JP2011069725A - Method for measuring functional group - Google Patents

Method for measuring functional group Download PDF

Info

Publication number
JP2011069725A
JP2011069725A JP2009221097A JP2009221097A JP2011069725A JP 2011069725 A JP2011069725 A JP 2011069725A JP 2009221097 A JP2009221097 A JP 2009221097A JP 2009221097 A JP2009221097 A JP 2009221097A JP 2011069725 A JP2011069725 A JP 2011069725A
Authority
JP
Japan
Prior art keywords
functional group
measuring
amount
labeling reagent
labeling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009221097A
Other languages
Japanese (ja)
Other versions
JP5531310B2 (en
Inventor
Osamu Takabayashi
将 鷹林
Hiroyuki Sakagami
弘之 坂上
Takayuki Takahagi
隆行 高萩
Keiji Okamoto
圭司 岡本
Tatsuyuki Nakatani
達行 中谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hiroshima University NUC
Toyo Advanced Technologies Co Ltd
Original Assignee
Hiroshima University NUC
Toyo Advanced Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hiroshima University NUC, Toyo Advanced Technologies Co Ltd filed Critical Hiroshima University NUC
Priority to JP2009221097A priority Critical patent/JP5531310B2/en
Publication of JP2011069725A publication Critical patent/JP2011069725A/en
Application granted granted Critical
Publication of JP5531310B2 publication Critical patent/JP5531310B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for widely and correctly measuring a functional group present on the surface of a solid material without using a complicated waveform separation. <P>SOLUTION: The method for measuring the functional group is provided with the process (a) for preparing a plurality of evaluation samples comprising a carbonaceous film, the process (b) for preparing a plurality of labeling reagents having reaction rates to each functional group which are previously measured, the process (b) for causing the evaluation samples and the labeling reagents to react to each other; the process (c) for measuring the introduction quantity of the labeling reagent introduced on a surface of each evaluation sample by using an X-ray photoelectron spectroscopy measurement method after the process (b), and the process (d) for calculating the quantity of each functional group existing on a surface of the carbonaceous film based on G=R<SP>-1</SP>Q. G is a matrix indicating the quantity of each functional group. R is a matrix indicating the reaction rate of each labeling reagent to each functional group. Q is a matrix indicating the introduction quantity of each labeling reagent. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、官能基の測定方法に関し、特に固体材料の表面に存在する官能基の測定方法に関する。   The present invention relates to a method for measuring a functional group, and more particularly to a method for measuring a functional group present on the surface of a solid material.

ダイヤモンド様薄膜(DLC膜)は、高強度で且つ低摩擦の平坦な表面を有する。このため、工具、金型及びハードディスク等の表面の保護に用いられている。また、平滑な特性を生かしてステント及びカテーテル等の血液と接触する医療用器具の表面のコーティングにも用いられている。DLC膜の表面に存在カルボキシル基及びアミノ基等の官能基を導入することにより、生体適合性を向上させることが検討されている。DLC膜の生体適合性は、表面に存在する官能基の種類及び量により大きな影響を受けることが知られている。このため、DLC膜の表面に存在する官能基の種類及び量を正確に測定することが求められている。   A diamond-like thin film (DLC film) has a flat surface with high strength and low friction. For this reason, it is used for protection of surfaces of tools, molds, hard disks and the like. It is also used for coating the surface of medical devices that make contact with blood, such as stents and catheters, taking advantage of its smooth properties. It has been studied to improve biocompatibility by introducing functional groups such as carboxyl groups and amino groups on the surface of the DLC film. It is known that the biocompatibility of a DLC film is greatly affected by the type and amount of functional groups present on the surface. For this reason, it is required to accurately measure the type and amount of functional groups present on the surface of the DLC film.

DLC膜等の炭素質膜の表面に存在する官能基の種類及び量は、表面に存在する元素及びその元素の結合状態をX線光電子分光分析(XPS)法等によって測定することにより大まかに推定することができる。例えば、XPS測定により得られた炭素の1s(C1s)ピークが、C−C結合成分以外にCO−O結合成分を含んでいることが確認できれば、カルボキシル基(COOH)の存在が推定できる。また、ピークの波形分離を行うことにより量についてもある程度推定することができる。しかし、波形分離の操作は複雑であり、精度も高くない。さらに、官能基の詳細について情報を得ることができず、COOHと、エステル(COO−R)とを区別することはできない。COOHとカルボニル基(C=O)及び水酸基(C−OH)とは、ピーク位置にずれがあるため、理論上は波形分離によりピークを分離して定量することが可能である。しかし、実際にはピーク分離は、パラメータが多い関数解析であり難解である。   The type and amount of functional groups present on the surface of a carbonaceous film such as a DLC film are roughly estimated by measuring the elements present on the surface and the bonding state of these elements by X-ray photoelectron spectroscopy (XPS). can do. For example, if it can be confirmed that the carbon 1s (C1s) peak obtained by XPS measurement contains a CO—O bond component in addition to the C—C bond component, the presence of a carboxyl group (COOH) can be estimated. Also, the amount can be estimated to some extent by performing peak waveform separation. However, the waveform separation operation is complicated and the accuracy is not high. Furthermore, no information about the details of the functional groups can be obtained and COOH cannot be distinguished from esters (COO-R). Since COOH, carbonyl group (C = O), and hydroxyl group (C-OH) have peak positions, theoretically, it is possible to separate and quantify peaks by waveform separation. However, in actuality, peak separation is a function analysis with many parameters and is difficult.

XPS測定において、官能基を区別して測定する方法に化学修飾法がある(例えば、非特許文献1を参照。)。化学修飾法は、特定の官能基と特異的に反応する標識試薬を用いて官能基の修飾を行い、標識試薬を測定する方法である。例えば、COOHとは反応するが他の官能基とは反応せず且つフッ素(F)を含む標識試薬を用いれば、Fの量を測定することによりCOOHの量を測定することが可能となる。   In XPS measurement, there is a chemical modification method as a method of measuring by distinguishing functional groups (for example, see Non-Patent Document 1). The chemical modification method is a method of measuring a labeling reagent by modifying the functional group using a labeling reagent that specifically reacts with a specific functional group. For example, if a labeling reagent that reacts with COOH but does not react with other functional groups and contains fluorine (F) is used, the amount of COOH can be measured by measuring the amount of F.

Y. Nakayama、他、"J. Polym. Sci., Part A: Polym. Chem."、1988年、26巻、p559Y. Nakayama, et al., "J. Polym. Sci., Part A: Polym. Chem.", 1988, 26, p559

しかしながら、特定の官能基と特異的に反応し且つXPSにより容易に測定することができ、標識試薬として使用できる理想的な化合物はあまり知られていない。このため、従来の化学修飾法により測定できる官能基は限られている。また、化学反応にはほぼ例外なく副反応が生じるため、標識試薬は対象外の官能基とも反応するおそれがある。しかし、従来の化学修飾法では、副反応は無視されてきた。このため、測定精度が十分であるとはいえない。   However, few ideal compounds are known that can react specifically with a specific functional group and can be easily measured by XPS and used as a labeling reagent. For this reason, the functional group which can be measured by the conventional chemical modification method is limited. In addition, since side reactions occur almost without exception in chemical reactions, the labeling reagent may also react with functional groups that are not targeted. However, side reactions have been ignored in conventional chemical modification methods. For this reason, it cannot be said that the measurement accuracy is sufficient.

炭素質膜以外の固体材料の表面においても、XPSを用いて官能基の測定をする場合には同様の問題が生じる。   Similar problems arise when measuring functional groups using XPS on the surface of a solid material other than the carbonaceous film.

本願は、複雑な波形分離を用いることなく、固体材料の表面に存在する官能基をより幅広く且つより正確に測定できるようにすることを目的とする。   An object of the present application is to make it possible to measure a functional group present on the surface of a solid material more widely and more accurately without using complicated waveform separation.

前記の目的を達成するため、本発明は官能基の測定方法を、官能基の数と同数の標識試薬を導入し、標識試薬の導入量及び反応率をパラメータとする行列方程式を解くことにより官能基の量を算出する構成とする。   In order to achieve the above object, the present invention provides a functional group measurement method by introducing the same number of labeling reagents as the number of functional groups and solving a matrix equation using the amount of labeling reagent introduced and the reaction rate as parameters. It is set as the structure which calculates the quantity of group.

具体的に、本発明に係る官能基の測定方法は、固体材料の表面に存在する複数の官能基の量を測定する方法を対象とし、固体材料からなる複数の評価用試料を準備する工程(a)と、各官能基に対する反応率をあらかじめ測定した複数の標識試薬を準備する工程(b)と、評価用試料と標識試薬とをそれぞれ反応させる工程(b)と、工程(b)よりも後に、評価用試料のそれぞれについてその表面に導入された標識試薬の導入量をX線光電子分光測定法により測定する工程(c)と、固体材料の表面に存在する各官能基の量を、G=R-1Qに基づいて算出する工程(d)とを備えている。但し、G、R及びQは以下の通りであり、Fn(nは2以上の整数)は複数の官能基のうちのn番目の官能基であり、Lm(mは2以上の整数且つm=n)は複数の標識試薬のうちのm番目の標識試薬であり、GFnは炭素質膜の表面に存在するFnの量であり、QLmは炭素質膜の表面に導入されたLmの導入量であり、RLm/FnはLmとFnとの反応率である。 Specifically, the method for measuring a functional group according to the present invention is a method for measuring a plurality of functional groups present on the surface of a solid material, and preparing a plurality of samples for evaluation made of a solid material ( a), a step (b) of preparing a plurality of labeling reagents whose reaction rates with respect to each functional group are measured in advance, a step (b) of reacting the sample for evaluation and the labeling reagent, and a step (b) Later, in step (c), the amount of the labeling reagent introduced on the surface of each sample for evaluation is measured by X-ray photoelectron spectroscopy, and the amount of each functional group present on the surface of the solid material is determined as G Step (d) of calculating based on = R −1 Q. However, G, R, and Q are as follows, Fn (n is an integer greater than or equal to 2) is an nth functional group among a plurality of functional groups, and Lm (m is an integer greater than or equal to 2 and m = n) is the m-th labeling reagent among a plurality of labeling reagents, G Fn is the amount of Fn present on the surface of the carbonaceous film, and Q Lm is the introduction of Lm introduced on the surface of the carbonaceous film. R Lm / Fn is the reaction rate between Lm and Fn.

Figure 2011069725
Figure 2011069725

本発明の官能基の測定方法は、評価用試料のそれぞれに導入された標識試薬の導入量と、あらかじめ測定した標識試薬の各官能基に対する反応率とを用いて、固体表面に存在する官能基の量を算出する。このため、標識試薬の副反応を無視しないためより正確に官能基の量を測定することができる。また、副反応を考慮するため特定の官能基だけと反応する標識試薬を用いる必要がない。従って、標識試薬の選択が容易になり、種々の官能基に容易に対応することが可能となる。   The functional group measurement method of the present invention uses the introduction amount of the labeling reagent introduced into each of the evaluation samples and the reaction rate for each functional group of the labeling reagent measured in advance. Calculate the amount of For this reason, since the side reaction of the labeling reagent is not ignored, the amount of the functional group can be measured more accurately. In addition, it is not necessary to use a labeling reagent that reacts only with a specific functional group in consideration of side reactions. Accordingly, the selection of the labeling reagent is facilitated, and it is possible to easily cope with various functional groups.

本発明の官能基の測定方法において、標識試薬のそれぞれは、ヘテロ元素を含み、工程(c)では、ヘテロ元素の量を測定することにより標識試薬の導入量を測定すればよい。   In the functional group measurement method of the present invention, each of the labeling reagents contains a hetero element, and in the step (c), the amount of the labeling reagent introduced may be measured by measuring the amount of the hetero element.

本発明の官能基の測定方法において、複数の官能基は、水酸基、カルボニル基及びカルボキシル基であり、複数の標識試薬は、トリフルオロ酢酸、ヒドラジン及びトリフルオロエタノールとジイソプロピルカルボジイミドとの混合物とすればよい。   In the functional group measurement method of the present invention, the plurality of functional groups are a hydroxyl group, a carbonyl group, and a carboxyl group, and the plurality of labeling reagents are trifluoroacetic acid, hydrazine, and a mixture of trifluoroethanol and diisopropylcarbodiimide. Good.

本発明の官能基の測定方法において、工程(b)は気相反応とすればよい。   In the method for measuring a functional group of the present invention, the step (b) may be a gas phase reaction.

本発明の官能基の測定方法において、各官能基に対する反応率は、単一の官能基を有する基準高分子フィルムと各標識化合物とを反応させることにより求めればよい。   In the functional group measurement method of the present invention, the reaction rate for each functional group may be determined by reacting a reference polymer film having a single functional group with each labeled compound.

本発明の官能基の測定方法において、固体材料は炭素質膜であってもよい。   In the functional group measurement method of the present invention, the solid material may be a carbonaceous film.

本発明に係る官能基の測定方法によれば、複雑な波形分離を用いることなく、固体材料の表面に存在する官能基をより幅広く且つより正確に測定できる。   According to the functional group measurement method of the present invention, the functional groups present on the surface of the solid material can be measured more widely and more accurately without using complicated waveform separation.

(a)及び(b)は官能基と標識試薬との反応を示す模式図であり、(a)は理想的な反応を示し、(b)は副反応が生じる場合を示している。(A) And (b) is a schematic diagram which shows reaction of a functional group and a labeling reagent, (a) shows an ideal reaction, (b) has shown the case where a side reaction arises. 水酸基の標識反応を示す反応スキームである。It is a reaction scheme which shows the labeling reaction of a hydroxyl group. カルボニル基の標識反応を示す反応スキームである。It is a reaction scheme which shows the labeling reaction of a carbonyl group. カルボキシル基の標識反応を示す反応スキームである。It is a reaction scheme which shows the labeling reaction of a carboxyl group. 第1の実施例において用いた気相反応用チャンバーを示す図である。It is a figure which shows the chamber for gas phase reaction used in the 1st Example. 第1の実施例において各標識試薬と反応させた後の評価用試料のXPS測定結果を示すチャートである。It is a chart which shows the XPS measurement result of the sample for evaluation after making it react with each labeling reagent in the 1st example.

本明細書において炭素質膜とは、ダイヤモンド様膜(DLC膜)に代表されるsp2炭素−炭素結合(グラファイト結合)及びsp3炭素−炭素結合(ダイヤモンド結合)を含む膜である。DLC膜のようなアモルファス状態の膜であっても、ダイヤモンド膜のような結晶状態の膜であってもよい。 In this specification, the carbonaceous film is a film containing sp 2 carbon-carbon bonds (graphite bonds) and sp 3 carbon-carbon bonds (diamond bonds) represented by diamond-like films (DLC films). It may be an amorphous film such as a DLC film or a crystalline film such as a diamond film.

まず、固体材料の表面に存在する官能基の量を測定する原理について説明する。以下においては、固体材料として炭素質膜を例に説明を行うが、炭素質膜以外の固体材料についても同様にして官能基を測定することができる。   First, the principle of measuring the amount of functional groups present on the surface of a solid material will be described. In the following, a carbonaceous film will be described as an example of the solid material, but the functional group can be measured in the same manner for solid materials other than the carbonaceous film.

まず、図1に示すように表面に官能基F1と官能基F2とが存在している炭素質膜101と標識試薬L1とを反応させる場合を考える。官能基F1と官能基F2とは、X線光電子分光(XPS)測定では区別が困難な官能基である。標識試薬L1は官能基F1と特異的に反応する試薬である。   First, consider a case where a carbonaceous film 101 having a functional group F1 and a functional group F2 on the surface is reacted with a labeling reagent L1 as shown in FIG. The functional group F1 and the functional group F2 are functional groups that are difficult to distinguish by X-ray photoelectron spectroscopy (XPS) measurement. The labeling reagent L1 is a reagent that specifically reacts with the functional group F1.

炭素質膜101と標識試薬L1との反応が理想的に進む場合には、図1(a)に示すように、すべての官能基F1が標識試薬L1により標識されF1L1となる。従って、炭素質膜101の表面に導入された標識試薬L1の量を想定すれば、官能基F1の量を測定することができる。標識試薬L1が炭素質膜101にほとんど含まれていない特定のヘテロ元素を含んでいるようにすれば、炭素質膜101の表面に導入された標識試薬L1の量を容易に測定することができる。   When the reaction between the carbonaceous film 101 and the labeling reagent L1 proceeds ideally, as shown in FIG. 1A, all the functional groups F1 are labeled with the labeling reagent L1 to become F1L1. Accordingly, assuming the amount of the labeling reagent L1 introduced on the surface of the carbonaceous film 101, the amount of the functional group F1 can be measured. If the labeling reagent L1 contains a specific heteroelement that is hardly contained in the carbonaceous film 101, the amount of the labeling reagent L1 introduced on the surface of the carbonaceous film 101 can be easily measured. .

しかし、実際には図1(b)に示すように、通常は標識試薬L1と官能基F1との反応率RL1/F1は100%ではない。また、標識試薬L1と官能基F2とが反応してF2L1が生成される副反応が生じる。このため、炭素質膜101の表面に導入された標識試薬L1の導入量QL1は、官能基Aの量ではなく、官能基F1の存在量GF1と反応率RL1/F1とを掛けたもの及び官能基F2の存在量GF2と反応率RL1/F2とを掛けたものの和となる。つまり、次の式(1)に示すような関係が成り立つ。 However, in practice, as shown in FIG. 1B, the reaction rate R L1 / F1 between the labeling reagent L1 and the functional group F1 is usually not 100%. Further, a side reaction in which F2L1 is generated by the reaction between the labeling reagent L1 and the functional group F2 occurs. For this reason, the introduction amount Q L1 of the labeling reagent L1 introduced on the surface of the carbonaceous film 101 is not the amount of the functional group A but the abundance amount G F1 of the functional group F1 and the reaction rate R L1 / F1 . although it multiplied by the abundance G F2 of objects and a functional group F2 and reaction rate R L1 / F2 becomes the sum. That is, the relationship shown in the following formula (1) is established.

L1=RL1/F1F2+RL1/F2F2 ・・・ (1)
さらに、拡張して炭素質膜101の表面にn種類(nは2以上の整数)の官能基が存在する場合に、m種類(mは2以上の整数且つm=n)の標識試薬を反応させる場合を考える。この場合、mとnとは等しいため、官能基の量Gと標識試薬の導入量Qとはn列の行列となり、Rはn次正方行列となり、次の式(2)に示すような行列方程式が成り立つ。
Q L1 = R L1 / F1 G F2 + R L1 / F2 G F2 (1)
Further, when there are n types (n is an integer of 2 or more) of functional groups on the surface of the carbonaceous film 101, m types (m is an integer of 2 or more and m = n) are reacted with the labeling reagent. Consider the case. In this case, since m and n are equal, the amount G of the functional group and the introduction amount Q of the labeling reagent are an n-column matrix, R is an n-order square matrix, and a matrix as shown in the following equation (2) The equation holds.

Figure 2011069725
Figure 2011069725

従って、逆行列R-1を用いることにより、式(3)に示すように目的とする官能基の量Gを求めることが可能となる。 Therefore, by using the inverse matrix R −1 , the target functional group amount G can be obtained as shown in the equation (3).

G=R-1Q ・・・ (3)
標識試薬Lmと官能基Fnとの反応率RLm/Fnは、標識試薬Lmと官能基Fnだけを有する基準高分子フィルムとを反応させることにより実験的に求めることができる。例えば、基準高分子フィルムとしてポリビニルアルコールを用いれば、標識試薬と水酸基(C−OH)との反応率を求めることができる。ポリアクリル酸を用いればカルボキシル基(COOH)との反応率を求めることができ、ポリビニルメチルケトンを用いればカルボニル基(C=O)との反応率を求めることができる。同様に、ポリアリルアミンを用いればアミノ基との反応率を求めることができ、ポリエチルメタクリレート又はポリビニルアセテート等を用いればエステル基との反応率を求めることができる。
G = R −1 Q (3)
The reaction rate R Lm / Fn between the labeling reagent Lm and the functional group Fn can be experimentally determined by reacting the labeling reagent Lm with a reference polymer film having only the functional group Fn. For example, if polyvinyl alcohol is used as the reference polymer film, the reaction rate between the labeling reagent and the hydroxyl group (C—OH) can be determined. If polyacrylic acid is used, the reaction rate with a carboxyl group (COOH) can be obtained, and if polyvinyl methyl ketone is used, the reaction rate with a carbonyl group (C = O) can be obtained. Similarly, if polyallylamine is used, the reaction rate with an amino group can be obtained, and if polyethyl methacrylate or polyvinyl acetate is used, the reaction rate with an ester group can be obtained.

また、副反応を考慮するため、標識試薬Lmは必ずしも官能基Fnとだけ特異的に反応する必要はない。複数の官能基と反応する標識試薬であっても、各官能基に対する反応率が明らかであればよい。このため、標識試薬の選択が容易となるという利点も得られる。各標識試薬は、炭素質膜に含まれていないヘテロ元素を有していれば、XPS測定により容易に導入量を測定することができる。通常の炭素質膜はほぼ炭素と水素とからなるため、フッ素(F)又は窒素(N)等のヘテロ元素を含んでいれば容易に導入量を測定できる。炭素質膜の改質のためにフッ素(F)又はシリコン(Si)等を炭素質膜に導入した場合には、これらの元素以外の元素を含む標識試薬を用いればよい。但し、炭素質膜に含まれているヘテロ元素を含む標識試薬であっても、差分を取ることにより導入量を求めることができる。さらに、各標識試薬は独立して反応させ測定を行うため、複数の標識試薬が同じヘテロ元素を含んでいてもよい。さらに、標識試薬と官能基との反応は一段階で完結する必要はなく、多段階の反応であってもよい。   In addition, since the side reaction is taken into consideration, the labeling reagent Lm does not necessarily need to specifically react only with the functional group Fn. Even in the case of a labeling reagent that reacts with a plurality of functional groups, it is sufficient that the reaction rate for each functional group is clear. For this reason, the advantage that selection of a labeling reagent becomes easy is also acquired. If each labeling reagent has a hetero element not contained in the carbonaceous film, the amount introduced can be easily measured by XPS measurement. Since an ordinary carbonaceous film is substantially composed of carbon and hydrogen, the amount introduced can be easily measured if it contains a heteroelement such as fluorine (F) or nitrogen (N). When fluorine (F) or silicon (Si) is introduced into the carbonaceous film for the modification of the carbonaceous film, a labeling reagent containing an element other than these elements may be used. However, even if it is a labeling reagent containing the hetero element contained in the carbonaceous film, the introduction amount can be obtained by taking the difference. Further, since each labeling reagent is reacted independently for measurement, a plurality of labeling reagents may contain the same heteroelement. Furthermore, the reaction between the labeling reagent and the functional group need not be completed in one step, and may be a multi-step reaction.

標識試薬の組み合わせは特に限定されないが、C−OH、C=O及びCOOHを測定する場合には、無水トリフルオロ酢酸(TFAA)と、ヒドラジン(Hyd)と、トリフルオロエタノール(TFE)及びジイソプロピルカルボジイミド(DIC)との組み合わせとすればよい。   The combination of the labeling reagents is not particularly limited. When C—OH, C═O, and COOH are measured, trifluoroacetic anhydride (TFAA), hydrazine (Hyd), trifluoroethanol (TFE), and diisopropylcarbodiimide are used. A combination with (DIC) may be used.

無水トリフルオロ酢酸(TFAA)と、C−OHとが反応すると図2に示すようにCOCF3が導入される。このため、反応前の炭素質膜にフッ素が含まれていない場合には、全炭素量に対するTFAAの導入量QTFAAは式(4)に示すように表すことができる。 When trifluoroacetic anhydride (TFAA) reacts with C—OH, COCF 3 is introduced as shown in FIG. For this reason, when the carbonaceous film before the reaction does not contain fluorine, the introduction amount Q TFAA of TFAA relative to the total carbon amount can be expressed as shown in the formula (4).

Figure 2011069725
Figure 2011069725

なお、[COCF3]はCOCF3の原子数であり、[C]Allは全炭素の原子数である。[F]はXPS測定によりにより求めたフッ素の原子数であり、[C]はXPS測定により求めた炭素の原子数である。XPS測定において[C]はC1sピークの面積を感度係数で割ることにより求めることができる。[F]はF1sピークの面積を感度係数で割ることにより求めることができる。 [COCF 3 ] is the number of atoms of COCF 3 , and [C] All is the number of atoms of all carbons. [F] is the number of fluorine atoms determined by XPS measurement, and [C] is the number of carbon atoms determined by XPS measurement. In XPS measurement, [C] can be obtained by dividing the area of the C1s peak by the sensitivity coefficient. [F] can be obtained by dividing the area of the F1s peak by the sensitivity coefficient.

同様に、ヒドラジン(Hyd)とC=Oとの反応は、図3に示すように進行する。この場合には、全炭素量に対するHydの導入量QHydは式(5)に示すように表すことができる。但し、[N]はXPS測定により求めた窒素の原子数である。 Similarly, the reaction of hydrazine (Hyd) with C═O proceeds as shown in FIG. In this case, the Hyd introduction amount Q Hyd with respect to the total carbon amount can be expressed as shown in Equation (5). However, [N] is the number of nitrogen atoms determined by XPS measurement.

Figure 2011069725
Figure 2011069725

同様に、トリフルオロエタノール(TFE)及びジイソプロピルカルボジイミド(DIC)とCOOHとの反応は、図4に示すように進行する。この場合には、全炭素量に対するTFE及びDICの導入量QTFE/DICは式(6)に示すように表すことができる。 Similarly, the reaction of trifluoroethanol (TFE) and diisopropylcarbodiimide (DIC) with COOH proceeds as shown in FIG. In this case, the introduction amount Q TFE / DIC of TFE and DIC with respect to the total carbon amount can be expressed as shown in Equation (6).

Figure 2011069725
Figure 2011069725

本開示の固体材料表面における官能基の測定方法においては、特定の官能基とのみ反応する特異性が高い標識試薬を必ずしも用いる必要はない。また、各標識試薬が同じヘテロ元素を含んでいてもよい。標識試薬に含まれるヘテロ元素は、固体材料自体にはほとんど含まれず且つXPS測定による定量が容易であることが好ましい。また、差分を取る等により導入された量が正確に定量できるのであれば、固体材料自体に含まれていても問題ない。従って、標識試薬が例えば、フッ素(F)、塩素(Cl)、窒素(N)、チタン(Ti)、ナトリウム(Na)又は硫黄(S)等のヘテロ元素を含んでいるようにすればよい。具体的には、アミノ基と主に反応するヘプタフルオロブチリルクロリド(HFBC0)又はC65NHO、水酸基と主に反応するCF3CO−Cl、ClC64−NCO又はジイソプロポキシチタニウムビスアセチルアセトナート、カルボニル基と主に反応するC65NH=NH2又はClC64NH=NH2、カルボキシル基と主に反応する水酸化ナトリウム、硝酸銀又はTlOC25及びパーオキサイド基と主に反応する二酸化硫黄等も標識試薬として用いることができる。 In the method for measuring a functional group on the surface of the solid material of the present disclosure, it is not always necessary to use a labeling reagent having high specificity that reacts only with a specific functional group. Moreover, each labeling reagent may contain the same heteroelement. It is preferable that the hetero element contained in the labeling reagent is hardly contained in the solid material itself and is easily quantified by XPS measurement. Further, if the amount introduced by taking a difference or the like can be accurately quantified, there is no problem even if it is contained in the solid material itself. Therefore, for example, the labeling reagent may contain a heteroelement such as fluorine (F), chlorine (Cl), nitrogen (N), titanium (Ti), sodium (Na), or sulfur (S). Specifically, heptafluorobutyryl chloride (HFBC0) or C 6 F 5 NHO mainly reacting with an amino group, CF 3 CO—Cl, ClC 6 H 4 —NCO or diisopropoxy titanium mainly reacting with a hydroxyl group bisacetylacetonate, C 6 F 5 NH = NH 2 or ClC 6 H 4 NH = NH 2 mainly reacts with a carbonyl group, sodium hydroxide primarily reacts with a carboxyl group, nitrate or tloc 2 H 5 and peroxide Sulfur dioxide or the like that mainly reacts with the group can also be used as a labeling reagent.

以下に、固体材料表面における官能基の測定方法について実施例を用いてさらに詳細に説明する。以下において、固体材料として炭素質膜を用いた実施例を説明するが、炭素質膜以外の金属膜等の無機材料膜及び高分子材料膜等の有機材料膜についても、同様にして表面に存在する官能基を測定することができる。   Below, the measuring method of the functional group on the surface of a solid material is demonstrated still in detail using an Example. In the following, an example using a carbonaceous film as a solid material will be described. However, an inorganic material film such as a metal film other than a carbonaceous film and an organic material film such as a polymer material film also exist on the surface in the same manner. The functional group to be measured can be measured.

(第1の実施例)
まず、基材の表面に既知のイオン化蒸着法を用いてDLC膜を形成し、評価用試料を形成した。次に、表1に示すような条件で標識試薬をそれぞれ評価用試料と反応させた。
(First embodiment)
First, a DLC film was formed on the surface of the substrate using a known ionized vapor deposition method, and an evaluation sample was formed. Next, the labeling reagent was reacted with the sample for evaluation under the conditions shown in Table 1, respectively.

Figure 2011069725
Figure 2011069725

各標識試薬と、基準高分子フィルムとを反応させることにより求めた標識試薬と官能基との反応率Rは、表2に示すようになった。C−OHのみを有する基準高分子フィルムにはポリビニルアルコールを用い、C=Oのみを有する基準高分子フィルムにはポリビニルメチルケトンを用い、COOHのみを有する基準高分子フィルムにはポリアクリル酸を用いた。   Table 2 shows the reaction rate R between the labeling reagent and the functional group obtained by reacting each labeling reagent with the reference polymer film. Polyvinyl alcohol is used for the reference polymer film having only C—OH, polyvinyl methyl ketone is used for the reference polymer film having only C═O, and polyacrylic acid is used for the reference polymer film having only COOH. It was.

Figure 2011069725
Figure 2011069725

評価用試料と標識試薬とは図5に示すようなチャンバーを用いて気相法により反応させた。次に、標識試薬と反応させた評価用試料についてそれぞれXPS測定を行った。XPS測定の際には、X線の入射角度及び強度を調整することにより試料表面から約0.3nmの範囲について測定した。各評価用試料の測定結果を図6に示す。   The sample for evaluation and the labeling reagent were reacted by a gas phase method using a chamber as shown in FIG. Next, XPS measurement was performed on each sample for evaluation reacted with the labeling reagent. In the XPS measurement, the X-ray incident angle and intensity were adjusted to measure about 0.3 nm from the sample surface. The measurement result of each evaluation sample is shown in FIG.

XPS測定により得られた結果と、式(3)とを用いてC−OH、C=O及びCOOHの全炭素量に対する官能基濃度(mol%)を求めたところ、GC-OHは検出されず、GC=Oは23%となり、GCOOHは4%となった。 When the functional group concentration (mol%) with respect to the total carbon amount of C—OH, C═O and COOH was determined using the result obtained by XPS measurement and the formula (3), G C—OH was detected. G C = O was 23% and G COOH was 4%.

(第2の実施例)
基材の表面にDLC膜を形成した後、DLC膜を湿式酸化することにより評価用試料を作製した。湿式酸化は、30%過酸化水素水と濃硫酸との1対3の混合溶液にDLC膜を10分間浸漬することにより行った。他の条件は第1の実施例と同様にして、DLC膜の表面におけるC−OH、C=O及びCOOHを測定した。GC-OHは検出されず、GC=Oは44%となり、GCOOHは7%となった。
(Second embodiment)
After forming the DLC film on the surface of the substrate, the DLC film was wet-oxidized to prepare an evaluation sample. Wet oxidation was performed by immersing the DLC film for 10 minutes in a 1 to 3 mixed solution of 30% hydrogen peroxide and concentrated sulfuric acid. Other conditions were the same as in the first example, and C—OH, C═O and COOH on the surface of the DLC film were measured. G C-OH was not detected, G C = O was 44%, and G COOH was 7%.

本発明に係る官能基の測定方法は、複雑な波形分離を用いることなく、固体材料の表面に存在する官能基をより幅広く且つより正確に測定でき、炭素質膜をはじめとする固体材料の特性評価等に有用である。   The method for measuring a functional group according to the present invention can measure the functional group existing on the surface of the solid material more widely and more accurately without using complicated waveform separation, and the characteristics of the solid material including the carbonaceous film. Useful for evaluation.

Claims (6)

固体材料の表面に存在する複数の官能基の量を測定する方法であって、
前記固体材料からなる複数の評価用試料を準備する工程(a)と、
前記各官能基に対する反応率をあらかじめ測定した複数の標識試薬を準備する工程(b)と、
前記評価用試料と前記標識試薬とをそれぞれ反応させる工程(b)と、
前記工程(b)よりも後に、前記評価用試料のそれぞれについてその表面に導入された前記標識試薬の導入量をX線光電子分光測定法により測定する工程(c)と、
前記固体材料の表面に存在する前記各官能基の量を、以下の式に基づいて算出する工程(d)とを備えていることを特徴とする官能基の測定方法。
G=R-1
但し、
Figure 2011069725
であり、Fn(nは2以上の整数)は前記複数の官能基のうちのn番目の官能基であり、Lm(mは2以上の整数且つm=n)は前記複数の標識試薬のうちのm番目の標識試薬であり、GFnは前記炭素質膜の表面に存在する前記Fnの量であり、QLmは前記炭素質膜の表面に導入された前記Lmの導入量であり、RLm/Fnは前記LmとFnとの反応率である。
A method for measuring the amount of a plurality of functional groups present on the surface of a solid material,
Preparing a plurality of evaluation samples made of the solid material (a);
A step (b) of preparing a plurality of labeling reagents whose reaction rates with respect to the respective functional groups are measured in advance;
A step (b) of reacting the sample for evaluation and the labeling reagent, respectively;
After the step (b), a step (c) of measuring the amount of the labeling reagent introduced to the surface of each of the evaluation samples by X-ray photoelectron spectroscopy;
And a step (d) of calculating the amount of each functional group present on the surface of the solid material based on the following formula:
G = R -1 Q
However,
Figure 2011069725
Fn (n is an integer of 2 or more) is the n-th functional group of the plurality of functional groups, and Lm (m is an integer of 2 or more and m = n) is the labeling reagent. G Fn is the amount of Fn present on the surface of the carbonaceous film, Q Lm is the amount of Lm introduced on the surface of the carbonaceous film, R F Lm / Fn is the reaction rate between Lm and Fn.
前記標識試薬のそれぞれは、ヘテロ元素を含み、
前記工程(c)では、ヘテロ元素の量を測定することにより前記標識試薬の導入量を測定することを特徴とする請求項1に記載の官能基の測定方法。
Each of the labeling reagents includes a heteroelement,
The method for measuring a functional group according to claim 1, wherein in the step (c), the introduction amount of the labeling reagent is measured by measuring the amount of the hetero element.
前記複数の官能基は、水酸基、カルボニル基及びカルボキシル基であり、
前記複数の標識試薬は、トリフルオロ酢酸、ヒドラジン及びトリフルオロエタノールとジイソプロピルカルボジイミドとの混合物であることを特徴とする請求項1又は2に記載の官能基の測定方法。
The plurality of functional groups are a hydroxyl group, a carbonyl group, and a carboxyl group,
The method for measuring a functional group according to claim 1 or 2, wherein the plurality of labeling reagents are trifluoroacetic acid, hydrazine, and a mixture of trifluoroethanol and diisopropylcarbodiimide.
前記工程(b)は気相反応であることを特徴とする請求項1〜3のいずれか1項に記載の官能基の測定方法。   The method for measuring a functional group according to claim 1, wherein the step (b) is a gas phase reaction. 前記各官能基に対する反応率は、単一の官能基を有する基準高分子フィルムと前記各標識化合物とを反応させることにより求めることを特徴とする請求項1〜4のいずれか1項に記載の官能基の測定方法。   The reaction rate with respect to each said functional group is calculated | required by making the reference | standard polymer film which has a single functional group, and each said label | marker compound react, It is any one of Claims 1-4 characterized by the above-mentioned. Functional group measurement method. 前記固体材料は炭素質膜であることを特徴とする請求項1〜5のいずれか1項に記載の官能基の測定方法。   The method for measuring a functional group according to claim 1, wherein the solid material is a carbonaceous film.
JP2009221097A 2009-09-25 2009-09-25 Functional group measurement method Expired - Fee Related JP5531310B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009221097A JP5531310B2 (en) 2009-09-25 2009-09-25 Functional group measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009221097A JP5531310B2 (en) 2009-09-25 2009-09-25 Functional group measurement method

Publications (2)

Publication Number Publication Date
JP2011069725A true JP2011069725A (en) 2011-04-07
JP5531310B2 JP5531310B2 (en) 2014-06-25

Family

ID=44015130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009221097A Expired - Fee Related JP5531310B2 (en) 2009-09-25 2009-09-25 Functional group measurement method

Country Status (1)

Country Link
JP (1) JP5531310B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10132802A (en) * 1996-11-01 1998-05-22 Kao Corp Surface functional group detecting method
JPH11347385A (en) * 1998-04-10 1999-12-21 Toray Ind Inc Composite semipermeable membrane and production thereof
JP2004061179A (en) * 2002-07-25 2004-02-26 Toyota Motor Corp Method and device for detecting surface functional group
JP2004271371A (en) * 2003-03-10 2004-09-30 Asahi Kasei Corp Method of determining quantitatively acidic functional group in polymer material
JP2007147365A (en) * 2005-11-25 2007-06-14 Sumitomo Bakelite Co Ltd Analysis method of functional group on surface of molded product
JP2008230880A (en) * 2007-03-19 2008-10-02 Toyo Advanced Technologies Co Ltd Method for modifying diamond-like thin film, superhydrophilic material, medical material, medical appliance and method for producing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10132802A (en) * 1996-11-01 1998-05-22 Kao Corp Surface functional group detecting method
JPH11347385A (en) * 1998-04-10 1999-12-21 Toray Ind Inc Composite semipermeable membrane and production thereof
JP2004061179A (en) * 2002-07-25 2004-02-26 Toyota Motor Corp Method and device for detecting surface functional group
JP2004271371A (en) * 2003-03-10 2004-09-30 Asahi Kasei Corp Method of determining quantitatively acidic functional group in polymer material
JP2007147365A (en) * 2005-11-25 2007-06-14 Sumitomo Bakelite Co Ltd Analysis method of functional group on surface of molded product
JP2008230880A (en) * 2007-03-19 2008-10-02 Toyo Advanced Technologies Co Ltd Method for modifying diamond-like thin film, superhydrophilic material, medical material, medical appliance and method for producing the same

Also Published As

Publication number Publication date
JP5531310B2 (en) 2014-06-25

Similar Documents

Publication Publication Date Title
Xie et al. A wet adhesion strategy via synergistic cation–π and hydrogen bonding interactions of antifouling zwitterions and mussel-inspired binding moieties
Pilo et al. Interaction of zirconia primers with yttria-stabilized zirconia surfaces
Ren et al. Preparation and tribological studies of stearic acid self-assembled monolayers on polymer-coated silicon surface
JP2020512415A5 (en)
Rana et al. Inducing high-energy-barrier tribochemical reaction pathways; acetic acid decomposition on copper
JP5531310B2 (en) Functional group measurement method
Zhu et al. Pit-templated synthesis and oxygen adsorption properties of gold nanostructures on highly oriented pyrolytic graphite
M’Ndange-Pfupfu et al. Direct observation of tribochemically assisted wear on diamond-like carbon thin films
Xing et al. Chemical labeling for quantitative characterization of surface chemistry
Akaike et al. Disentangling Origins of Adhesive Bonding at Interfaces between Epoxy/Amine Adhesive and Aluminum
Kleber et al. In situ QCM and TM-AFM investigations of the early stages of degradation of silver and copper surfaces
JP2019521020A5 (en)
US8173198B2 (en) Deposition of metal oxides onto surfaces as an immobilization vehicle for carboxylated or phophated particles or polymers
JP2017154131A (en) Method for producing functional polyolefin
CN104428402A (en) Agent for the surface epilamization of an article
JP2013256716A (en) Sliding member
WO2012125592A1 (en) Localized deposition of polymer film on nanocantilever chemical vapor sensors by surface-initiated atom transfer radical polymerization
Tsuchitani et al. Humidity dependence of microwear characteristics of amorphous carbon films on silicon substrates
Wang et al. Mechanical properties and tribological behavior of ZrO 2 thin films deposited on sulfonated self-assembled monolayer of 3-mercaptopropyl trimethoxysilane
Petkov et al. Structural, mechanical, and tribological properties of CrCN coatings obtained by cathodic arc physical vapour deposition technology at different CH4/N2 gas ratio
Ren et al. Derivatization, characterization, and tribological behavior of an amine-terminated polymer surface
JP2007284745A (en) Anticorrosive agent, and method for producing anticorrosive agent
JP4863645B2 (en) Method for forming molecular macrocluster and method for producing polymer thin film
JP2007147365A (en) Analysis method of functional group on surface of molded product
Prenzel et al. Chemical and mechanical properties of silica hybrid films from NaOH catalyzed sols for micromachining with diamond cutting tools

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120221

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130814

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130820

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130905

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140331

R150 Certificate of patent or registration of utility model

Ref document number: 5531310

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees