JP2011072149A - Power supply regenerative control method and power supply regenerative control device for power supply regenerative converter - Google Patents

Power supply regenerative control method and power supply regenerative control device for power supply regenerative converter Download PDF

Info

Publication number
JP2011072149A
JP2011072149A JP2009222417A JP2009222417A JP2011072149A JP 2011072149 A JP2011072149 A JP 2011072149A JP 2009222417 A JP2009222417 A JP 2009222417A JP 2009222417 A JP2009222417 A JP 2009222417A JP 2011072149 A JP2011072149 A JP 2011072149A
Authority
JP
Japan
Prior art keywords
power supply
voltage
output voltage
power
regenerative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009222417A
Other languages
Japanese (ja)
Inventor
Yoshinobu Masuyama
美信 増山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shibaura Machine Co Ltd
Original Assignee
Toshiba Machine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Machine Co Ltd filed Critical Toshiba Machine Co Ltd
Priority to JP2009222417A priority Critical patent/JP2011072149A/en
Publication of JP2011072149A publication Critical patent/JP2011072149A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a power supply regeneration function equivalent to that of a conventional power supply regenerative converter while reducing costs and achieving a simple circuit by eliminating the need for a circuit to detect a peak value of an AC power supply that is required by the conventional power supply regenerative converter. <P>SOLUTION: A power supply regenerative converter includes: a phase detecting means for detecting a voltage phase of an AC power supply; a DC power supply output voltage detecting means for detecting a DC power supply output voltage being output of the power supply regenerative converter; a regenerative transistor for executing power supply regeneration operation to the AC power supply by switching the DC power supply output voltage; and a regenerative-signal generating means for generating an on/off drive signal of the regenerative transistor on the basis of a detection signal detected by the AC power supply voltage phase detecting means and a detection signal detected by the DC power supply output voltage detecting means. The DC power supply output voltage is detected and a voltage of the AC power supply is estimated so as to execute power supply regeneration when estimated that the voltage on the side of the AC power supply is in a low state. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は,モータ減速時等に発生する回生エネルギーを電源に回生する電源回生コンバータに関するもので,特に直流電源出力電圧の状態を監視することによって安価な電源回生コンバータを実現する電源回生コンバータの電源回生制御方法及び電源回生制御装置に関する。         The present invention relates to a power regenerative converter that regenerates regenerative energy generated during motor deceleration or the like to a power source, and in particular, a power source for a power regenerative converter that realizes an inexpensive power regenerative converter by monitoring the state of a DC power output voltage. The present invention relates to a regeneration control method and a power regeneration control device.

電源回生コンバータは,モータを可変速制御するインバータ装置と交流電源との間に配置され,モータが減速する時や,重量物を支えるような用途に使用された時のモータが下降動作・停止動作している時に発生する回生エネルギーを電源に回生する装置である。         The power regenerative converter is placed between the inverter that controls the motor at a variable speed and the AC power supply. When the motor decelerates or is used for applications that support heavy objects, the motor moves down and stops. It is a device that regenerates the regenerative energy generated when the power is being used.

従来の電源回生コンバータは交流電源の電圧がモータを駆動するインバータの電源で,図2の電源回生コンバータ1の直流電圧出力である直流電源出力電圧よりも交流電源側の電圧が低い状態である時に電源回生を行う為,交流電源側の電圧を検出する必要が有り,且つ位相に同期させて回生エネルギーを回生する為,図2の交流電圧位相・波形検出部8が必要であった。交流電圧位相・波形検出部8は,交流電圧の0Vとなるゼロクロス点を検出する回路と交流電源の波高値を検出する回路が必要であった。(例えば,特許文献1参照)         The conventional power regenerative converter is an inverter power source that drives the motor when the voltage of the AC power source is lower than the DC power source output voltage that is the DC voltage output of the power source regenerative converter 1 in FIG. In order to perform power regeneration, it is necessary to detect the voltage on the AC power supply side, and in order to regenerate regenerative energy in synchronization with the phase, the AC voltage phase / waveform detector 8 in FIG. 2 is necessary. The AC voltage phase / waveform detection unit 8 required a circuit for detecting a zero-cross point where the AC voltage was 0 V and a circuit for detecting the peak value of the AC power supply. (For example, see Patent Document 1)

特許第4116112号Japanese Patent No. 4116112

従来の電源回生コンバータが必要としていた図2の前記交流電圧位相・波形検出部8の内,交流電源の波高値を検出する回路が不要で,回路が簡単になり,コストを下げながら,従来の電源回生コンバータと同等の電源回生の機能を提供する事に有る。         Of the AC voltage phase / waveform detector 8 shown in FIG. 2, which is required for a conventional power regeneration converter, a circuit for detecting the peak value of the AC power supply is not required, the circuit is simplified, and the cost is reduced. The power regeneration function is equivalent to the power regeneration converter.

上記目的を達成する為に,本発明による電源回生コンバータは,モータを可変速制御するインバータ装置と交流電源との間に配置され,前記交流電源の電圧位相を検出する位相検出手段と,モータが減速する時や,重量物を支えるような用途に使用された時のモータが下降動作・停止動作している時に発生する回生エネルギーを蓄積する平滑コンデンサの端子電圧であり,前記電源回生コンバータの直流電圧出力でもある直流電源出力電圧を検出する直流電源出力電圧検出手段と,前記直流電源出力電圧をスイッチングして前記交流電源に電源回生動作を行なう回生トランジスタと,前記交流電源の電圧位相を検出する前記位相検出手段によって検出された検出信号と前記直流電源出力電圧検出手段によって検出された検出信号に基づき前記回生トランジスタのオン・オフ駆動信号を生成する回生信号生成手段とを備える電源回生コンバータにおいて,前記直流電源出力電圧を検出し,前記交流電源の電圧を推定し,前記交流電源側の電圧が低い状態であると推定された時に電源回生を行う事を特徴とする。         In order to achieve the above object, a power regeneration converter according to the present invention is disposed between an inverter device for variable speed control of a motor and an AC power supply, and includes a phase detection means for detecting a voltage phase of the AC power supply, and a motor. This is the terminal voltage of the smoothing capacitor that stores the regenerative energy generated when the motor is moving down and stopping when used for applications such as decelerating or supporting heavy objects. DC power supply output voltage detection means for detecting a DC power supply output voltage that is also a voltage output, a regenerative transistor that switches the DC power supply output voltage to perform a power regeneration operation on the AC power supply, and detects a voltage phase of the AC power supply Based on the detection signal detected by the phase detection means and the detection signal detected by the DC power supply output voltage detection means In a power regeneration converter comprising regeneration signal generating means for generating an on / off drive signal for a raw transistor, the DC power supply output voltage is detected, the voltage of the AC power supply is estimated, and the voltage on the AC power supply side is low It is characterized by performing power regeneration when estimated to be.

本発明によれば,交流電源の波高値を検出する回路が不要で,回路が簡単になり,コストを下げながら,従来の電源回生コンバータと同等の電源回生の機能を提供する事が可能となる。         According to the present invention, a circuit for detecting the peak value of an AC power supply is unnecessary, the circuit is simplified, and it is possible to provide a power regeneration function equivalent to that of a conventional power regeneration converter while reducing the cost. .

本発明による電源回生コンバータの実施例を用いたモータドライブ装置のブロック図The block diagram of the motor drive device using the Example of the power regeneration converter by this invention 従来の電源回生コンバータを用いたモータドライブ装置の実施例Example of a motor drive device using a conventional power regeneration converter 直流電源出力電圧を検出し,検出電圧に従い電源回生動作を行なう時のフローチャートFlowchart for detecting DC power supply output voltage and performing power regeneration operation according to the detected voltage 電源回生動作の閾値を求める時のフローチャートFlow chart for obtaining the threshold value for power regeneration operation 図4のS611〜S614の詳細フローチャートDetailed flowchart of S611 to S614 in FIG.

以下,本発明の実施例を説明する。         Examples of the present invention will be described below.

図1は,本発明を適用する電源回生コンバータの構成例を示すブロック図である。図1に示すように,電源回生コンバータ1は,モータを可変速制御するインバータ装置4と交流電源2との間に配置される。         FIG. 1 is a block diagram showing a configuration example of a power regeneration converter to which the present invention is applied. As shown in FIG. 1, the power regeneration converter 1 is disposed between an inverter device 4 that controls the motor at a variable speed and an AC power source 2.

交流電源2はリアクトル5を介して電源回生コンバータ1に接続される。前記電源回生コンバータ1の直流電圧出力である直流電源出力電圧はインバータ装置4に接続される。         The AC power supply 2 is connected to the power regeneration converter 1 via the reactor 5. A DC power supply output voltage that is a DC voltage output of the power regeneration converter 1 is connected to the inverter device 4.

電源回生コンバータ1内には,電源回生時に電流が流される回生トランジスタTr1〜Tr6が図1のように配置され,接続されている。なお,これらの回生トランジスタには力行時の交流電源電圧を整流する時や回生トランジスタのスイッチングに発生する逆起電圧により電流が流れるダイオードD1〜D6が図1のように配置・接続されている。         In the power regenerative converter 1, regenerative transistors Tr1 to Tr6 through which a current flows during power regeneration are arranged and connected as shown in FIG. These regenerative transistors are arranged and connected as shown in FIG. 1 with diodes D1 to D6 through which current flows when the AC power supply voltage during power running is rectified or by a back electromotive voltage generated in switching of the regenerative transistor.

また,平滑コンデンサCは図1のように配置・接続され,前記ダイオードD1〜D6が整流した力行時の交流電源電圧を平滑する。モータが減速する時や,重量物を支えるような用途に使用された時のモータが下降動作・停止動作している時に発生する回生エネルギーを蓄積する役目も果たす。
平滑コンデンサCの両端は,直流電源出力電圧検出部7に接続され,直流電源出力電圧検出部7の出力端は,回生信号生成部6に接続されている。
Further, the smoothing capacitor C is arranged and connected as shown in FIG. 1, and smoothes the AC power supply voltage during power running rectified by the diodes D1 to D6. It also plays a role in accumulating regenerative energy that is generated when the motor decelerates or when the motor is moving down or stopped when it is used to support heavy objects.
Both ends of the smoothing capacitor C are connected to the DC power supply output voltage detector 7, and the output terminal of the DC power supply output voltage detector 7 is connected to the regenerative signal generator 6.

リアクトル5と電源回生コンバータ1とが接続された端子には交流電圧位相検出部8が接続され,交流電圧位相検出部8の出力端は,回生信号生成部6に接続されている。回生信号生成部6の6つの出力端は,6つの回生トランジスタTr1〜Tr6の対応するベース端子に接続されている。         An AC voltage phase detection unit 8 is connected to a terminal to which the reactor 5 and the power regeneration converter 1 are connected, and an output terminal of the AC voltage phase detection unit 8 is connected to the regeneration signal generation unit 6. The six output terminals of the regenerative signal generator 6 are connected to corresponding base terminals of the six regenerative transistors Tr1 to Tr6.

上記構成において,回生トランジスタは,サイリスタ,GTOサイリスタ(Gate Turn Off Thyristor),MOS FET(電界効果トランジスタ),IGBT(Insulated Gate Bipolar Transistor)等の半導体と置き換えても良い。         In the above configuration, the regenerative transistor may be replaced with a semiconductor such as a thyristor, a GTO thyristor (Gate Turn Off Thyristor), a MOS FET (Field Effect Transistor), or an IGBT (Insulated Gate Bipolar Transistor).

以上の構成において,図3〜図5を参照して本発明を説明する。本発明では,従来必要としていた交流電源の波高値を検出する回路を不要とし,交流電源の電圧を推定する事により電源回生する。図3は図1の直流電源出力電圧検出部7で直流電源出力電圧をサンプリングし,その電圧によって電源回生動作を行なうかどうかを判断する為のフローチャートである。         In the above configuration, the present invention will be described with reference to FIGS. In the present invention, the circuit for detecting the peak value of the AC power supply, which has been conventionally required, is unnecessary, and the power supply is regenerated by estimating the voltage of the AC power supply. FIG. 3 is a flowchart for sampling the DC power supply output voltage by the DC power supply output voltage detector 7 of FIG. 1 and determining whether or not to perform the power regeneration operation based on the voltage.

まず,直流電源出力電圧検出部7で直流電源出力電圧を一定周期でサンプリングを行ない,その値をPNVFB_NOWとする。PNVFB_NOWと電源回生動作を行なうかどうかの閾値(PNVFB_FIR+Vrf)とを比較し,PNVFB_FIR+VrfよりもPNVFB_NOWが大きければ電源回生動作を行なうように図1の回生トランジスタTr1〜Tr6を駆動させる信号を出力する。         First, the DC power supply output voltage detection unit 7 samples the DC power supply output voltage at a constant cycle, and the value is set as PNFFB_NOW. Compare the PNVFB_NOW with the threshold value (PNVFB_FIR + Vrf) for determining whether to perform power regeneration operation. Output.

前記電源回生動作の閾値であるPNVFB_FIR+VrfのPNVFB_FIRは推定する交流電源電圧の波高値を示し,モータドライブ装置の電源が投入された当初は一定の値(例えばパラメータで設定しておく)を用い,その後,モータドライブ装置が駆動し始めれば,逐次直流電源出力電圧検出部7でサンプリングした直流電源出力電圧から推定して値が更新されていく。更新の方法については後述する。         PNFFB_FIR of PNFFB_FIR + Vrf, which is the threshold value of the power regeneration operation, indicates the peak value of the estimated AC power supply voltage, and uses a constant value (for example, set by a parameter) when the motor drive device is powered on. Thereafter, when the motor drive device starts to be driven, the value is updated by being estimated from the DC power supply output voltage sequentially sampled by the DC power supply output voltage detection unit 7. The updating method will be described later.

Vrfは電源回生開始する電圧を設定する為の値で,パラメータで設定することも可能であるが,通常はPNVFB_FIRが当初の一定の値としてPNVFB_FIR+Vrfが電源回生コンバータ1で使用している部品が破損しないような一定値を設定しておけばよい。例えばPNVFB_FIRが交流電圧の波高値282V(200V×√2)として部品の最大定格電圧値が400Vであれば,部品の最大定格電圧値の95%を使用範囲として400V×0.95−282VがVrfとなり,Vrf=98Vに設定する。         Vrf is a value for setting the voltage at which power regeneration starts, and can also be set with a parameter. Normally, PNFFB_FIR + Vrf is used by the power regeneration converter 1 with PNFFB_FIR as the initial constant value. It is sufficient to set a constant value that will not break. For example, if PNFFB_FIR is the peak value of AC voltage 282V (200V x √2) and the maximum rated voltage value of the part is 400V, then 95% of the maximum rated voltage value of the part is used and 400V x 0.95-282V becomes Vrf. Set Vrf = 98V.

次に,前記PNVFB_FIRの更新の方法について説明する。前述したようにモータドライブ装置の電源が投入された当初は一定の値を用いる(初期化を行なう)。(図4のS610) 次に,前記電源出力電圧検出部7でサンプリングされた8回の直流電源出力電圧PNVFB_NOWを用いて平均化処理を行い,その平均値をPNVFB_AVL1レジスタに格納する。(図4のS611) サンプリングする周期はできる限り短い一定時間毎に行なうのが良いが,コスト,モータドライブ装置保護などを考慮して決定する。         Next, a method for updating the PNFFB_FIR will be described. As described above, a constant value is used (initialization) when the motor drive device is powered on. (S610 in FIG. 4) Next, averaging is performed using the DC power supply output voltage PNFFB_NOW eight times sampled by the power supply output voltage detector 7, and the average value is stored in the PNFFB_AVL1 register. (S611 in FIG. 4) The sampling cycle should be performed at a constant interval as short as possible, but is determined in consideration of cost, motor drive device protection, and the like.

ここで平均化処理とは,8回のサンプリングした値の一番大きい値と一番小さい値を無視して,残りの6回分の値を全て足して6で割るといった平均値の求め方や,単純に8回分の値を全て足して8で割るといった求め方など,いろいろな方法が考えられる。また,サンプリングの回数も8回ではなく,4回や16回などいろいろな回数が考えられ,それぞれ最適な方法を用いれば良い。         Here, the averaging process is to calculate the average value by ignoring the largest and smallest values of the 8 sampled values and adding all the remaining 6 values and dividing by 6. Various methods can be considered, such as simply obtaining all 8 values and dividing by 8. Also, the number of times of sampling is not 8 times, but various times such as 4 times and 16 times can be considered, and an optimum method may be used for each.

前記図4のS611と同じ処理を3回(図4のS611を含めて4回)行い,それぞれ,平均値をPNVFB_AVL2レジスタ(図4のS612参照),PNVFB_AVL3レジスタ(図4のS613参照)及びPNVFB_AVL4レジスタ(図4のS614参照)に格納する。(図5参照) 次にそのPNVFB_AVL1レジスタ〜PNVFB_AVL4レジスタとPNVFB_FIR±Vofとの比較を行い,全てのレジスタがPNVFB_FIR±Vofの範囲外(PNVFB_FIR−Vofより小さい若しくはPNVFB_FIR+Vofより大きい)であればPNVFB_AVL1レジスタ〜PNVFB_AVL4レジスタの平均値を求め,PNVFB_FIRをその平均値に置き換え,前記図4のS611に戻る。全てのレジスタがPNVFB_FIR±Vofの範囲内(PNVFB_FIR−Vof以上且つPNVFB_FIR+Vof以下)であれば,何もせず,前記図4のS611に戻る。(図4参照)         The same processing as S611 in FIG. 4 is performed three times (four times including S611 in FIG. 4). Store in the register (see S614 in FIG. 4). Next, compare the PNFFB_AVL1 register to PNFFB_AVL4 register with PNFFB_FIR ± Vof, and if all the registers are outside the range of PNFFB_FIR ± Vof (less than PNFFB_FIR−Vof or greater than PNFFB_FIR + Vof), The average value of the PNFFB_AVL4 register is obtained, PNFFB_FIR is replaced with the average value, and the process returns to S611 in FIG. If all the registers are within the range of PNFFB_FIR ± Vof (PNVFB_FIR−Vof or more and PNFFB_FIR + Vof or less), nothing is done and the process returns to S611 in FIG. (See Figure 4)

VofはPNVFB_AVL1レジスタ〜PNVFB_AVL4レジスタの各レジスタとPNVFB_FIRとを比較する為の許容範囲を示す値で,パラメータで設定することも可能であるが,通常は一定値を設定しておけばよい。例えばPNVFB_FIRの5%         Vof is a value indicating an allowable range for comparing each register of the PNFFB_AVL1 register to the PNFFB_AVL4 register and PNFFB_FIR, and can be set by a parameter, but normally a constant value should be set. For example, 5% of PNFFB_FIR

また,ここではPNVFB_AVL1レジスタ〜PNVFB_AVL4レジスタの4つのレジスタを用いて平均値を求めているが,4つのレジスタではなく,2つや6つなどいろいろな個数が考えられ,それぞれ最適な方法を用いれば良い。図4の内容をS610のPNVFB_FIRの初期化を除き,繰り返し実行する。         Here, the average value is obtained using four registers, PNFFB_AVL1 to PNFFB_AVL4. However, instead of four registers, various numbers such as two or six can be considered, and the optimum method should be used for each. . The contents of FIG. 4 are repeatedly executed except for the initialization of S610 PNFFB_FIR.

以上のような処理により,ノイズのような一瞬の変化には応答せず,正確な交流電源電圧を推定でき,従来の電源回生コンバータが必要としていた図2の前記交流電圧位相・波形検出部8の内,交流電源の波高値を検出する回路が不要で,回路が簡単になり,コストを下げながら,従来の電源回生コンバータと同等の電源回生の機能を提供することができる。         Through the above processing, the AC voltage phase / waveform detection unit 8 shown in FIG. 2 which is required for a conventional power regeneration converter can be estimated accurately without alternating with a momentary change such as noise. Among them, a circuit for detecting the peak value of the AC power supply is unnecessary, the circuit is simplified, and the power regeneration function equivalent to the conventional power regeneration converter can be provided while reducing the cost.

1 電源回生コンバータ
2 交流電源
3 モータ
4 インバータ装置
5 リアクトル
6 回生信号生成部
7 直流電源出力電圧検出部
8 交流電圧位相検出部
108 交流電圧位相・波形検出部
1 Power regeneration converter
2 AC power supply
3 Motor
4 Inverter device
5 Reactor
6 Regenerative signal generator
7 DC power supply output voltage detector
8 AC voltage phase detector
108 AC voltage phase / waveform detector

Claims (3)

モータを可変速制御するインバータ装置と交流電源との間に配置された電源回生コンバータにおいて,
前記交流電源の電圧位相を検出する位相検出手段と,
モータが減速する時や,重量物を支えるような用途に使用された時のモータが下降動作・停止動作している時に発生する回生エネルギーを蓄積する平滑コンデンサの端子電圧であり,前記電源回生コンバータの直流電圧出力でもある直流電源出力電圧を検出する直流電源出力電圧検出手段と,
前記直流電源出力電圧をスイッチングして前記交流電源に電源回生動作を行なう回生トランジスタと,
前記回生トランジスタのオン・オフ駆動信号を前記交流電源の電圧位相を検出する前記位相検出手段によって検出された検出信号と前記直流電源出力電圧検出手段によって検出された検出信号に基づき生成する回生信号生成手段とを備え,
前記直流電源出力電圧を検出し,前記交流電源の電圧を推定し,前記交流電源側の電圧が低い状態であると推定された時に電源回生を行う事を特徴とする電源回生コンバータの電源回生制御方法。
In a power regeneration converter that is placed between an AC drive and an inverter that controls the motor at a variable speed,
Phase detection means for detecting the voltage phase of the AC power supply;
This is the terminal voltage of the smoothing capacitor that stores the regenerative energy generated when the motor decelerates or when the motor is used for supporting heavy loads when the motor is moving down and stopping. DC power supply output voltage detection means for detecting a DC power supply output voltage which is also a DC voltage output of
A regenerative transistor that switches the DC power supply output voltage to perform a power regeneration operation on the AC power supply;
Regenerative signal generation for generating an on / off drive signal for the regenerative transistor based on a detection signal detected by the phase detection means for detecting a voltage phase of the AC power supply and a detection signal detected by the DC power supply output voltage detection means Means,
A power regeneration control for a power regeneration converter that detects the DC power supply output voltage, estimates the voltage of the AC power supply, and performs power regeneration when it is estimated that the voltage on the AC power supply side is low. Method.
モータを可変速制御するインバータ装置と交流電源との間に配置された電源回生コンバータにおいて,
前記交流電源の電圧位相を検出する位相検出部と,
モータが減速する時や,重量物を支えるような用途に使用された時のモータが下降動作・停止動作している時に発生する回生エネルギーを蓄積する平滑コンデンサの端子電圧であり,前記電源回生コンバータの直流電圧出力でもある直流電源出力電圧を検出する直流電源出力電圧検出部と,
前記直流電源出力電圧をスイッチングして前記交流電源に電源回生動作を行なう回生トランジスタと,
前記回生トランジスタのオン・オフ駆動信号を前記交流電源の電圧位相を検出する前記位相検出部によって検出された検出信号と前記直流電源出力電圧検出部によって検出された検出信号に基づき生成する回生信号生成部とを備え,
前記直流電源出力電圧を検出し,前記交流電源の電圧を推定し,前記交流電源側の電圧が低い状態であると推定された時に電源回生を行う事を特徴とする電源回生コンバータの電源回生制御装置。
In a power regeneration converter that is placed between an AC drive and an inverter that controls the motor at a variable speed,
A phase detector for detecting the voltage phase of the AC power supply;
This is the terminal voltage of the smoothing capacitor that stores the regenerative energy generated when the motor decelerates or when the motor is used for supporting heavy loads when the motor is moving down and stopping. A DC power supply output voltage detector that detects a DC power supply output voltage that is also a DC voltage output of
A regenerative transistor that switches the DC power supply output voltage to perform a power regeneration operation on the AC power supply;
Regenerative signal generation for generating an ON / OFF drive signal for the regenerative transistor based on a detection signal detected by the phase detection unit for detecting a voltage phase of the AC power supply and a detection signal detected by the DC power supply output voltage detection unit With
A power regeneration control for a power regeneration converter that detects the DC power supply output voltage, estimates the voltage of the AC power supply, and performs power regeneration when it is estimated that the voltage on the AC power supply side is low. apparatus.
請求項2記載の回生信号生成部にCPU(中央演算処理装置),FPGA(Field Programmable Logic Device),CPLD(Complex Programmable Logic Device)を用いる事を特徴とする請求項2記載の電源回生コンバータの電源回生制御装置。       3. The power supply of the power regeneration converter according to claim 2, wherein a CPU (Central Processing Unit), FPGA (Field Programmable Logic Device), and CPLD (Complex Programmable Logic Device) are used in the regeneration signal generator according to claim 2. Regenerative control device.
JP2009222417A 2009-09-28 2009-09-28 Power supply regenerative control method and power supply regenerative control device for power supply regenerative converter Pending JP2011072149A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009222417A JP2011072149A (en) 2009-09-28 2009-09-28 Power supply regenerative control method and power supply regenerative control device for power supply regenerative converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009222417A JP2011072149A (en) 2009-09-28 2009-09-28 Power supply regenerative control method and power supply regenerative control device for power supply regenerative converter

Publications (1)

Publication Number Publication Date
JP2011072149A true JP2011072149A (en) 2011-04-07

Family

ID=44016861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009222417A Pending JP2011072149A (en) 2009-09-28 2009-09-28 Power supply regenerative control method and power supply regenerative control device for power supply regenerative converter

Country Status (1)

Country Link
JP (1) JP2011072149A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013106455A (en) * 2011-11-15 2013-05-30 Hitachi Appliances Inc Dc power-supply device and air conditioner using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013106455A (en) * 2011-11-15 2013-05-30 Hitachi Appliances Inc Dc power-supply device and air conditioner using the same

Similar Documents

Publication Publication Date Title
CN107134950B (en) Control device of electric motor
JP5923822B2 (en) Drive control device for brushless motor
US8581531B2 (en) Power converter device
US20150280624A1 (en) Fail-safe apparatus for inverter
EP2678696A1 (en) Machine systems including pre-power diagnostics
JP2009207305A (en) Motor driving apparatus
CN1049253A (en) Voltage-type pulse-width modulation interchange/inverter system and control procedure thereof
JP2011151918A (en) Motor driving apparatus having power-supply regeneration function
EP2605399A1 (en) Motor drive system and control method thereof
CN103262408A (en) Power conversion apparatus
CN107223305A (en) Monitoring arrangement and monitoring method and control device and control method with them
CN209860795U (en) Power factor correction circuit and air conditioner
US20170310244A1 (en) Power converter and method for operating a power converter
JP2015126565A (en) Magnetic pole position estimation device of motor, inverter device and motor system
CN111049118A (en) Overvoltage protection device and method for power utilization circuit and circuit with overvoltage protection
CN107134949B (en) Control device of electric motor
CN108448956B (en) Rotor position detection device of six-phase asymmetric square wave motor
CN103802103B (en) Dynamic control device is driven in brake
US11811353B2 (en) Load driving device, refrigeration cycle applicable apparatus, and air conditioner
JP6321593B2 (en) Motor drive device with function to suppress temporal change of regenerative current
JP2011072149A (en) Power supply regenerative control method and power supply regenerative control device for power supply regenerative converter
Yu et al. IGBT open circuit fault diagnosis in VSI fed induction motor drives based on modified average current method
CN203411208U (en) Energy-storage type lifter
JP2010161875A (en) Deceleration control method for induction motor
EP3229367B1 (en) Power converter and control method of power converter