JP2011071426A - Substrate processing apparatus, and method of manufacturing semiconductor device - Google Patents

Substrate processing apparatus, and method of manufacturing semiconductor device Download PDF

Info

Publication number
JP2011071426A
JP2011071426A JP2009222923A JP2009222923A JP2011071426A JP 2011071426 A JP2011071426 A JP 2011071426A JP 2009222923 A JP2009222923 A JP 2009222923A JP 2009222923 A JP2009222923 A JP 2009222923A JP 2011071426 A JP2011071426 A JP 2011071426A
Authority
JP
Japan
Prior art keywords
container
space
reaction vessel
reaction
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009222923A
Other languages
Japanese (ja)
Inventor
Masashi Sugishita
雅士 杉下
Masato Terasaki
昌人 寺崎
Akira Hayashida
晃 林田
Masaaki Ueno
正昭 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Kokusai Electric Inc
Original Assignee
Hitachi Kokusai Electric Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Kokusai Electric Inc filed Critical Hitachi Kokusai Electric Inc
Priority to JP2009222923A priority Critical patent/JP2011071426A/en
Publication of JP2011071426A publication Critical patent/JP2011071426A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To improve response of temperature control in a reaction container by controlling hydrogen gas leakage from the container to the atmosphere. <P>SOLUTION: A substrate processing apparatus includes a reaction container to hold a substrate, a hydrogen gas supply means to supply a hydrogen gas into the reaction container, a heating means which is arranged outside of the reaction container and heats the substrate through the reaction container, an outside container to hold the reaction container and heating means, an inert gas supply means to supply the inert gas into a space between the outside container and reaction container, a vent hole to communicate inside/outside of the outside container, an exhaustion means to exhaust the atmosphere of space between the outside container and reaction container, an oxygen concentration measuring means to measure an oxygen concentration of space between the outside container and reaction container, a hydrogen concentration measuring means to measure a hydrogen concentration of space between the outside container and reaction container, a temperature measuring means to measure a temperature of space between the outside container and reaction container, and a control means to control an operation of each means. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、基板を処理する基板処理装置及び半導体装置の製造方法に関する。   The present invention relates to a substrate processing apparatus for processing a substrate and a method for manufacturing a semiconductor device.

DRAMやIC等の半導体装置の製造方法の一工程として、所定の温度に加熱した基板表面に水素(H)ガスを供給して基板を処理する基板処理工程が行われてきた。このとき、水素ガスが大気中に漏洩してしまうと、爆発を引き起こす等の危険性がある。そのため、基板を収納する反応容器の外周を囲うように均熱管を設け、反応容器と均熱管との2重構造により反応容器内から大気中への水素ガスの漏洩を抑制するようにしていた(さらには、反応容器と均熱管との間を窒素(N)ガスで満たすことで、反応容器から水素ガスが漏洩してしまった時の安全性を確保するようにしていた。)。 As a process of manufacturing a semiconductor device such as a DRAM or an IC, a substrate processing process has been performed in which hydrogen (H 2 ) gas is supplied to a substrate surface heated to a predetermined temperature to process the substrate. At this time, if hydrogen gas leaks into the atmosphere, there is a risk of causing an explosion. For this reason, a soaking tube is provided so as to surround the outer periphery of the reaction vessel containing the substrate, and the double structure of the reaction vessel and the soaking tube is used to suppress the leakage of hydrogen gas from the reaction vessel to the atmosphere ( Furthermore, the space between the reaction vessel and the soaking tube was filled with nitrogen (N 2 ) gas to ensure safety when hydrogen gas leaked from the reaction vessel.

上記においては、反応容器内に収容された基板の加熱は、均熱管の外周を囲うようにヒータを設け、係るヒータから均熱管及び反応容器を介した熱伝導により行うようにしていた。しかしながら、熱伝導による加熱は移動速度が遅く、反応容器と均熱管との2重構造を設けることによって温度制御の応答性が低下してしまう場合があった。   In the above, heating of the substrate accommodated in the reaction vessel is performed by providing a heater so as to surround the outer periphery of the soaking tube and conducting heat from the heater through the soaking tube and the reaction vessel. However, the heating by heat conduction has a slow moving speed, and the temperature control responsiveness may be lowered by providing a double structure of the reaction vessel and the soaking tube.

本発明は、反応容器内から大気中への水素ガスの漏洩を抑制しつつ、反応容器内の温度制御の応答性を向上させることが可能な基板処理装置及び半導体装置の製造方法を提供することを目的とする。   The present invention provides a substrate processing apparatus and a semiconductor device manufacturing method capable of improving the responsiveness of temperature control in a reaction container while suppressing leakage of hydrogen gas from the reaction container to the atmosphere. With the goal.

本発明の一態様によれば、基板を収容する反応容器と、前記反応容器内に水素ガスを供給する水素ガス供給手段と、前記反応容器の外部に設けられ、前記反応容器を介して前記基板を加熱する加熱手段と、前記反応容器及び前記加熱手段を収容する外部容器と、前記外部容器内に不活性ガスを供給する不活性ガス供給手段と、前記外部容器内外を連通させる通気口と、前記外部容器と前記反応容器との間の空間の雰囲気を排気する排気手段と、前記外部容器と前記反応容器との間の空間の酸素濃度を測定する酸素濃度測定手段と、前記外部容器と前記反応容器との間の空間の水素濃度を測定する水素濃度測定手段と、前記外部容器と前記反応容器との間の空間の温度を測定する温度測定手段と、前記各手段の動作を制御する制御手段と、を備え、前記制御手段は、前記不活性ガス供給手段による不活性ガスの供給を開始させた後、前記水素濃度測定手段、前記酸素濃度測定手段、及び前記温度測定手段による測定を実施させ、前記水素濃度測定手段、前記酸素濃度測定手段、及び前記温度測定手段による測定結果のうち少なくとも2つの測定結果に応じて、前記加熱手段による加熱、前記水素ガス供給手段による水素ガスの供給、及び前記排気手段による排気をそれぞれ制御する基板処理装置が提供される。   According to one aspect of the present invention, a reaction container that accommodates a substrate, a hydrogen gas supply unit that supplies hydrogen gas into the reaction container, and the substrate provided outside the reaction container, the substrate through the reaction container. A heating means for heating the reaction container and an external container for housing the heating means, an inert gas supply means for supplying an inert gas into the external container, and a vent for communicating the inside and outside of the external container; Exhaust means for exhausting the atmosphere in the space between the external container and the reaction container, oxygen concentration measuring means for measuring the oxygen concentration in the space between the external container and the reaction container, the external container, and the Hydrogen concentration measuring means for measuring the hydrogen concentration in the space between the reaction container, temperature measuring means for measuring the temperature in the space between the external container and the reaction container, and control for controlling the operation of each means Means The control means starts the supply of the inert gas by the inert gas supply means, and then performs the measurement by the hydrogen concentration measurement means, the oxygen concentration measurement means, and the temperature measurement means, and the hydrogen concentration According to at least two measurement results among the measurement results of the measurement means, the oxygen concentration measurement means, and the temperature measurement means, heating by the heating means, supply of hydrogen gas by the hydrogen gas supply means, and by the exhaust means There is provided a substrate processing apparatus for controlling exhaust gas.

本発明の他の態様によれば、基板を収容する反応容器と、前記反応容器内に水素ガスを供給する水素ガス供給手段と、前記反応容器の外部に設けられ、前記反応容器を介して前記基板を加熱する加熱手段と、前記反応容器及び前記加熱手段を収容する外部容器と、前記外部容器内に不活性ガスを供給する不活性ガス供給手段と、前記外部容器内外を連通させる通気口と、前記外部容器と前記反応容器との間の空間の雰囲気を排気する排気手段と、前記外部容器と前記反応容器との間の空間の酸素濃度を測定する酸素濃度測定手段と、前記外部容器と前記反応容器との間の空間の水素濃度を測定する水素濃度測定手段と、前記外部容器と前記反応容器との間の空間の温度を測定する温度測定手段と、前記各手段の
動作を制御する制御手段と、を備える基板処理装置により実施される半導体装置の製造方法であって、前記制御手段が、前記不活性ガス供給手段による不活性ガスの供給を開始させる工程と、前記水素濃度測定手段、前記酸素濃度測定手段、及び前記温度測定手段による測定を実施させる工程と、前記水素濃度測定手段、前記酸素濃度測定手段、及び前記温度測定手段による測定結果のうち少なくとも2つの測定結果に応じて、前記加熱手段による加熱、前記水素ガス供給手段による水素ガスの供給、及び前記排気手段による排気をそれぞれ制御する工程と、を有する半導体装置の製造方法が提供される。
According to another aspect of the present invention, a reaction vessel that accommodates a substrate, a hydrogen gas supply means that supplies hydrogen gas into the reaction vessel, and provided outside the reaction vessel, the reaction vessel via the reaction vessel A heating means for heating the substrate; an external container for accommodating the reaction container and the heating means; an inert gas supply means for supplying an inert gas into the external container; and a vent for communicating the inside and outside of the external container; An exhaust means for exhausting an atmosphere in a space between the outer container and the reaction container; an oxygen concentration measuring means for measuring an oxygen concentration in a space between the outer container and the reaction container; and the outer container; A hydrogen concentration measuring means for measuring a hydrogen concentration in a space between the reaction container, a temperature measuring means for measuring a temperature in a space between the external container and the reaction container, and controlling operations of the respective means. Control means, A method of manufacturing a semiconductor device implemented by a substrate processing apparatus, wherein the control means starts the supply of an inert gas by the inert gas supply means, the hydrogen concentration measuring means, and the oxygen concentration measurement And a step of performing measurement by the temperature measurement means, and by the heating means according to at least two measurement results of the hydrogen concentration measurement means, the oxygen concentration measurement means, and the temperature measurement means. There is provided a method for manufacturing a semiconductor device, comprising: heating, supply of hydrogen gas by the hydrogen gas supply means, and control of exhaust by the exhaust means.

本発明に係る基板処理装置及び半導体装置の製造方法によれば、反応容器内から大気中への水素ガスの漏洩を抑制しつつ、反応容器内の温度制御の応答性を向上させることが可能となる。   According to the substrate processing apparatus and the method for manufacturing a semiconductor device according to the present invention, it is possible to improve the responsiveness of temperature control in the reaction container while suppressing leakage of hydrogen gas from the reaction container to the atmosphere. Become.

本発明の一実施形態に係る基板処理装置の概略構成図である。It is a schematic block diagram of the substrate processing apparatus which concerns on one Embodiment of this invention. 反応容器内への水素ガス供給の開始条件を示す表図である。It is a table | surface figure which shows the start conditions of hydrogen gas supply in the reaction container. 反応容器内への水素ガス供給直後の制御内容を示す表図である。It is a table | surface figure which shows the control content immediately after hydrogen gas supply in the reaction container. 反応容器の急冷処理の開始条件を示す表図である。It is a table | surface figure which shows the start conditions of the rapid cooling process of a reaction container. 反応容器の急冷処理の開始直後の制御内容を示す表図である。It is a table | surface figure which shows the control content immediately after the start of the rapid cooling process of the reaction container. 本発明の実施例に係る温度制御の応答性を示すグラフ図である。It is a graph which shows the responsiveness of the temperature control which concerns on the Example of this invention. 比較例に係る温度制御の応答性を示すグラフ図である。It is a graph which shows the responsiveness of the temperature control which concerns on a comparative example.

<本発明の一実施形態>
以下に、本発明の一実施形態について説明する。
<One Embodiment of the Present Invention>
Hereinafter, an embodiment of the present invention will be described.

(1)基板処理装置の構成
まず、本実施形態に係る基板処理装置の構成について、図1を参照しながら説明する。
(1) Configuration of Substrate Processing Apparatus First, the configuration of the substrate processing apparatus according to the present embodiment will be described with reference to FIG.

(反応容器)
図1に示すように、本実施形態に係る基板処理装置は、基板としてのウエハ1を収容する反応容器5を備えている、反応容器5は、石英(SiO)や炭化珪素(SiC)等の非金属耐熱材料からなり、上端が閉塞し、下端が開口した円筒形状に構成されている。反応容器5内には、処理室5aが構成されている。処理室5aは、後述するボート4によりウエハ1を水平姿勢で垂直方向に多段に積層した状態で収容可能に構成されている。
(Reaction vessel)
As shown in FIG. 1, the substrate processing apparatus according to the present embodiment includes a reaction vessel 5 that accommodates a wafer 1 as a substrate. The reaction vessel 5 is made of quartz (SiO 2 ), silicon carbide (SiC), or the like. It is made of a non-metallic heat-resistant material, and has a cylindrical shape with the upper end closed and the lower end opened. A processing chamber 5 a is configured in the reaction vessel 5. The processing chamber 5a is configured to be able to accommodate the wafer 1 in a state where the wafers 1 are stacked in multiple stages in the vertical direction in a horizontal posture by a boat 4 described later.

反応容器5の下端部には、炉口蓋体としてのシールキャップ9が設けられている。シールキャップ9は、例えばステンレス等の金属部材により構成され、円盤状に形成されている。シールキャップ9は、ボートエレベータ16により昇降自在に構成されており、シールキャップ9が上昇することにより、図示しないOリングを介して反応容器5の下端が気密に封止されるように構成されている。シールキャップ9の下側中心付近には、後述するボート4を回転させる回転機構8が設けられている。回転機構8の回転軸(図示しない)は、シールキャップ9を貫通して、シールキャップ9上に設けられた断熱筒4cの下端部に接続されている。断熱筒4cは、例えば石英や炭化珪素等の耐熱非金属材料からなり、円筒形状に形成されている。断熱筒4cは、上述のボート4を下方から支持している。ボート4は、例えば石英や炭化珪素等の耐熱非金属材料からなり、複数枚(例えば50〜200枚)のウエハ1を水平姿勢で垂直方向に多段に積層した状態で保持するように構成されている。   At the lower end of the reaction vessel 5, a seal cap 9 is provided as a furnace port lid. The seal cap 9 is made of a metal member such as stainless steel and is formed in a disk shape. The seal cap 9 is configured to be movable up and down by the boat elevator 16, and is configured so that the lower end of the reaction vessel 5 is hermetically sealed through an O-ring (not shown) when the seal cap 9 is raised. Yes. In the vicinity of the lower center of the seal cap 9, a rotation mechanism 8 for rotating the boat 4 described later is provided. A rotating shaft (not shown) of the rotating mechanism 8 passes through the seal cap 9 and is connected to a lower end portion of the heat insulating cylinder 4 c provided on the seal cap 9. The heat insulating cylinder 4c is made of a heat-resistant non-metallic material such as quartz or silicon carbide, and is formed in a cylindrical shape. The heat insulating cylinder 4c supports the boat 4 described above from below. The boat 4 is made of a heat-resistant non-metallic material such as quartz or silicon carbide, and is configured to hold a plurality of (for example, 50 to 200) wafers 1 in a horizontal posture and stacked in multiple stages in the vertical direction. Yes.

反応容器5の側壁下方には、排気管20の上流端が接続されている。排気管20には、
上流側から順に、圧力センサ20c、APC(Auto Pressure Controller)バルブ20b、及び真空ポンプ20aが設けられている。主に、排気管20、圧力センサ20c、APCバルブ20b、真空ポンプ20aにより、反応容器5内(処理室5a内)の雰囲気を排気する反応容器排気系が構成されている。
An upstream end of the exhaust pipe 20 is connected below the side wall of the reaction vessel 5. In the exhaust pipe 20,
In order from the upstream side, a pressure sensor 20c, an APC (Auto Pressure Controller) valve 20b, and a vacuum pump 20a are provided. A reaction vessel exhaust system that exhausts the atmosphere in the reaction vessel 5 (inside the processing chamber 5a) is mainly configured by the exhaust pipe 20, the pressure sensor 20c, the APC valve 20b, and the vacuum pump 20a.

(水素ガス供給手段)
反応容器5の側壁には、反応容器5の下端から上端にかけて延在するように水素ガス導入ノズル7が設けられている。水素ガス導入ノズル7の下流端は、反応容器5の天井部に開口している。水素ガス導入ノズル7の上流端には、水素ガス供給管30の下流端が接続されている。水素ガス供給管30には、上流側から順に、水素(H)ガスを供給する水素ガス供給源30a、流量制御手段としてのマスフローコントローラ30b、及び開閉バルブ30cが設けられている。マスフローコントローラ30bにより流量調整しつつ、開閉バルブ30cを開けることにより、水素ガス供給源30aから供給されるHガスを、水素ガス導入ノズル7、反応容器5の天井部を介して、処理室5a内に供給することが可能なように構成されている。主に、水素ガス導入ノズル7、水素ガス供給管30、水素ガス供給源30a、マスフローコントローラ30b、及び開閉バルブ30cにより、水素ガス供給手段が構成されている。
(Hydrogen gas supply means)
A hydrogen gas introduction nozzle 7 is provided on the side wall of the reaction vessel 5 so as to extend from the lower end to the upper end of the reaction vessel 5. The downstream end of the hydrogen gas introduction nozzle 7 is open to the ceiling of the reaction vessel 5. The downstream end of the hydrogen gas supply pipe 30 is connected to the upstream end of the hydrogen gas introduction nozzle 7. The hydrogen gas supply pipe 30 is provided with a hydrogen gas supply source 30a for supplying hydrogen (H 2 ) gas, a mass flow controller 30b as flow rate control means, and an opening / closing valve 30c in order from the upstream side. By opening the opening / closing valve 30c while adjusting the flow rate by the mass flow controller 30b, the H 2 gas supplied from the hydrogen gas supply source 30a is passed through the hydrogen gas introduction nozzle 7 and the ceiling of the reaction vessel 5 to the processing chamber 5a. It is comprised so that it can supply in. The hydrogen gas supply means is mainly configured by the hydrogen gas introduction nozzle 7, the hydrogen gas supply pipe 30, the hydrogen gas supply source 30a, the mass flow controller 30b, and the open / close valve 30c.

(ヒータ)
反応容器5の外部には、反応容器5の側壁を介してウエハ1を加熱する加熱手段としてのヒータ6が設けられている。ヒータ6は、反応容器5の外周を同心円状に囲うように円筒形状に設けられている。ヒータ6は、例えば通電加熱ヒータとして構成されている。なお、上述したように本実施形態に係る反応容器5は一重管として構成されているため、反応容器が二重管構造により構成されている従来型の基板処理装置に比べ、ヒータ6による反応容器5内の温度制御(ウエハ1の温度制御)の応答性を低下させることなく確保できる。
(heater)
Outside the reaction vessel 5, a heater 6 is provided as a heating means for heating the wafer 1 through the side wall of the reaction vessel 5. The heater 6 is provided in a cylindrical shape so as to surround the outer periphery of the reaction vessel 5 concentrically. The heater 6 is configured as an energizing heater, for example. As described above, since the reaction vessel 5 according to the present embodiment is configured as a single tube, the reaction vessel using the heater 6 is compared with a conventional substrate processing apparatus in which the reaction vessel is configured with a double tube structure. 5 can be ensured without lowering the responsiveness of the temperature control within the wafer 5 (temperature control of the wafer 1).

(外部容器)
ヒータ6の外周には、反応容器5及びヒータ6を収容する外部容器10が設けられている。外部容器10は、ヒータ6の外周を同心円状に囲うように設けられ、円筒形状に形成されている。外部容器10の上端は閉塞しており、外部容器10の下端は気密に封止されている。外部容器10の側壁下方には、外部容器10内外を連通させる通気口15が設けられている。
(External container)
On the outer periphery of the heater 6, a reaction container 5 and an external container 10 that houses the heater 6 are provided. The outer container 10 is provided so as to surround the outer periphery of the heater 6 concentrically, and is formed in a cylindrical shape. The upper end of the outer container 10 is closed, and the lower end of the outer container 10 is hermetically sealed. A vent 15 is provided below the side wall of the outer container 10 to communicate the inside and outside of the outer container 10.

(不活性ガス供給手段)
外部容器10の下端には、不活性ガス供給ノズル12が設けられている。不活性ガス供給ノズル12は鉛直方向に立設されている。不活性ガス供給ノズル12の下流端には、外部容器10と反応容器5との間の空間の下端部であって、ヒータ6と反応容器5との間に不活性ガス(パージガス)としての例えばNガスを噴出させるガス供給口が設けられている。不活性ガス供給ノズル12の上流端には、不活性ガス供給管40の下流端が接続されている。不活性ガス供給管40には、上流側から順に、窒素(N)ガスを供給する不活性ガス供給源40a、流量制御手段としてのマスフローコントローラ40b、開閉バルブ40cが設けられている。マスフローコントローラ40bにより流量調整しつつ、開閉バルブ30cを開けることにより、不活性ガス供給源40aから供給されるNガスを、不活性ガス導入ノズル12を介して外部容器10と反応容器5との間の空間10aに供給することが可能なように構成されている。主に、不活性ガス供給ノズル12、不活性ガス供給管40、不活性ガス供給源40a、マスフローコントローラ40b、開閉バルブ40cにより、不活性ガス供給手段が構成されている。
(Inert gas supply means)
An inert gas supply nozzle 12 is provided at the lower end of the outer container 10. The inert gas supply nozzle 12 is erected in the vertical direction. At the downstream end of the inert gas supply nozzle 12 is a lower end portion of a space between the outer container 10 and the reaction container 5, and is used as an inert gas (purge gas) between the heater 6 and the reaction container 5, for example. A gas supply port for ejecting N 2 gas is provided. The upstream end of the inert gas supply nozzle 12 is connected to the downstream end of the inert gas supply pipe 40. The inert gas supply pipe 40 is provided with an inert gas supply source 40a for supplying nitrogen (N 2 ) gas, a mass flow controller 40b as a flow control means, and an opening / closing valve 40c in order from the upstream side. By opening the opening / closing valve 30c while adjusting the flow rate by the mass flow controller 40b, the N 2 gas supplied from the inert gas supply source 40a is passed between the external vessel 10 and the reaction vessel 5 via the inert gas introduction nozzle 12. It is comprised so that it can supply to the space 10a between. An inert gas supply means is mainly configured by the inert gas supply nozzle 12, the inert gas supply pipe 40, the inert gas supply source 40a, the mass flow controller 40b, and the open / close valve 40c.

(排気手段)
外部容器10の上端には、排気管50の上流端が設けられている。排気管50には、上流側から順に、シャッタ51、排気管50内を流れる排気ガスを冷却させるラジエタ54、シャッタ52、排気管50の上流側から下流側へと排気ガスを流すブロア53が設けられている。主に、排気管50、シャッタ51、ラジエタ54、シャッタ52、ブロア53により、外部容器10と反応容器5との間の空間10aの雰囲気を排気する排気手段が構成されている。ブロア53を作動させた状態でシャッタ51,52を開状態とすることにより、外部容器10の側壁下方に設けられた通気口15から外部容器10内に外気(大気)を導入させ、外部容器10の下方から上方に向けて外気を流通させ、反応容器5を急冷(空冷)させることが可能なように構成されている。また、シャッタ51,52を閉じた状態で、マスフローコントローラ40bにより流量調整しつつ、開閉バルブ30cを開けることにより、反応容器5内にNガスを導入させて充満させ、外部容器10と反応容器5との間の空間10aをNガスでパージすることが可能なように構成されている。これにより、外部容器10と反応容器5との間の空間10aの酸素濃度を低下させることが可能となり、外部容器10と反応容器5との間の空間10a内に水素ガスが漏洩した場合、酸素と水素とが反応して爆発等が発生してしまうことを抑制できる。なお、空間10aをパージしたNガスは、通気口15を介して外部容器10外に排出されるように構成されている。
(Exhaust means)
An upstream end of the exhaust pipe 50 is provided at the upper end of the outer container 10. The exhaust pipe 50 is provided with, in order from the upstream side, a shutter 51, a radiator 54 for cooling the exhaust gas flowing through the exhaust pipe 50, a shutter 52, and a blower 53 for flowing the exhaust gas from the upstream side to the downstream side of the exhaust pipe 50. It has been. The exhaust pipe 50, the shutter 51, the radiator 54, the shutter 52, and the blower 53 mainly constitute exhaust means for exhausting the atmosphere in the space 10 a between the outer container 10 and the reaction container 5. By opening the shutters 51 and 52 in a state where the blower 53 is operated, outside air (atmosphere) is introduced into the outer container 10 from the vent 15 provided below the side wall of the outer container 10, and the outer container 10. The reaction vessel 5 can be rapidly cooled (air cooled) by flowing outside air from below to above. Further, while the shutters 51 and 52 are closed, the flow rate is adjusted by the mass flow controller 40b, and the open / close valve 30c is opened to introduce the N 2 gas into the reaction vessel 5 to be filled. 5 is configured to be purged with N 2 gas. This makes it possible to reduce the oxygen concentration in the space 10a between the outer container 10 and the reaction container 5, and when hydrogen gas leaks into the space 10a between the outer container 10 and the reaction container 5, It is possible to prevent explosion and the like from reacting with hydrogen. The N 2 gas purged from the space 10 a is configured to be discharged out of the external container 10 through the vent 15.

(酸素濃度測定手段及び水素濃度測定手段)
外部容器10の上端には、外部容器10と反応容器5との間の空間10aの酸素濃度を測定する酸素濃度測定手段としての酸素濃度計61と、外部容器10と反応容器5との間の空間10aの水素濃度を測定する水素濃度測定手段としての水素濃度計62と、が設けられている。なお、水素ガスは外気(大気)、窒素ガス、酸素ガスよりも軽いため、外部容器10と反応容器5との間の空間10a内に水素ガスが漏洩した場合、漏洩した水素ガスは空間10a内の上方へと流れる。本実施形態では、水素濃度計62を外部容器10の上端に設けているため、空間10a内に漏洩した水素ガスを確実に検出することが可能となる。また、酸素濃度計61と水素濃度計62とを不活性ガス供給ノズル12のガス供給口から離して配置しているため、酸素濃度計61付近の酸素ガスや水素濃度計62の水素ガスが窒素ガスにより希釈されてしまうことを抑制でき、酸素濃度計61や水素濃度計62により測定される各濃度が低下してしまうことを抑制できる。
(Oxygen concentration measuring means and hydrogen concentration measuring means)
At the upper end of the outer container 10, an oxygen concentration meter 61 as an oxygen concentration measuring means for measuring the oxygen concentration in the space 10 a between the outer container 10 and the reaction container 5, and between the outer container 10 and the reaction container 5. A hydrogen concentration meter 62 as a hydrogen concentration measuring means for measuring the hydrogen concentration in the space 10a is provided. In addition, since hydrogen gas is lighter than outside air (atmosphere), nitrogen gas, and oxygen gas, when hydrogen gas leaks in the space 10a between the external container 10 and the reaction vessel 5, the leaked hydrogen gas is in the space 10a. It flows upward. In the present embodiment, since the hydrogen concentration meter 62 is provided at the upper end of the external container 10, hydrogen gas leaked into the space 10a can be reliably detected. Further, since the oxygen concentration meter 61 and the hydrogen concentration meter 62 are arranged away from the gas supply port of the inert gas supply nozzle 12, the oxygen gas near the oxygen concentration meter 61 and the hydrogen gas of the hydrogen concentration meter 62 are nitrogen. It can suppress that it dilutes with gas and can suppress that each density | concentration measured with the oxygen concentration meter 61 or the hydrogen concentration meter 62 falls.

(温度測定手段)
ヒータ6と反応容器5の外側壁との間の空間には、外部容器10と反応容器5との間の空間10aの温度を測定する温度測定手段としてのヒータ熱電対11aが設けられている。また、反応容器5の内側壁とウエハ1との間の空間には、処理室5aの温度を測定するカスケード熱電対11bが設けられている。
(Temperature measuring means)
A heater thermocouple 11 a is provided in the space between the heater 6 and the outer wall of the reaction vessel 5 as temperature measuring means for measuring the temperature of the space 10 a between the outer vessel 10 and the reaction vessel 5. Further, a cascade thermocouple 11 b for measuring the temperature of the processing chamber 5 a is provided in the space between the inner wall of the reaction vessel 5 and the wafer 1.

(制御手段)
本実施形態に係る基板処理装置は、前記各手段の動作を制御する制御手段としてのコントローラ100を備えている。コントローラ100は、温度制御部100a、流量制御部100b、圧力制御部100c、及び駆動制御部100dを備えている。温度制御部100aは、ヒータ熱電対11a、カスケード熱電対11b、及びヒータ6にそれぞれ接続されており、ヒータ熱電対11a及びカスケード熱電対11bにより測定した温度に基づいて、所定のタイミングでヒータ6の温度を制御するように構成されている。流量制御部100bは、開閉バルブ30c,40c、マスフローコントローラ30b,40bにそれぞれ接続されており、反応容器5内への水素ガスの供給・停止や供給流量、及び外部容器10内への窒素ガスの供給や供給流量を、所定のタイミングで制御するように構成されている。圧力制御部100cは、圧力センサ20c、APCバルブ20b、及び真空ポンプ20aに接続されており、圧力センサ20cにより測定した圧力に基づいて、所定のタイミングでAPCバルブ20bの開度や真空ポンプ20aの動作を制御するように構成されて
いる。駆動制御部100dは、回転機構8及びボートエレベータ16に接続されており、所定のタイミングで回転機構8及びボートエレベータ16の動作を制御するように構成されている。
(Control means)
The substrate processing apparatus according to this embodiment includes a controller 100 as control means for controlling the operation of each means. The controller 100 includes a temperature control unit 100a, a flow rate control unit 100b, a pressure control unit 100c, and a drive control unit 100d. The temperature controller 100a is connected to the heater thermocouple 11a, the cascade thermocouple 11b, and the heater 6, respectively. Based on the temperature measured by the heater thermocouple 11a and the cascade thermocouple 11b, the temperature controller 100a It is configured to control the temperature. The flow rate control unit 100b is connected to the on-off valves 30c and 40c and the mass flow controllers 30b and 40b, respectively. Supply / stop of hydrogen gas into the reaction vessel 5, supply flow rate, and nitrogen gas into the external vessel 10 are supplied. The supply and the supply flow rate are configured to be controlled at a predetermined timing. The pressure control unit 100c is connected to the pressure sensor 20c, the APC valve 20b, and the vacuum pump 20a. Based on the pressure measured by the pressure sensor 20c, the opening degree of the APC valve 20b and the vacuum pump 20a It is configured to control the operation. The drive control unit 100d is connected to the rotation mechanism 8 and the boat elevator 16, and is configured to control operations of the rotation mechanism 8 and the boat elevator 16 at a predetermined timing.

なお、コントローラ100は、不活性ガス供給手段による窒素ガスの供給を開始させた後、水素濃度計62、酸素濃度計61、及びヒータ熱電対11aによる測定を実施させ、水素濃度計62、酸素濃度計61、及びヒータ熱電対11aによる測定結果のうち少なくとも2つの測定結果に応じて、ヒータ6による加熱、水素ガス供給手段による水素ガスの供給、及び排気手段による排気をそれぞれ制御するように構成されている。これにより、反応容器5内から大気中への水素ガスの漏洩を抑制し、安全性を向上させることが可能となる。係る制御については後述する。   The controller 100, after starting the supply of nitrogen gas by the inert gas supply means, causes the hydrogen concentration meter 62, the oxygen concentration meter 61, and the heater thermocouple 11a to perform the measurement, and the hydrogen concentration meter 62, the oxygen concentration The heater 61 is configured to control heating by the heater 6, supply of hydrogen gas by the hydrogen gas supply means, and exhaust by the exhaust means according to at least two measurement results among the measurement results obtained by the heater 61 and the heater thermocouple 11a. ing. Thereby, leakage of hydrogen gas from the reaction vessel 5 into the atmosphere can be suppressed, and safety can be improved. Such control will be described later.

(2)基板処理工程
次に、半導体装置の製造工程の一工程として実施される基板処理工程について、主に図2〜5を参照しながら説明する。本工程では、ウエハ1を搬入した反応容器5内への水素ガスの供給を開始した後、反応容器5内への水素ガスの供給を継続しつつ外部容器10内に外気を導入して反応容器5を急冷する場合を一例として説明する。なお、以下に説明において、基板処理装置を構成する各部の動作はコントローラ100により制御される。
(2) Substrate Processing Step Next, a substrate processing step performed as one step of the semiconductor device manufacturing process will be described with reference mainly to FIGS. In this step, after the supply of hydrogen gas into the reaction vessel 5 into which the wafer 1 has been loaded is started, outside air is introduced into the external vessel 10 while continuing the supply of hydrogen gas into the reaction vessel 5. A case where 5 is rapidly cooled will be described as an example. In the following description, the operation of each part constituting the substrate processing apparatus is controlled by the controller 100.

図2は、反応容器5内への水素ガス供給の開始条件を示す表図である。図3は、反応容器5内への水素ガス供給直後の制御内容を示す表図である。図4は、反応容器5の急冷処理の開始条件を示す表図である。図5は、反応容器5の急冷処理の開始直後の制御内容を示す表図である。   FIG. 2 is a table showing conditions for starting the supply of hydrogen gas into the reaction vessel 5. FIG. 3 is a table showing the control contents immediately after the supply of hydrogen gas into the reaction vessel 5. FIG. 4 is a table showing start conditions for the rapid cooling process of the reaction vessel 5. FIG. 5 is a table showing the control content immediately after the start of the rapid cooling process of the reaction vessel 5.

(基板搬入工程、及び圧力調整工程)
まず、ボート4に複数枚のウエハ1を装填(ウエハチャージ)する。次に、ボートエレベータ16を作動させ、ボート4を上昇させて反応容器5内(処理室5a内)に搬入(ボートローディング)する。このとき、反応容器5の下端開口はシールキャップ9により気密に封止される。
(Substrate loading process and pressure adjustment process)
First, a plurality of wafers 1 are loaded into the boat 4 (wafer charge). Next, the boat elevator 16 is operated to raise the boat 4 and carry it into the reaction vessel 5 (inside the processing chamber 5a) (boat loading). At this time, the lower end opening of the reaction vessel 5 is hermetically sealed by the seal cap 9.

反応容器5内(処理室5a内)へのボート4の搬入が完了したら、処理室5a内が所定の圧力となるように、処理室5a内を排気する。具体的には、真空ポンプ20aにより排気しつつ、圧力センサ20cにより測定した圧力に基づいてAPCバルブ20bの開度を調整する。   When the loading of the boat 4 into the reaction vessel 5 (inside the processing chamber 5a) is completed, the inside of the processing chamber 5a is evacuated so that the inside of the processing chamber 5a becomes a predetermined pressure. Specifically, the opening degree of the APC valve 20b is adjusted based on the pressure measured by the pressure sensor 20c while exhausting by the vacuum pump 20a.

(不活性ガス供給工程)
次に、不活性ガス供給手段によるNガスの供給を開始させる。具体的には、シャッタ51,52を閉じる。そして、マスフローコントローラ40bにより流量調整しつつ、開閉バルブ40cを開け、不活性ガス供給源40aから供給された窒素ガスを、外部容器10と反応容器5との間の空間10aに供給し、係る空間10aを窒素ガスでパージする。これにより、外部容器10と反応容器5との間の空間10aの酸素濃度を低下させる。なお、空間10aをパージしたNガスは、通気口15を介して外部容器10外に排出される。
(Inert gas supply process)
Next, the supply of N 2 gas by the inert gas supply means is started. Specifically, the shutters 51 and 52 are closed. Then, while adjusting the flow rate by the mass flow controller 40b, the open / close valve 40c is opened, and the nitrogen gas supplied from the inert gas supply source 40a is supplied to the space 10a between the external vessel 10 and the reaction vessel 5, 10a is purged with nitrogen gas. Thereby, the oxygen concentration of the space 10a between the external container 10 and the reaction container 5 is reduced. Note that the N 2 gas purged in the space 10 a is discharged out of the external container 10 through the vent 15.

(水素ガス供給開始前の判断工程)
次に、酸素濃度計61による酸素濃度の測定、及び水素濃度計62による水素濃度の測定を実施させ、図2に示すように、反応容器5内への水素ガスの供給開始の是非を判断する。
(Judgment process before the start of hydrogen gas supply)
Next, the measurement of the oxygen concentration by the oxygen concentration meter 61 and the measurement of the hydrogen concentration by the hydrogen concentration meter 62 are performed, and as shown in FIG. 2, it is determined whether or not to start supplying hydrogen gas into the reaction vessel 5. .

具体的には、外部容器10と反応容器5との間の空間10aの酸素濃度が限界濃度(例
えば5.2%、約50000ppm。以下同様)未満であり、外部容器10と反応容器5との間の空間10aの水素濃度が上昇していなければ、不活性ガス供給手段による窒素ガスの供給を継続させつつ、ヒータ6による加熱、及び水素ガス供給手段による水素ガスの供給を開始させる(Case1)。ヒータ6による加熱は、処理室5a内が所定の温度となるように(ウエハ1表面が所定の処理温度となるように)行う。具体的には、ヒータ熱電対11a及びカスケード熱電対11bにより測定した温度に基づいて、ヒータ6の温度を制御する。また、水素ガス供給手段による水素ガスの供給は、ヒータ6による昇温が完了した後(ウエハ1表面が所定の処理温度となった後)、マスフローコントローラ30bにより流量調整しつつ、開閉バルブ30cを開けることにより行う。水素ガス供給手段による水素ガスの供給を開始する際には、APCバルブ20bの開度を調整して、反応容器5内(処理室5a内)の圧力を所定の圧力になるよう保持する。
Specifically, the oxygen concentration in the space 10a between the outer vessel 10 and the reaction vessel 5 is less than a limit concentration (for example, 5.2%, about 50000 ppm, the same applies hereinafter), and the outer vessel 10 and the reaction vessel 5 If the hydrogen concentration in the space 10a is not increased, heating by the heater 6 and supply of hydrogen gas by the hydrogen gas supply means are started while continuing supply of nitrogen gas by the inert gas supply means (Case 1) . Heating by the heater 6 is performed so that the inside of the processing chamber 5a has a predetermined temperature (so that the surface of the wafer 1 has a predetermined processing temperature). Specifically, the temperature of the heater 6 is controlled based on the temperature measured by the heater thermocouple 11a and the cascade thermocouple 11b. In addition, hydrogen gas is supplied by the hydrogen gas supply means after the temperature increase by the heater 6 is completed (after the surface of the wafer 1 reaches a predetermined processing temperature), the flow rate is adjusted by the mass flow controller 30b, and the opening / closing valve 30c is adjusted. Do by opening. When the supply of hydrogen gas by the hydrogen gas supply means is started, the opening degree of the APC valve 20b is adjusted to keep the pressure in the reaction vessel 5 (in the processing chamber 5a) at a predetermined pressure.

但し、外部容器10と反応容器5との間の空間10aの酸素濃度が限界濃度未満であり、外部容器10と反応容器5との間の空間10aの水素濃度が上昇していれば、不活性ガス供給手段による不活性ガスの供給を継続させつつ、水素ガス供給手段による水素ガスの供給及びヒータ6による加熱を禁止させる(Case2)。この際、ヒータ6の温度は、ヒータ熱電対11aにより測定される温度が水素爆発限界温度(例えば527℃。以下同様)以下になるようにする。なお、ヒータ6が意図せずに作動してしまうことを防止するため、ヒータ6に接続された電源装置のブレーカを遮断することが好ましい。   However, if the oxygen concentration in the space 10a between the outer vessel 10 and the reaction vessel 5 is less than the limit concentration, and the hydrogen concentration in the space 10a between the outer vessel 10 and the reaction vessel 5 is increased, it is inactive. While supplying the inert gas by the gas supply means, the supply of hydrogen gas by the hydrogen gas supply means and the heating by the heater 6 are prohibited (Case 2). At this time, the temperature of the heater 6 is set so that the temperature measured by the heater thermocouple 11a is equal to or lower than the hydrogen explosion limit temperature (for example, 527 ° C., and so on). In order to prevent the heater 6 from operating unintentionally, it is preferable to shut off the breaker of the power supply device connected to the heater 6.

また、外部容器10と反応容器5との間の空間10aの酸素濃度が限界濃度以上であり、外部容器10と反応容器5との間の空間10aの水素濃度が上昇していなければ、不活性ガス供給手段による不活性ガスの供給を継続させつつ、水素ガス供給手段による水素ガスの供給開始を禁止させる(Case3)。   In addition, if the oxygen concentration in the space 10a between the outer vessel 10 and the reaction vessel 5 is equal to or higher than the limit concentration, and the hydrogen concentration in the space 10a between the outer vessel 10 and the reaction vessel 5 is not increased, it is inactive. While the supply of the inert gas by the gas supply means is continued, the start of the supply of hydrogen gas by the hydrogen gas supply means is prohibited (Case 3).

また、外部容器10と反応容器5との間の空間10aの酸素濃度が限界濃度以上であり、外部容器10と反応容器5との間の空間10aの水素濃度が上昇していれば、不活性ガス供給手段による不活性ガスの供給を継続させつつ、ヒータ6による加熱及び水素ガス供給手段による水素ガスの供給を禁止させる(Case4)。なお、この際、ヒータ6が意図せずに作動してしまうことを防止するため、ヒータ6に接続された電源装置のブレーカを遮断することが好ましい。   In addition, if the oxygen concentration in the space 10a between the outer vessel 10 and the reaction vessel 5 is equal to or higher than the limit concentration, and the hydrogen concentration in the space 10a between the outer vessel 10 and the reaction vessel 5 is increased, it is inactive. While the supply of the inert gas by the gas supply means is continued, the heating by the heater 6 and the supply of hydrogen gas by the hydrogen gas supply means are prohibited (Case 4). At this time, it is preferable to shut off the breaker of the power supply device connected to the heater 6 in order to prevent the heater 6 from operating unintentionally.

本工程においては、仮に水素濃度計62に異常が生じ、外部容器10と反応容器5との間の空間10aの水素濃度が正しく測定できないような場合であっても、外部容器10と反応容器5との間の空間10aの窒素ガスによるパージを継続しているため、外部容器10と反応容器5との間の空間10aの低酸素濃度状態を確保できる(Case2〜4)。また、外部容器10と反応容器5との間の空間10aの酸素濃度が限界濃度以上であれば、水素ガス供給手段による水素ガスの供給を開始させないようにし(Case3,4)、さらにはヒータ6による加熱を禁止させるようにしている(Case4)。これらにより、反応容器5からの水素ガスの漏洩による爆発を効果的に回避できる。   In this step, even if an abnormality occurs in the hydrogen concentration meter 62 and the hydrogen concentration in the space 10a between the external container 10 and the reaction container 5 cannot be measured correctly, the external container 10 and the reaction container 5 Since the purging with the nitrogen gas in the space 10a between is continued, the low oxygen concentration state of the space 10a between the outer vessel 10 and the reaction vessel 5 can be ensured (Cases 2 to 4). If the oxygen concentration in the space 10a between the external vessel 10 and the reaction vessel 5 is not less than the limit concentration, the supply of hydrogen gas by the hydrogen gas supply means is not started (Case 3 and 4), and further the heater 6 The heating by is prohibited (Case 4). As a result, explosion due to leakage of hydrogen gas from the reaction vessel 5 can be effectively avoided.

また、本工程においては、仮に酸素濃度計61に異常が生じ、外部容器10と反応容器5との間の空間10aの酸素濃度が正しく測定できないような場合であっても、外部容器10と反応容器5との間の空間10aの窒素ガスによるパージを継続しているため、外部容器10と反応容器5との間の空間10aの低酸素濃度状態を確保できる(Case2〜4)。また、外部容器10と反応容器5との間の空間10aの水素濃度が上昇している場合には、水素ガス供給手段による水素ガスの供給を開始させないようにし(Case2,4)、さらにはヒータ6による加熱を禁止させるようにしている(Case4)。これらにより、反応容器5からの水素ガスの漏洩による爆発を効果的に回避できる。   Further, in this process, even if an abnormality occurs in the oxygen concentration meter 61 and the oxygen concentration in the space 10a between the external container 10 and the reaction container 5 cannot be measured correctly, the reaction with the external container 10 occurs. Since the purge with the nitrogen gas in the space 10a between the container 5 is continued, the low oxygen concentration state of the space 10a between the external container 10 and the reaction container 5 can be ensured (Cases 2 to 4). When the hydrogen concentration in the space 10a between the external container 10 and the reaction container 5 is increased, supply of hydrogen gas by the hydrogen gas supply means is not started (Case 2 and 4), and further the heater 6 is prohibited (Case 4). As a result, explosion due to leakage of hydrogen gas from the reaction vessel 5 can be effectively avoided.

(水素ガス供給開始直後の判断工程)
水素ガス供給手段による水素ガスの供給を開始させた直後、酸素濃度計61による酸素濃度の測定、及び水素濃度計62による水素濃度の測定を実施させ、図3に示すように、反応容器5内への水素ガスの供給継続の是非を判断する。
(Judgment process immediately after the start of hydrogen gas supply)
Immediately after the supply of hydrogen gas by the hydrogen gas supply means is started, measurement of the oxygen concentration by the oxygen concentration meter 61 and measurement of the hydrogen concentration by the hydrogen concentration meter 62 are carried out. As shown in FIG. Judge whether to continue supplying hydrogen gas to

具体的には、外部容器10と反応容器5との間の空間10aの酸素濃度が限界濃度未満であり、外部容器10と反応容器5との間の空間10aの水素濃度が上昇していなければ(すなわち水素ガスの漏洩が生じていなければ)、不活性ガス供給手段による不活性ガスの供給、ヒータ6による加熱、及び水素ガス供給手段による水素ガスの供給を継続させる(Case5)。   Specifically, the oxygen concentration in the space 10a between the outer vessel 10 and the reaction vessel 5 is less than the limit concentration, and the hydrogen concentration in the space 10a between the outer vessel 10 and the reaction vessel 5 is not increased. (In other words, if no hydrogen gas leaks), the supply of the inert gas by the inert gas supply means, the heating by the heater 6, and the supply of hydrogen gas by the hydrogen gas supply means are continued (Case 5).

但し、外部容器10と反応容器5との間の空間10aの酸素濃度が限界濃度未満であり、外部容器10と反応容器5との間の空間10aの水素濃度が上昇していれば、不活性ガス供給手段による不活性ガスの供給を継続させつつ、水素ガス供給手段による水素ガスの供給を停止させると共に、排気手段による排気を禁止させる(Case6)。排気手段による排気の禁止は、シャッタ51,52の開動作を禁止することにより行う。水素ガス供給手段による水素ガスの供給の停止は、開閉バルブ30cを閉じることにより行う。   However, if the oxygen concentration in the space 10a between the outer vessel 10 and the reaction vessel 5 is less than the limit concentration, and the hydrogen concentration in the space 10a between the outer vessel 10 and the reaction vessel 5 is increased, it is inactive. While continuing the supply of the inert gas by the gas supply means, the supply of the hydrogen gas by the hydrogen gas supply means is stopped and the exhaust by the exhaust means is prohibited (Case 6). The prohibition of exhaust by the exhaust means is performed by prohibiting the opening operation of the shutters 51 and 52. The supply of hydrogen gas by the hydrogen gas supply means is stopped by closing the open / close valve 30c.

また、外部容器10と反応容器5との間の空間10aの酸素濃度が限界濃度以上であり、外部容器10と反応容器5との間の空間10aの水素濃度が上昇していなければ、不活性ガス供給手段による不活性ガスの供給を継続させつつ、水素ガス供給手段による水素ガスの供給開始を停止させる(Case7)。   In addition, if the oxygen concentration in the space 10a between the outer vessel 10 and the reaction vessel 5 is equal to or higher than the limit concentration, and the hydrogen concentration in the space 10a between the outer vessel 10 and the reaction vessel 5 is not increased, it is inactive. The supply start of hydrogen gas by the hydrogen gas supply means is stopped while continuing the supply of the inert gas by the gas supply means (Case 7).

また、外部容器10と反応容器5との間の空間10aの酸素濃度が限界濃度以上であり、外部容器10と反応容器5との間の空間10aの水素濃度が上昇していれば、不活性ガス供給手段による不活性ガスの供給を継続させつつ、水素ガス供給手段による水素ガスの供給及びヒータ6による加熱を停止させると共に、排気手段による排気を禁止させる(Case8)。なお、ヒータ6による加熱を停止させる際には、ヒータ6が意図せずに作動してしまうことを防止するため、ヒータ6に接続された電源装置のブレーカを遮断することが好ましい。   In addition, if the oxygen concentration in the space 10a between the outer vessel 10 and the reaction vessel 5 is equal to or higher than the limit concentration, and the hydrogen concentration in the space 10a between the outer vessel 10 and the reaction vessel 5 is increased, it is inactive. While the supply of the inert gas by the gas supply means is continued, the supply of the hydrogen gas by the hydrogen gas supply means and the heating by the heater 6 are stopped and the exhaust by the exhaust means is prohibited (Case 8). When stopping heating by the heater 6, it is preferable to shut off the breaker of the power supply device connected to the heater 6 in order to prevent the heater 6 from operating unintentionally.

本工程においては、仮に水素濃度計62に異常が生じ、外部容器10と反応容器5との間の空間10aの水素濃度が正しく測定できないような場合であっても、外部容器10と反応容器5との間の空間10aの窒素ガスによるパージを継続しているため、外部容器10と反応容器5との間の空間10aの低酸素濃度状態を確保できる(Case5〜8)。また、外部容器10と反応容器5との間の空間10aの酸素濃度が限界濃度以上であれば、水素ガス供給手段による水素ガスの供給を停止させるようにし(Case7,8)、さらにはヒータ6による加熱を停止させると共に排気手段による排気を禁止させるようにしている(Case8)。これらにより、反応容器5からの水素ガスの漏洩による爆発を効果的に回避できる。   In this step, even if an abnormality occurs in the hydrogen concentration meter 62 and the hydrogen concentration in the space 10a between the external container 10 and the reaction container 5 cannot be measured correctly, the external container 10 and the reaction container 5 Since the purging with the nitrogen gas in the space 10a between is continued, the low oxygen concentration state of the space 10a between the outer vessel 10 and the reaction vessel 5 can be secured (Case 5 to 8). If the oxygen concentration in the space 10a between the outer vessel 10 and the reaction vessel 5 is not less than the limit concentration, the supply of hydrogen gas by the hydrogen gas supply means is stopped (Case 7, 8), and further the heater 6 Is stopped and exhaust by the exhaust means is prohibited (Case 8). As a result, explosion due to leakage of hydrogen gas from the reaction vessel 5 can be effectively avoided.

また、本工程においては、仮に酸素濃度計61に異常が生じ、外部容器10と反応容器5との間の空間10aの酸素濃度が正しく測定できないような場合であっても、外部容器10と反応容器5との間の空間10aの窒素ガスによるパージを継続しているため、外部容器10と反応容器5との間の空間10aの低酸素濃度状態を確保できる(Case2〜4)。また、外部容器10と反応容器5との間の空間10aの水素濃度が上昇している場合には、水素ガス供給手段による水素ガスの供給を停止させるようにし(Case7,8)、さらにはヒータ6による加熱を停止させると共に排気手段による排気を禁止させるようにしている(Case8)。これらにより、反応容器5からの水素ガスの漏洩による爆発を効果的に回避できる。   Further, in this process, even if an abnormality occurs in the oxygen concentration meter 61 and the oxygen concentration in the space 10a between the external container 10 and the reaction container 5 cannot be measured correctly, the reaction with the external container 10 occurs. Since the purge with the nitrogen gas in the space 10a between the container 5 is continued, the low oxygen concentration state of the space 10a between the external container 10 and the reaction container 5 can be ensured (Cases 2 to 4). When the hydrogen concentration in the space 10a between the outer vessel 10 and the reaction vessel 5 is increased, the supply of hydrogen gas by the hydrogen gas supply means is stopped (Case 7, 8), and further the heater 6 is stopped and exhaust by the exhaust means is prohibited (Case 8). As a result, explosion due to leakage of hydrogen gas from the reaction vessel 5 can be effectively avoided.

(急冷処理の開始是非の判断工程)
水素ガス供給手段による水素ガスの供給を開始させた後、酸素濃度計61による酸素濃度の測定、水素濃度計62による水素濃度の測定、ヒータ熱電対11aによる外部容器10と反応容器5との間の空間10aの温度測定を実施させ、図4に示すように、急冷処理の開始の是非を判断する。
(Judgment process for the start of rapid cooling)
After the supply of hydrogen gas by the hydrogen gas supply means is started, measurement of the oxygen concentration by the oxygen concentration meter 61, measurement of the hydrogen concentration by the hydrogen concentration meter 62, and between the external container 10 and the reaction container 5 by the heater thermocouple 11a The temperature of the space 10a is measured, and as shown in FIG. 4, it is determined whether or not the rapid cooling process is started.

具体的には、外部容器10と反応容器5との間の空間10aの酸素濃度が限界濃度未満であり、外部容器10と反応容器5との間の空間10aの水素濃度が上昇しておらず、外部容器10と反応容器5との間の空間10aの温度が限界温度未満であれば、水素ガス供給手段による水素ガスの供給を継続させつつ、ヒータ6による加熱を停止させると共に、排気手段による排気を開始させて外部容器10内に大気(外気)を導入する(Case9)。排気手段による排気は、ブロア53を作動させた状態でシャッタ51,52を開状態とすることにより行う。これにより、外部容器10の側壁下方に設けられた通気口15から外部容器10内に外気(大気)を導入させ、外部容器10の下方から上方に向けて外気を流通させ、反応容器5を急冷(空冷)させる。   Specifically, the oxygen concentration in the space 10a between the outer vessel 10 and the reaction vessel 5 is less than the limit concentration, and the hydrogen concentration in the space 10a between the outer vessel 10 and the reaction vessel 5 has not increased. If the temperature of the space 10a between the external vessel 10 and the reaction vessel 5 is lower than the limit temperature, the heating by the heater 6 is stopped while the supply of the hydrogen gas by the hydrogen gas supply unit is continued, and the exhaust unit is used. Exhaust is started and air (outside air) is introduced into the outer container 10 (Case 9). Exhaust by the exhaust means is performed by opening the shutters 51 and 52 while the blower 53 is operated. As a result, outside air (atmosphere) is introduced into the outer container 10 from the vent 15 provided below the side wall of the outer container 10, the outside air is circulated from the lower side to the upper side of the outer container 10, and the reaction container 5 is rapidly cooled. (Air cooling).

但し、外部容器10と反応容器5との間の空間10aの酸素濃度が限界濃度未満であり、外部容器10と反応容器5との間の空間10aの水素濃度が上昇しておらず、外部容器10と反応容器5との間の空間10aの温度が限界温度以上であれば、水素ガス供給手段による水素ガスの供給を継続させつつ、ヒータ6による加熱を停止させる(ヒータ6への出力をゼロとする)と共に、排気手段による排気を禁止させる(Case10)。なお、Case10においては、ヒータ6による加熱を停止させることで、空間10aの温度が限界温度以下になった時点でCase9に移行し、空間10a内に大気を導入し、反応容器5の急冷を開始する。   However, the oxygen concentration in the space 10a between the external vessel 10 and the reaction vessel 5 is less than the limit concentration, and the hydrogen concentration in the space 10a between the external vessel 10 and the reaction vessel 5 has not increased, and the external vessel If the temperature of the space 10a between the reactor 10 and the reaction vessel 5 is equal to or higher than the limit temperature, heating by the heater 6 is stopped while the supply of hydrogen gas by the hydrogen gas supply means is continued (the output to the heater 6 is zero). In addition, the exhaust by the exhaust means is prohibited (Case 10). In Case 10, by stopping the heating by the heater 6, when the temperature of the space 10a becomes equal to or lower than the limit temperature, the Case 10 is moved to, the atmosphere is introduced into the space 10a, and the reaction vessel 5 starts to be rapidly cooled. To do.

また、外部容器10と反応容器5との間の空間10aの酸素濃度が限界濃度未満であり、外部容器10と反応容器5との間の空間10aの水素濃度が上昇していれば、外部容器10と反応容器5との間の空間10aの温度によらず、水素ガス供給手段による水素ガスの供給を停止させると共に、排気手段による排気を禁止させる(Case11,12)。   If the oxygen concentration in the space 10a between the outer container 10 and the reaction vessel 5 is less than the limit concentration, and the hydrogen concentration in the space 10a between the outer vessel 10 and the reaction vessel 5 is increased, the outer container Regardless of the temperature of the space 10a between 10 and the reaction vessel 5, the supply of hydrogen gas by the hydrogen gas supply means is stopped and the exhaust by the exhaust means is prohibited (Case 11, 12).

また、外部容器10と反応容器5との間の空間10aの酸素濃度が限界濃度以上であり、外部容器10と反応容器5との間の空間10aの水素濃度が上昇していなければ、外部容器10と反応容器5との間の空間10aの温度によらず、水素ガス供給手段による水素ガスの供給を停止させると共に、排気手段による排気を禁止させる(Case13,14)。   If the oxygen concentration in the space 10a between the outer container 10 and the reaction vessel 5 is not less than the limit concentration, and the hydrogen concentration in the space 10a between the outer vessel 10 and the reaction vessel 5 is not increased, the outer container Regardless of the temperature of the space 10a between 10 and the reaction vessel 5, the supply of hydrogen gas by the hydrogen gas supply means is stopped and the exhaust by the exhaust means is prohibited (Cases 13, 14).

また、外部容器10と反応容器5との間の空間10aの酸素濃度が限界濃度以上であり、外部容器10と反応容器5との間の空間10aの水素濃度が上昇していれば、外部容器10と反応容器5との間の空間10aの温度によらず、水素ガス供給手段による水素ガスの供給及びヒータ6による加熱を停止させると共に、排気手段による排気を禁止させる(Case15,16)。なお、この際、ヒータ6が意図せずに作動してしまうことを防止するため、ヒータ6に接続された電源装置のブレーカを遮断することが好ましい。   If the oxygen concentration in the space 10a between the external container 10 and the reaction vessel 5 is not less than the limit concentration, and the hydrogen concentration in the space 10a between the external vessel 10 and the reaction vessel 5 is increased, the external container Irrespective of the temperature of the space 10a between 10 and the reaction vessel 5, the supply of hydrogen gas by the hydrogen gas supply means and the heating by the heater 6 are stopped and the exhaust by the exhaust means is prohibited (Cases 15 and 16). At this time, it is preferable to shut off the breaker of the power supply device connected to the heater 6 in order to prevent the heater 6 from operating unintentionally.

本工程においては、仮に水素濃度計62に異常が生じ、外部容器10と反応容器5との間の空間10aの水素濃度が正しく測定できないような場合であっても、外部容器10と反応容器5との間の空間10aの窒素ガスによるパージを継続しているため、外部容器10と反応容器5との間の空間10aの低酸素濃度状態を確保できる(Case10〜16)。また、外部容器10と反応容器5との間の空間10aの酸素濃度が限界濃度以上であれば、排気手段による排気を禁止させるか(Case13〜16)、さらには排気手段に
よる排気を禁止させるようにしている(Case15,16)。また、外部容器10と反応容器5との間の空間10aの温度が限界温度以上であれば、排気手段による排気を禁止させるか(Case10,12,14,16)、さらには排気手段による排気を禁止させるようにしている(Case10,16)。これらにより、反応容器5からの水素ガスの漏洩による爆発を効果的に回避できる。
In this step, even if an abnormality occurs in the hydrogen concentration meter 62 and the hydrogen concentration in the space 10a between the external container 10 and the reaction container 5 cannot be measured correctly, the external container 10 and the reaction container 5 Since the purging with the nitrogen gas in the space 10a is continued, the low oxygen concentration state of the space 10a between the outer vessel 10 and the reaction vessel 5 can be ensured (Cases 10 to 16). Further, if the oxygen concentration in the space 10a between the external container 10 and the reaction container 5 is equal to or higher than the limit concentration, exhaust by the exhaust means is prohibited (Case 13 to 16), or further, exhaust by the exhaust means is prohibited. (Case 15, 16). Further, if the temperature of the space 10a between the external container 10 and the reaction container 5 is equal to or higher than the limit temperature, the exhaust by the exhaust means is prohibited (Case 10, 12, 14, 16), or the exhaust by the exhaust means is performed. It is prohibited (Case 10, 16). As a result, explosion due to leakage of hydrogen gas from the reaction vessel 5 can be effectively avoided.

また、本工程においては、仮に酸素濃度計61に異常が生じ、外部容器10と反応容器5との間の空間10aの水素濃度が正しく測定できないような場合であっても、外部容器10と反応容器5との間の空間10aの窒素ガスによるパージを継続しているため、外部容器10と反応容器5との間の空間10aの低酸素濃度状態を確保できる(Case10〜16)。また、外部容器10と反応容器5との間の空間10aの水素濃度が上昇していれば、排気手段による排気を禁止させるか(Case11,12,15,16)、さらには排気手段による排気を禁止させるようにしている(Case15,16)。また、外部容器10と反応容器5との間の空間10aの温度が限界温度以上であれば、排気手段による排気を禁止させるか(Case10,12,14,16)、さらには排気手段による排気を禁止させるようにしている(Case10,16)。これらにより、反応容器5からの水素ガスの漏洩による爆発を効果的に回避できる。   Further, in this process, even if an abnormality occurs in the oxygen concentration meter 61 and the hydrogen concentration in the space 10a between the outer container 10 and the reaction container 5 cannot be measured correctly, the reaction with the outer container 10 occurs. Since the purging with the nitrogen gas in the space 10a between the container 5 is continued, the low oxygen concentration state of the space 10a between the external container 10 and the reaction container 5 can be secured (Cases 10 to 16). Further, if the hydrogen concentration in the space 10a between the outer vessel 10 and the reaction vessel 5 is increased, the exhaust by the exhaust means is prohibited (Case 11, 12, 15, 16), or the exhaust by the exhaust means is further prohibited. It is prohibited (Case 15, 16). Further, if the temperature of the space 10a between the external container 10 and the reaction container 5 is equal to or higher than the limit temperature, the exhaust by the exhaust means is prohibited (Case 10, 12, 14, 16), or the exhaust by the exhaust means is performed. It is prohibited (Case 10, 16). As a result, explosion due to leakage of hydrogen gas from the reaction vessel 5 can be effectively avoided.

また、本工程においては、仮にヒータ熱電対11aに異常が生じ、外部容器10と反応容器5との間の空間10aの温度が正しく測定できないような場合であっても、外部容器10と反応容器5との間の空間10aの窒素ガスによるパージを継続しているため、外部容器10と反応容器5との間の空間10aの低酸素濃度状態を確保できる(Case10〜16)。また、外部容器10と反応容器5との間の空間10aの酸素濃度が限界濃度以上であれば、排気手段による排気を禁止させるか(Case13〜16)、さらには排気手段による排気を禁止させるようにしている(Case15,16)。また、外部容器10と反応容器5との間の空間10aの水素濃度が上昇していれば、排気手段による排気を禁止させるか(Case11,12,15,16)、さらには排気手段による排気を禁止させるようにしている(Case15,16)。これらにより、反応容器5からの水素ガスの漏洩による爆発を効果的に回避できる。   Further, in this step, even if the heater thermocouple 11a becomes abnormal and the temperature of the space 10a between the outer container 10 and the reaction container 5 cannot be measured correctly, the outer container 10 and the reaction container Since the purging with the nitrogen gas in the space 10a between 5 and 5 is continued, the low oxygen concentration state of the space 10a between the external vessel 10 and the reaction vessel 5 can be secured (Case 10 to 16). Further, if the oxygen concentration in the space 10a between the external container 10 and the reaction container 5 is equal to or higher than the limit concentration, exhaust by the exhaust means is prohibited (Case 13 to 16), or further, exhaust by the exhaust means is prohibited. (Case 15, 16). Further, if the hydrogen concentration in the space 10a between the outer vessel 10 and the reaction vessel 5 is increased, the exhaust by the exhaust means is prohibited (Case 11, 12, 15, 16), or the exhaust by the exhaust means is further prohibited. It is prohibited (Case 15, 16). As a result, explosion due to leakage of hydrogen gas from the reaction vessel 5 can be effectively avoided.

(急冷処理の開始直後の判断工程)
排気手段による排気を開始させた直後(反応容器5の急冷を開始させた直後)、急冷処理の継続の是非を判断する。なお、急冷処理(排気手段による排気)を開始させた後は、外部容器10と反応容器5との間の空間10aに酸素を含む外気が流れ込むため、酸素濃度計61を用いた判断(酸素濃度が限界濃度未満であるか否かの判断)を行うことが困難である。これに対して、本実施形態では、水素濃度計62による水素濃度の測定、及びヒータ熱電対11aによる外部容器10と反応容器5との間の空間10aの温度測定の2つにより、急冷処理の継続の是非を正確に判断することが可能である。係る様子を図5に示す。
(Judgment process immediately after the start of the rapid cooling process)
Immediately after the exhaust by the exhaust means is started (immediately after the rapid cooling of the reaction vessel 5 is started), it is determined whether or not the rapid cooling process should be continued. In addition, since the outside air containing oxygen flows into the space 10a between the external container 10 and the reaction container 5 after the rapid cooling process (exhaust by the exhaust means) is started, the determination using the oxygen concentration meter 61 (oxygen concentration) It is difficult to determine whether or not is less than the limit concentration. On the other hand, in the present embodiment, the quenching treatment is performed by measuring the hydrogen concentration by the hydrogen concentration meter 62 and measuring the temperature of the space 10a between the outer vessel 10 and the reaction vessel 5 by the heater thermocouple 11a. It is possible to accurately determine whether or not to continue. This is shown in FIG.

具体的には、外部容器10と反応容器5との間の空間10aの水素濃度が上昇しておらず、外部容器10と反応容器5との間の空間10aの温度が限界温度未満であれば、ヒータ6による加熱を停止させた状態(ヒータ6への電力供給をゼロとした状態)で、水素ガス供給手段による水素ガスの供給、及び排気手段による排気(すなわち外部容器10内への外気の導入)を継続させる(Case17)。   Specifically, if the hydrogen concentration in the space 10a between the outer vessel 10 and the reaction vessel 5 is not increased and the temperature of the space 10a between the outer vessel 10 and the reaction vessel 5 is less than the limit temperature In a state where heating by the heater 6 is stopped (a state where power supply to the heater 6 is zero), supply of hydrogen gas by the hydrogen gas supply means and exhaust by the exhaust means (that is, outside air into the external container 10) Introduction) is continued (Case 17).

但し、外部容器10と反応容器5との間の空間10aの水素濃度が上昇しておらず、外部容器10と反応容器5との間の空間10aの温度が限界温度以上であれば、水素ガス供給手段による水素ガスの供給を継続させつつ、ヒータ6による加熱を停止させた状態(ヒータ6への電力供給をゼロとした状態)で、排気手段による排気(すなわち外部容器10
内への外気の導入)を停止させる(Case18)。
However, if the hydrogen concentration in the space 10a between the outer vessel 10 and the reaction vessel 5 is not increased and the temperature of the space 10a between the outer vessel 10 and the reaction vessel 5 is equal to or higher than the limit temperature, hydrogen gas While the supply of hydrogen gas by the supply means is continued, the heating by the heater 6 is stopped (the power supply to the heater 6 is zero), and the exhaust by the exhaust means (that is, the external container 10).
(Introduction of outside air into the inside) is stopped (Case 18).

また、外部容器10と反応容器5との間の空間10aの水素濃度が上昇しており、外部容器10と反応容器5との間の空間10aが限界温度未満であれば、水素ガス供給手段による水素ガスの供給、及び排気手段による排気(すなわち外部容器10内への外気の導入)を停止させる(Case19)。   If the hydrogen concentration in the space 10a between the outer container 10 and the reaction container 5 is increased and the space 10a between the outer container 10 and the reaction container 5 is lower than the limit temperature, the hydrogen gas supply means Supply of hydrogen gas and exhaust by the exhaust means (that is, introduction of outside air into the external container 10) are stopped (Case 19).

また、外部容器10と反応容器5との間の空間10aの水素濃度が上昇しており、外部容器10と反応容器5との間の空間10aの温度が限界温度以上であれば、ヒータ6による加熱を停止させた状態で、水素ガス供給手段による水素ガスの供給、及び排気手段による排気(すなわち外部容器10内への外気の導入)を停止させる(Case20)。なお、この際、ヒータ6が意図せずに作動してしまうことを防止するため、ヒータ6に接続された電源装置のブレーカを遮断することが好ましい。   If the hydrogen concentration in the space 10a between the outer container 10 and the reaction container 5 is increased and the temperature of the space 10a between the outer container 10 and the reaction container 5 is equal to or higher than the limit temperature, the heater 6 With the heating stopped, the supply of hydrogen gas by the hydrogen gas supply means and the exhaust by the exhaust means (that is, introduction of outside air into the external container 10) are stopped (Case 20). At this time, it is preferable to shut off the breaker of the power supply device connected to the heater 6 in order to prevent the heater 6 from operating unintentionally.

本工程においては、仮に水素濃度計62に異常が生じ、外部容器10と反応容器5との間の空間10aの水素濃度が正しく測定できないような場合であっても、外部容器10と反応容器5との間の空間10aの窒素ガスによるパージを継続しているため、外部容器10と反応容器5との間の空間10aの低酸素濃度状態を確保できる(Case17〜20)。また、外部容器10と反応容器5との間の空間10aの温度が限界温度以上であれば、水素ガス供給手段による水素ガスの供給、排気手段による排気、ヒータ6による加熱を停止させるようにしている(Case18,20)これらにより、反応容器5からの水素ガスの漏洩による爆発を効果的に回避できる。   In this step, even if an abnormality occurs in the hydrogen concentration meter 62 and the hydrogen concentration in the space 10a between the external container 10 and the reaction container 5 cannot be measured correctly, the external container 10 and the reaction container 5 Since the purging with the nitrogen gas in the space 10a between is continued, the low oxygen concentration state of the space 10a between the outer vessel 10 and the reaction vessel 5 can be secured (Cases 17 to 20). If the temperature of the space 10a between the external container 10 and the reaction container 5 is equal to or higher than the limit temperature, supply of hydrogen gas by the hydrogen gas supply means, exhaust by the exhaust means, and heating by the heater 6 are stopped. (Cases 18 and 20) By these, explosion due to leakage of hydrogen gas from the reaction vessel 5 can be effectively avoided.

また、本工程においては、仮にヒータ熱電対11aに異常が生じ、外部容器10と反応容器5との間の空間10aの温度が正しく測定できないような場合であっても、外部容器10と反応容器5との間の空間10aの窒素ガスによるパージを継続しているため、外部容器10と反応容器5との間の空間10aの低酸素濃度状態を確保できる(Case17〜20)。また、外部容器10と反応容器5との間の空間10aの水素濃度が上昇していれば、水素ガス供給手段による水素ガスの供給を停止すると共に、排気手段による排気を停止させ(Case19,20)、さらにはヒータ6による加熱を停止させるようにしている(Case20)。これらにより、反応容器5からの水素ガスの漏洩による爆発を効果的に回避できる。   Further, in this step, even if the heater thermocouple 11a becomes abnormal and the temperature of the space 10a between the outer container 10 and the reaction container 5 cannot be measured correctly, the outer container 10 and the reaction container Since the purging with the nitrogen gas in the space 10a between 5 and 5 is continued, the low oxygen concentration state of the space 10a between the external vessel 10 and the reaction vessel 5 can be secured (Cases 17 to 20). If the hydrogen concentration in the space 10a between the external vessel 10 and the reaction vessel 5 is increased, the supply of hydrogen gas by the hydrogen gas supply means is stopped and the exhaust by the exhaust means is stopped (Cases 19, 20). In addition, heating by the heater 6 is stopped (Case 20). As a result, explosion due to leakage of hydrogen gas from the reaction vessel 5 can be effectively avoided.

(大気圧復帰工程、及び基板搬出工程)
反応容器5の冷却が完了したら、反応容器5内に残留している水素ガスを排出すると共に、図示しない不活性ガス供給手段により反応容器5内に不活性ガスを供給し、反応容器5内の圧力を大気圧に復帰させる。そして、ボートエレベータ16を降下させて処理後のウエハ1を処理室5a内から搬出し、本実施形態に係る基板処理工程を終了する。
(Atmospheric pressure return process and substrate carry-out process)
When the cooling of the reaction vessel 5 is completed, the hydrogen gas remaining in the reaction vessel 5 is discharged, and an inert gas is supplied into the reaction vessel 5 by an inert gas supply means (not shown). Return the pressure to atmospheric pressure. Then, the boat elevator 16 is lowered to carry out the processed wafer 1 from the processing chamber 5a, and the substrate processing step according to the present embodiment is completed.

(3)本実施形態に係る効果
本実施形態によれば、以下に示す1つまたは複数の効果を奏する。
(3) Effects according to the present embodiment According to the present embodiment, the following one or more effects are achieved.

(a)本実施形態に係る反応容器5は、一重管として構成されている。そのため、ヒータ6による反応容器5内の温度制御(ウエハ1の温度制御)の応答性を低下させることなく、高い応答性を確保できる。なお、従来の基板処理装置では、反応容器と均熱管との2重構造により反応容器内から大気中への水素ガスの漏洩を抑制するようにしていた。そして、均熱管の外周を囲うように設けられたヒータから、均熱管及び反応容器を介した熱伝導により反応容器内の加熱を行うようにしていた。熱伝導による加熱は移動速度が遅いため、温度制御の応答性が低下してしまう場合があった。 (A) The reaction vessel 5 according to this embodiment is configured as a single tube. Therefore, high responsiveness can be ensured without deteriorating responsiveness of temperature control (temperature control of the wafer 1) in the reaction vessel 5 by the heater 6. In the conventional substrate processing apparatus, leakage of hydrogen gas from the reaction container to the atmosphere is suppressed by a double structure of the reaction container and the soaking tube. Then, the inside of the reaction vessel is heated by heat conduction through the soaking tube and the reaction vessel from a heater provided so as to surround the outer periphery of the soaking tube. Heating by heat conduction has a slow moving speed, and thus the responsiveness of temperature control may be reduced.

図6は、反応容器を一重管として構成した場合(実施例)に係る温度制御の応答性を示すグラフ図である。また、図7は、反応容器と均熱管との2重構造により反応容器内から大気中への水素ガスの漏洩を抑制する場合(比較例)に係る温度制御の応答性を示すグラフ図である。図6,7において、縦軸は温度(℃)、横軸は時間(分)を示している。図6(実施例)においては、ヒータへの供給電力に伴うヒータ熱電対の測定温度変化と、カスケード熱電対の測定温度変化と、がほぼ一致していることが分かる。また、図7(比較例)においては、ヒータへの供給電力に伴うヒータ熱電対の測定温度変化に比べて、カスケード熱電対の測定温度変化が遅れていることが分かる。すなわち、反応容器と均熱管との2重構造により反応容器内から大気中への水素ガスの漏洩を抑制する場合(比較例)に比べて、反応容器を一重管として構成した場合(実施例)の方が、ヒータによる反応容器内の温度制御(ウエハの温度制御)の応答性を低下させることなく、高い応答性を確保できることが分かる。特に、低温領域において温度制御の応答性の低下を抑制できることが分かる。   FIG. 6 is a graph showing the temperature control responsiveness when the reaction vessel is configured as a single tube (Example). FIG. 7 is a graph showing the responsiveness of temperature control according to a case (comparative example) in which leakage of hydrogen gas from the reaction vessel to the atmosphere is suppressed by the double structure of the reaction vessel and the soaking tube. . 6 and 7, the vertical axis represents temperature (° C.) and the horizontal axis represents time (minutes). In FIG. 6 (Example), it can be seen that the measured temperature change of the heater thermocouple accompanying the power supplied to the heater and the measured temperature change of the cascade thermocouple substantially coincide. Moreover, in FIG. 7 (comparative example), it can be seen that the measured temperature change of the cascade thermocouple is delayed compared to the measured temperature change of the heater thermocouple accompanying the power supplied to the heater. That is, when the reaction vessel is configured as a single tube (Example) compared to the case where the double structure of the reaction vessel and the soaking tube suppresses the leakage of hydrogen gas from the reaction vessel to the atmosphere (Comparative Example). It can be seen that the higher responsiveness can be secured without lowering the responsiveness of the temperature control (wafer temperature control) in the reaction vessel by the heater. In particular, it can be seen that a decrease in temperature control responsiveness can be suppressed in a low temperature region.

(b)本実施形態に係る水素ガス供給開始前の判断工程では、図2に示すように、仮に水素濃度計62に異常が生じ、外部容器10と反応容器5との間の空間10aの水素濃度が正しく測定できないような場合であっても、外部容器10と反応容器5との間の空間10aの窒素ガスによるパージを継続しているため、外部容器10と反応容器5との間の空間10aの低酸素濃度状態を確保できる(Case2〜4)。また、外部容器10と反応容器5との間の空間10aの酸素濃度が限界濃度以上であれば、水素ガス供給手段による水素ガスの供給を開始させないようにし(Case3,4)、さらにはヒータ6による加熱を禁止させるようにしている(Case4)。これらにより、水素濃度計62に異常が生じたとしても、反応容器5からの水素ガスの漏洩による爆発を効果的に回避できる。 (B) In the determination step before the start of hydrogen gas supply according to this embodiment, as shown in FIG. 2, if an abnormality occurs in the hydrogen concentration meter 62, the hydrogen in the space 10 a between the external vessel 10 and the reaction vessel 5 is Even when the concentration cannot be measured correctly, the space 10a between the external vessel 10 and the reaction vessel 5 is continuously purged with nitrogen gas, so that the space between the external vessel 10 and the reaction vessel 5 is maintained. A low oxygen concentration state of 10a can be secured (Cases 2 to 4). If the oxygen concentration in the space 10a between the external vessel 10 and the reaction vessel 5 is not less than the limit concentration, the supply of hydrogen gas by the hydrogen gas supply means is not started (Case 3 and 4), and further the heater 6 The heating by is prohibited (Case 4). As a result, even if an abnormality occurs in the hydrogen concentration meter 62, an explosion due to leakage of hydrogen gas from the reaction vessel 5 can be effectively avoided.

また、本工程においては、仮に酸素濃度計61に異常が生じ、外部容器10と反応容器5との間の空間10aの酸素濃度が正しく測定できないような場合であっても、外部容器10と反応容器5との間の空間10aの窒素ガスによるパージを継続しているため、外部容器10と反応容器5との間の空間10aの低酸素濃度状態を確保できる(Case2〜4)。また、外部容器10と反応容器5との間の空間10aの水素濃度が上昇している場合には、水素ガス供給手段による水素ガスの供給を開始させないようにし(Case2,4)、さらにはヒータ6による加熱を禁止させるようにしている(Case4)。これらにより、酸素濃度計61に異常が生じたとしても、反応容器5からの水素ガスの漏洩による爆発を効果的に回避できる。   Further, in this process, even if an abnormality occurs in the oxygen concentration meter 61 and the oxygen concentration in the space 10a between the external container 10 and the reaction container 5 cannot be measured correctly, the reaction with the external container 10 occurs. Since the purge with the nitrogen gas in the space 10a between the container 5 is continued, the low oxygen concentration state of the space 10a between the external container 10 and the reaction container 5 can be ensured (Cases 2 to 4). When the hydrogen concentration in the space 10a between the external container 10 and the reaction container 5 is increased, supply of hydrogen gas by the hydrogen gas supply means is not started (Case 2 and 4), and further the heater 6 is prohibited (Case 4). As a result, even if an abnormality occurs in the oxygen concentration meter 61, an explosion due to leakage of hydrogen gas from the reaction vessel 5 can be effectively avoided.

(c)本実施形態に係る水素ガス供給開始直後の判断工程では、図3に示すように、仮に水素濃度計62に異常が生じ、外部容器10と反応容器5との間の空間10aの水素濃度が正しく測定できないような場合であっても、外部容器10と反応容器5との間の空間10aの窒素ガスによるパージを継続しているため、外部容器10と反応容器5との間の空間10aの低酸素濃度状態を確保できる(Case5〜8)。また、外部容器10と反応容器5との間の空間10aの酸素濃度が限界濃度以上であれば、水素ガス供給手段による水素ガスの供給を停止させるようにし(Case7,8)、さらにはヒータ6による加熱を停止させると共に排気手段による排気を禁止させるようにしている(Case8)。これらにより、水素濃度計62に異常が生じたとしても、反応容器5からの水素ガスの漏洩による爆発を効果的に回避できる。 (C) In the determination step immediately after the start of hydrogen gas supply according to the present embodiment, as shown in FIG. 3, an abnormality occurs in the hydrogen concentration meter 62, and the hydrogen in the space 10 a between the external vessel 10 and the reaction vessel 5. Even when the concentration cannot be measured correctly, the space 10a between the external vessel 10 and the reaction vessel 5 is continuously purged with nitrogen gas, so that the space between the external vessel 10 and the reaction vessel 5 is maintained. A low oxygen concentration state of 10a can be secured (Case 5 to 8). If the oxygen concentration in the space 10a between the outer vessel 10 and the reaction vessel 5 is not less than the limit concentration, the supply of hydrogen gas by the hydrogen gas supply means is stopped (Case 7, 8), and further the heater 6 Is stopped and exhaust by the exhaust means is prohibited (Case 8). As a result, even if an abnormality occurs in the hydrogen concentration meter 62, an explosion due to leakage of hydrogen gas from the reaction vessel 5 can be effectively avoided.

また、本工程においては、仮に酸素濃度計61に異常が生じ、外部容器10と反応容器5との間の空間10aの酸素濃度が正しく測定できないような場合であっても、外部容器10と反応容器5との間の空間10aの窒素ガスによるパージを継続しているため、外部容器10と反応容器5との間の空間10aの低酸素濃度状態を確保できる(Case2〜4)。また、外部容器10と反応容器5との間の空間10aの水素濃度が上昇している場
合には、水素ガス供給手段による水素ガスの供給を停止させるようにし(Case7,8)、さらにはヒータ6による加熱を停止させると共に排気手段による排気を禁止させるようにしている(Case8)。これらにより、酸素濃度計61に異常が生じたとしても、反応容器5からの水素ガスの漏洩による爆発を効果的に回避できる。
Further, in this process, even if an abnormality occurs in the oxygen concentration meter 61 and the oxygen concentration in the space 10a between the external container 10 and the reaction container 5 cannot be measured correctly, the reaction with the external container 10 occurs. Since the purge with the nitrogen gas in the space 10a between the container 5 is continued, the low oxygen concentration state of the space 10a between the external container 10 and the reaction container 5 can be ensured (Cases 2 to 4). When the hydrogen concentration in the space 10a between the outer vessel 10 and the reaction vessel 5 is increased, the supply of hydrogen gas by the hydrogen gas supply means is stopped (Case 7, 8), and further the heater 6 is stopped and exhaust by the exhaust means is prohibited (Case 8). As a result, even if an abnormality occurs in the oxygen concentration meter 61, an explosion due to leakage of hydrogen gas from the reaction vessel 5 can be effectively avoided.

(d)本実施形態に係る急冷処理の開始是非の判断工程では、図4に示すように、仮に水素濃度計62に異常が生じ、外部容器10と反応容器5との間の空間10aの水素濃度が正しく測定できないような場合であっても、外部容器10と反応容器5との間の空間10aの窒素ガスによるパージを継続しているため、外部容器10と反応容器5との間の空間10aの低酸素濃度状態を確保できる(Case10〜16)。また、外部容器10と反応容器5との間の空間10aの酸素濃度が限界濃度以上であれば、排気手段による排気を禁止させるか(Case13〜16)、さらには排気手段による排気を禁止させるようにしている(Case15,16)。また、外部容器10と反応容器5との間の空間10aの温度が限界温度以上であれば、排気手段による排気を禁止させるか(Case10,12,14,16)、さらには排気手段による排気を禁止させるようにしている(Case10,16)。これらにより、水素濃度計62に異常が生じたとしても、反応容器5からの水素ガスの漏洩による爆発を効果的に回避できる。 (D) In the determination process of whether or not to start the rapid cooling process according to the present embodiment, as shown in FIG. 4, an abnormality occurs in the hydrogen concentration meter 62, and the hydrogen in the space 10 a between the external container 10 and the reaction container 5 Even when the concentration cannot be measured correctly, the space 10a between the external vessel 10 and the reaction vessel 5 is continuously purged with nitrogen gas, so that the space between the external vessel 10 and the reaction vessel 5 is maintained. A low oxygen concentration state of 10a can be secured (Case 10 to 16). Further, if the oxygen concentration in the space 10a between the external container 10 and the reaction container 5 is equal to or higher than the limit concentration, exhaust by the exhaust means is prohibited (Case 13 to 16), or further, exhaust by the exhaust means is prohibited. (Case 15, 16). Further, if the temperature of the space 10a between the external container 10 and the reaction container 5 is equal to or higher than the limit temperature, the exhaust by the exhaust means is prohibited (Case 10, 12, 14, 16), or the exhaust by the exhaust means is performed. It is prohibited (Case 10, 16). As a result, even if an abnormality occurs in the hydrogen concentration meter 62, an explosion due to leakage of hydrogen gas from the reaction vessel 5 can be effectively avoided.

また、本工程においては、仮に酸素濃度計61に異常が生じ、外部容器10と反応容器5との間の空間10aの水素濃度が正しく測定できないような場合であっても、外部容器10と反応容器5との間の空間10aの窒素ガスによるパージを継続しているため、外部容器10と反応容器5との間の空間10aの低酸素濃度状態を確保できる(Case10〜16)。また、外部容器10と反応容器5との間の空間10aの水素濃度が上昇していれば、排気手段による排気を禁止させるか(Case11,12,15,16)、さらには排気手段による排気を禁止させるようにしている(Case15,16)。また、外部容器10と反応容器5との間の空間10aの温度が限界温度以上であれば、排気手段による排気を禁止させるか(Case10,12,14,16)、さらには排気手段による排気を禁止させるようにしている(Case10,16)。これらにより、酸素濃度計61に異常が生じたとしても、反応容器5からの水素ガスの漏洩による爆発を効果的に回避できる。   Further, in this process, even if an abnormality occurs in the oxygen concentration meter 61 and the hydrogen concentration in the space 10a between the outer container 10 and the reaction container 5 cannot be measured correctly, the reaction with the outer container 10 occurs. Since the purging with the nitrogen gas in the space 10a between the container 5 is continued, the low oxygen concentration state of the space 10a between the external container 10 and the reaction container 5 can be secured (Cases 10 to 16). Further, if the hydrogen concentration in the space 10a between the outer vessel 10 and the reaction vessel 5 is increased, the exhaust by the exhaust means is prohibited (Case 11, 12, 15, 16), or the exhaust by the exhaust means is further prohibited. It is prohibited (Case 15, 16). Further, if the temperature of the space 10a between the external container 10 and the reaction container 5 is equal to or higher than the limit temperature, the exhaust by the exhaust means is prohibited (Case 10, 12, 14, 16), or the exhaust by the exhaust means is performed. It is prohibited (Case 10, 16). As a result, even if an abnormality occurs in the oxygen concentration meter 61, an explosion due to leakage of hydrogen gas from the reaction vessel 5 can be effectively avoided.

また、本工程においては、仮にヒータ熱電対11aに異常が生じ、外部容器10と反応容器5との間の空間10aの温度が正しく測定できないような場合であっても、外部容器10と反応容器5との間の空間10aの窒素ガスによるパージを継続しているため、外部容器10と反応容器5との間の空間10aの低酸素濃度状態を確保できる(Case10〜16)。また、外部容器10と反応容器5との間の空間10aの酸素濃度が限界濃度以上であれば、排気手段による排気を禁止させるか(Case13〜16)、さらには排気手段による排気を禁止させるようにしている(Case15,16)。また、外部容器10と反応容器5との間の空間10aの水素濃度が上昇していれば、排気手段による排気を禁止させるか(Case11,12,15,16)、さらには排気手段による排気を禁止させるようにしている(Case15,16)。これらにより、ヒータ熱電対11aに異常が生じたとしても、反応容器5からの水素ガスの漏洩による爆発を効果的に回避できる。   Further, in this step, even if the heater thermocouple 11a becomes abnormal and the temperature of the space 10a between the outer container 10 and the reaction container 5 cannot be measured correctly, the outer container 10 and the reaction container Since the purging with the nitrogen gas in the space 10a between 5 and 5 is continued, the low oxygen concentration state of the space 10a between the external vessel 10 and the reaction vessel 5 can be secured (Case 10 to 16). Further, if the oxygen concentration in the space 10a between the external container 10 and the reaction container 5 is equal to or higher than the limit concentration, exhaust by the exhaust means is prohibited (Case 13 to 16), or further, exhaust by the exhaust means is prohibited. (Case 15, 16). Further, if the hydrogen concentration in the space 10a between the outer vessel 10 and the reaction vessel 5 is increased, the exhaust by the exhaust means is prohibited (Case 11, 12, 15, 16), or the exhaust by the exhaust means is further prohibited. It is prohibited (Case 15, 16). As a result, even if an abnormality occurs in the heater thermocouple 11a, explosion due to leakage of hydrogen gas from the reaction vessel 5 can be effectively avoided.

(e)急冷処理(排気手段による排気)を開始させた後は、外部容器10と反応容器5との間の空間10aに酸素を含む外気が流れ込むため、酸素濃度計61を用いた判断(酸素濃度が限界濃度未満であるか否かの判断)を行うことが困難である。これに対して、本実施形態では、水素濃度計62による水素濃度の測定、及びヒータ熱電対11aによる外部容器10と反応容器5との間の空間10aの温度測定の2つにより、急冷処理の継続の是非を正確に判断することが可能である。 (E) Since the outside air containing oxygen flows into the space 10a between the external container 10 and the reaction container 5 after the rapid cooling process (exhaust by the exhaust means) is started, the determination using the oxygen concentration meter 61 (oxygen) It is difficult to determine whether the concentration is less than the limit concentration. On the other hand, in the present embodiment, the quenching treatment is performed by measuring the hydrogen concentration by the hydrogen concentration meter 62 and measuring the temperature of the space 10a between the outer vessel 10 and the reaction vessel 5 by the heater thermocouple 11a. It is possible to accurately determine whether or not to continue.

(f)本実施形態に係る急冷処理の開始直後の判断工程では、図4に示すように、仮に水素濃度計62に異常が生じ、外部容器10と反応容器5との間の空間10aの水素濃度が正しく測定できないような場合であっても、外部容器10と反応容器5との間の空間10aの窒素ガスによるパージを継続しているため、外部容器10と反応容器5との間の空間10aの低酸素濃度状態を確保できる(Case17〜20)。また、外部容器10と反応容器5との間の空間10aの温度が限界温度以上であれば、水素ガス供給手段による水素ガスの供給、排気手段による排気、ヒータ6による加熱を停止させるようにしている(Case18,20)これらにより、水素濃度計62に異常が生じたとしても、反応容器5からの水素ガスの漏洩による爆発を効果的に回避できる。 (F) In the determination step immediately after the start of the rapid cooling process according to the present embodiment, as shown in FIG. 4, an abnormality occurs in the hydrogen concentration meter 62, and the hydrogen in the space 10 a between the external container 10 and the reaction container 5. Even when the concentration cannot be measured correctly, the space 10a between the external vessel 10 and the reaction vessel 5 is continuously purged with nitrogen gas, so that the space between the external vessel 10 and the reaction vessel 5 is maintained. A low oxygen concentration state of 10a can be secured (Cases 17 to 20). If the temperature of the space 10a between the external container 10 and the reaction container 5 is equal to or higher than the limit temperature, supply of hydrogen gas by the hydrogen gas supply means, exhaust by the exhaust means, and heating by the heater 6 are stopped. Therefore, even if an abnormality occurs in the hydrogen concentration meter 62, explosion due to leakage of hydrogen gas from the reaction vessel 5 can be effectively avoided.

また、本工程においては、仮にヒータ熱電対11aに異常が生じ、外部容器10と反応容器5との間の空間10aの温度が正しく測定できないような場合であっても、外部容器10と反応容器5との間の空間10aの窒素ガスによるパージを継続しているため、外部容器10と反応容器5との間の空間10aの低酸素濃度状態を確保できる(Case17〜20)。また、外部容器10と反応容器5との間の空間10aの水素濃度が上昇していれば、水素ガス供給手段による水素ガスの供給を停止すると共に、排気手段による排気を停止させ(Case19,20)、さらにはヒータ6による加熱を停止させるようにしている(Case20)。これらにより、ヒータ熱電対11aに異常が生じたとしても、反応容器5からの水素ガスの漏洩による爆発を効果的に回避できる。   Further, in this step, even if the heater thermocouple 11a becomes abnormal and the temperature of the space 10a between the outer container 10 and the reaction container 5 cannot be measured correctly, the outer container 10 and the reaction container Since the purging with the nitrogen gas in the space 10a between 5 and 5 is continued, the low oxygen concentration state of the space 10a between the external vessel 10 and the reaction vessel 5 can be secured (Cases 17 to 20). If the hydrogen concentration in the space 10a between the external vessel 10 and the reaction vessel 5 is increased, the supply of hydrogen gas by the hydrogen gas supply means is stopped and the exhaust by the exhaust means is stopped (Cases 19, 20). In addition, heating by the heater 6 is stopped (Case 20). As a result, even if an abnormality occurs in the heater thermocouple 11a, explosion due to leakage of hydrogen gas from the reaction vessel 5 can be effectively avoided.

(g)水素ガスは外気(大気)、窒素ガス、酸素ガスよりも軽いため、外部容器10と反応容器5との間の空間10a内に水素ガスが漏洩した場合、漏洩した水素ガスは空間10a内の上方へと流れる。本実施形態では、水素濃度計62を外部容器10の上端に設けているため、空間10a内に漏洩した水素ガスを確実に検出することが可能となる。 (G) Since hydrogen gas is lighter than the outside air (atmosphere), nitrogen gas, and oxygen gas, when hydrogen gas leaks into the space 10a between the outer vessel 10 and the reaction vessel 5, the leaked hydrogen gas becomes space 10a. It flows upward inside. In the present embodiment, since the hydrogen concentration meter 62 is provided at the upper end of the external container 10, hydrogen gas leaked into the space 10a can be reliably detected.

(h)本実施形態においては、酸素濃度計61と水素濃度計62とを不活性ガス供給ノズル12のガス供給口から離して配置しているため、酸素濃度計61付近の酸素ガスや水素濃度計62の水素ガスが窒素ガスにより希釈されてしまうことを抑制でき、酸素濃度計61や水素濃度計62により測定される各濃度が低下してしまうことを抑制できる。 (H) In the present embodiment, since the oxygen concentration meter 61 and the hydrogen concentration meter 62 are arranged apart from the gas supply port of the inert gas supply nozzle 12, the oxygen gas and hydrogen concentration in the vicinity of the oxygen concentration meter 61 are disposed. It can suppress that the hydrogen gas of the total 62 is diluted with nitrogen gas, and can suppress that each density | concentration measured with the oxygen concentration meter 61 or the hydrogen concentration meter 62 falls.

<本発明の更に他の実施形態>
以上、本発明の実施形態を具体的に説明したが、本発明は上述の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。
<Still another embodiment of the present invention>
As mentioned above, although embodiment of this invention was described concretely, this invention is not limited to the above-mentioned embodiment, It can change variously in the range which does not deviate from the summary.

<本発明の好ましい態様>
以下に、本発明の好ましい態様について付記する。
<Preferred embodiment of the present invention>
Hereinafter, preferred embodiments of the present invention will be additionally described.

本発明の一態様によれば、
基板を収容する反応容器と、
前記反応容器内に水素ガスを供給する水素ガス供給手段と、
前記反応容器の外部に設けられ、前記反応容器を介して前記基板を加熱する加熱手段と、
前記反応容器及び前記加熱手段を収容する外部容器と、
前記外部容器と前記反応容器との間の空間に不活性ガスを供給する不活性ガス供給手段と、
前記外部容器内外を連通させる通気口と、
前記外部容器と前記反応容器との間の空間の雰囲気を排気する排気手段と、
前記外部容器と前記反応容器との間の空間の酸素濃度を測定する酸素濃度測定手段と、
前記外部容器と前記反応容器との間の空間の水素濃度を測定する水素濃度測定手段と、
前記外部容器と前記反応容器との間の空間の温度を測定する温度測定手段と、
前記各手段の動作を制御する制御手段と、を備え、
前記制御手段は、
前記不活性ガス供給手段による不活性ガスの供給を開始させた後、前記水素濃度測定手段、前記酸素濃度測定手段、及び前記温度測定手段による測定を実施させ、
前記水素濃度測定手段、前記酸素濃度測定手段、及び前記温度測定手段による測定結果のうち少なくとも2つの測定結果に応じて、前記加熱手段による加熱、前記水素ガス供給手段による水素ガスの供給、及び前記排気手段による排気をそれぞれ制御する基板処理装置が提供される。
According to one aspect of the invention,
A reaction vessel containing a substrate;
Hydrogen gas supply means for supplying hydrogen gas into the reaction vessel;
A heating means provided outside the reaction vessel and for heating the substrate through the reaction vessel;
An external container for housing the reaction container and the heating means;
An inert gas supply means for supplying an inert gas to a space between the external container and the reaction container;
A vent for communicating inside and outside of the external container;
Exhaust means for exhausting the atmosphere of the space between the external container and the reaction container;
Oxygen concentration measuring means for measuring the oxygen concentration in the space between the external vessel and the reaction vessel;
A hydrogen concentration measuring means for measuring a hydrogen concentration in a space between the external container and the reaction container;
Temperature measuring means for measuring the temperature of the space between the external container and the reaction container;
Control means for controlling the operation of each means,
The control means includes
After the supply of the inert gas by the inert gas supply means is started, the measurement by the hydrogen concentration measurement means, the oxygen concentration measurement means, and the temperature measurement means is performed,
According to at least two measurement results among the measurement results by the hydrogen concentration measurement unit, the oxygen concentration measurement unit, and the temperature measurement unit, heating by the heating unit, supply of hydrogen gas by the hydrogen gas supply unit, and There is provided a substrate processing apparatus for controlling exhaust by an exhaust means.

本発明の他の態様によれば、
基板を収容する反応容器と、
前記反応容器内に水素ガスを供給する水素ガス供給手段と、
前記反応容器の外部に設けられ、前記反応容器を介して前記基板を加熱する加熱手段と、
前記反応容器及び前記加熱手段を収容する外部容器と、
前記外部容器と前記反応容器との間の空間に不活性ガスを供給する不活性ガス供給手段と、
前記外部容器内外を連通させる通気口と、
前記外部容器と前記反応容器との間の空間の雰囲気を排気する排気手段と、
前記外部容器と前記反応容器との間の空間の酸素濃度を測定する酸素濃度測定手段と、
前記外部容器と前記反応容器との間の空間の水素濃度を測定する水素濃度測定手段と、
前記外部容器と前記反応容器との間の空間の温度を測定する温度測定手段と、
前記各手段の動作を制御する制御手段と、を備える基板処理装置により実施される半導体装置の製造方法であって、
前記制御手段が、
前記不活性ガス供給手段による不活性ガスの供給を開始させる工程と、
前記水素濃度測定手段、前記酸素濃度測定手段、及び前記温度測定手段による測定を実施させる工程と、
前記水素濃度測定手段、前記酸素濃度測定手段、及び前記温度測定手段による測定結果のうち少なくとも2つの測定結果に応じて、前記加熱手段による加熱、前記水素ガス供給手段による水素ガスの供給、及び前記排気手段による排気をそれぞれ制御する工程と、を有する半導体装置の製造方法が提供される。
According to another aspect of the invention,
A reaction vessel containing a substrate;
Hydrogen gas supply means for supplying hydrogen gas into the reaction vessel;
A heating means provided outside the reaction vessel and for heating the substrate through the reaction vessel;
An external container for housing the reaction container and the heating means;
An inert gas supply means for supplying an inert gas to a space between the external container and the reaction container;
A vent for communicating inside and outside of the external container;
Exhaust means for exhausting the atmosphere of the space between the external container and the reaction container;
Oxygen concentration measuring means for measuring the oxygen concentration in the space between the external vessel and the reaction vessel;
A hydrogen concentration measuring means for measuring a hydrogen concentration in a space between the external container and the reaction container;
Temperature measuring means for measuring the temperature of the space between the external container and the reaction container;
A semiconductor device manufacturing method implemented by a substrate processing apparatus comprising: control means for controlling the operation of each means;
The control means is
Starting the supply of inert gas by the inert gas supply means;
A step of performing measurement by the hydrogen concentration measuring means, the oxygen concentration measuring means, and the temperature measuring means;
According to at least two measurement results among the measurement results by the hydrogen concentration measurement unit, the oxygen concentration measurement unit, and the temperature measurement unit, heating by the heating unit, supply of hydrogen gas by the hydrogen gas supply unit, and And a method of manufacturing a semiconductor device.

好ましくは、
前記排気管は前記外部容器の上端側に設けられる。
Preferably,
The exhaust pipe is provided on the upper end side of the outer container.

また好ましくは、
前記不活性ガス供給手段は、前記反応容器と前記加熱手段との間であって前記外部容器の下端側から不活性ガスを供給する。
Also preferably,
The inert gas supply means supplies an inert gas from the lower end side of the outer container between the reaction container and the heating means.

また好ましくは、前記通気口は前記外部容器の下端側に設けられる。   Preferably, the vent is provided on the lower end side of the outer container.

また好ましくは、
前記温度検出手段は、前記反応容器と前記加熱手段との間に設けられる。
Also preferably,
The temperature detection means is provided between the reaction vessel and the heating means.

また好ましくは、
前記制御手段は、
前記不活性ガス供給手段による不活性ガスの供給を開始させた後、前記酸素濃度測定手段及び前記水素濃度測定手段による測定を実施させ、
前記外部容器と前記反応容器との間の空間の酸素濃度が限界濃度未満であり、前記外部容器と前記反応容器との間の空間の水素濃度が上昇していなければ、前記不活性ガス供給手段による不活性ガスの供給を継続させつつ、前記加熱手段による加熱及び前記水素ガス供給手段による水素ガスの供給を開始させ、
前記外部容器と前記反応容器との間の空間の酸素濃度が限界濃度未満であり、前記外部容器と前記反応容器との間の空間の水素濃度が上昇していれば、前記不活性ガス供給手段による不活性ガスの供給を継続させつつ、前記水素ガス供給手段による水素ガスの供給及び前記加熱手段による加熱を禁止させ、
前記外部容器と前記反応容器との間の空間の酸素濃度が限界濃度以上であり、前記外部容器と前記反応容器との間の空間の水素濃度が上昇していなければ、前記不活性ガス供給手段による不活性ガスの供給を継続させつつ、前記水素ガス供給手段による水素ガスの供給開始を禁止させ、
前記外部容器と前記反応容器との間の空間の酸素濃度が限界濃度以上であり、前記外部容器と前記反応容器との間の空間の水素濃度が上昇していれば、前記不活性ガス供給手段による不活性ガスの供給を継続させつつ、前記加熱手段による加熱及び前記水素ガス供給手段による水素ガスの供給を禁止させる。
Also preferably,
The control means includes
After starting the supply of the inert gas by the inert gas supply means, the measurement by the oxygen concentration measurement means and the hydrogen concentration measurement means is carried out,
If the oxygen concentration in the space between the outer vessel and the reaction vessel is less than the limit concentration and the hydrogen concentration in the space between the outer vessel and the reaction vessel has not increased, the inert gas supply means While continuing the supply of the inert gas by the heating means and the supply of hydrogen gas by the hydrogen gas supply means,
If the oxygen concentration in the space between the outer vessel and the reaction vessel is less than the limit concentration, and the hydrogen concentration in the space between the outer vessel and the reaction vessel is increased, the inert gas supply means Inhibiting the supply of hydrogen gas by the hydrogen gas supply means and the heating by the heating means while continuing the supply of inert gas by
If the oxygen concentration in the space between the external vessel and the reaction vessel is not less than the limit concentration and the hydrogen concentration in the space between the external vessel and the reaction vessel is not increased, the inert gas supply means Prohibiting the start of hydrogen gas supply by the hydrogen gas supply means while continuing the supply of inert gas by
If the oxygen concentration in the space between the outer vessel and the reaction vessel is not less than the limit concentration, and the hydrogen concentration in the space between the outer vessel and the reaction vessel is increased, the inert gas supply means While the supply of the inert gas is continued, the heating by the heating means and the supply of hydrogen gas by the hydrogen gas supply means are prohibited.

また好ましくは、
前記制御手段は、
前記水素ガス供給手段による水素ガスの供給を開始させた後、前記酸素濃度測定手段及び前記水素濃度測定手段による測定を実施させ、
前記外部容器と前記反応容器との間の空間の酸素濃度が限界濃度未満であり、前記外部容器と前記反応容器との間の空間の水素濃度が上昇していなければ、前記不活性ガス供給手段による不活性ガスの供給、前記加熱手段による加熱、及び前記水素ガス供給手段による水素ガスの供給を継続させ、
前記外部容器と前記反応容器との間の空間の酸素濃度が限界濃度未満であり、前記外部容器と前記反応容器との間の空間の水素濃度が上昇していれば、前記不活性ガス供給手段による不活性ガスの供給を継続させつつ、前記水素ガス供給手段による水素ガスの供給を停止させると共に前記排気手段による排気を禁止させ、
前記外部容器と前記反応容器との間の空間の酸素濃度が限界濃度以上であり、前記外部容器と前記反応容器との間の空間の水素濃度が上昇していなければ、前記不活性ガス供給手段による不活性ガスの供給を継続させつつ、前記水素ガス供給手段による水素ガスの供給開始を停止させ、
前記外部容器と前記反応容器との間の空間の酸素濃度が限界濃度以上であり、前記外部容器と前記反応容器との間の空間の水素濃度が上昇していれば、前記不活性ガス供給手段による不活性ガスの供給を継続させつつ、前記水素ガス供給手段による水素ガスの供給及び前記加熱手段による加熱を停止させると共に前記排気手段による排気を禁止させる。
Also preferably,
The control means includes
After the supply of hydrogen gas by the hydrogen gas supply means is started, the measurement by the oxygen concentration measurement means and the hydrogen concentration measurement means is performed,
If the oxygen concentration in the space between the outer vessel and the reaction vessel is less than the limit concentration and the hydrogen concentration in the space between the outer vessel and the reaction vessel has not increased, the inert gas supply means The supply of the inert gas by the heating, the heating by the heating means, and the supply of hydrogen gas by the hydrogen gas supply means,
If the oxygen concentration in the space between the outer vessel and the reaction vessel is less than the limit concentration, and the hydrogen concentration in the space between the outer vessel and the reaction vessel is increased, the inert gas supply means While stopping the supply of inert gas by the hydrogen gas supply means to stop the supply of hydrogen gas and prohibit the exhaust by the exhaust means,
If the oxygen concentration in the space between the external vessel and the reaction vessel is not less than the limit concentration and the hydrogen concentration in the space between the external vessel and the reaction vessel is not increased, the inert gas supply means While stopping the supply of the inert gas according to, stop the supply of hydrogen gas by the hydrogen gas supply means,
If the oxygen concentration in the space between the external vessel and the reaction vessel is not less than the limit concentration, and the hydrogen concentration in the space between the external vessel and the reaction vessel is increased, the inert gas supply means While the supply of the inert gas is continued, the supply of the hydrogen gas by the hydrogen gas supply means and the heating by the heating means are stopped and the exhaust by the exhaust means is prohibited.

また好ましくは、
前記制御手段は、
前記水素ガス供給手段による水素ガスの供給を開始させた後、前記酸素濃度測定手段、前記水素濃度測定手段、及び前記温度測定手段による測定を実施させ、
前記外部容器と前記反応容器との間の空間の酸素濃度が限界濃度未満であり、前記外部容器と前記反応容器との間の空間の水素濃度が上昇しておらず、前記外部容器と前記反応容器との間の空間の温度が限界温度未満であれば、前記水素ガス供給手段による水素ガスの供給を継続させつつ、前記加熱手段による加熱を停止させると共に、前記排気手段による排気を開始させて前記外部容器内に大気を導入し、
前記外部容器と前記反応容器との間の空間の酸素濃度が限界濃度未満であり、前記外部容器と前記反応容器との間の空間の水素濃度が上昇しておらず、前記外部容器と前記反応容器との間の空間の温度が限界温度以上であれば、前記水素ガス供給手段による水素ガス
の供給を継続させつつ、前記加熱手段による加熱を停止させると共に、前記排気手段による排気を禁止させ、
前記外部容器と前記反応容器との間の空間の酸素濃度が限界濃度未満であり、前記外部容器と前記反応容器との間の空間の水素濃度が上昇していれば、前記外部容器と前記反応容器との間の空間の温度によらず、前記水素ガス供給手段による水素ガスの供給を停止させると共に、前記排気手段による排気を禁止させ、
前記外部容器と前記反応容器との間の空間の酸素濃度が限界濃度以上であり、前記外部容器と前記反応容器との間の空間の水素濃度が上昇していなければ、前記外部容器と前記反応容器との間の空間の温度によらず、前記水素ガス供給手段による水素ガスの供給を停止させると共に、前記排気手段による排気を禁止させ、
前記外部容器と前記反応容器との間の空間の酸素濃度が限界濃度以上であり、前記外部容器と前記反応容器との間の空間の水素濃度が上昇していれば、前記外部容器と前記反応容器との間の空間の温度によらず、前記水素ガス供給手段による水素ガスの供給及び前記加熱手段による加熱を停止させると共に、前記排気手段による排気を禁止させる。
Also preferably,
The control means includes
After the supply of hydrogen gas by the hydrogen gas supply means is started, the measurement by the oxygen concentration measurement means, the hydrogen concentration measurement means, and the temperature measurement means is performed,
The oxygen concentration in the space between the external vessel and the reaction vessel is less than the limit concentration, the hydrogen concentration in the space between the external vessel and the reaction vessel has not increased, and the reaction between the external vessel and the reaction If the temperature of the space between the container and the container is less than the limit temperature, the heating by the heating unit is stopped while the supply of the hydrogen gas by the hydrogen gas supply unit is continued, and the exhaust by the exhaust unit is started. Introducing air into the outer container;
The oxygen concentration in the space between the external vessel and the reaction vessel is less than the limit concentration, the hydrogen concentration in the space between the external vessel and the reaction vessel has not increased, and the reaction between the external vessel and the reaction If the temperature of the space between the container is equal to or higher than the limit temperature, while continuing the supply of hydrogen gas by the hydrogen gas supply means, while stopping the heating by the heating means, prohibiting the exhaust by the exhaust means,
If the oxygen concentration in the space between the external vessel and the reaction vessel is less than the limit concentration, and the hydrogen concentration in the space between the external vessel and the reaction vessel is increased, the external vessel and the reaction Regardless of the temperature of the space between the container, the supply of hydrogen gas by the hydrogen gas supply means is stopped, and the exhaust by the exhaust means is prohibited,
If the oxygen concentration in the space between the external vessel and the reaction vessel is not less than the limit concentration, and the hydrogen concentration in the space between the external vessel and the reaction vessel has not increased, the reaction between the external vessel and the reaction Regardless of the temperature of the space between the container, the supply of hydrogen gas by the hydrogen gas supply means is stopped, and the exhaust by the exhaust means is prohibited,
If the oxygen concentration in the space between the external container and the reaction container is equal to or higher than the limit concentration and the hydrogen concentration in the space between the external container and the reaction container is increased, the reaction between the external container and the reaction is performed. Regardless of the temperature of the space between the containers, the supply of hydrogen gas by the hydrogen gas supply means and the heating by the heating means are stopped, and the exhaust by the exhaust means is prohibited.

また好ましくは、
前記制御手段は、前記排気手段による排気を開始させた後、前記水素濃度測定手段及び前記温度測定手段による測定を実施させ、
前記外部容器と前記反応容器との間の空間の水素濃度が上昇しておらず、前記外部容器と前記反応容器との間の空間の温度が限界温度未満であれば、前記加熱手段による加熱を停止させた状態で前記水素ガス供給手段による水素ガスの供給及び前記排気手段による排気を継続させ、
前記外部容器と前記反応容器との間の空間の水素濃度が上昇しておらず、前記外部容器と前記反応容器との間の空間の温度が限界温度以上であれば、前記水素ガス供給手段による水素ガスの供給を継続させつつ、前記加熱手段による加熱を停止させた状態で前記排気手段による排気を停止させ、
前記外部容器と前記反応容器との間の空間の水素濃度が上昇しており、前記外部容器と前記反応容器との間の空間の温度が限界温度未満であれば、前記水素ガス供給手段による水素ガスの供給及び前記排気手段による排気を停止させ、
前記外部容器と前記反応容器との間の空間の水素濃度が上昇しており、前記外部容器と前記反応容器との間の空間の温度が限界温度以上であれば、前記加熱手段による加熱を停止させた状態で、前記水素ガス供給手段による水素ガスの供給及び前記排気手段による排気を停止させる。
Also preferably,
The control means, after starting the exhaust by the exhaust means, to perform the measurement by the hydrogen concentration measurement means and the temperature measurement means,
If the hydrogen concentration in the space between the external container and the reaction container is not increased and the temperature of the space between the external container and the reaction container is less than the limit temperature, heating by the heating means is performed. In a stopped state, the supply of hydrogen gas by the hydrogen gas supply means and the exhaust by the exhaust means are continued,
If the hydrogen concentration in the space between the external container and the reaction container is not increased and the temperature of the space between the external container and the reaction container is equal to or higher than the limit temperature, the hydrogen gas supply means While continuing the supply of hydrogen gas, the exhaust by the exhaust means is stopped in a state where the heating by the heating means is stopped,
If the hydrogen concentration in the space between the external container and the reaction container is increased, and the temperature of the space between the external container and the reaction container is less than the limit temperature, the hydrogen by the hydrogen gas supply means Stop supply of gas and exhaust by the exhaust means,
If the hydrogen concentration in the space between the outer container and the reaction container is increased and the temperature of the space between the outer container and the reaction container is equal to or higher than the limit temperature, heating by the heating means is stopped. In this state, the supply of hydrogen gas by the hydrogen gas supply means and the exhaust by the exhaust means are stopped.

1 ウエハ(基板)
5 反応容器
6 ヒータ(加熱手段)
10 外部容器
10a 外部容器と反応容器との間の空間
11a ヒータ熱電対(温度測定手段)
11b カスケード熱電対
15 通気口
61 酸素濃度計(酸素測定手段)
62 水素濃度計(水素測定手段)
100 コントローラ(制御手段)
1 Wafer (substrate)
5 Reaction vessel 6 Heater (heating means)
DESCRIPTION OF SYMBOLS 10 External container 10a Space between external container and reaction container 11a Heater thermocouple (temperature measuring means)
11b Cascade thermocouple 15 Ventilation hole 61 Oxygen concentration meter (oxygen measuring means)
62 Hydrogen concentration meter (hydrogen measuring means)
100 controller (control means)

Claims (2)

基板を収容する反応容器と、
前記反応容器内に水素ガスを供給する水素ガス供給手段と、
前記反応容器の外部に設けられ、前記反応容器を介して前記基板を加熱する加熱手段と、
前記反応容器及び前記加熱手段を収容する外部容器と、
前記外部容器と前記反応容器との間の空間に不活性ガスを供給する不活性ガス供給手段と、
前記外部容器内外を連通させる通気口と、
前記外部容器と前記反応容器との間の空間の雰囲気を排気する排気手段と、
前記外部容器と前記反応容器との間の空間の酸素濃度を測定する酸素濃度測定手段と、
前記外部容器と前記反応容器との間の空間の水素濃度を測定する水素濃度測定手段と、
前記外部容器と前記反応容器との間の空間の温度を測定する温度測定手段と、
前記各手段の動作を制御する制御手段と、を備え、
前記制御手段は、
前記不活性ガス供給手段による不活性ガスの供給を開始させた後、前記水素濃度測定手段、前記酸素濃度測定手段、及び前記温度測定手段による測定を実施させ、
前記水素濃度測定手段、前記酸素濃度測定手段、及び前記温度測定手段による測定結果のうち少なくとも2つの測定結果に応じて、前記加熱手段による加熱、前記水素ガス供給手段による水素ガスの供給、及び前記排気手段による排気をそれぞれ制御する
こと特徴とする基板処理装置。
A reaction vessel containing a substrate;
Hydrogen gas supply means for supplying hydrogen gas into the reaction vessel;
A heating means provided outside the reaction vessel and for heating the substrate through the reaction vessel;
An external container for housing the reaction container and the heating means;
An inert gas supply means for supplying an inert gas to a space between the external container and the reaction container;
A vent for communicating inside and outside of the external container;
Exhaust means for exhausting the atmosphere of the space between the external container and the reaction container;
Oxygen concentration measuring means for measuring the oxygen concentration in the space between the external vessel and the reaction vessel;
A hydrogen concentration measuring means for measuring a hydrogen concentration in a space between the external container and the reaction container;
Temperature measuring means for measuring the temperature of the space between the external container and the reaction container;
Control means for controlling the operation of each means,
The control means includes
After the supply of the inert gas by the inert gas supply means is started, the measurement by the hydrogen concentration measurement means, the oxygen concentration measurement means, and the temperature measurement means is performed,
According to at least two measurement results among the measurement results by the hydrogen concentration measurement unit, the oxygen concentration measurement unit, and the temperature measurement unit, heating by the heating unit, supply of hydrogen gas by the hydrogen gas supply unit, and A substrate processing apparatus that controls exhaust by an exhaust means.
基板を収容する反応容器と、
前記反応容器内に水素ガスを供給する水素ガス供給手段と、
前記反応容器の外部に設けられ、前記反応容器を介して前記基板を加熱する加熱手段と、
前記反応容器及び前記加熱手段を収容する外部容器と、
前記外部容器と前記反応容器との間の空間に不活性ガスを供給する不活性ガス供給手段と、
前記外部容器内外を連通させる通気口と、
前記外部容器と前記反応容器との間の空間の雰囲気を排気する排気手段と、
前記外部容器と前記反応容器との間の空間の酸素濃度を測定する酸素濃度測定手段と、
前記外部容器と前記反応容器との間の空間の水素濃度を測定する水素濃度測定手段と、
前記外部容器と前記反応容器との間の空間の温度を測定する温度測定手段と、
前記各手段の動作を制御する制御手段と、を備える基板処理装置により実施される半導体装置の製造方法であって、
前記制御手段が、
前記不活性ガス供給手段による不活性ガスの供給を開始させる工程と、
前記水素濃度測定手段、前記酸素濃度測定手段、及び前記温度測定手段による測定を実施させる工程と、
前記水素濃度測定手段、前記酸素濃度測定手段、及び前記温度測定手段による測定結果のうち少なくとも2つの測定結果に応じて、前記加熱手段による加熱、前記水素ガス供給手段による水素ガスの供給、及び前記排気手段による排気をそれぞれ制御する工程と、を有する
こと特徴とする半導体装置の製造方法。
A reaction vessel containing a substrate;
Hydrogen gas supply means for supplying hydrogen gas into the reaction vessel;
A heating means provided outside the reaction vessel and for heating the substrate through the reaction vessel;
An external container for housing the reaction container and the heating means;
An inert gas supply means for supplying an inert gas to a space between the external container and the reaction container;
A vent for communicating inside and outside of the external container;
Exhaust means for exhausting the atmosphere of the space between the external container and the reaction container;
Oxygen concentration measuring means for measuring the oxygen concentration in the space between the external vessel and the reaction vessel;
A hydrogen concentration measuring means for measuring a hydrogen concentration in a space between the external container and the reaction container;
Temperature measuring means for measuring the temperature of the space between the external container and the reaction container;
A semiconductor device manufacturing method implemented by a substrate processing apparatus comprising: control means for controlling the operation of each means;
The control means is
Starting the supply of inert gas by the inert gas supply means;
A step of performing measurement by the hydrogen concentration measuring means, the oxygen concentration measuring means, and the temperature measuring means;
According to at least two measurement results among the measurement results by the hydrogen concentration measurement unit, the oxygen concentration measurement unit, and the temperature measurement unit, heating by the heating unit, supply of hydrogen gas by the hydrogen gas supply unit, and And a step of controlling the exhaust by the exhaust means.
JP2009222923A 2009-09-28 2009-09-28 Substrate processing apparatus, and method of manufacturing semiconductor device Pending JP2011071426A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009222923A JP2011071426A (en) 2009-09-28 2009-09-28 Substrate processing apparatus, and method of manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009222923A JP2011071426A (en) 2009-09-28 2009-09-28 Substrate processing apparatus, and method of manufacturing semiconductor device

Publications (1)

Publication Number Publication Date
JP2011071426A true JP2011071426A (en) 2011-04-07

Family

ID=44016388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009222923A Pending JP2011071426A (en) 2009-09-28 2009-09-28 Substrate processing apparatus, and method of manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP2011071426A (en)

Similar Documents

Publication Publication Date Title
JP5075819B2 (en) Substrate processing apparatus, substrate processing method, and semiconductor device manufacturing method
US9099505B2 (en) Thermal processing apparatus and cooling method
KR101005518B1 (en) Substrate processing apparatus and substrate processing method and film forming method
JP2013062361A (en) Heat treatment apparatus, temperature control system, heat treatment method, temperature control method, and record medium recording program for executing heat treatment method or temperature control method
CN110739244B (en) Heat treatment apparatus and heat treatment method
KR102626685B1 (en) Heat treatment apparatus, heat treatment method, and film forming method
JPH07283164A (en) Device and method for heat treatment
WO2007111351A1 (en) Semiconductor device manufacturing method
JP2011040636A (en) Gas port structure and processing apparatus
JP2006203033A (en) Heat treatment apparatus
JP6736755B2 (en) Substrate processing apparatus, semiconductor device manufacturing method and program
JP2011071426A (en) Substrate processing apparatus, and method of manufacturing semiconductor device
JP2010123624A (en) Wafer treatment apparatus
JP2007088337A (en) Substrate processing apparatus
JP2009129925A (en) Device and method for treating substrate
KR102133547B1 (en) Method for manufacturing substrate processing apparatus, joint and semiconductor device
JP2009176982A (en) Substrate treatment equipment and substrate treatment method
JP2010021385A (en) Substrate processing device and method of manufacturing semiconductor device
KR20210024141A (en) Semiconductor device manufacturing method, substrate processing device and program
JP2008210852A (en) Substrate treating equipment and method of manufacturing semiconductor device
WO2023127054A1 (en) Leakage detection device, method for manufacturing semiconductor device, substrate treatment method, and program
JP2010245422A (en) Semiconductor manufacturing device
JP2013243235A (en) Semiconductor device manufacturing method and semiconductor manufacturing apparatus
JP2005136370A (en) Substrate-processing equipment
JP2007080939A (en) Substrate processing apparatus