JP2011071177A - Aging method of solid electrolytic capacitor - Google Patents
Aging method of solid electrolytic capacitor Download PDFInfo
- Publication number
- JP2011071177A JP2011071177A JP2009218878A JP2009218878A JP2011071177A JP 2011071177 A JP2011071177 A JP 2011071177A JP 2009218878 A JP2009218878 A JP 2009218878A JP 2009218878 A JP2009218878 A JP 2009218878A JP 2011071177 A JP2011071177 A JP 2011071177A
- Authority
- JP
- Japan
- Prior art keywords
- solid electrolytic
- electrolytic capacitor
- aging
- electrolytic capacitors
- resin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
Abstract
Description
本発明は、固体電解コンデンサのエージング処理方法に関するものである。特に、チップ形の固体電解コンデンサのエージング処理方法に関するものである。 The present invention relates to a solid electrolytic capacitor aging treatment method. In particular, the present invention relates to an aging treatment method for a chip-type solid electrolytic capacitor.
電解コンデンサは、誘電体として酸化皮膜をもちいていて、製造過程で生じた誘電体酸化皮膜の部分破壊を修復するために、エージング処理が行われている。その方法は、従来、複数個の電解コンデンサにそれぞれ個別の抵抗または定電流ダイオードを直列に接続して直流電圧を並列に印加し、電流を制限しながら行われていた(特許文献1)。 The electrolytic capacitor uses an oxide film as a dielectric, and is subjected to an aging treatment in order to repair partial destruction of the dielectric oxide film generated in the manufacturing process. Conventionally, this method has been performed by connecting individual resistors or constant current diodes in series to a plurality of electrolytic capacitors and applying a DC voltage in parallel to limit the current (Patent Document 1).
チップ形の固体電解コンデンサは、金属板を打ち抜きなどの加工で形成する正負一対の外部電極の列からなるリードフレーム上の個々の外部電極に、固体電解コンデンサの素子等を搭載し、次に、それぞれの素子を立方形状に樹脂モールドし、次に、個々の外部電極をリードフレームから切り離したものである。
固体電解コンデンサの素子は、一般に、陽極用リードの一端を埋め込んで、タンタルやニオブまたはアルミニウム等の弁作用金属の、平均粒径1μm程度の微粉末に、アクリル系樹脂やカンファー等のバインダーを混合した粉末をプレス加圧成形し、次いで真空中において焼結して形成した海綿状の陽極焼結体と、この焼結体に陽極酸化皮膜と、二酸化マンガンや導電性高分子等の固体電解質層と、カーボン層や銀層の陰極層とを順次設けたものである。
このチップ形の固体電解コンデンサは、電子機器の小型化に伴い年々小径化し、一度に大量の固体電解コンデンサをエージング処理する必要がある。そのため、それぞれの固体電解コンデンサに、個別の抵抗または定電流ダイオードを直列に接続して直流電圧を並列に印加し、電流を制限しながら行うのには限界が生じてきた。また、これらの抵抗または定電流ダイオードを使用せずに、並列接続された複数の固体電解コンデンサのひとつがショートすると、ショートした固体電解コンデンサに電流が流れ込み、全体的には電圧が降下してエージング中断してしまう。
A chip-type solid electrolytic capacitor has a solid electrolytic capacitor element or the like mounted on each external electrode on a lead frame made up of a pair of positive and negative external electrodes formed by punching a metal plate. Each element is resin-molded in a cubic shape, and then the individual external electrodes are separated from the lead frame.
Solid electrolytic capacitor elements are generally embedded in one end of an anode lead and mixed with a fine powder with an average particle diameter of about 1 μm of a valve metal such as tantalum, niobium, or aluminum, and a binder such as acrylic resin or camphor. A sponge-like anode sintered body formed by press-pressing and then sintering the powder in vacuum, an anodized film on the sintered body, and a solid electrolyte layer such as manganese dioxide or a conductive polymer And a cathode layer such as a carbon layer and a silver layer are sequentially provided.
This chip-type solid electrolytic capacitor is reduced in size year by year as electronic devices are miniaturized, and it is necessary to age a large amount of the solid electrolytic capacitor at one time. For this reason, there has been a limit in performing each of the solid electrolytic capacitors while limiting the current by connecting individual resistors or constant current diodes in series and applying a DC voltage in parallel. Also, if one of multiple solid electrolytic capacitors connected in parallel is short-circuited without using these resistors or constant current diodes, current will flow into the short-circuited solid electrolytic capacitor, and the voltage will drop overall, resulting in aging. It will be interrupted.
解決しようとする課題は、それぞれの固体電解コンデンサに、個別の抵抗または定電流ダイオードを直列に接続して直流電圧を並列に印加し、電流を制限しながら行うことなく、一度に大量の固体電解コンデンサをエージング処理する点である。 The problem to be solved is to connect individual resistors or constant current diodes in series to each solid electrolytic capacitor and apply a DC voltage in parallel, without limiting the current, and a large amount of solid electrolytic The point is that the capacitor is aged.
本発明は、外部端子を有する固体電解コンデンサを、複数個、二本の処理電極に並列接続してエージングする固体電解コンデンサのエージング処理方法において、前記処理電極の少なくとも片側とその上面に設けた前記外部端子との間に抵抗体シートを介して接続し前記固体電解コンデンサをエージングする固体電解コンデンサのエージング処理方法である。
また、電気抵抗値1KΩ・cmから100KΩ・cmの抵抗体シートを介して接続し固体電解コンデンサをエージングする上記の固体電解コンデンサのエージング処理方法。
The present invention provides a solid electrolytic capacitor aging treatment method in which a plurality of solid electrolytic capacitors having external terminals are connected in parallel to two treatment electrodes and aged, wherein the treatment electrodes are provided on at least one side and the upper surface thereof. This is an aging treatment method for a solid electrolytic capacitor in which the solid electrolytic capacitor is aged by being connected to an external terminal via a resistor sheet.
In addition, the solid electrolytic capacitor aging method described above, wherein the solid electrolytic capacitor is aged by being connected via a resistor sheet having an electrical resistance value of 1 KΩ · cm to 100 KΩ · cm.
本発明のエージング処理方法は、それぞれのコンデンサに、個別の抵抗または定電流ダイオードを直列に接続して直流電圧を並列に印加し、電流を制限しながら行うことなく、一度に大量のコンデンサを安価にエージング処理することができるという利点がある。 The aging processing method of the present invention is a low-cost, large-capacity capacitor at a time without applying a DC voltage in parallel by connecting individual resistors or constant-current diodes in series to each capacitor and limiting the current. Has the advantage that it can be aged.
本発明に述べる外部端子は、陽極部分と陰極部分を有する固体電解コンデンサ素子の、陽極部分と陰極部分を外部に引き出すための端子をさす。
チップ形の固体電解コンデンサにあっては、金属板を打ち抜きなどの加工で形成する正負一対の外部電極の列からなるリードフレームを一般に使用する。個々の外部電極に、固体電解コンデンサの素子等を搭載し、次に、それぞれの素子を樹脂モールドによりエポキシ樹脂等の樹脂で被覆して立方形状にし、次に、個々の外部電極をリードフレームから切り離す。リードフレームは、材質が、42アロイ、銅、銅合金(銅ニッケル合金)または洋白(洋銀)等の金属板が使用でき、特に溶接性、剛性の点で42アロイ、銅合金が使用される。表面の実装面にはハンダめっき、錫めっき、特に銅、銅合金表面にはニッケルとパラジウムそして金の積層めっき等のめっき層を設ける場合もある。
The external terminal described in the present invention refers to a terminal for pulling out the anode part and the cathode part of the solid electrolytic capacitor element having the anode part and the cathode part.
In a chip-type solid electrolytic capacitor, a lead frame composed of a pair of positive and negative external electrodes formed by stamping a metal plate is generally used. Solid electrolytic capacitor elements are mounted on each external electrode, and then each element is covered with a resin mold such as epoxy resin to form a cubic shape, and then each external electrode is removed from the lead frame. Separate. The lead frame can be made of a metal plate such as 42 alloy, copper, copper alloy (copper nickel alloy), or white (silver silver), and 42 alloy or copper alloy is used particularly in terms of weldability and rigidity. . In some cases, the surface mounting surface is provided with a plating layer such as solder plating or tin plating, and in particular, a copper, copper alloy surface such as a multilayer plating of nickel, palladium and gold.
本発明に述べる処理電極は、外部端子と接続し、エージング処理を行うための電極である。エージング処理する固体電解コンデンサの外部端子間と同じ間隔で、複数の固体電解コンデンサの外部端子と並列に接続される。外部端子の形状は、下記の抵抗体シートと接触する部分は面で接触するのが好ましい。また、エージング処理する固体電解コンデンサの外部端子間と同じ間隔になるように、絶縁基板上に固定するが好ましい。 The processing electrode described in the present invention is an electrode for connecting to an external terminal and performing an aging process. The solid terminals are connected in parallel with the external terminals of the plurality of solid electrolytic capacitors at the same interval as the external terminals of the solid electrolytic capacitors to be aged. As for the shape of the external terminal, it is preferable that the portion in contact with the following resistor sheet is in contact with the surface. Moreover, it is preferable to fix on an insulating substrate so that it may become the same space | interval as between external terminals of the solid electrolytic capacitor to age.
本発明に述べる抵抗体シートは、抵抗を有する短冊状のシートで、少なくとも片側の、処理電極の長さ方向の表面に長尺状に設け、処理電極とその上面に設けた外部端子との間にこの抵抗体シートを介して電気的に接続する。
均一な抵抗を有するシートであれば、幅よりも厚さが薄いシートで、電気抵抗値は1KΩ・cmから100KΩ・cmの範囲が好ましい。
電気抵抗値が100KΩ・cmより大きいと、電源の負担が大きくなり不経済となる。
電気抵抗値が1KΩ・cmよい小さいと、不良コンデンサが短絡した場合、(電源の保護回路が動作することによって)良品のエージングが中断しやすくなる。
幅よりも厚さが薄いことにより、電流が厚さ方向に優先的に流れ、コンデンサ間には流れ難くなる。幅方向よりも厚さ方向の電気抵抗値が低い異方性抵抗を有するシートであれば、より電流が厚さ方向に優先的に流れ、コンデンサ間には流れ難くなり好ましい。
The resistor sheet described in the present invention is a strip-like sheet having resistance, and is provided in a long shape on the surface in the length direction of the processing electrode on at least one side, between the processing electrode and the external terminal provided on the upper surface thereof. Are electrically connected to each other through this resistor sheet.
If the sheet has a uniform resistance, the sheet is thinner than the width, and the electric resistance value is preferably in the range of 1 KΩ · cm to 100 KΩ · cm.
If the electrical resistance value is larger than 100 KΩ · cm, the burden on the power source becomes large and uneconomical.
When the electrical resistance value is as small as 1 KΩ · cm, when a defective capacitor is short-circuited, aging of a good product is likely to be interrupted (by the operation of the power supply protection circuit).
When the thickness is smaller than the width, the current flows preferentially in the thickness direction, and does not easily flow between the capacitors. A sheet having an anisotropic resistance having an electric resistance value in the thickness direction lower than that in the width direction is preferable because current flows more preferentially in the thickness direction and hardly flows between capacitors.
抵抗体シートの材質は、バインダーと導電性粒子から構成することができ、必要に応じて安定化剤、離型剤、可塑剤、および難燃剤等を使用することができる。
ここで、上記バインダーとしては、ポリカーボネート樹脂、ポリアリレート樹脂、ポリエステル樹脂、ポリウレタン樹脂、ポリアミド樹脂、ポリアセタール樹脂、ポリイミド樹脂、ポリオレフィン樹脂、シリコーン樹脂とその共重合樹脂ポリフェニレンオキシド及びノニル樹脂、ポリスルフォン樹脂、ジエン系重合体及びその共重合体などの合成樹脂が好ましく、これらを2種類以上混合して用いることも可能である。
ポリオレフィン樹脂とその共重合樹脂としては、例えば、高密度ポリエチレン、中、低密度ポリエチレン、直鎖状低密度ポリエチレン等のポリエチレン類、アイソタクチックポリプロピレン、シンジオタクチックポリプロピレン等のポリプロピレン類、ポリブテン、4−メチルペンテン−1樹脂等が使用できる。また、エチレン−プロピレン共重合体、エチレン−酢酸ビニル共重合体、エチレン−アクリル酸共重合体、エチレン−エチルアクリレート共重合体、エチレン−メチルアクリレート共重合体等のエチレン−アクリレート系共重合体、エチレン−塩化ビニル共重合体等のオレフィンとビニル化合物との共重合体及びフッ素含有エチレン系重合体、ならびに、これらの変成物も使用できる。
ポリアミド樹脂としては、例えば、ナイロン6、ナイロン8、ナイロン11、ナイロン66、ナイロン610等が使用できる
ポリエステル樹脂としては、例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート等が使用できる。
導電性粒子としては、例えば、カーボンブラック粒子、グラファイト粒子等の粒状物、金属粉体、金属酸化粉体等の粉状物、炭素繊維等の繊維状物等が使用できる。金属粉体としては、アルミニウム粉、ニッケル粉、金属酸化粉体としては、酸化チタン、酸化錫、酸化亜鉛、ITO(インジウム錫合金の酸化物)等が使用できる。これらの中でもカーボンブラック粒子、グラファイト粒子等の粒状物、特に、アセチレンブラック、ケッチェンブラック等カーボンブラック粒子が好ましい。前記各種の導電性粒子は、1種単独で用いてもよいし、2種以上を混合物として併用してもよい。導電性粒子の粒径としては、特に制限はないが、例えば、平均粒径が通常10nm〜200nm、好ましくは、15nm〜100nmである。導電性粒子が繊維状である場合には、そのアスペクト比(縦横の長さ比)は通常1〜1000、好ましくは、1〜100程度である。
The material of the resistor sheet can be composed of a binder and conductive particles, and a stabilizer, a release agent, a plasticizer, a flame retardant, and the like can be used as necessary.
Here, as the binder, polycarbonate resin, polyarylate resin, polyester resin, polyurethane resin, polyamide resin, polyacetal resin, polyimide resin, polyolefin resin, silicone resin and its copolymer resin polyphenylene oxide and nonyl resin, polysulfone resin, Synthetic resins such as diene polymers and copolymers thereof are preferred, and it is also possible to use a mixture of two or more of these.
Examples of the polyolefin resin and the copolymer resin thereof include polyethylenes such as high density polyethylene, medium, low density polyethylene, and linear low density polyethylene, polypropylenes such as isotactic polypropylene and syndiotactic polypropylene, polybutene, 4 -Methylpentene-1 resin or the like can be used. Also, ethylene-acrylate copolymers such as ethylene-propylene copolymers, ethylene-vinyl acetate copolymers, ethylene-acrylic acid copolymers, ethylene-ethyl acrylate copolymers, ethylene-methyl acrylate copolymers, Copolymers of olefins and vinyl compounds such as ethylene-vinyl chloride copolymers, fluorine-containing ethylene polymers, and modified products thereof can also be used.
As the polyamide resin, for example,
As the conductive particles, for example, granular materials such as carbon black particles and graphite particles, powdered materials such as metal powder and metal oxide powder, and fibrous materials such as carbon fiber can be used. As the metal powder, aluminum powder, nickel powder, and as the metal oxide powder, titanium oxide, tin oxide, zinc oxide, ITO (oxide of indium tin alloy) or the like can be used. Among these, granular materials such as carbon black particles and graphite particles, particularly carbon black particles such as acetylene black and ketjen black are preferable. The various conductive particles may be used alone or in combination of two or more. Although there is no restriction | limiting in particular as a particle size of electroconductive particle, For example, an average particle diameter is 10 nm-200 nm normally, Preferably, it is 15 nm-100 nm. When the conductive particles are fibrous, the aspect ratio (length / width length ratio) is usually 1 to 1000, and preferably about 1 to 100.
以下、本発明を図面に示す実施の形態に基づいて説明する。
図1は、本発明の実施の形態に係る固体電解コンデンサのエージング処理方法を模式的に示している。
図1(a)は、正面図を、図1(b)は、底面から見た断面図を示している。
1は、固体電解コンデンサ、2は、この固体電解コンデンサ1の一対の外部電極を示している。個々の固体電解コンデンサ1は、左右に一対の外部電極2を伸ばし等間隔で縦に並んでいて、リードフレーム8から形成した個々の外部電極2と接続している。一方の外部電極2は、それぞれつながったままで、他方の外部電極2は、分離している。一方でもつながったままの方が扱いがしやすい。
3は、絶縁基板、4は、一対の処理電極を示している。処理電極4は短冊状で、外部電極2の形状に合わせて平行になっていて、エージング処理台である絶縁基板3上に固定している。
5は、抵抗体シートで、処理電極4上に処理電極4の形状に合わせて長尺状に、外部電極2が個々に分離している側の処理電極4と外部電極2との間に設ける。
6は、固定用部材で、外部電極2と、処理電極4または抵抗体シート5とが、電気的に接続が保てるように固定するための絶縁性の部材である。
図1において、電源7により、一対の処理電極4間に直流電圧を固体電解コンデンサ1に並列に印加してエージングを行う。
Hereinafter, the present invention will be described based on embodiments shown in the drawings.
FIG. 1 schematically shows an aging treatment method for a solid electrolytic capacitor according to an embodiment of the present invention.
1A shows a front view, and FIG. 1B shows a cross-sectional view as seen from the bottom.
In FIG. 1, aging is performed by applying a DC voltage in parallel to the solid
図2は、本発明の実施の形態に係る固体電解コンデンサのエージング処理の準備方法を模式的に示している。図2(a)は、リードフレーム上の固体電解コンデンサ、図2(b)は、エージング処理台、図2(c)は、固体電解コンデンサをエージング処理台に設置した状態を示している。
まず、図2(a)に示したように、金属板を打ち抜きなどの加工で形成した正負一対の外部電極2の列からなるリードフレーム8上の個々の外部電極2に、固体電解コンデンサの素子を搭載し、次に、それぞれの素子を立方形状に樹脂モールドし、次に、一方の外部電極2を切断部9でリードフレーム8から切り離して、外部電極2を個々に分離させる。
次に、図2(b)に示したように、エージング処理台の絶縁基板3上に、外部電極2の形状に合わせて平行に一対の処理電極4を固定し、外部電極2が個々に分離している側の処理電極4の表面に抵抗体シート5を重ねる。
次に、図2(c)に示したように、図2(a)の固体電解コンデンサ1の外部電極2と処理電極4とまたは外部電極2と抵抗体シート5とが重なるようする。
以下、図1に示すように、固定用部材6をそれぞれの外部電極2に乗せ、エージングを開始する。
FIG. 2 schematically shows a preparation method for the aging treatment of the solid electrolytic capacitor according to the embodiment of the present invention. 2A shows a solid electrolytic capacitor on the lead frame, FIG. 2B shows an aging treatment table, and FIG. 2C shows a state where the solid electrolytic capacitor is installed on the aging treatment table.
First, as shown in FIG. 2A, an element of a solid electrolytic capacitor is connected to each
Next, as shown in FIG. 2 (b), a pair of
Next, as shown in FIG. 2C, the
Hereinafter, as shown in FIG. 1, the fixing
42アロイからなるリードフレーム上に、50個の固体電解コンデンサを形成し、正極側の外部電極を個々に分離させた固体電解コンデンサ付きリードフレームを200組準備した。次に、エージング処理台の絶縁基板上に、外部電極の形状に合わせて平行に一対の処理電極を固定し、正極側の処理電極の表面に、厚さが1mm、幅10mmの電気抵抗値が20KΩ・cmの抵抗体シートを処理電極の長さ分重ねた。
次に、上記の200組の固体電解コンデンサ付きリードフレームを処理電極にセットし、上からリードフレームを固定用部材で固定し、処理電極に定電圧電源により10V印加しエージングを行った。
On a lead frame made of 42 alloy, 50 sets of solid electrolytic capacitors were formed, and 200 sets of lead frames with solid electrolytic capacitors were prepared by individually separating the positive electrode external electrodes. Next, a pair of processing electrodes are fixed in parallel to the shape of the external electrode on the insulating substrate of the aging processing table, and an electric resistance value having a thickness of 1 mm and a width of 10 mm is formed on the surface of the processing electrode on the positive electrode side. A resistor sheet of 20 KΩ · cm was stacked for the length of the processing electrode.
Next, the 200 sets of lead frames with solid electrolytic capacitors were set on the processing electrodes, the lead frames were fixed from above with fixing members, and aging was performed by applying 10 V to the processing electrodes with a constant voltage power source.
1…固体電解コンデンサ、2…外部電極、3…絶縁基板、4…処理電極、5…抵抗体シート、6…固定用部材、7…電源、8…リードフレーム、9…切断部
DESCRIPTION OF
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009218878A JP2011071177A (en) | 2009-09-24 | 2009-09-24 | Aging method of solid electrolytic capacitor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009218878A JP2011071177A (en) | 2009-09-24 | 2009-09-24 | Aging method of solid electrolytic capacitor |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2011071177A true JP2011071177A (en) | 2011-04-07 |
Family
ID=44016200
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009218878A Pending JP2011071177A (en) | 2009-09-24 | 2009-09-24 | Aging method of solid electrolytic capacitor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2011071177A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103346015A (en) * | 2013-07-11 | 2013-10-09 | 南通天禾机械科技有限公司 | Full-automatic burn-in machine segmented stepping boosting burn-in technology |
CN104008898A (en) * | 2014-01-28 | 2014-08-27 | 宁波南车新能源科技有限公司 | Aging technology for supercapacitor and device for aging |
JP5671663B1 (en) * | 2013-06-06 | 2015-02-18 | 昭和電工株式会社 | Solid electrolytic capacitor and manufacturing method thereof |
JP7056778B2 (en) | 2021-03-08 | 2022-04-19 | 日本電気株式会社 | Drive recorder |
-
2009
- 2009-09-24 JP JP2009218878A patent/JP2011071177A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5671663B1 (en) * | 2013-06-06 | 2015-02-18 | 昭和電工株式会社 | Solid electrolytic capacitor and manufacturing method thereof |
CN105283935A (en) * | 2013-06-06 | 2016-01-27 | 昭和电工株式会社 | Solid electrolytic capacitor and method for fabricating same |
CN103346015A (en) * | 2013-07-11 | 2013-10-09 | 南通天禾机械科技有限公司 | Full-automatic burn-in machine segmented stepping boosting burn-in technology |
CN104008898A (en) * | 2014-01-28 | 2014-08-27 | 宁波南车新能源科技有限公司 | Aging technology for supercapacitor and device for aging |
JP7056778B2 (en) | 2021-03-08 | 2022-04-19 | 日本電気株式会社 | Drive recorder |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6522237B1 (en) | Electrode for PTC thermistor and method for producing the same, and PTC thermistor | |
US8044763B2 (en) | Surface-mounted over-current protection device | |
US6377467B1 (en) | Surface mountable over-current protecting device | |
TWI433186B (en) | Metal capacitor and manufacturing method thereof | |
US9177728B2 (en) | Solid electrolytic capacitor, and method of manufacturing the same | |
US9299495B2 (en) | Capacitor | |
US9350024B2 (en) | Lead-carbon battery current collector shielding with ported packets | |
JP2001503561A (en) | Circuit protection device | |
JP2011071177A (en) | Aging method of solid electrolytic capacitor | |
US7626802B2 (en) | Metal capacitor and manufacturing method thereof | |
TW200842914A (en) | Solid electrolytic capacitor element and solid electrolytic capacitor | |
KR102138890B1 (en) | Tantalum capacitor and method of preparing the same | |
TWI230453B (en) | Over-current protection device and manufacturing method thereof | |
JP4715299B2 (en) | Solid electrolytic capacitor | |
TWI441200B (en) | Surface mountable over-current protection device | |
US7392096B2 (en) | Multifunction electrode and method of making same | |
JP4735110B2 (en) | Solid electrolytic capacitor | |
WO2022191029A1 (en) | Solid electrolytic capacitor | |
TW200419607A (en) | Solid electrolytic capacitor | |
JP3416594B2 (en) | PTC thermistor and method of manufacturing the same | |
JP2014183222A (en) | PTC composition | |
CN201994152U (en) | Thermistor | |
USRE44224E1 (en) | Surface-mounted over-current protection device | |
TW201715538A (en) | Positive temperature coefficient current protection chip device and manufacturing method thereof by using spacer during hot pressing process to eliminate defects in prior art | |
TWM320738U (en) | Multi-layered superimposed solid-state electrolytic capacitor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120731 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130628 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130709 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20131105 |