得る銅基合金からなる肉盛合金であって、
該銅基合金は、全体を100質量%(単に「%」という。)として、下記の組成を満たすことを特徴とする肉盛合金。
Fe :3〜20%、
Ni :5〜30%、
Si :0.5〜5%、
Mo :3〜20%
Cr :1%未満
Ag :0.1〜18%
C :0.01〜0.5%、
残部 :Cuおよび不純物
Contains Cu, Fe, Ni, Si, Mo and Ag
An overlay alloy made of a copper-based alloy in which the alloy liquid phase containing Cu and the alloy liquid phase containing Mo and Fe can be separated from each other when melted.
The copper-based alloy is a built-up alloy characterized by satisfying the following composition with the whole being 100% by mass (simply referred to as "%").
Fe: 3 to 20%,
Ni: 5 to 30%,
Si: 0.5-5%,
Mo: 3 to 20% ,
Cr: less than 1% ,
Ag: 0.1 to 18% ,
C: 0.01-0.5%,
Remaining: Cu and impurities
前記銅基合金は、さらにCoを2%未満含む請求項1に記載の肉盛合金。 The overlay alloy according to claim 1, wherein the copper-based alloy further contains less than 2% of Co. 前記銅基合金は、さらに、Bi、Sn、Zn、InおよびPbから選択された一種以上を、Agとの合計で0.1〜25%含む請求項1または2に記載の肉盛合金。 The overlay alloy according to claim 1 or 2, wherein the copper-based alloy further contains one or more selected from Bi, Sn, Zn, In and Pb in an amount of 0.1 to 25% in total with Ag. 前記銅基合金は、Ag:2〜14%含む請求項1〜3のいずれかに記載の肉盛合金。 The overlay alloy according to any one of claims 1 to 3, wherein the copper-based alloy contains Ag: 2 to 14%. NiおよびSiを含む銅基マトリックスと、
SiおよびMoを含み、該銅基マトリックス中に分散している略球状の硬質粒子と、
該銅基マトリックス中に分散しているAgの濃化部と、
を有する請求項1〜のいずれかに記載の肉盛合金。
A copper-based matrix containing Ni and Si,
Approximately spherical hard particles containing Si and Mo and dispersed in the copper group matrix,
The concentrated portion of Ag dispersed in the copper group matrix and
The overlay alloy according to any one of claims 1 to 4 .
肉盛に供される原料粉末である請求項1〜のいずれかに記載の肉盛合金。 The overlay alloy according to any one of claims 1 to 5 , which is a raw material powder to be used for overlay. 基材と、
該基材に形成された肉盛部と、
を備えた肉盛部材であって、
前記肉盛部は、請求項1〜のいずれかに記載した肉盛合金からなることを特徴とする肉盛部材。
With the base material
The overlay formed on the base material and
It is a build-up member equipped with
The overlay member is a overlay member made of the overlay alloy according to any one of claims 1 to 5 .
前記基材は、アルミニウム合金からなる請求項に記載の肉盛部材。 The overlay member according to claim 7 , wherein the base material is made of an aluminum alloy. 前記肉盛部は、内燃機関用のシリンダーヘッドの吸気ポートおよび/または排気ポートに形成されたバルブシートである請求項に記載の肉盛部材。 The overlay member according to claim 8 , wherein the overlay portion is a valve seat formed in an intake port and / or an exhaust port of a cylinder head for an internal combustion engine.
JP2016214505A 2016-11-01 2016-11-01 Overlay alloy and overlay member Expired - Fee Related JP6754671B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016214505A JP6754671B2 (en) 2016-11-01 2016-11-01 Overlay alloy and overlay member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016214505A JP6754671B2 (en) 2016-11-01 2016-11-01 Overlay alloy and overlay member

Publications (2)

Publication Number Publication Date
JP2018070972A JP2018070972A (en) 2018-05-10
JP6754671B2 true JP6754671B2 (en) 2020-09-16

Family

ID=62113860

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016214505A Expired - Fee Related JP6754671B2 (en) 2016-11-01 2016-11-01 Overlay alloy and overlay member

Country Status (1)

Country Link
JP (1) JP6754671B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112008080B (en) * 2020-10-19 2021-01-29 陕西斯瑞新材料股份有限公司 Preparation method of powder-laying type 3D printing copper alloy water cooling jacket
WO2023238285A1 (en) 2022-06-08 2023-12-14 住友電気工業株式会社 Powder, metal component, electrical contact, and method for producing powder

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6387988B2 (en) * 2016-03-04 2018-09-12 トヨタ自動車株式会社 Wear resistant copper base alloy

Also Published As

Publication number Publication date
JP2018070972A (en) 2018-05-10

Similar Documents

Publication Publication Date Title
JP6675370B2 (en) Hardfacing alloys and hardfacing members
JP4472979B2 (en) Wear-resistant copper-based alloy for overlaying
CN108570571B (en) Sliding material, method for producing same, sliding member, and bearing device
JP2008522039A (en) Weldable cobalt alloy with crack resistance
CN1806059A (en) Build-up wear-resistant copper alloy and valve seat
JP4114922B2 (en) Wear resistant copper base alloy
JP4603808B2 (en) Overlay wear resistant copper base alloy
JP4504328B2 (en) Sliding member
JP4072132B2 (en) Sliding bearing manufacturing method
JP6754671B2 (en) Overlay alloy and overlay member
JP5403636B2 (en) Copper-based sliding material
JP5618314B2 (en) Method for producing metal material and metal material
JP7168331B2 (en) copper base alloy
CN1070431A (en) Make case-hardened croloy
JPH0360895A (en) Dispersion reinforced copper-based alloy for building-up
JP6602737B2 (en) Overlaying alloy and overlaying member
JP7103548B2 (en) Ni—Cr—Mo alloy member, Ni—Cr—Mo alloy powder, and composite member
JPWO2020017003A1 (en) Sliding member
JP2008279463A (en) Overlaying abrasion-resistant iron-based alloy
JPH0387327A (en) Copper base wear resistant alloy
JP6466245B2 (en) Sliding member
JP2020132923A (en) Aluminum alloy for slide bearing, and slide bearing
JP2021504580A (en) Powder metal alloy composition of sintered powder metal inserts for aluminum castings

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190306

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200612

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200818

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200824

R150 Certificate of patent or registration of utility model

Ref document number: 6754671

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees