JP2011069808A - Measuring method of sintered density of ceramic sintered compact - Google Patents

Measuring method of sintered density of ceramic sintered compact Download PDF

Info

Publication number
JP2011069808A
JP2011069808A JP2010119529A JP2010119529A JP2011069808A JP 2011069808 A JP2011069808 A JP 2011069808A JP 2010119529 A JP2010119529 A JP 2010119529A JP 2010119529 A JP2010119529 A JP 2010119529A JP 2011069808 A JP2011069808 A JP 2011069808A
Authority
JP
Japan
Prior art keywords
ceramic
density
sintered
sintered body
ceramic sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010119529A
Other languages
Japanese (ja)
Inventor
Daiki Hashimoto
大喜 橋本
Yukio Maeda
幸男 前田
Mitsuru Ueda
充 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2010119529A priority Critical patent/JP2011069808A/en
Publication of JP2011069808A publication Critical patent/JP2011069808A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a measuring method of a sintered density of a ceramic sintered compact which can determine the sintered density of the ceramic sintered compact in a short time, and measuring efficiently the sintered density, even when the size of the ceramic sintered compact is very small, or when the ceramic sintered compact includes a member made of a material other than ceramics such as an internal conductor. <P>SOLUTION: This method includes following steps: (a) a ceramic sintered compact is prepared, which has open pores, the same composition as a test sample which is an object whose sintered density is to be measured, and a revealed sintered density, and its specific surface area is measured by a BET method, and a calibration curve showing a relation between the sintered density and the specific surface area is generated; (b) the specific surface area of the ceramic sintered compact including the open pores which is the test sample is measured by the BET method; and (c) the sintered density of the test sample is determined by using the calibration curve. The sintered density of the ceramic sintered compact including a member made of a material other than ceramics such as the internal conductor is measured by the method. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、セラミック焼結体の密度(焼結密度)の測定方法に関し、詳しくは、セラミック焼結体の焼結密度を効率よく測定することが可能で、小型のセラミック焼結体や、セラミック以外の材料からなる部材、例えば内部導体などを備えている場合にもその焼結密度を効率よく測定することが可能なセラミック焼結体の焼結密度の測定方法に関する。   The present invention relates to a method for measuring the density (sintering density) of a ceramic sintered body. Specifically, the sintered density of the ceramic sintered body can be efficiently measured. The present invention relates to a method for measuring a sintered density of a ceramic sintered body capable of efficiently measuring the sintered density even when a member made of a material other than the above, such as an internal conductor, is provided.

例えば、磁性体セラミックを用いた積層コイル部品や、誘電体セラミックを用いた積層コンデンサなどは、セラミックグリーンシートを積層したマザー積層体を、個々の素子に分割した後、所定の条件で焼成してセラミックを焼結させることにより製造されており、意図する特性を発現させる上でセラミックの焼結性は重要な因子である。
すなわち、積層コイル部品や積層コンデンサなどのセラミックで構成されるセラミック電子部品は、セラミックの焼結が確実に行われることにより、所望の特性を備えた製品が得られることになる。
For example, multilayer coil parts using magnetic ceramics, multilayer capacitors using dielectric ceramics, etc., are divided into individual elements from a mother multilayer body in which ceramic green sheets are laminated, and then fired under predetermined conditions. The ceramic is produced by sintering, and the sinterability of the ceramic is an important factor in expressing the intended characteristics.
That is, a ceramic electronic component composed of ceramics such as a multilayer coil component and a multilayer capacitor can obtain a product having desired characteristics by surely sintering the ceramic.

そのため、これらのセラミック電子部品の製造工程では、セラミック電子部品を構成するセラミック焼結体の焼結性を管理することが重要になる。   Therefore, in the manufacturing process of these ceramic electronic components, it is important to manage the sinterability of the ceramic sintered body constituting the ceramic electronic component.

ところで、セラミック電子部品の製造工程でセラミック焼結体の焼結性を計測、管理する方法としては、一般に、以下の方法が用いられている。
(1)セラミック表面および断面のSEM観察などの画像処理の方法により、セラミック粒子の粒径や、セラミック焼結体に含まれるポアの大きさなどを調べる方法。
(2)セラミック電子部品の寸法測定による焼成収縮率を調べる方法。
(3)アルキメデス法によりセラミック焼結体の密度を求める方法。なお、この方法は、試料の乾燥重量を測定し、純水で所定時間(例えば3時間)煮沸を行った後、常温まで冷却して(測定中に水温が変化すると水の密度が変化するため)、水中重量を測定し、その後、表面の水滴を除去し、飽水重量を測定することにより、気泡の含有割合を調べ、乾燥重量、水中重量、および気泡の含有割合から、セラミック焼結体の焼結密度を求め、焼結性を判定する方法である。
By the way, the following methods are generally used as a method for measuring and managing the sinterability of the ceramic sintered body in the manufacturing process of the ceramic electronic component.
(1) A method of examining the particle size of ceramic particles, the size of pores contained in the ceramic sintered body, and the like by an image processing method such as SEM observation of the ceramic surface and cross section.
(2) A method of examining the firing shrinkage rate by measuring the dimensions of ceramic electronic components.
(3) A method for obtaining the density of the ceramic sintered body by the Archimedes method. In this method, the dry weight of the sample is measured, boiled with pure water for a predetermined time (for example, 3 hours), and then cooled to room temperature (because the water density changes when the water temperature changes during the measurement). ), Measure the weight in water, then remove the water droplets on the surface, measure the saturated water weight, and check the content ratio of the bubbles, from the dry weight, the weight in water, and the content ratio of the bubbles, ceramic sintered body This is a method for determining the sintering density and determining the sinterability.

セラミック焼結体の焼結性を計測、管理する方法としては、上述のように種々の方法があるが、上記(1)の画像処理の方法の場合、解析条件の違いにより測定誤差が大きくなりやすいという問題点がある。   As described above, there are various methods for measuring and managing the sinterability of the ceramic sintered body. In the case of the image processing method (1), the measurement error increases due to the difference in analysis conditions. There is a problem that it is easy.

また、上記(2)の方法の場合、セラミック電磁部品が小型になるほど焼成によって収縮する寸法の絶対値が小さくなるため、個々の部品にカットする際のばらつきや測定誤差の影響を受けやすく、精度の高い管理を行うことが困難であるという問題点がある。   In the case of the above method (2), the smaller the ceramic electromagnetic component is, the smaller the absolute value of the dimension that shrinks by firing, which is easily affected by variations and measurement errors when cutting into individual components. There is a problem that it is difficult to perform high management.

一方、(3)のアルキメデス法は、セラミック焼結体の焼結密度を求めることが可能で、セラミック焼結体の焼結性を精度よく判定することができる方法であるが、煮沸、冷却などを行う必要があり、時間がかかるという問題点がある。また、セラミック部品が小型になると飽水重量の測定(表面の水滴除去の確認)が困難であるという問題点がある。さらに、セラミック焼結体が内部電極などの、セラミック以外の材料からなる部材(物質)を含有していると、セラミック自体の焼結密度を測定することができないという問題点がある。   On the other hand, the Archimedes method of (3) is a method that can determine the sintered density of the ceramic sintered body and can accurately determine the sinterability of the ceramic sintered body. There is a problem that it is necessary to carry out and takes time. Further, there is a problem that it is difficult to measure the saturated water weight (confirmation of removal of water droplets on the surface) when the ceramic part is downsized. Furthermore, if the ceramic sintered body contains a member (substance) made of a material other than ceramic, such as an internal electrode, there is a problem that the sintered density of the ceramic itself cannot be measured.

本発明は、上記課題を解決するものであり、短時間で、セラミック焼結体の焼結密度を求めることが可能であるとともに、セラミック焼結体のサイズが非常に小さい場合や、セラミック焼結体が、セラミック以外の材料からなる部材、例えば内部導体などを備えている場合にも、セラミック自体の焼結密度を測定することが可能なセラミック焼結体の焼結密度の測定方法を提供することを目的とする。   The present invention solves the above-mentioned problems, and it is possible to obtain the sintered density of the ceramic sintered body in a short time, and when the size of the ceramic sintered body is very small, Provided is a method for measuring the sintered density of a ceramic sintered body capable of measuring the sintered density of the ceramic itself even when the body includes a member made of a material other than ceramic, such as an internal conductor. For the purpose.

発明者等は、上記課題を解決するため、種々の検討を行い、セラミック焼結体を構成するセラミックの密度(焼結密度)は、セラミックが開気孔を含むものである場合において、セラミックの比表面積と相関関係があることを知り、さらに実験、検討を行って本発明を完成した。
すなわち、本発明のセラミック焼結体の焼結密度の測定方法は、
開気孔を有するセラミック焼結体の焼結密度を測定する方法であって、
(a)開気孔を有し、焼結密度を測定すべき開気孔を含むセラミック焼結体とセラミックの組成が同じで、焼結密度が判明しており、かつ該焼結密度を所定の範囲で異ならせた複数のセラミック焼結体を用意し、それらの比表面積をBET法により測定して、焼結密度と比表面積との関係を表す検量線を作成する工程と、
(b)焼結密度を測定すべき開気孔を含むセラミック焼結体の比表面積をBET法により測定する工程と、
(c)前記(b)の工程で測定した比表面積の値から、前記検量線を用いて、前記開気孔を含むセラミック焼結体の焼結密度を求める工程と
を具備することを特徴としている。
The inventors have made various studies to solve the above problems, and the density of the ceramic constituting the ceramic sintered body (sintering density) is the specific surface area of the ceramic when the ceramic includes open pores. Knowing that there is a correlation, the present invention was completed through further experiments and studies.
That is, the method for measuring the sintered density of the ceramic sintered body of the present invention is:
A method for measuring a sintered density of a ceramic sintered body having open pores,
(a) The ceramic sintered body having the open pores and containing the open pores whose sintered density is to be measured has the same composition as the ceramic, the sintered density is known, and the sintered density is within a predetermined range. Preparing a plurality of ceramic sintered bodies made different from each other, measuring their specific surface area by the BET method, and creating a calibration curve representing the relationship between the sintered density and the specific surface area;
(b) a step of measuring a specific surface area of a ceramic sintered body including open pores whose sintered density is to be measured by a BET method;
(c) From the value of the specific surface area measured in the step (b), using the calibration curve, obtaining a sintered density of the ceramic sintered body including the open pores, .

本発明のセラミック焼結体の焼結密度の測定方法は、前記セラミック焼結体がセラミック以外の材料からなる部材を備えている場合にも適用することが可能である。   The method for measuring the sintered density of the ceramic sintered body of the present invention can also be applied when the ceramic sintered body includes a member made of a material other than ceramic.

また、本発明のセラミック焼結体の焼結密度の測定方法は、前記セラミック焼結体が、セラミック積層体の内部に内部導体を備えた積層セラミック素子である場合に好適に適用することが可能である。   Further, the method for measuring the sintered density of the ceramic sintered body of the present invention can be suitably applied when the ceramic sintered body is a multilayer ceramic element including an internal conductor inside the ceramic multilayer body. It is.

また、前記セラミック焼結体が、セラミック積層体の内部にコイル用内部導体を備えた積層セラミックコイル部品を構成するものである場合に、特に好適に適用することが可能である。   Further, the present invention can be applied particularly suitably when the ceramic sintered body constitutes a multilayer ceramic coil component including a coil internal conductor inside the ceramic multilayer body.

また、本発明は、前記セラミック焼結体が、体積1mm3以下のものである場合に特に有意義である。 The present invention is particularly significant when the ceramic sintered body has a volume of 1 mm 3 or less.

本発明のセラミック焼結体の焼結密度の測定方法は、(a)開気孔(オープンポア)を有し、焼結密度を測定すべき開気孔を含むセラミック焼結体(被検試料)とセラミックの組成が同じで、焼結密度が判明しており、かつ該焼結密度を所定の範囲で異ならせた複数のセラミック焼結体を用意し、それらの比表面積をBET法により測定して、焼結密度と比表面積との関係を表す検量線を作成する工程と、(b)被検試料である、開気孔を含むセラミック焼結体の比表面積をBET法により測定する工程と、(c)検量線を用いて、被検試料の焼結密度を求める工程とを備えており、BET法により測定した被検試料の比表面積から、上述の検量線を用いてセラミック焼結体の焼結密度を求めるようにしているので、従来のアルキメデス法による場合よりも短時間でセラミック焼結体の焼結密度を求めることができる。   The method for measuring the sintered density of the ceramic sintered body according to the present invention comprises: (a) a ceramic sintered body (test sample) having open pores (open pores) and including open pores whose sintered density is to be measured; Prepare a plurality of ceramic sintered bodies with the same ceramic composition, known sintered density, and different sintered densities within a predetermined range, and measure their specific surface area by the BET method. A step of creating a calibration curve representing the relationship between the sintered density and the specific surface area, and (b) a step of measuring the specific surface area of the ceramic sintered body containing open pores, which is the test sample, by the BET method, c) a step of obtaining a sintered density of the test sample using a calibration curve. From the specific surface area of the test sample measured by the BET method, the sintering of the ceramic sintered body using the calibration curve described above is provided. Since the density is calculated, the conventional Archimedes method is used. Remote short time can be obtained a sintered density of the ceramic sintered body.

なお、本発明において、セラミック焼結体の焼結密度とは、セラミック積層体などを焼成することにより得られる焼結体(セラミック焼結体)を構成する、セラミックの体積に気孔を含んだ状態の密度(嵩密度)をいう。すなわち、本発明によれば、以下に述べるように、内部導体などを有している場合などにも、それらの影響を受けずに、セラミック焼結体を構成するセラミック自体の焼結密度を効率よく測定することができる。   In the present invention, the sintered density of the ceramic sintered body is a state in which pores are included in the ceramic volume constituting a sintered body (ceramic sintered body) obtained by firing a ceramic laminate or the like. Density (bulk density). That is, according to the present invention, as described below, even when an internal conductor or the like is provided, the sintering density of the ceramic itself constituting the ceramic sintered body can be efficiently reduced without being affected by such influence. It can be measured well.

また、本発明は、セラミック焼結体を構成するセラミックに含まれる開気孔に関連するセラミックの比表面積とセラミックの密度(焼結密度)の間に相関があることを利用してセラミック焼結体の焼結密度を測定するものであることから、セラミック焼結体を構成するセラミックが開気孔を含むものであることが必要である。
なお、セラミックに含まれる開気孔の割合は、セラミックに含まれる開気孔のすべてに水が充填された場合の水の割合を吸水率とした場合における吸水率が0.1重量%以上となるような割合であることが望ましい。
Further, the present invention uses a correlation between the specific surface area of the ceramic related to the open pores contained in the ceramic constituting the ceramic sintered body and the density of the ceramic (sintered density). Therefore, it is necessary that the ceramic constituting the ceramic sintered body includes open pores.
The ratio of the open pores contained in the ceramic is such that the water absorption rate is 0.1% by weight or more when the water absorption rate is the water rate when all the open pores contained in the ceramic are filled with water. It is desirable that the ratio be

本発明によりセラミックの焼結密度を求めることができるメカニズムは以下の通りである。すなわち、セラミック焼結体を構成するセラミックに存在する開気孔(オープンポア)は、同一組成のセラミックの場合、焼結密度と比例関係にある(焼結密度が高くなれば開気孔は少なくなる)。そして、セラミックに含まれる開気孔の割合と「セラミックの比表面積」には相関関係がある。そこで、BET法により比表面積の測定を行うことにより、あらかじめ作成しておいた、セラミックの焼結密度と比表面積との関係を表す検量線から速やかに焼結密度を求めることができる。   The mechanism by which the sintered density of the ceramic can be determined according to the present invention is as follows. That is, the open pores (open pores) existing in the ceramic constituting the ceramic sintered body are proportional to the sintered density in the case of ceramics having the same composition (the higher the sintered density, the fewer open pores) . There is a correlation between the ratio of open pores contained in the ceramic and the “specific surface area of the ceramic”. Therefore, by measuring the specific surface area by the BET method, the sintered density can be quickly obtained from a calibration curve prepared in advance and representing the relationship between the sintered density of the ceramic and the specific surface area.

また、アルキメデス法の場合、セラミック焼結体が内部電極などの、セラミック以外の材料からなる部材(物質)を備えていると、セラミック自体の焼結密度を測定することはできないが、本発明を適用することにより、例えば、セラミック焼結体がその内部に配設された内部導体や、表面に配設された外部電極などの、セラミック以外の材料(物質)を備えている場合にも、セラミック焼結体の焼結密度を測定することができる。   In the Archimedes method, if the ceramic sintered body includes a member (substance) made of a material other than ceramic, such as an internal electrode, the sintered density of the ceramic itself cannot be measured. By applying, for example, when a ceramic sintered body is provided with a material (substance) other than ceramic, such as an internal conductor disposed inside or an external electrode disposed on the surface, The sintered density of the sintered body can be measured.

すなわち、BET法により測定される比表面積(SSA)にはセラミック焼結体の表面積と開気孔の表面積が含まれている。このうちセラミック焼結体の表面積は、焼結密度が変化しても変わらないため、比表面積(SSA)の変化が開気孔の量の変化となる。したがって、セラミック以外の物質を含むセラミック焼結体であってもBET法により測定される比表面積(SSA)から焼結密度に関する比較的精度の高い情報を得ることができる。
ただし、セラミック焼結体に含まれる非セラミック部材の割合が大きくなりすぎると、焼結密度の測定精度が低下するため、セラミック焼結体に含まれる非セラミック部材の割合は、通常は、30重量%以下であることが望ましい。
なお、外部電極のみを備えている場合であれば、外部電極の形成前にアルキメデス法によりセラミック自体の焼結密度を測定することも可能であるが、セラミックと同時焼成される内部導体を備えている場合には、アルキメデス法でセラミック自体の焼結密度を測定することはできないため、本発明の方法は特に有意義になる。
That is, the specific surface area (SSA) measured by the BET method includes the surface area of the ceramic sintered body and the surface area of the open pores. Among these, since the surface area of the ceramic sintered body does not change even if the sintered density changes, the change in the specific surface area (SSA) becomes the change in the amount of open pores. Therefore, even a ceramic sintered body containing a substance other than ceramic can obtain information with relatively high accuracy regarding the sintered density from the specific surface area (SSA) measured by the BET method.
However, if the proportion of the non-ceramic member contained in the ceramic sintered body becomes too large, the measurement accuracy of the sintered density is lowered. Therefore, the proportion of the non-ceramic member contained in the ceramic sintered body is usually 30% by weight. % Or less is desirable.
If only the external electrode is provided, it is possible to measure the sintered density of the ceramic itself by the Archimedes method before forming the external electrode, but it has an internal conductor that is fired simultaneously with the ceramic. The method of the present invention is particularly meaningful because the sintered density of the ceramic itself cannot be measured by the Archimedes method.

また、セラミック層を介してコイル形成用の内部導体が配設された構造を有する積層コイル部品の場合、セラミック焼結体の焼結状態が、積層コイル部品のインピーダンス値やその安定性などの特性に影響を及ぼしやすいため、特に、焼成状態を正確に測定して、管理することが必要になるが、本発明は、そのような場合、すなわち、セラミック焼結体がセラミック積層体の内部にコイル用内部導体を備えた積層セラミックコイル部品を構成するものである場合に、セラミック焼結体の焼結密度を正確に測定することができて特に有意義である。   In addition, in the case of a laminated coil component having a structure in which an inner conductor for coil formation is disposed via a ceramic layer, the sintered state of the ceramic sintered body has characteristics such as the impedance value and stability of the laminated coil component. In particular, it is necessary to accurately measure and manage the firing state. In this case, the ceramic sintered body is coiled inside the ceramic laminate. In the case of constituting a multilayer ceramic coil component provided with an internal conductor, it is particularly significant that the sintered density of the ceramic sintered body can be accurately measured.

また、アルキメデス法の場合、セラミック焼結体のサイズが小さくなると、表面の水滴を除去できたか確認することが困難になり、正確な飽水重量を得ることができなくなるが、本発明を適用することにより、体積1mm3以下のセラミック焼結体(例えば、長さ0.6mm、幅0.3mm、厚さ0.3mmサイズの積層セラミックチップ)の焼結密度を精度よく測定することができる。 In the Archimedes method, when the size of the ceramic sintered body is reduced, it becomes difficult to confirm whether or not water droplets on the surface have been removed, and an accurate saturated weight cannot be obtained. However, the present invention is applied. Thus, the sintered density of a ceramic sintered body having a volume of 1 mm 3 or less (for example, a multilayer ceramic chip having a length of 0.6 mm, a width of 0.3 mm, and a thickness of 0.3 mm) can be accurately measured.

本発明の実施例の方法により焼結密度が測定されるセラミック焼結体の構成を示す側面断面図である。It is side surface sectional drawing which shows the structure of the ceramic sintered compact by which a sintering density is measured by the method of the Example of this invention. 本発明の実施例の方法により焼結密度が測定されるセラミック焼結体の構成を示す分解斜視図である。It is a disassembled perspective view which shows the structure of the ceramic sintered compact by which a sintering density is measured by the method of the Example of this invention. 図1,図2のセラミック焼結体に外部電極を配設することにより形成される積層型コイル部品を示す正面断面図である。FIG. 3 is a front sectional view showing a laminated coil component formed by disposing external electrodes on the ceramic sintered body of FIGS. 1 and 2. セラミック焼結体の焼結密度と比表面積の関係を表す検量線を示す図である。It is a figure which shows the calibration curve showing the relationship between the sintered density of a ceramic sintered compact, and a specific surface area.

以下、本発明の実施の形態を示して、本発明をさらに詳しく説明する。   Hereinafter, the present invention will be described in more detail with reference to embodiments of the present invention.

[1]内部導体を備えたセラミック焼結体の作製
この実施例では、Fe23を48.0mol%、ZnOを29.5mol%、NiOを14.5mol%、CuOを8.0mol%の比率で配合した磁性体セラミック原料を湿式混合した後、仮焼を行った。得られた仮焼物を湿式粉砕してセラミックスラリーとした後、このセラミックスラリーを成形してセラミックグリーンシートを得た。得られたセラミックグリーンシートに、ビアホールの形成、内部導体形成用の導電性ペーストの印刷による内部導体パターン(コイル用導体パターン)の形成を行ったセラミックグリーンシートと、内部電極パターンを形成していない外層領域用のセラミックグリーンシートを積層した後、圧着して所定のサイズにカットし、未焼成のセラミック積層体を作製した。
[1] Production of Ceramic Sintered Body with Inner Conductor In this example, Fe 2 O 3 was 48.0 mol%, ZnO was 29.5 mol%, NiO was 14.5 mol%, and CuO was 8.0 mol%. After the magnetic ceramic raw materials blended at a ratio were wet mixed, calcination was performed. The obtained calcined product was wet pulverized into a ceramic slurry, and then the ceramic slurry was molded to obtain a ceramic green sheet. The ceramic green sheet formed with the internal conductor pattern (coil conductor pattern for the coil) formed by forming a via hole and printing the conductive paste for forming the internal conductor is not formed on the obtained ceramic green sheet. After the ceramic green sheets for the outer layer region were laminated, they were pressure-bonded and cut into a predetermined size to produce an unfired ceramic laminate.

そして、このセラミック積層体を、異なる温度条件下で焼成することにより、焼結状態の異なる複数のセラミック焼結体(例えば、寸法が、長さ2.0mm、幅1.0mm、厚さ1.0mmの積層セラミックチップ)を作製した。   And by firing this ceramic laminate under different temperature conditions, a plurality of ceramic sintered bodies having different sintered states (for example, the dimensions are 2.0 mm in length, 1.0 mm in width, 1. mm in thickness). 0 mm multilayer ceramic chip) was produced.

なお、図1は、上述のようにして作製したセラミック焼結体の構成を模式的に示す側面断面図、図2は分解斜視図、図3はこのセラミック焼結体に外部電極を形成することにより得られる積層コイル部品を示す正面断面図である。   1 is a side sectional view schematically showing the structure of the ceramic sintered body produced as described above, FIG. 2 is an exploded perspective view, and FIG. 3 is for forming external electrodes on the ceramic sintered body. It is front sectional drawing which shows the laminated coil component obtained by these.

すなわち、図1,図2に示すセラミック焼結体3は、磁性体セラミック層1を介して配設され、ビアホール6を介して層間接続された複数の内部導体2と、内部導体2の配設されていない外層1aとを備え、内部に螺旋状コイル4を備えた構造のものである。   That is, the ceramic sintered body 3 shown in FIG. 1 and FIG. 2 is provided with a plurality of internal conductors 2 arranged via the magnetic ceramic layer 1 and interlayer-connected via the via holes 6 and the internal conductors 2. The outer layer 1a is not provided, and the spiral coil 4 is provided inside.

また、図3の積層型コイル部品10は、図1,図2のセラミック焼結体3の両端部に、螺旋状コイル4の両端部4a,4bと導通するように一対の外部電極5a,5bを配設することにより形成されるものである。
なお、上述のようにして作製した、内部に螺旋状コイル4を備えたセラミック焼結体3における非セラミック部材(内部導体)の割合は30重量%以下である。
3 has a pair of external electrodes 5a and 5b that are electrically connected to both ends 4a and 4b of the spiral coil 4 at both ends of the ceramic sintered body 3 shown in FIGS. It is formed by arrange | positioning.
In addition, the ratio of the non-ceramic member (internal conductor) in the ceramic sintered compact 3 which was produced as mentioned above and was equipped with the helical coil 4 inside is 30 weight% or less.

[2]内部導体を備えていないセラミック焼結体の作製
上記の内部導体を含むセラミック焼結体を作製するのに用いたものと同じセラミックグリーンシートであって、内部導体パターンを備えていないセラミックグリーンシートを用いて所定のサイズにカットされた未焼成のセラミック焼結体(積層セラミックチップ)を作製し、上記[1]の場合と同様に、異なる温度条件下(上記[1]と同じ温度条件下)で焼成することにより、セラミックのみからなり、開気泡の割合が吸水率換算で0.1重量%以上である、焼結状態の異なる複数のセラミック焼結体(例えば、寸法が、長さ2.0mm、幅1.0mm、厚さ1.0mmの積層セラミックチップ)を作製した。
[2] Production of ceramic sintered body not provided with internal conductor Ceramic green sheet which is the same as that used for producing ceramic sintered body including the above internal conductor, and does not have internal conductor pattern An unsintered ceramic sintered body (laminated ceramic chip) cut to a predetermined size using a green sheet is prepared, and in the same manner as in [1] above, under different temperature conditions (the same temperature as in [1] above) Fired under a certain condition), a plurality of ceramic sintered bodies having different sintered states (for example, the dimension is long) A multilayer ceramic chip having a thickness of 2.0 mm, a width of 1.0 mm, and a thickness of 1.0 mm was produced.

[3]比表面積の測定
上記[1]で作製した、内部導体を含み、開気泡の割合が吸水率換算で0.1重量%以上であり、焼結状態の異なる複数のセラミック焼結体(積層セラミックチップ)と、上記[2]で作製した、内部導体を含まず、開気泡の割合が吸水率換算で0.1重量%以上であり、焼結状態の異なる複数のセラミック焼結体(積層セラミックチップ)について、比表面積を測定した。
[3] Measurement of specific surface area A plurality of ceramic sintered bodies produced in the above [1], including the internal conductor, having a ratio of open bubbles of 0.1% by weight or more in terms of water absorption, and having different sintered states ( Multilayer ceramic chip) and a plurality of ceramic sintered bodies produced in [2] above, including no internal conductor, having a ratio of open bubbles of 0.1% by weight or more in terms of water absorption, and having different sintered states ( The specific surface area of the multilayer ceramic chip) was measured.

なお、比表面積を測定するにあたっては、全自動BET比表面積測定装置マックソーブ(HM Model−1201:マウンテック社製)を使用して、以下の手順でBET法による比表面積(SSA)の測定を行った。
(1)全自動BET比表面積測定装置のセル重量の測定
(2)セルへのサンプルのセットおよびセルの全自動BET比表面積測定装置へのセット
(3)全自動BET比表面積測定装置の条件のセット
(4)全自動BET比表面積測定装置による以下の工程に沿った自動測定
(a)400℃での脱気
(b)冷却
(c)液体窒素冷却および窒素吸着
(d)常温までの昇温および窒素脱離
(5)セル+サンプルの重量の測定
なお、この比表面積の測定に当たり、上記の(1)〜(5)の各工程に要する時間を同時に測定し、下記の[7]において評価した。
In measuring the specific surface area, the specific surface area (SSA) was measured by the BET method according to the following procedure using a fully automatic BET specific surface area measuring device Macsorb (HM Model-1201: manufactured by Mountec Co., Ltd.). .
(1) Measurement of cell weight of fully automatic BET specific surface area measuring device
(2) Setting of sample in cell and setting of cell in fully automatic BET specific surface area measuring device
(3) Set of conditions for fully automatic BET specific surface area measuring device
(4) Automatic measurement according to the following process using a fully automatic BET specific surface area measuring device
(a) Degassing at 400 ° C
(b) Cooling
(c) Liquid nitrogen cooling and nitrogen adsorption
(d) Temperature rise to room temperature and nitrogen desorption
(5) Measurement of cell + sample weight In measuring the specific surface area, the time required for each of the above steps (1) to (5) was simultaneously measured and evaluated in the following [7].

[4]検量線の作成
上記[2]で作製した、内部導体を含まず、開気泡の割合が、吸水率換算で0.1重量%以上であり、焼結状態の異なる複数のセラミック焼結体について、アルキメデス法により、以下の工程を実施し、乾燥重量、水中重量、および気泡の含有割合から、セラミック焼結体の焼結密度を求めた。
(1)乾燥重量の測定
(2)純水中での煮沸
(3)常温まで冷却
(4)水中重量測定
(5)飽水重量測定
測定した焼結密度のデータと、上記[3]で測定した比表面積のデータとの関係から、両者の関係を表す検量線を作成した。
なお、図4は、上述のようにして作成した、セラミック焼結体の焼結密度と比表面積の関係を示す検量線である。
[4] Preparation of calibration curve A plurality of sintered ceramics produced in [2] above, including no internal conductor, having a ratio of open bubbles of 0.1% by weight or more in terms of water absorption, and having different sintered states The body was subjected to the following steps by the Archimedes method, and the sintered density of the ceramic sintered body was determined from the dry weight, the weight in water, and the content ratio of bubbles.
(1) Measurement of dry weight
(2) boiling in pure water
(3) Cool to room temperature
(4) Underwater weight measurement
(5) Saturation weight measurement From the relationship between the measured sintered density data and the specific surface area data measured in [3] above, a calibration curve representing the relationship between the two was prepared.
FIG. 4 is a calibration curve showing the relationship between the sintered density and the specific surface area of the ceramic sintered body prepared as described above.

なお、ここでアルキメデス法により焼結密度を求めるのにあたり、上記の(1)〜(5)の各工程に要する時間を同時に測定し、下記の[7]における本発明の評価のための比較データとした。
[5]内部導体を備えたセラミック焼結体の焼結密度について
上記[3]で求めた、内部導体を含み、開気泡の割合が、吸水率換算で0.1重量%以上であり、かつ、焼結状態の異なる複数のセラミック焼結体(積層セラミックチップ)について測定した比表面積の値から、上記[4]で作成した検量線(図4)を用いて焼結密度を求めた。すなわち、図4の検量線から、測定した比表面積の値に対応する焼結密度を読み取り、その値を、焼結密度を測定すべきセラミック焼結体(被検試料)の焼結密度とした。
In addition, when calculating | requiring a sintered density by the Archimedes method here, the time which each process of said (1)-(5) requires is measured simultaneously, The comparison data for evaluation of this invention in following [7] It was.
[5] Regarding the sintered density of the ceramic sintered body provided with the internal conductor, the ratio of open bubbles, including the internal conductor, determined in [3] above is 0.1% by weight or more in terms of water absorption, and From the specific surface area values measured for a plurality of ceramic sintered bodies (multilayer ceramic chips) having different sintered states, the sintered density was determined using the calibration curve (FIG. 4) created in [4] above. That is, the sintered density corresponding to the measured specific surface area value is read from the calibration curve in FIG. 4, and the value is set as the sintered density of the ceramic sintered body (test sample) whose sintered density is to be measured. .

その結果、内部導体を含むセラミック焼結体についても、BET法により測定した比表面積の値から、精度よく焼結密度を測定できることが確認された。   As a result, it was confirmed that the sintered density of the ceramic sintered body including the internal conductor can be measured with high accuracy from the value of the specific surface area measured by the BET method.

なお、確認のため、内部導体を備えたセラミック焼結体と、内部導体を備えていないセラミック焼結体であって、同じ焼成条件で焼成したものについて、BET法により比表面積を測定した場合、ほぼ同じ比表面積の値が得られた。なお、この比表面積の値から焼結密度を求めると、ほぼ同じ焼結密度の値が得られることになる。   For confirmation, when the specific surface area is measured by the BET method for a ceramic sintered body having an inner conductor and a ceramic sintered body not having an inner conductor, which are fired under the same firing conditions, Approximately the same specific surface area value was obtained. When the sintering density is obtained from the specific surface area value, substantially the same sintering density value is obtained.

上記の結果より、本発明の方法によれば、内部導体を含むセラミック焼結体の焼結密度を効率よく測定できることが確認された。   From the above results, it was confirmed that according to the method of the present invention, the sintered density of the ceramic sintered body including the internal conductor can be efficiently measured.

[6]アルキメデス法では焼結密度を求めることができないサイズのセラミック焼結体の焼結密度について
サイズが小さく、アルキメデス法では焼結密度を測定できない、長さ0.6mm、幅0.3mm、厚さ0.3mmサイズのセラミック焼結体(開気泡の割合が吸水率換算で0.1重量%以上)を作製した。
それから、このセラミック焼結体について、上記[3]の場合と同様の方法で、BET法による比表面積(SSA)の測定を行った。
そして、測定した比表面積の値から、上記[4]で作成した検量線(図4)を用いて焼結密度を求めた。すなわち、図4の検量線から、測定した比表面積の値に対応する焼結密度を読み取り、その値を、焼結密度を測定すべきセラミック焼結体(被検試料)の焼結密度とした。
その結果、飽水重量の測定(表面の水滴除去の確認)が困難で、アルキメデス法では実質的に焼結密度を測定できない、長さ0.6mm、幅0.3mm、厚さ0.3mmサイズのセラミック焼結体についても焼結密度を測定できることが確認された。
なお、サイズの小さいセラミック焼結体の焼結密度を測定する場合にも、内部導体などの非セラミック部材(内部導体)の割合は30重量%以下であることが望ましい。
[6] Regarding the sintered density of a ceramic sintered body whose size cannot be determined by the Archimedes method, the size is small and the sintered density cannot be measured by the Archimedes method, the length is 0.6 mm, the width is 0.3 mm, A ceramic sintered body having a thickness of 0.3 mm (the ratio of open bubbles was 0.1% by weight or more in terms of water absorption) was produced.
Then, the specific surface area (SSA) of this ceramic sintered body was measured by the BET method in the same manner as in [3] above.
And the sintered density was calculated | required from the value of the measured specific surface area using the calibration curve (FIG. 4) created by said [4]. That is, the sintered density corresponding to the measured specific surface area value is read from the calibration curve in FIG. 4, and the value is set as the sintered density of the ceramic sintered body (test sample) whose sintered density is to be measured. .
As a result, it is difficult to measure the saturated water weight (confirmation of water droplet removal on the surface), and the Archimedes method cannot practically measure the sintered density. Length 0.6 mm, width 0.3 mm, thickness 0.3 mm It was confirmed that the sintered density of the ceramic sintered body could be measured.
In addition, also when measuring the sintering density of a ceramic sintered compact with a small size, it is desirable that the ratio of non-ceramic members (internal conductors) such as an internal conductor is 30% by weight or less.

[7]焼結密度の測定に要する時間について
上述のように、上記[3]で調べた、BET法により比表面積(SSA)を測定し、その値から焼結密度を求める場合における各工程に要する時間と、合計時間とを表1に示す。
また、上記[4]で調べた、アルキメデス法により焼結密度を求める場合の各工程に要する時間と、合計時間とを表2に示す。
[7] Time required for measurement of sintered density As described above, the specific surface area (SSA) measured in the above [3] is measured by the BET method, and the sintering density is determined from the value. Table 1 shows the time required and the total time.
Table 2 shows the time required for each step and the total time when the sintered density is obtained by the Archimedes method investigated in [4] above.

Figure 2011069808
Figure 2011069808

Figure 2011069808
Figure 2011069808

表1および表2より、BET法による比表面積の測定は、アルキメデス法により焼結密度を測定する場合のように、長時間の煮沸を行う必要がないため、アルキメデス法により焼結密度を測定する場合と比較して、本発明の方法により焼結密度を測定するのに要する時間は、約1/4に短縮されることが確認された。   From Tables 1 and 2, the specific surface area measurement by the BET method does not require boiling for a long time as in the case of measuring the sintering density by the Archimedes method, so the sintering density is measured by the Archimedes method. Compared to the case, it was confirmed that the time required to measure the sintered density by the method of the present invention was shortened to about 1/4.

上述のように、本発明のセラミック焼結体の焼結密度の測定方法によれば、アルキメデス法により焼結密度を測定する場合に比べて、短時間で焼結密度を測定することが可能になる。なお、アルキメデス法の場合、小型(例えば、長さ0.6mm、幅0.3mm、厚さ0.3mm等の)サイズのセラミック焼結体や、内部導体を含むセラミック焼結体の焼結密度を測定することはできないが、本発明の方法によれば、セラミック焼結体が内部導体を含む場合にも、セラミック自体の焼結密度を効率よく測定できることは上述の通りである。   As described above, according to the method for measuring the sintered density of the ceramic sintered body according to the present invention, it is possible to measure the sintered density in a shorter time than when the sintered density is measured by the Archimedes method. Become. In the Archimedes method, the sintered density of a ceramic sintered body having a small size (for example, a length of 0.6 mm, a width of 0.3 mm, a thickness of 0.3 mm, etc.) or a ceramic sintered body including an internal conductor is used. However, according to the method of the present invention, as described above, the sintered density of the ceramic itself can be efficiently measured even when the ceramic sintered body includes an internal conductor.

なお、上記実施例では、セラミック焼結体が積層型コイル部品を構成する積層セラミック素子である場合を例にとって説明したが、本発明を適用して焼結密度を測定することが可能なセラミック焼結体はこれに限られるものではなく、積層セラミックコンデンサやLC複合部品、セラミック圧電部品、抵抗素子などの種々のセラミック電子部品の製造工程で作製されるセラミック焼結体の焼結密度の測定に、広く本発明を適用することが可能である。   In the above embodiment, the case where the ceramic sintered body is a multilayer ceramic element constituting a multilayer coil component has been described as an example. However, the ceramic sintered body capable of measuring the sintered density by applying the present invention is described. The bonded body is not limited to this, but for measuring the sintered density of a ceramic sintered body produced in the manufacturing process of various ceramic electronic parts such as multilayer ceramic capacitors, LC composite parts, ceramic piezoelectric parts, and resistive elements. The present invention can be widely applied.

また、上記実施例ではセラミック焼結体を構成するセラミックが、Fe23、ZnO、NiO、CuOを含む原料を焼成することにより形成されるフェライト系セラミックである場合を例にとって説明したが、本発明は、誘電体セラミック、圧電体セラミック、抵抗体セラミックなどの種々のセラミックからなるセラミック焼結体の焼結密度を測定する場合に広く適用することが可能である。
また、上記実施例では異なる温度条件で焼成することによって、焼結状態の異なる複数のセラミック焼結体を作製しているが、セラミック原料の混合条件、粉砕条件、仮焼条件、積層後の圧着条件などの各工程の条件を変更することによっても、焼結状態の異なる複数のセラミック焼結体を作製することが可能である。
In the above embodiment, the ceramic constituting the ceramic sintered body is described as an example in which the ceramic is a ferrite ceramic formed by firing a raw material containing Fe 2 O 3, ZnO, NiO, CuO. The present invention can be widely applied when measuring the sintered density of a ceramic sintered body made of various ceramics such as a dielectric ceramic, a piezoelectric ceramic, and a resistor ceramic.
Also, in the above examples, a plurality of ceramic sintered bodies having different sintered states are produced by firing at different temperature conditions. However, the mixing conditions, pulverization conditions, calcination conditions, and pressure bonding after lamination of ceramic raw materials are produced. It is also possible to produce a plurality of ceramic sintered bodies having different sintered states by changing the conditions of each process such as the conditions.

本発明はさらにその他の点においても上記実施例に限定されるものではなく、 セラミック焼結体が備えているセラミック以外の材料からなる部材(例えば内部導体)の種類や、その配設態様、セラミック焼結体の比表面積を測定するのに用いる分析装置の具体的な種類などに関し、発明の範囲内において、種々の応用、変形を加えることが可能である。   The present invention is not limited to the above embodiment in other points as well. The types of members (for example, internal conductors) made of a material other than the ceramic provided in the ceramic sintered body, the arrangement thereof, the ceramic Various applications and modifications can be made within the scope of the invention with respect to specific types of analyzers used to measure the specific surface area of the sintered body.

1 磁性体セラミック層
1a 外層
2 内部導体
3 セラミック焼結体(磁性体セラミック素子)
4 螺旋状コイル
4a,4b 螺旋状コイルの両端部
5a,5b 外部電極
6 ビアホール
DESCRIPTION OF SYMBOLS 1 Magnetic ceramic layer 1a Outer layer 2 Internal conductor 3 Ceramic sintered body (magnetic ceramic element)
4 Helical coils 4a, 4b Both ends of the helical coil 5a, 5b External electrode 6 Via hole

Claims (5)

開気孔を有するセラミック焼結体の焼結密度を測定する方法であって、
(a)開気孔を有し、焼結密度を測定すべき開気孔を含むセラミック焼結体とセラミックの組成が同じで、焼結密度が判明しており、かつ該焼結密度を所定の範囲で異ならせた複数のセラミック焼結体を用意し、それらの比表面積をBET法により測定して、焼結密度と比表面積との関係を表す検量線を作成する工程と、
(b)焼結密度を測定すべき開気孔を含むセラミック焼結体の比表面積をBET法により測定する工程と、
(c)前記(b)の工程で測定した比表面積の値から、前記検量線を用いて、前記開気孔を含むセラミック焼結体の焼結密度を求める工程と
を具備することを特徴とするセラミック焼結体の焼結密度の測定方法。
A method for measuring a sintered density of a ceramic sintered body having open pores,
(a) The ceramic sintered body having the open pores and containing the open pores whose sintered density is to be measured has the same composition as the ceramic, the sintered density is known, and the sintered density is within a predetermined range. Preparing a plurality of ceramic sintered bodies made different from each other, measuring their specific surface area by the BET method, and creating a calibration curve representing the relationship between the sintered density and the specific surface area;
(b) a step of measuring a specific surface area of a ceramic sintered body including open pores whose sintered density is to be measured by a BET method;
(c) From the value of the specific surface area measured in the step (b), using the calibration curve, obtaining a sintered density of the ceramic sintered body including the open pores, A method for measuring the sintered density of a ceramic sintered body.
前記セラミック焼結体がセラミック以外の材料からなる部材を備えていることを特徴とする請求項1記載のセラミック焼結体の焼結密度の測定方法。   The method for measuring a sintered density of a ceramic sintered body according to claim 1, wherein the ceramic sintered body includes a member made of a material other than ceramic. 前記セラミック焼結体が、セラミック積層体の内部に内部導体を備えた積層セラミック素子であることを特徴とする請求項1記載のセラミック焼結体の焼結密度の測定方法。   2. The method for measuring a sintered density of a ceramic sintered body according to claim 1, wherein the ceramic sintered body is a laminated ceramic element having an inner conductor inside a ceramic laminated body. 前記セラミック焼結体が、セラミック積層体の内部にコイル用内部導体を備えた積層セラミックコイル部品を構成するものであることを特徴とする請求項1記載のセラミック焼結体の焼結密度の測定方法。   2. The measurement of the sintered density of the ceramic sintered body according to claim 1, wherein the ceramic sintered body constitutes a multilayer ceramic coil component including a coil inner conductor inside the ceramic laminated body. Method. 前記セラミック焼結体が、体積1mm3以下のものであることを特徴とする請求項1〜4のいずれかに記載のセラミック焼結体の焼結密度の測定方法。 The method for measuring a sintered density of a ceramic sintered body according to any one of claims 1 to 4, wherein the ceramic sintered body has a volume of 1 mm 3 or less.
JP2010119529A 2009-08-31 2010-05-25 Measuring method of sintered density of ceramic sintered compact Withdrawn JP2011069808A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010119529A JP2011069808A (en) 2009-08-31 2010-05-25 Measuring method of sintered density of ceramic sintered compact

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009200266 2009-08-31
JP2010119529A JP2011069808A (en) 2009-08-31 2010-05-25 Measuring method of sintered density of ceramic sintered compact

Publications (1)

Publication Number Publication Date
JP2011069808A true JP2011069808A (en) 2011-04-07

Family

ID=44015202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010119529A Withdrawn JP2011069808A (en) 2009-08-31 2010-05-25 Measuring method of sintered density of ceramic sintered compact

Country Status (1)

Country Link
JP (1) JP2011069808A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018025527A (en) * 2016-08-09 2018-02-15 ケプコ ニュークリア フューエル カンパニー リミテッド METHOD FOR ANALYZING SINTERED DENSITY FOR URANIUM OXIDE (UOx), USING SPECTROPHOTOMETER
CN111595538A (en) * 2020-04-26 2020-08-28 山西杏花村汾酒厂股份有限公司 Composite inspection method for ceramic wine bottle

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018025527A (en) * 2016-08-09 2018-02-15 ケプコ ニュークリア フューエル カンパニー リミテッド METHOD FOR ANALYZING SINTERED DENSITY FOR URANIUM OXIDE (UOx), USING SPECTROPHOTOMETER
CN111595538A (en) * 2020-04-26 2020-08-28 山西杏花村汾酒厂股份有限公司 Composite inspection method for ceramic wine bottle
CN111595538B (en) * 2020-04-26 2022-12-30 山西杏花村汾酒厂股份有限公司 Composite inspection method for ceramic wine bottle

Similar Documents

Publication Publication Date Title
US10256029B2 (en) Electronic component and method for manufacturing the same
CN105829263B (en) Glass ceramic material and monolithic ceramic electronic component
US6839955B2 (en) Method of making a multilayer inductor
CN106409505B (en) Multi-layer ceramic capacitor
KR100562490B1 (en) Magnetic ferrite powder, magnetic ferrite sinter, layered ferrite part, and process for producing layered ferrite part
KR20150062836A (en) Multilayered electronic component, manufacturing method thereof and board having the same mounted thereon
CN110033930A (en) Multilayer coil component
CN104345187A (en) A plate used for a probe card, a manufacturing method thereof and the probe card
JP2011069808A (en) Measuring method of sintered density of ceramic sintered compact
JP2019210204A (en) Composite magnetic material and electronic component using the same
CN109665857B (en) Preparation method of ferroferric oxide with porous honeycomb structure based on photocuring 3D printing forming technology
JP2013135087A (en) Laminated common mode choke coil and method of manufacturing the same
JP5251824B2 (en) Management method of sintered density of ceramic sintered body
JP7255510B2 (en) Laminated coil parts
JP6084836B2 (en) Coil built-in wiring board
CN113299453A (en) Coil component
JP2016015370A (en) Manufacturing method of multilayer chip inductor, magnetic material paste and metal paste
JP2019099400A (en) Glass-ceramic-ferrite composition and electronic component
JPH10223424A (en) Multilayer inductor
JP2013135088A (en) Dielectric glass composition and laminate common mode choke coil including the same
JPWO2020009164A1 (en) Composite sensor
CN112309672B (en) Coil component
JP5159682B2 (en) Multilayer ceramic capacitor
JP2019156664A (en) Composite magnetic material and electronic component using the same
JP2000091152A (en) Stacked electronic part, and its manufacture

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130117

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20130328