JP2007147365A - Analysis method of functional group on surface of molded product - Google Patents
Analysis method of functional group on surface of molded product Download PDFInfo
- Publication number
- JP2007147365A JP2007147365A JP2005340230A JP2005340230A JP2007147365A JP 2007147365 A JP2007147365 A JP 2007147365A JP 2005340230 A JP2005340230 A JP 2005340230A JP 2005340230 A JP2005340230 A JP 2005340230A JP 2007147365 A JP2007147365 A JP 2007147365A
- Authority
- JP
- Japan
- Prior art keywords
- functional group
- analysis
- molded article
- component
- analyzing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
Abstract
Description
本発明は、成形品表面の官能基分析方法に関するものである。 The present invention relates to a functional group analysis method for the surface of a molded article.
官能基を有する化合物などにより形成された成形品においては、成形品表面に前記官能基が存在する状態により、前記成形品を用いた、(1)工業製品の接着工程における被着体の密着力や、(2)医療分野における組織培養シャーレの組織培養性に影響するといわれている。このため、成形品表面に存在する官能基の分布および密度を直接評価できることは、密着力解析や組織培養性評価において重要な位置を占めている。成形品表面において、1〜5nmレベルと、微小な官能基の評価には、X線光電子分光法(XPS)や飛行時間型2次イオン質量分析法(Tof−SIMS)が用いられるが、官能基の種類や相対濃度しか得ることができない。このため、近年発達してきた原子間力顕微鏡法を用いた官能基評価の検討が行われている。例えば、特許文献1では、走査型プローブ顕微鏡の探針を用いた例を示すものであって、探針先端部に化学センサー機能または触媒機能を有する分子などが配置され、この探針先端部を分析される固体表面に近接させオングストロームの精度で一定範囲を走査して、探針先端部と固体表面との間に働く化学相互作用を測定することにより、分子の分析などを行うものであり、分析時に探針と分析される固体表面を緩衝液などで処理し、探針と固体表面の相互作用が一定になるように走査する必要があった。また、特許文献2では、分析される試料表面と相互作用する物質で化学的に変性された探査針を用い、これを走査して、試料表面と探査針との間の相互作用を、電気調整器の作用に変換し、試料の前進後退の移動をさせて凹凸を測定するものであった。しかし、このような原子間力顕微鏡法は、nmレベルの(1)微細形状、(2)粘弾性、(3)摩擦力、(4)表面電位等を評価できるが、被測定物質表面の官能基の種類、分布、密度を間接的に評価するものであり、緩衝液中でしか評価できない。その精度においても、探針先端部の変性分子と固体表面との化学作用を測定しているため、緩衝液の種類により見え方が変化することから、直接評価する方法が求められていた。
In a molded product formed of a compound having a functional group, etc., (1) Adhesive strength of an adherend in the process of adhering an industrial product using the molded product due to the presence of the functional group on the surface of the molded product. (2) It is said that it affects the tissue culture property of tissue culture dishes in the medical field. For this reason, the ability to directly evaluate the distribution and density of the functional groups present on the surface of the molded article occupies an important position in the adhesion analysis and the tissue culture property evaluation. X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (Tof-SIMS) are used for evaluation of minute functional groups on the surface of the molded product at 1 to 5 nm level. Only the type and relative concentration can be obtained. For this reason, functional group evaluation using atomic force microscopy, which has been developed in recent years, has been studied. For example,
本発明の目的は、成形品表面における官能基の種類、その分布状態と密度について、精度良く分析できる、成形品表面の官能基分析方法を提供することにある。 An object of the present invention is to provide a functional group analysis method on the surface of a molded product, which can accurately analyze the type, distribution state, and density of the functional group on the surface of the molded product.
即ち本発明は、
(1) 官能基を有する化合物で構成される成形品表面における前記官能基の定性及び定量分析する方法であって、
前記官能基と、該官能基に対し選択的に反応する成分とを、気相で反応させ、成形品表面に分析用識別部を形成する工程と、
原子間力顕微鏡により、前記分析用識別部を観察する工程と、
前記観察工程において得られた画像を処理する工程と、
を有する成形品表面の官能基分析方法、
(2) 前記官能基は、水酸基、カルボキシル基、アミノ基又はカルボニル基である第(1)項に記載の成形品表面の官能基分析方法、
(3) 前記官能基に対し選択的に反応する成分は、嵩高い構造を有するものである第(1)項又は第(2)項に記載の成形品表面の官能基分析方法、
(4) 前記官能基に対し選択的に反応する成分は、フッ素含有化合物である第(1)項乃至第(3)項のいずれか一項に記載の成形品表面の官能基分析方法、
(5) 前記フッ素含有化合物は、フッ素化酸無水物、フッ素化アルコール、フッ素化ベンズアルデヒド及びフッ素化ヒドラジンから選ばれるものである第(4)項に記載の成形品表面の官能基分析方法、
(6) 前記成形品表面に分析用識別部を形成する工程において、前記官能基と、該官能基に対し選択的に反応する成分とは、該官能基に対し選択的に反応する成分のガス雰囲気中で反応させるものである第(1)項乃至第(5)項のいずれかに記載の成形品表面の官能基分析方法、
(7) 前記官能基と、該官能基に対し選択的に反応する成分との反応は、該官能基に対し選択的に反応する成分が、10-3〜10-7mol/L濃度でガス化された雰囲気中で行われるものである第(1)項乃至第(6)項のいずれかに記載の成形品表面の官能基分析方法、
(8) 前記官能基と、該官能基に対し選択的に反応する成分との反応は、40℃〜80℃の温度範囲で行われるものである第(1)項乃至第(7)項のいずれかに記載の成形品表面の官能基分析方法、
(9) 前記原子間力顕微鏡により前記分析用識別部を観察する工程において、前記分析用識別部は物理的相互作用により観察されるものである第(1)項乃至第(8)項のいずれか一項に記載の成形品表面の官能基分析方法、
(10) 前記分析用識別部は、隆起部として観察されるものである第(1)項乃至第(9)項のいずれか一項に記載の成形品表面の官能基分析方法、
(11) 前記画像を処理する工程は、前記画像に示された、前記分析用識別部である隆起領域と、隆起していない領域との、二値化処理をする工程を含むものである第(1)項乃至第(10)項のいずれか一項に記載の成形品表面の官能基分析方法、
(12) 前記二値化処理された画像において、単位面積当たりの隆起領域により官能基密度を算出する工程を含む第(11)項に記載の成形品表面の官能基分析方法、
である。
That is, the present invention
(1) A method for qualitative and quantitative analysis of the functional group on the surface of a molded article composed of a compound having a functional group,
Reacting the functional group and a component that selectively reacts with the functional group in a gas phase to form an identification part for analysis on the surface of the molded article;
A step of observing the identification part for analysis by an atomic force microscope;
Processing the image obtained in the observation step;
Functional group analysis method of the surface of a molded article having
(2) The functional group analysis method for the surface of a molded article according to item (1), wherein the functional group is a hydroxyl group, a carboxyl group, an amino group, or a carbonyl group,
(3) The functional group analysis method for the surface of a molded article according to item (1) or (2), wherein the component that selectively reacts with the functional group has a bulky structure,
(4) The functional group analysis method for the surface of a molded article according to any one of (1) to (3), wherein the component that selectively reacts with the functional group is a fluorine-containing compound.
(5) The method for analyzing a functional group on the surface of a molded article according to (4), wherein the fluorine-containing compound is selected from fluorinated acid anhydrides, fluorinated alcohols, fluorinated benzaldehydes, and fluorinated hydrazines.
(6) In the step of forming the identification part for analysis on the surface of the molded product, the functional group and the component that selectively reacts with the functional group are gases of components that react selectively with the functional group. The method for analyzing functional groups on the surface of a molded article according to any one of items (1) to (5), which is reacted in an atmosphere,
(7) The reaction between the functional group and a component that selectively reacts with the functional group is such that the component that selectively reacts with the functional group is a gas at a concentration of 10 −3 to 10 −7 mol / L. The functional group analysis method for the surface of a molded article according to any one of items (1) to (6), wherein the method is performed in a structured atmosphere,
(8) The reaction between the functional group and a component that selectively reacts with the functional group is performed in a temperature range of 40 ° C. to 80 ° C. The items (1) to (7) Functional group analysis method on the surface of the molded article according to any one of
(9) In the step of observing the identification part for analysis with the atomic force microscope, the identification part for analysis is observed by physical interaction, any one of items (1) to (8) Functional group analysis method of the molded article surface according to any one of the above,
(10) The method for analyzing a functional group on the surface of a molded article according to any one of (1) to (9), wherein the identification part for analysis is observed as a raised part,
(11) The step of processing the image includes a step of performing binarization processing on the raised region which is the identification part for analysis and the region which is not raised, which are shown in the image. ) To thru (10), the functional group analysis method for the surface of the molded article according to any one of
(12) In the binarized image, the functional group analysis method for the surface of a molded article according to item (11), including a step of calculating a functional group density based on a raised region per unit area,
It is.
本発明によれば、成形品表面における官能基の種類、その分布状態と密度について、精度良く分析することができる。 According to the present invention, it is possible to accurately analyze the type of functional group on the surface of a molded article, its distribution state and density.
本発明は、官能基を有する化合物で構成される成形品表面における前記官能基の定性及び定量分析する方法であって、前記官能基と、該官能基に対し選択的に反応する成分とを、気相で反応させ、成形品表面に分析用識別部を形成する工程と、原子間力顕微鏡により、前記分析用識別部を観察する工程と、前記観察工程において得られた画像を処理する工程と、を有する成形品表面の官能基分析方法であり、成形品表面に存在する官能基を分析用識別部として識別できるようにして、これを直接画像で捕らえて分析できることから、測定時の煩雑な操作を必要とすることが無く、大気中で、前記官能基の種類及び分布状態、さらには分布密度を分析することができる。 The present invention is a method for qualitative and quantitative analysis of the functional group on the surface of a molded article composed of a compound having a functional group, the functional group and a component that selectively reacts with the functional group, Reacting in the gas phase and forming the identification part for analysis on the surface of the molded article; observing the identification part for analysis by an atomic force microscope; and processing the image obtained in the observation step; The functional group analysis method for the surface of a molded article having a function is such that the functional group present on the surface of the molded article can be identified as an identification part for analysis, and this can be directly captured and analyzed in an image, so that it is complicated during measurement. It is possible to analyze the type and distribution state of the functional group and the distribution density in the atmosphere without requiring any operation.
本発明の方法について、概念図を用いて、説明すると、例えば、図1においては、成形品表面の官能基が水酸基で、水酸基に対し選択的に反応する成分として、無水ペンタフルオロプロピオン酸を用いた例を示す。この例においては、無水ペンタフルオロプロピオン酸と、官能基である水酸基と反応させて、分析用識別部となるペンタプロピオンエステル基を形成し、前記分析用識別部が形成された成形品表面を原子間力顕微鏡により測定し、成形品表面の分析用識別部を隆起部として観測して、分析するものである。 The method of the present invention will be described with reference to a conceptual diagram. For example, in FIG. 1, the functional group on the surface of a molded article is a hydroxyl group, and pentafluoropropionic anhydride is used as a component that selectively reacts with the hydroxyl group. Here is an example. In this example, pentafluoropropionic anhydride is reacted with a hydroxyl group that is a functional group to form a pentapropion ester group as an identification part for analysis, and the surface of the molded article on which the identification part for analysis is formed is atomized. It is measured with an atomic force microscope, and the identification part for analysis on the surface of the molded product is observed as a raised part and analyzed.
本発明の成形品表面の官能基分析方法に適用される成形品としては、公知の手段、例えば、射出成形法、移送成形法、圧縮成形法、押出成形法、キャスト成形法などを適用して成形品となしたものが挙げられ、その形態は、どのような形態であってもよいが、平坦面を有することがより好ましい。このとき、成形に用いる材料としては、限定されないが、例えば、(メタ)アクリル系樹脂、ポリカーボネート、ポリスチレン、ポリ−p−ビニルフェノール、ポリウレタン、ポリイミド、ポリアミド、ポリベンゾオキサゾール、フェノール樹脂、エポキシ樹脂、メラミン樹脂、尿素樹脂、不飽和ポリエステル樹脂、セルロース、ポリシラン、ポリシラザン、また、ベンゾシクロブテン樹脂やノルボルネン系樹脂などの環状オレフィン系樹脂などを含むものや、さらにはプラズマ処理など表面処理が成されたポリオレフィン又はその複合体などが挙げられる。 As the molded product applied to the functional group analysis method of the molded product surface of the present invention, known means such as injection molding, transfer molding, compression molding, extrusion molding, cast molding, etc. are applied. What was used as the molded article is mentioned, and the form thereof may be any form, but it is more preferable to have a flat surface. At this time, the material used for molding is not limited, but for example, (meth) acrylic resin, polycarbonate, polystyrene, poly-p-vinylphenol, polyurethane, polyimide, polyamide, polybenzoxazole, phenol resin, epoxy resin, Surface treatment such as melamine resin, urea resin, unsaturated polyester resin, cellulose, polysilane, polysilazane, cyclic olefin resin such as benzocyclobutene resin and norbornene resin, and plasma treatment Examples thereof include polyolefins and composites thereof.
本発明において定性および定量が可能な成形品表面の官能基としては、例えば、水酸基(OH)、カルボキシル基(COOH)、アミノ基(NH2)及びカルボニル基(C=O)などが挙げられる。また、これらは同時に2種以上を分析することも可能である。 Examples of the functional group on the surface of the molded article that can be qualitatively and quantitatively used in the present invention include a hydroxyl group (OH), a carboxyl group (COOH), an amino group (NH 2 ), and a carbonyl group (C═O). Moreover, these can also analyze 2 or more types simultaneously.
本発明において、前記官能基に対し選択的に反応する成分としては、これと前記官能基とが反応して形成される識別部は凸状の隆起部として観察されることから、前記官能基と反応してより大きな隆起部となるものであれば良く、例えば、前記官能基と反応し得る官能基を有するフッ素含有化合物などが挙げられる。
前記官能基と反応し得る官能基を有するフッ素含有化合物としては、フッ素化酸無水物、フッ素化アルコール、フッ素化ベンズアルデヒド及びフッ素化ヒドラジンなどが挙げられ、そのような分析用識別部を形成する前記官能基に対し選択的に反応する成分の具体例としては、無水トリフルオロ酢酸、無水ペンタフルオロプロピオン酸、無水フルオロコハク酸、無水フルオロマレイン酸及び無水トリフロオロメタンスルホン酸などのペルフルオロ酸無水物、トリフルオロエタノール、ペンタフルオロ−n−プロパノール、ヘプタフルオロ−n−ブタノール及びノナフルオロ−n−ペンタノールなどのペルフルオロアルコール、テトラフルオロベンズアルデヒド、ペンタフルオロベンズアルデヒド及びビストリフルオロメチルベンズアルデヒドなどのペルフルオロベンズアルデヒド、トリフルオロエチルヒドラジン、テトラフルオロプロピルヒドラジン、テトラフルオロフェニルヒドラジン及びペンタフルオロフェニルヒドラジンなどのペルフルオロヒドラジンなどのフッ素含有化合物が挙げられる。これらフッ素含有化合物の中でも、フッ素含有量が多く、嵩高い構造を有するものが好ましく、その他の条件としては、分子密度、表面エネルギーが低いものが、良好な識別部を形成する上で、より好ましい。上記化合物は、前記成形品表面における官能基と反応性が高い官能基を有するものを選択するのが好ましく、例えば、前記成形品表面における官能基が水酸基の場合、前記フッ素化酸無水物が好ましく、カルボキシル基の場合、前記フッ素化アルコールが好ましく、カルボニル基の場合、前記フッ素化ヒドラジンが好ましく、アミノ基の場合、フッ素化ベンズアルデヒドが好ましい。これらにより、各種官能基に対し選択的に良好な識別部を形成できる。
In the present invention, as the component that selectively reacts with the functional group, the identification part formed by the reaction between the functional group and the functional group is observed as a convex ridge, What is necessary is just a thing which reacts and becomes a bigger protruding part, For example, the fluorine-containing compound etc. which have a functional group which can react with the said functional group are mentioned.
Examples of the fluorine-containing compound having a functional group capable of reacting with the functional group include fluorinated acid anhydrides, fluorinated alcohols, fluorinated benzaldehydes, and fluorinated hydrazines. Specific examples of the component that selectively reacts with a functional group include trifluoroacetic anhydride, pentafluoropropionic anhydride, fluorosuccinic anhydride, fluoromaleic anhydride, and perfluoroanhydride anhydride such as trifluoromethanesulfonic anhydride, Perfluoroalcohols such as trifluoroethanol, pentafluoro-n-propanol, heptafluoro-n-butanol and nonafluoro-n-pentanol, tetrafluorobenzaldehyde, pentafluorobenzaldehyde and bistrifluoromethylbenzaldehyde What perfluoro benzaldehyde, trifluoroethyl hydrazine, tetrafluoropropyl hydrazine, fluorine-containing compounds such as perfluoro hydrazine such as tetrafluorophenyl hydrazine and pentafluorophenyl hydrazine. Among these fluorine-containing compounds, those having a high fluorine content and a bulky structure are preferable, and other conditions are more preferable for forming a good discriminating part, having a low molecular density and surface energy. . It is preferable to select the compound having a functional group highly reactive with the functional group on the surface of the molded article. For example, when the functional group on the surface of the molded article is a hydroxyl group, the fluorinated acid anhydride is preferable. In the case of a carboxyl group, the fluorinated alcohol is preferable, in the case of a carbonyl group, the fluorinated hydrazine is preferable, and in the case of an amino group, fluorinated benzaldehyde is preferable. As a result, a good identification part can be selectively formed with respect to various functional groups.
次に、本発明の成形品表面の官能基分析方法における各工程について、詳細に説明する。
(1)成形品表面に分析用識別部を形成する工程
本発明において、成形品表面に分析用識別部を形成する工程は、前記成形品表面に存在する官能基と、該官能基に対し選択的に反応する成分とを気相で反応させることにより行われる。このようにして形成される分析用識別部は、凸状の隆起部として観察される。
Next, each step in the functional group analysis method for the surface of a molded article of the present invention will be described in detail.
(1) Step of forming an identification part for analysis on the surface of the molded product In the present invention, the step of forming the identification part for analysis on the surface of the molded product is selected with respect to the functional group present on the surface of the molded product and the functional group The reaction is carried out by reacting the reactive component in the gas phase. The identification part for analysis formed in this way is observed as a convex raised part.
上記の気相において、前記成形品表面に存在する官能基と、該官能基に対し選択的に反応する成分とを反応させる方法としては、例えば、前記成形品を、好ましくは密閉容器中で、ガス化された前記官能基に対し選択的に反応する成分の雰囲気中で反応させる方法、前記官能基に対し選択的に反応する成分のガス雰囲気中及び希釈溶液中で反応させる方法などが挙げられるが、前記官能基に対し選択的に反応する成分のガス雰囲気中で反応させることが、成形品表面を膨潤させることなく、均一に反応させることができるので、より好ましい。 In the above gas phase, as a method of reacting a functional group present on the surface of the molded product and a component that selectively reacts with the functional group, for example, the molded product is preferably sealed in a sealed container. Examples include a method of reacting in an atmosphere of a component that selectively reacts with the functionalized gas group, a method of reacting in a gas atmosphere of a component that selectively reacts with the functional group, and a diluted solution. However, reacting in a gas atmosphere of a component that selectively reacts with the functional group is more preferable because the surface of the molded article can be uniformly reacted without swelling.
上記分析用識別部を形成する方法の具体例としては、成形品及び前記官能基に対し選択的に反応する成分を密閉容器中に載置し、加温することにより、前記官能基に対し選択的に反応する成分をガス化して前記官能基と反応させる方法、及び、成形品を密閉容器中に載置し、前記官能基に対し選択的に反応する成分をガス化して、密閉容器中に送入し、前記官能基と、前記官能基に対し選択的に反応する成分とを、前記官能基に対し選択的に反応する成分のガス雰囲気中で反応させる方法などが挙げられるが、成形品及び前記官能基に対し選択的に反応する成分を密閉容器中に載置し、加温することにより、前記官能基に対し選択的に反応する成分をガス化して前記官能基と反応させる方法が好ましい。
前記官能基に対し選択的に反応する成分のガス雰囲気における濃度としては、10-3〜10-7mol/Lであることが好ましい。また、前記官能基と該官能基に対し選択的に反応する成分との反応は、40℃〜80℃の温度範囲で行われることが好ましい。また、容器内の圧力としては、1.1〜1.8atmであることが好ましい。
As a specific example of the method for forming the identification part for analysis, a component that selectively reacts with a molded product and the functional group is placed in a sealed container and heated to select the functional group. Gasifying the component which reacts automatically and reacting with the functional group, and placing the molded product in a sealed container, gasifying the component which selectively reacts with the functional group, into the sealed container Examples of the molded product include a method in which the functional group and a component that selectively reacts with the functional group are reacted in a gas atmosphere of the component that selectively reacts with the functional group. And a component that selectively reacts with the functional group is placed in a sealed container and heated to gasify the component that selectively reacts with the functional group and react with the functional group. preferable.
The concentration in the gas atmosphere of the component that selectively reacts with the functional group is preferably 10 −3 to 10 −7 mol / L. The reaction between the functional group and a component that selectively reacts with the functional group is preferably performed in a temperature range of 40 ° C to 80 ° C. Moreover, as a pressure in a container, it is preferable that it is 1.1-1.8 atm.
(2)原子間力顕微鏡により、前記分析用識別部を観察する工程
本発明において、上記で成形品表面に形成された分析用識別部は、原子間力顕微鏡により観察すると、前記分析用識別部が、隆起して観察され、前記分析用識別部が存在しない部位は隆起しないものとして観察され、これを画像として保存する。この画像により、分析の目的とする官能基の種類と、分散状態が目視で確認することができる。
(2) Step of observing the analysis identification unit with an atomic force microscope In the present invention, when the analysis identification unit formed on the surface of the molded product is observed with an atomic force microscope, the analysis identification unit is However, it is observed that it is raised, and the site where the identification part for analysis does not exist is observed as not raised, and is stored as an image. From this image, the type of functional group to be analyzed and the dispersion state can be visually confirmed.
本発明で用いることができる原子間力顕微鏡としては、クローズドタイプのものが好ましいが、必ずしもこの機種に限定されるものではない。原子間力顕微鏡に用いられる探針としては、カーボンナノチューブ、白金、イリジイウム、コバルト、アルミニウム、ダイヤモンド、珪素、窒化珪素及び炭化珪素などで構成されるものが挙げられる。また、原子間力顕微鏡におけるカンチレバーとしては、50nm以下程度の先端径を有するものが好ましく、測定の感度に合わせて選択される。また、カンチレバーのバネ定数としては0.5〜80N/m程度で調整される。
前記原子間力顕微鏡により前記分析用識別部を観察するが、前記分析用識別部は物理的相互作用により観察される。
The atomic force microscope that can be used in the present invention is preferably a closed type, but is not necessarily limited to this type. Examples of the probe used in the atomic force microscope include those composed of carbon nanotubes, platinum, iridium, cobalt, aluminum, diamond, silicon, silicon nitride, silicon carbide, and the like. The cantilever in the atomic force microscope preferably has a tip diameter of about 50 nm or less, and is selected according to the sensitivity of measurement. The spring constant of the cantilever is adjusted to about 0.5 to 80 N / m.
The identification part for analysis is observed by the atomic force microscope, and the identification part for analysis is observed by physical interaction.
(3)前記観察工程において得られた画像を処理する工程
続いて、上記で得た画像を用い処理を行うが、まず、分析用識別部、即ち選択的に表示された官能基が存在する、隆起領域と、これが存在しない隆起していない領域とに、二値化処理を行う。
さらに画像を細分割し、最小単位の画素面積を得る。識別成分が反応した隆起部分の総面積を最小単位の画素面積にて割ることにより隆起部分の個数が得られ、さらに分析用識別部が反応した隆起部分の個数を計測した総面積にて割ることにより単位面積当たりの実測官能基密度:dfm(個/nm2)を求めることができる。
(3) Step of processing the image obtained in the observation step Subsequently, processing is performed using the image obtained above. First, there is an identification part for analysis, that is, a selectively displayed functional group. Binarization processing is performed on the raised area and the non-raised area where it does not exist.
Further, the image is subdivided to obtain a minimum unit pixel area. Divide the total area of the raised parts to which the identification component responded by the pixel area of the smallest unit to obtain the number of raised parts, and further divide the number of raised parts to which the identification part for analysis reacted by the measured total area Thus, the measured functional group density per unit area: d fm (pieces / nm 2 ) can be obtained.
前記二値化処理においては、成形品表面(隆起していない領域)と、成形品表面に形成された隆起領域との境界部において、画像処理により分割して、分析用識別部が設けられた隆起領域と、前期識別部が設けられていない隆起していない領域を識別できることにより、分散状態を観察できると共に、それぞれの面積を割り出して数値化することができる。 In the binarization processing, an identification part for analysis is provided by dividing the boundary between the surface of the molded product (non-raised region) and the raised region formed on the surface of the molded product by image processing. By distinguishing the raised area from the non-raised area where the identification unit is not provided, the dispersed state can be observed, and each area can be calculated and digitized.
上記で得た実測官能基密度は見掛けの数値であるため、標準試料を用いて反応率を求め、見掛けの官能基密度を補正することが好ましい。これにより、上記分析用識別部を形成における未反応部を補正することができる。
具体的な補正方法の例としては、まず、官能基密度補正用の標準試料として、官能基が水酸基の場合、ポリビニルアルコールの成形品を用い、これと、前記官能基に対し選択的に反応する成分とを、上記分析用識別部を形成する方法と同様の方法により反応させた後、XPS(X−ray Photoelectron Spectroscopy)(パスエネルギー;17.90eV、ステップ;0.1eV)により得た炭素元素の1sスペクトルを、データ処理ソフト、例えば、Multipak(アルバック・ファイ(株)製)を用いて、標準試料表面の炭素元素1sスペクトルの成分を分け(波形分離し)、各成分の面積比を用いて反応率:Xを求め、比例計算(官能基密度=100・dfm/X)するにより、補正することができる。
Since the measured functional group density obtained above is an apparent numerical value, it is preferable to obtain the reaction rate using a standard sample and correct the apparent functional group density. Thereby, the unreacted part in forming the analysis identifying part can be corrected.
As an example of a specific correction method, first, as a standard sample for functional group density correction, when the functional group is a hydroxyl group, a molded product of polyvinyl alcohol is used, and this selectively reacts with the functional group. The carbon element obtained by reacting the components with a method similar to the method for forming the identification part for analysis and obtained by XPS (X-ray Photoelectron Spectroscopy) (pass energy; 17.90 eV, step; 0.1 eV) Using the data processing software such as Multipak (manufactured by ULVAC-PHI), the components of the carbon element 1s spectrum on the surface of the standard sample are separated (waveform separation), and the area ratio of each component is used. Then, the reaction rate: X can be obtained and corrected by proportional calculation (functional group density = 100 · d fm / X).
また、原子間力顕微鏡測定時の分解能については、例えば、上記測定により得られた画像の500nm×500nmの面積を512×512の点数程度とすることができる。 Moreover, about the resolution | decomposability at the time of atomic force microscope measurement, the area of 500 nm x 500 nm of the image obtained by the said measurement can be made into the grade of about 512 x 512, for example.
本発明は、例えば、(1)工業製品の積層、成形、接着工程における被着体の官能基による密着力の測定、(2)医療分野における組織培養シャーレの組織培養性を評価する方法など、種々の分析に適用できるが、必ずしもこの分野に限定されるものではない。 The present invention includes, for example, (1) measurement of adhesion force due to functional groups of an adherend in the lamination, molding, and adhesion process of industrial products, and (2) a method for evaluating tissue culture properties of tissue culture dishes in the medical field, etc. Although applicable to various analyses, the present invention is not necessarily limited to this field.
以下、実施例に基づいて、本発明を更に詳細に説明するが、本発明はこれによって何ら限定されるものではない。
本実施例では、接着剤用アミン硬化のビスフェノールA型エポキシ樹脂により、径10mmφの硬化成形物を準備し、硬化成形物表面の特定官能基(水酸基)について分析した。
次いで、密閉容器に、分析用識別成分として、無水ペンタフルオロプロピオン酸(濃度:8.0×10-4mol/L)、表面が平滑な上記エポキシ樹脂硬化成形物および官能基密度補正用標準試料としてポリビニルアルコールより構成されるキャストフィルムを入れ、65℃の温度にて反応を行った。このとき、上記分析用識別成分はガス化して、所定の濃度となり、そのガス雰囲気下、反応時間は6時間とした。この反応により、エポキシ樹脂硬化成形物表面の水酸基が、−OCOCF2CF3基(有機系フッ素)へとフッ素化処理された。
次いで、原子間力顕微鏡(アサイラム・リサーチ社製 MFP−3D)を用い、タッピングモードにて、上記エポキシ樹脂硬化成形物表面における分析用識別部を観察し画像を得た。分析用識別部形成前後の原子間力顕微鏡観察結果を図2に示す。かさ高いトレーサー成分が反応した部分は、隆起が観察された。
続いて、上記で測定した原子間力顕微鏡観察画像は、分析用識別が形成された隆起部分と隆起していない領域に2値化する(図3)。さらに画像を細分割し、最小単位の画素面積として、2.78nm2を得た。分析用識別が形成された隆起部分の総面積(3,615nm2)を最小単位の画素面積にて割ることにより、隆起部分の個数(1,300個)を得た。さらに、トレーサー部が反応した隆起部分の個数(1,300個)を計測した総面積(89,609nm2)にて割ることにより、実測官能基密度(1.4×10-2個/nm2)が得られた。
得られた実測官能基密度は見掛けの密度であるため、標準試料を用いて同一反応条件下の反応率(81.2%)を求め、これにより、補正することにより、真の官能基密度(1.8×10-2個/nm2)が得られた。
EXAMPLES Hereinafter, although this invention is demonstrated further in detail based on an Example, this invention is not limited at all by this.
In this example, a cured molded product having a diameter of 10 mmφ was prepared using an amine-cured bisphenol A type epoxy resin for adhesive, and a specific functional group (hydroxyl group) on the surface of the cured molded product was analyzed.
Next, in a sealed container, pentafluoropropionic anhydride (concentration: 8.0 × 10 −4 mol / L) as an analytical identification component, the above-mentioned epoxy resin cured molded product having a smooth surface, and a standard sample for functional group density correction A cast film composed of polyvinyl alcohol was put in and reacted at a temperature of 65 ° C. At this time, the identification component for analysis was gasified to a predetermined concentration, and the reaction time was 6 hours in the gas atmosphere. By this reaction, the hydroxyl group on the surface of the cured epoxy resin was fluorinated to -OCOCF 2 CF 3 group (organic fluorine).
Next, using an atomic force microscope (MFP-3D manufactured by Asylum Research), the identification part for analysis on the surface of the cured epoxy resin product was observed in a tapping mode to obtain an image. The results of atomic force microscope observation before and after the formation of the identification part for analysis are shown in FIG. In the part where the bulky tracer component reacted, the bulge was observed.
Subsequently, the atomic force microscope observation image measured above is binarized into a raised portion where the identification for analysis is formed and a non-raised region (FIG. 3). Further, the image was subdivided to obtain 2.78 nm 2 as the minimum unit pixel area. By dividing the total area (3,615 nm 2 ) of the raised portions on which the identification for analysis was formed by the minimum unit pixel area, the number of raised portions (1,300) was obtained. Furthermore, the actual functional group density (1.4 × 10 −2 / nm 2 ) is obtained by dividing the number of raised parts (1,300) reacted by the tracer part by the total area (89,609 nm 2 ) measured. )was gotten.
Since the actually measured functional group density obtained is an apparent density, the reaction rate (81.2%) under the same reaction conditions was obtained using a standard sample, and the true functional group density ( 1.8 × 10 −2 / nm 2 ) was obtained.
Claims (12)
前記官能基と、該官能基に対し選択的に反応する成分とを、気相で反応させ、成形品表面に分析用識別部を形成する工程と、
原子間力顕微鏡により、前記分析用識別部を観察する工程と、
前記観察工程において得られた画像を処理する工程と、
を有する成形品表面の官能基分析方法。 A method for qualitative and quantitative analysis of the functional group on the surface of a molded article composed of a compound having a functional group,
Reacting the functional group and a component that selectively reacts with the functional group in a gas phase to form an identification part for analysis on the surface of the molded article;
A step of observing the identification part for analysis by an atomic force microscope;
Processing the image obtained in the observation step;
The functional group analysis method of the surface of the molded article which has this.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005340230A JP2007147365A (en) | 2005-11-25 | 2005-11-25 | Analysis method of functional group on surface of molded product |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005340230A JP2007147365A (en) | 2005-11-25 | 2005-11-25 | Analysis method of functional group on surface of molded product |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007147365A true JP2007147365A (en) | 2007-06-14 |
Family
ID=38208946
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005340230A Pending JP2007147365A (en) | 2005-11-25 | 2005-11-25 | Analysis method of functional group on surface of molded product |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2007147365A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010054420A (en) * | 2008-08-29 | 2010-03-11 | Shimadzu Corp | Image display device for analyzer, and surface analyzing apparatus using the same |
JP2011069725A (en) * | 2009-09-25 | 2011-04-07 | Hiroshima Univ | Method for measuring functional group |
TWI411577B (en) * | 2011-08-11 | 2013-10-11 | Atomic Energy Council | A quantitative method for solid material surface functional groups |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05281276A (en) * | 1991-07-31 | 1993-10-29 | Toshiba Corp | Device for detecting electrostatic power in liquid |
JPH08208617A (en) * | 1995-11-02 | 1996-08-13 | Sankyo Co Ltd | Intermediate for producing quinoline carboxylic acid derivative |
JPH095338A (en) * | 1995-02-15 | 1997-01-10 | Basf Ag | Method for forming chemically discriminated picture by scanning atomic power microscope |
JPH10206438A (en) * | 1997-01-23 | 1998-08-07 | Toyota Motor Corp | Method for estimating surface functional group with use of atomic force microscope |
JPH1151945A (en) * | 1997-08-08 | 1999-02-26 | Toyota Motor Corp | Interatomic force microscope with spectral analysis mechanism |
JP2000065714A (en) * | 1998-08-21 | 2000-03-03 | Toyota Motor Corp | Atomic force microscope |
WO2002025246A1 (en) * | 2000-09-21 | 2002-03-28 | Matsushita Electric Industrial Co., Ltd. | Scanning type probe microscope probe and method of producing the same, and a scanning type probe microscope having this probe and polymer processing method using the same |
JP2002269541A (en) * | 2001-03-12 | 2002-09-20 | Hokkaido Univ | Gray-scale image processing method for analysis of observed image signal |
-
2005
- 2005-11-25 JP JP2005340230A patent/JP2007147365A/en active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05281276A (en) * | 1991-07-31 | 1993-10-29 | Toshiba Corp | Device for detecting electrostatic power in liquid |
JPH095338A (en) * | 1995-02-15 | 1997-01-10 | Basf Ag | Method for forming chemically discriminated picture by scanning atomic power microscope |
JPH08208617A (en) * | 1995-11-02 | 1996-08-13 | Sankyo Co Ltd | Intermediate for producing quinoline carboxylic acid derivative |
JPH10206438A (en) * | 1997-01-23 | 1998-08-07 | Toyota Motor Corp | Method for estimating surface functional group with use of atomic force microscope |
JPH1151945A (en) * | 1997-08-08 | 1999-02-26 | Toyota Motor Corp | Interatomic force microscope with spectral analysis mechanism |
JP2000065714A (en) * | 1998-08-21 | 2000-03-03 | Toyota Motor Corp | Atomic force microscope |
WO2002025246A1 (en) * | 2000-09-21 | 2002-03-28 | Matsushita Electric Industrial Co., Ltd. | Scanning type probe microscope probe and method of producing the same, and a scanning type probe microscope having this probe and polymer processing method using the same |
JP2002269541A (en) * | 2001-03-12 | 2002-09-20 | Hokkaido Univ | Gray-scale image processing method for analysis of observed image signal |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010054420A (en) * | 2008-08-29 | 2010-03-11 | Shimadzu Corp | Image display device for analyzer, and surface analyzing apparatus using the same |
JP2011069725A (en) * | 2009-09-25 | 2011-04-07 | Hiroshima Univ | Method for measuring functional group |
TWI411577B (en) * | 2011-08-11 | 2013-10-11 | Atomic Energy Council | A quantitative method for solid material surface functional groups |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Baer | Guide to making XPS measurements on nanoparticles | |
Yeo et al. | Nanoscale probing of a polymer‐blend thin film with tip‐enhanced raman spectroscopy | |
Ewing et al. | Infrared spectroscopy and spectroscopic imaging in forensic science | |
Zhao et al. | Single-molecule spectroscopy of amino acids and peptides by recognition tunnelling | |
McArthur | Applications of XPS in bioengineering | |
Dazzi et al. | AFM–IR: combining atomic force microscopy and infrared spectroscopy for nanoscale chemical characterization | |
Indrieri et al. | Adhesive-free colloidal probes for nanoscale force measurements: production and characterization | |
Stan et al. | Atomic force microscopy for nanoscale mechanical property characterization | |
Jourdan et al. | Imaging nanoscopic elasticity of thin film materials by atomic force microscopy: effects of force modulation frequency and amplitude | |
Eby et al. | Reverse engineering of polymeric multilayers using AFM-based nanoscale IR spectroscopy and thermal analysis | |
JP2007147365A (en) | Analysis method of functional group on surface of molded product | |
Morsch et al. | Exploring whether a buried nanoscale interphase exists within epoxy–amine coatings: implications for adhesion, fracture toughness, and corrosion resistance | |
Baio et al. | Surface analysis tools for characterizing biological materials | |
Kim et al. | Photothermal cantilever deflection spectroscopy | |
Avci et al. | Comparison of antibody− antigen interactions on collagen measured by conventional immunological techniques and atomic force microscopy | |
Aoyagi | Review of TOF‐SIMS bioanalysis using mutual information | |
Hull et al. | Structure and reactivity of adsorbed fibronectin films on mica | |
Guo et al. | Association kinetics from single molecule force spectroscopy measurements | |
Serantoni et al. | FIB-SIMS investigation of carbazole-based polymer and copolymers electrocoated onto carbon fibers, and an AFM morphological study | |
Moritz et al. | Interaction of cyanoacrylate with metal oxide surfaces (Cu, Al) | |
CN101629904A (en) | Device and method for testing phthalic acid ester content of plastic | |
Puckert et al. | Force Spectroscopy | |
Jickells | Fingerprinting: into the future | |
Wärnheim et al. | Nanomechanical and nano-FTIR analysis of polyester coil coatings before and after artificial weathering experiments | |
Mouvenchery et al. | Linking atomic force microscopy with nanothermal analysis to assess microspatial distribution of material characteristics in young soils |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080516 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100423 |
|
A131 | Notification of reasons for refusal |
Effective date: 20100511 Free format text: JAPANESE INTERMEDIATE CODE: A131 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20100928 |