JP2011069171A - Method for forming base-isolated building - Google Patents

Method for forming base-isolated building Download PDF

Info

Publication number
JP2011069171A
JP2011069171A JP2009223149A JP2009223149A JP2011069171A JP 2011069171 A JP2011069171 A JP 2011069171A JP 2009223149 A JP2009223149 A JP 2009223149A JP 2009223149 A JP2009223149 A JP 2009223149A JP 2011069171 A JP2011069171 A JP 2011069171A
Authority
JP
Japan
Prior art keywords
laminated rubber
building
rubber bearing
bolt
vertical load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009223149A
Other languages
Japanese (ja)
Other versions
JP5432653B2 (en
Inventor
Hiroyuki Nishioka
博之 西岡
Takanori Shimizu
孝典 清水
Tomoaki Endo
智昭 遠藤
Masashi Morita
将史 森田
Kazuhiko Kuchimura
和彦 口村
Minoru Okabashi
稔 岡橋
Yoshihiro Matsushita
嘉宏 松下
Yasuzo Ashizuka
泰三 芦塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Komuten Co Ltd
Original Assignee
Takenaka Komuten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Komuten Co Ltd filed Critical Takenaka Komuten Co Ltd
Priority to JP2009223149A priority Critical patent/JP5432653B2/en
Publication of JP2011069171A publication Critical patent/JP2011069171A/en
Application granted granted Critical
Publication of JP5432653B2 publication Critical patent/JP5432653B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To surely and economically suppress an adverse effect on a laminated rubber bearing. <P>SOLUTION: In a process in which the laminated rubber bearing 1 constituted by providing laminated rubber 1B between upper and lower panels 1A and 1C is incorporated into a building so that a base-isolated building can be formed, a restraining plate 3 for bearing vertical and horizontal loads acting on the laminated rubber bearing 1 is attached across the upper and lower panels 1A and 1C of the laminated rubber bearing 1 through bolt connection; and the tightening of a bolt 6 by the bolt connection is performed while bringing about a frictional force preventing the action of the horizontal load from causing sliding and allowing the action of the vertical load to bring about the sliding, when the vertical load is higher than the horizontal one. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、上下のパネル間に積層ゴムを設けて構成された積層ゴム支承を、建物に組み込んで免震建物を形成する免震建物形成方法に関する。   The present invention relates to a method for forming a base-isolated building by forming a base-isolated building by incorporating a laminated rubber support formed by providing a laminated rubber between upper and lower panels into a building.

建物の新築や、改修に伴って積層ゴム支承を建物に組み込むにあたっては、その過程において、積層ゴム支承が変形してしまうと、完成後に正規の免震性能を発揮できなくなる危険性がある。従って、建物完成までの期間は、積層ゴム支承が変形しないように拘束しておくことが好ましい。
従来、この種の免震建物形成方法としては、積層ゴム支承を建物に組み込む過程において、前記積層ゴム支承に作用する上部建物重量等の鉛直荷重と、捻れ力等の水平荷重とを負担する拘束用プレートを、ボルトによって前記積層ゴム支承の上パネルと下パネルとにわたって止着しておく方法があった。(例えば、特許文献1参照)
When a laminated rubber bearing is incorporated into a building as a result of new construction or renovation, if the laminated rubber bearing is deformed in the process, there is a risk that normal seismic isolation performance cannot be exhibited after completion. Therefore, it is preferable to constrain the laminated rubber bearing so that it does not deform during the period until the building is completed.
Conventionally, as a method of forming this type of base-isolated building, in the process of incorporating a laminated rubber bearing into a building, a constraint that bears a vertical load such as an upper building weight acting on the laminated rubber bearing and a horizontal load such as a torsional force. There has been a method in which the working plate is fixed over the upper panel and the lower panel of the laminated rubber support with bolts. (For example, see Patent Document 1)

特開平11−172955号公報(図2)Japanese Patent Laid-Open No. 11-172955 (FIG. 2)

上述した従来の免震建物形成方法によれば、特に、ボルトの締め付け強さを規定するものではないので、設置する人による接合強さに個人差があり、拘束用プレートの強度を効率よく発揮しきれないことがあった。
即ち、ボルトを強く締め付けた場合には、積層ゴム支承に作用する前記鉛直荷重と前記水平荷重の何れもがすべて拘束用プレートに流れるため、プレートの強度が不足することが懸念され、有効断面積の大きな高強度のプレートを使用しなければならなくなる。従って、拘束用プレートの重量が増加するから取付作業性が低下し、且つ、コストアップに繋がるといった問題がある。
一方、ボルトを弱く締めた場合には、積層ゴム支承の拘束が不充分となり、前記鉛直荷重や水平荷重によって積層ゴム支承が変形してしまう問題がある。
以上のように、従来の方法によれば、積層ゴム支承の防護の確実性に乏しく、且つ、拘束用プレートの設置作業効率が低く、コスト高となり易い問題点があった。
According to the conventional seismic isolation building forming method described above, the tightening strength of the bolts is not particularly stipulated, so there are individual differences in the joint strength depending on the person installing it, and the strength of the restraining plate is efficiently demonstrated. There was something I couldn't do.
That is, when the bolt is tightened strongly, all of the vertical load and the horizontal load acting on the laminated rubber bearing flow to the restraining plate, so there is a concern that the strength of the plate will be insufficient, and the effective cross-sectional area Large, high-strength plates must be used. Therefore, since the weight of the restraining plate increases, there are problems that the mounting workability is lowered and the cost is increased.
On the other hand, when the bolts are tightened weakly, there is a problem that the laminated rubber bearings are not sufficiently restricted and the laminated rubber bearings are deformed by the vertical load or the horizontal load.
As described above, according to the conventional method, there is a problem that the reliability of the protection of the laminated rubber bearing is poor, the installation work efficiency of the restraining plate is low, and the cost is likely to be high.

従って、本発明の目的は、上記問題点を解消し、積層ゴム支承への悪影響を抑えるにあたり、より確実に、且つ、経済的に実施できる免震建物形成方法を提供するところにある。   Accordingly, an object of the present invention is to provide a seismic isolation building forming method that can be more reliably and economically implemented in solving the above-described problems and suppressing adverse effects on laminated rubber bearings.

本発明の第1の特徴構成は、上下のパネル間に積層ゴムを設けて構成された積層ゴム支承を、建物に組み込んで免震建物を形成する過程において、前記積層ゴム支承に作用する鉛直荷重と水平荷重とを負担する拘束用プレートを、ボルト接合によって前記積層ゴム支承の上パネルと下パネルとにわたって取り付け、前記ボルト接合によるボルトの締め付けは、前記水平荷重より前記鉛直荷重が大きい場合に、前記水平荷重の作用では滑動せず、且つ、鉛直荷重の作用で滑動する摩擦力が得られる状態に行うところにある。   A first characteristic configuration of the present invention is a vertical load that acts on a laminated rubber bearing in a process of forming a base-isolated building by incorporating a laminated rubber bearing formed by providing laminated rubber between upper and lower panels into a building. And a restraining plate that bears the horizontal load are attached across the upper panel and the lower panel of the laminated rubber bearing by bolt joining, and the bolt tightening by the bolt joining is performed when the vertical load is greater than the horizontal load. It is in a state in which it does not slide by the action of the horizontal load and a frictional force that slides by the action of the vertical load is obtained.

本発明の第1の特徴構成によれば、拘束用プレートを積層ゴム支承に取り付けるボルトの締め付けを、前記水平荷重より前記鉛直荷重が大きい場合に、前記水平荷重の作用では滑動せず、且つ、鉛直荷重の作用で滑動する摩擦力が得られる状態に行うから、水平荷重の作用に対しては拘束用プレートがその強度を発揮でき、積層ゴム支承が変形することをより確実に防止することができる。
尚、積層ゴム支承は、もともと鉛直荷重の作用に対しては、充分な耐力を備えているから、仮に、建物建設過程において鉛直荷重が積層ゴム支承に作用しても悪影響を与えるものではない。
また、積層ゴム支承と拘束用プレートとの接合部分の摩擦力が、鉛直荷重の作用に対しては接合部分が滑動する値となるようにボルト締め付けを行うから、作用した鉛直荷重のすべてを拘束用プレートで負担することがなくなる。即ち、拘束用プレートと積層ゴム支承との両方に分散した状態で鉛直荷重を受けるから、それに伴ってプレートの厚みや強度を適切な値に低下させることができ、材料コストの低減に加えて、軽量化による取付作業性の向上を図ることが可能となる。
According to the first characteristic configuration of the present invention, when the vertical load is larger than the horizontal load, the bolt that attaches the restraining plate to the laminated rubber bearing is not slid by the action of the horizontal load, and Since the frictional force that slides due to the action of the vertical load is obtained, the restraining plate can exert its strength against the action of the horizontal load, and it is possible to more reliably prevent the laminated rubber bearing from being deformed. it can.
In addition, since the laminated rubber bearing originally has sufficient strength against the action of the vertical load, even if the vertical load acts on the laminated rubber bearing in the building construction process, there is no adverse effect.
In addition, the bolts are tightened so that the frictional force at the joint between the laminated rubber bearing and the restraint plate is such that the joint slides against the action of the vertical load. It will not be burdened with the plate for the work. That is, since it receives a vertical load in a state of being distributed to both the restraining plate and the laminated rubber bearing, the thickness and strength of the plate can be lowered to an appropriate value accordingly, in addition to the reduction of the material cost, It is possible to improve the mounting workability by reducing the weight.

本発明の第2の特徴構成は、前記ボルトの締め付け管理は、トルクレンチによって行うところにある。   According to a second characteristic configuration of the present invention, the tightening management of the bolt is performed by a torque wrench.

本発明の第2の特徴構成によれば、ボルトの締め付け強さを、トルクレンチによって定量的に管理することができるから、必要な接合摩擦力を簡単且つ正確に確保でき、拘束用プレートの取付作業性や取付性能の向上を図ることができる。   According to the second characteristic configuration of the present invention, since the tightening strength of the bolt can be quantitatively managed by the torque wrench, the necessary joining frictional force can be secured easily and accurately, and the restraint plate can be attached. Workability and mounting performance can be improved.

本発明の第3の特徴構成は、前記ボルト接合に係るボルト挿通孔は、縦長形状のルーズホールとして形成するところにある。   According to a third characteristic configuration of the present invention, the bolt insertion hole related to the bolt joint is formed as a vertically long loose hole.

本発明の第3の特徴構成によれば、積層ゴム支承への鉛直荷重の作用に伴って積層ゴム支承と拘束用プレートとが滑動する際に、ボルト挿通孔(縦長形状のルーズホール)の中を、長手方向(縦方向)に沿ってボルトが相対移動することができ、スムースに接合部の滑動を許容できる。従って、ボルト挿通孔の内周面の一個所にボルトが押し当たって応力集中が発生することを防止し易い。
また、ボルト挿通孔を大径の円形ルーズホールとするのに比べて、拘束用プレートの断面欠損をより少なくして強度低下を抑制できる。
According to the third characteristic configuration of the present invention, when the laminated rubber bearing and the restraining plate slide with the action of the vertical load on the laminated rubber bearing, the bolts are inserted in the bolt insertion holes (longitudinal loose holes). The bolt can be relatively moved along the longitudinal direction (longitudinal direction), and the sliding of the joint portion can be allowed smoothly. Therefore, it is easy to prevent the stress from being concentrated due to the bolt pressing against one place on the inner peripheral surface of the bolt insertion hole.
Moreover, compared with making a bolt insertion hole into a large diameter circular loose hole, the cross-sectional defect | deletion of a restraint plate can be decreased and a strength reduction can be suppressed.

本発明の第4の特徴構成は、前記積層ゴム支承は、逆打ち工法における構真柱の柱頭に取り付けるところにある。   According to a fourth characteristic configuration of the present invention, the laminated rubber bearing is attached to a stigma of a built-up column in the reverse driving method.

土留め壁の際に設置される構真柱には、地下掘削の進行によって変化する側方土圧の影響で水平荷重が作用し易く、構真柱の柱頭に積層ゴム支承を設置して上部構造の建設と地下掘削とを並行して実施する逆打ち工法においては、積層ゴム支承に前記水平荷重が悪影響を及ぼすことが懸念される。
本発明の第4の特徴構成によれば、前述の各作用を有効に利用することで、逆打ち工法で免震建物を建設する場合に、積層ゴム支承に悪影響が及ばない状態で、経済的に建設を進めることができる。
A horizontal load is easily applied to the structural pillar installed at the retaining wall due to the influence of lateral earth pressure that changes as the underground excavation progresses, and a laminated rubber bearing is installed at the top of the structural pillar. In the reverse driving method in which the construction of the structure and the underground excavation are performed in parallel, there is a concern that the horizontal load adversely affects the laminated rubber bearing.
According to the fourth characteristic configuration of the present invention, it is possible to effectively use each of the above-described actions, so that when a base-isolated building is constructed by a backlash method, the laminated rubber bearing is not adversely affected. Construction can proceed.

免震建物の要部を示す正面視断面図Front sectional view showing the main part of the base-isolated building 積層ゴム支承の説明図Illustration of laminated rubber bearing 免震建物の形成方法を示す説明図Explanatory drawing showing the method of forming seismic isolation buildings 免震建物の形成方法を示す説明図Explanatory drawing showing the method of forming seismic isolation buildings 免震建物の形成方法を示す説明図Explanatory drawing showing the method of forming seismic isolation buildings 免震建物の形成方法を示す説明図Explanatory drawing showing the method of forming seismic isolation buildings 積層ゴム支承の平面配置図Planar layout of laminated rubber bearing

以下に本発明の実施の形態を図面に基づいて説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は、本発明の免震建物形成方法を採用して建設された免震建物Bの要部を示しており、地下1階部分に積層ゴム支承1が組み込まれている。
前記免震建物Bは、地下部分の建設と地上部分の建設とが並行して実施される所謂「逆打ち工法」によって形成されている。
地下部分の建設に当たっては、予め外周部に山留め壁2を形成しておき、その内側を掘削しながら地下1階部分を形成し、順次、下層の掘削と躯体の建設とを繰り返して実施される。
FIG. 1 shows a main part of a base-isolated building B constructed by adopting the base-isolated building forming method of the present invention, and a laminated rubber bearing 1 is incorporated in the first basement part.
The seismic isolation building B is formed by a so-called “reversing method” in which the construction of the underground part and the construction of the ground part are performed in parallel.
In the construction of the underground part, the retaining wall 2 is formed on the outer peripheral part in advance, the underground first floor part is formed while excavating the inside, and the lower layer excavation and the construction of the frame are sequentially repeated. .

前記積層ゴム支承1は、図2に示すように、矩形の金属製上パネル1Aと、矩形の金属製下パネル1Cとを設けると共に、両パネル間に、ゴム等からなる弾性層と鋼板等からなる剛性層とを交互に多数積層して円柱状に成形した積層ゴム1Bを一体的に設けて構成してあり、剛性層どうしが水平方向に相対変位するに伴う弾性層の変形で、地震時の建物の振動周期を長周期化することができる。
尚、積層ゴム支承1は、当該実施形態の免震建物Bにおいては、地下1階の各柱の上下中間部に設置されており、特に、平面視において前記山留め壁2に近接する列に設置されている積層ゴム支承1に関しては、建物の完成間際まで、水平変位を拘束する拘束用プレート3が取り付けられている。
即ち、地下掘削に先行させて地中に設置される構真柱4の上に、前記積層ゴム支承1を介して地上部分の建設が実施されるが、山留め壁2に近接する構真柱4には、地下掘削に伴う土圧変化の影響で水平変位が発生し易く(図5参照)、この水平変位が積層ゴム支承1に及ぶのを前記拘束用プレート3によって防止するものである。
前記拘束用プレート3は、図2に示すように、金属製の矩形板で構成してある。また、上辺部分と下辺部分とにそれぞれ複数のボルト挿通孔5が辺に沿って間隔をあけて設けてあり、このボルト挿通孔5に挿通させた高力ボルト6によって、前記上パネル1Aと前記下パネル1Cとにわたる状態にアングル部材7を介してボルト接合してある。
尚、拘束用プレート3は、上パネル1Aと下パネル1Cとの各4辺にわたって取り付けることに限らず、当該実施形態においては、土留め壁2への土圧の作用方向に沿ったセン断力がプレート面内応力として作用する該当辺にわたって取り付けてある。具体的には、図7に示すように、平面視において土留めコーナ部に設置される積層ゴム支承1の場合は、コーナー部で直交する二つの土留め壁2にそれぞれ面する2辺に取り付けてあり、その他の土留め壁際の積層ゴム支承1の場合は、土留め壁2の面に直交する2辺に取り付けてある。
また、図2に示すように、前記ボルト挿通孔5の内、下辺部分の各ボルト挿通孔5bは、高力ボルト6が挿通できる程度の僅かなクリアランスを備えた丸穴として設けられている。
一方、上辺部分の各ボルト挿通孔5aは、挿通させた高力ボルト6が径方向に沿って縦横に移動させることができる程度のクリアランスを備えた縦長形状のルーズホールとして設けられている。
As shown in FIG. 2, the laminated rubber support 1 is provided with a rectangular metal upper panel 1A and a rectangular metal lower panel 1C, and an elastic layer made of rubber or the like and a steel plate between the two panels. The laminated rubber 1B, which is formed in a cylindrical shape by alternately laminating a plurality of rigid layers, is integrally provided, and the elastic layer is deformed by the relative displacement of the rigid layers in the horizontal direction. The vibration period of the building can be lengthened.
The laminated rubber bearings 1 are installed in the upper and lower middle portions of the pillars on the first basement floor in the base-isolated building B of the present embodiment, and particularly installed in a row close to the retaining wall 2 in plan view. With respect to the laminated rubber bearing 1, the restraint plate 3 that restrains the horizontal displacement is attached until the building is completed.
That is, the construction of the ground part is carried out via the laminated rubber support 1 on the construction pillar 4 installed in the ground prior to the underground excavation, but the construction pillar 4 close to the retaining wall 2 is constructed. The horizontal displacement is likely to occur due to the influence of earth pressure change due to underground excavation (see FIG. 5), and the horizontal displacement is prevented from reaching the laminated rubber support 1 by the restraining plate 3.
As shown in FIG. 2, the restraining plate 3 is a metal rectangular plate. Further, a plurality of bolt insertion holes 5 are provided at intervals along the sides in the upper side portion and the lower side portion, respectively, and the upper panel 1A and the above-described one are formed by the high strength bolts 6 inserted through the bolt insertion holes 5. It is bolted via an angle member 7 in a state extending over the lower panel 1C.
The restraining plate 3 is not limited to being attached to each of the four sides of the upper panel 1A and the lower panel 1C. In the present embodiment, the shearing force along the direction of earth pressure acting on the retaining wall 2 is used. Are attached over the corresponding sides which act as plate in-plane stresses. Specifically, as shown in FIG. 7, in the case of the laminated rubber bearing 1 installed in the earth retaining corner portion in plan view, it is attached to the two sides facing the two earth retaining walls 2 orthogonal to each other at the corner portion. In the case of the laminated rubber bearing 1 at the other retaining wall, it is attached to two sides orthogonal to the surface of the retaining wall 2.
As shown in FIG. 2, each bolt insertion hole 5 b in the lower side portion of the bolt insertion hole 5 is provided as a round hole having a slight clearance enough to allow the high-strength bolt 6 to be inserted therethrough.
On the other hand, each bolt insertion hole 5a in the upper side portion is provided as a vertically elongated loose hole having a clearance that allows the inserted high-strength bolt 6 to move vertically and horizontally along the radial direction.

前記高力ボルト6の締め付けは、前記アングル部材7と拘束用プレート3との接合面での摩擦力が所定の範囲におさまるようにトルクレンチによって正確に管理されている。
上述の摩擦力は、該当する積層ゴム支承1に作用する水平荷重と鉛直荷重との関係から設定される。
ここに前記水平荷重とは、地下掘削に伴う土圧変化の影響で構真柱4が水平に変位する際の変位力を意味し、前記鉛直荷重とは、上方に形成された免震建物Bから積層ゴム支承1に作用する建物重量を意味する。通常の場合、建物重量(鉛直荷重)は、構真柱4の水平変位力(水平荷重)に比べて圧倒的に大きな値となる。
前記摩擦力の設定は、前記水平荷重の作用では滑動せず、且つ、鉛直荷重の作用で滑動する範囲で設定される。即ち、水平荷重〜鉛直荷重の範囲で設定される。
従って、積層ゴム支承1は、前記拘束用プレート3を装着してある状態では、前記水平荷重による水平変位は防止でき、且つ、前記鉛直荷重については、前記拘束用プレート3と共に負担することが出来る。
尚、前記アングル部材7と拘束用プレート3との接合面での摩擦力は、前記高力ボルト6の回転トルク値と一定の関係があるから、トルクレンチを用いて高力ボルトを所定回転トルクとなるように締め付けることで、所望の摩擦力を容易に確保することができる。
The tightening of the high-strength bolt 6 is accurately managed by a torque wrench so that the frictional force at the joint surface between the angle member 7 and the restraining plate 3 falls within a predetermined range.
The above-mentioned frictional force is set from the relationship between the horizontal load and the vertical load acting on the corresponding laminated rubber bearing 1.
Here, the horizontal load means a displacement force when the structural column 4 is horizontally displaced due to the influence of earth pressure change due to underground excavation, and the vertical load is a seismically isolated building B formed above. Means the weight of the building acting on the laminated rubber bearing 1. In a normal case, the building weight (vertical load) is overwhelmingly larger than the horizontal displacement force (horizontal load) of the structural pillar 4.
The frictional force is set within a range in which the frictional force does not slide under the action of the horizontal load and slides under the action of the vertical load. That is, it is set in the range of horizontal load to vertical load.
Accordingly, the laminated rubber bearing 1 can prevent horizontal displacement due to the horizontal load in a state where the restraining plate 3 is mounted, and can bear the vertical load together with the restraining plate 3. .
Note that the frictional force at the joint surface between the angle member 7 and the restraining plate 3 has a certain relationship with the rotational torque value of the high-strength bolt 6, so that the high-strength bolt is turned to a predetermined rotational torque using a torque wrench. The desired frictional force can be easily ensured by tightening so that.

次に、免震建物Bの形成方法に関して説明する。
[1]山留め壁2を形成すると共に、その内側を地下1階部分まで掘削し、柱芯位置に、構真台柱8、構真柱4を設置する(図3参照)。
[2]構真柱4の上端部に鉄骨鉄筋コンクリート造の免震下部基礎9を形成した後、その上に積層ゴム支承1を設置する(図4参照)。
[3]前記積層ゴム支承1の上に、1階躯体を形成すると共に、土留め壁2に近接する箇所に設置してある積層ゴム支承1には、前記拘束用プレート3を取り付ける(図5参照)。
[4]地上部では上部躯体を形成する一方、地下部では二次掘削を行った後、地下1階躯体を形成する(図6参照)。以後、地上部での上部躯体の形成と、地下部での掘削と下部躯体の形成とを繰り返して実施する。
[5]免震建物Bの完成間際に、前記拘束用プレート3を取り外す。
Next, a method for forming the seismic isolation building B will be described.
[1] While the mountain retaining wall 2 is formed, the inner side is excavated to the first basement level, and the structural pillar 8 and the structural pillar 4 are installed at the column core position (see FIG. 3).
[2] After forming the seismic isolation lower foundation 9 made of steel reinforced concrete at the upper end of the structural pillar 4, the laminated rubber bearing 1 is installed thereon (see FIG. 4).
[3] A first-floor frame is formed on the laminated rubber bearing 1, and the restraining plate 3 is attached to the laminated rubber bearing 1 installed at a location close to the retaining wall 2 (FIG. 5). reference).
[4] While an upper frame is formed in the above-ground part, after underground excavation is performed in the underground part, a first-floor frame is formed (see FIG. 6). Thereafter, the formation of the upper frame in the above-ground part, the excavation in the underground part, and the formation of the lower frame are repeatedly performed.
[5] The restraining plate 3 is removed just before the seismic isolation building B is completed.

〔別実施形態〕
以下に他の実施の形態を説明する。
[Another embodiment]
Other embodiments will be described below.

〈1〉 前記積層ゴム支承1は、先の実施形態で説明した構造形式や形状や素材に限るものではなく、適宜、変更することが可能である。
また、拘束用プレート3の取付構造に関しても、適宜変更することが可能である。
また、積層ゴム支承1に対する拘束用プレート3の取り付け箇所は、先の実施形態で説明したものに限るものではなく、例えば、積層ゴム支承1の全周にわたって取り付けるように構成してあってもよい。
〈2〉 また、積層ゴム支承1を組み込む箇所は、先の実施形態で説明した地下1階部分に限るものではなく、他の地下階であったり、地上階の中間免震として組み込まれるものであってもよい。
〈3〉 前記積層ゴム支承1を組み込む建物は、新規建物に限らず、例えば、免震を施してない既存建物に、積層ゴム支承1を組み込む免震改修も対象となる。
<1> The laminated rubber bearing 1 is not limited to the structure type, shape, and material described in the previous embodiment, and can be appropriately changed.
Further, the mounting structure of the restraining plate 3 can be changed as appropriate.
Moreover, the attachment location of the restraining plate 3 with respect to the laminated rubber support 1 is not limited to that described in the previous embodiment, and for example, it may be configured to be attached over the entire circumference of the laminated rubber support 1. .
<2> Further, the location where the laminated rubber bearing 1 is incorporated is not limited to the first basement portion described in the previous embodiment, but may be another basement or may be incorporated as an intermediate seismic isolation on the ground floor. There may be.
<3> The building in which the laminated rubber support 1 is incorporated is not limited to a new building, and, for example, seismic isolation repair that incorporates the laminated rubber bearing 1 in an existing building that has not undergone seismic isolation is also a target.

尚、上述のように、図面との対照を便利にするために符号を記したが、該記入により本発明は添付図面の構成に限定されるものではない。また、本発明の要旨を逸脱しない範囲において、種々なる態様で実施し得ることは勿論である。   In addition, as mentioned above, although the code | symbol was written in order to make contrast with drawing convenient, this invention is not limited to the structure of an accompanying drawing by this entry. In addition, it goes without saying that the present invention can be carried out in various modes without departing from the gist of the present invention.

1 積層ゴム支承
1A 上パネル
1B 積層ゴム
1C 下パネル
3 拘束用プレート
4 構真柱
5 ボルト挿通孔
B 免震建物
DESCRIPTION OF SYMBOLS 1 Laminated rubber support 1A Upper panel 1B Laminated rubber 1C Lower panel 3 Restraint plate 4 Construction pillar 5 Bolt insertion hole B Seismic isolation building

Claims (4)

上下のパネル間に積層ゴムを設けて構成された積層ゴム支承を、建物に組み込んで免震建物を形成する過程において、
前記積層ゴム支承に作用する鉛直荷重と水平荷重とを負担する拘束用プレートを、ボルト接合によって前記積層ゴム支承の上パネルと下パネルとにわたって取り付け、
前記ボルト接合によるボルトの締め付けは、前記水平荷重より前記鉛直荷重が大きい場合に、前記水平荷重の作用では滑動せず、且つ、鉛直荷重の作用で滑動する摩擦力が得られる状態に行う免震建物形成方法。
In the process of building a seismic isolation building by incorporating a laminated rubber bearing constructed by providing laminated rubber between the upper and lower panels in the building,
A restraining plate that bears a vertical load and a horizontal load acting on the laminated rubber bearing is attached across the upper panel and the lower panel of the laminated rubber bearing by bolt joining,
When the vertical load is larger than the horizontal load, the bolt is tightened by the bolt joint so as not to slide by the action of the horizontal load and to obtain a frictional force to slide by the action of the vertical load. Building formation method.
前記ボルトの締め付け管理は、トルクレンチによって行う請求項1に記載の免震建物形成方法。   The seismic isolation building forming method according to claim 1, wherein tightening management of the bolt is performed by a torque wrench. 前記ボルト接合に係るボルト挿通孔は、縦長形状のルーズホールとして形成する請求項1又は2に記載の免震建物形成方法。   The method of forming a base-isolated building according to claim 1, wherein the bolt insertion hole related to the bolt joint is formed as a vertically long loose hole. 前記積層ゴム支承は、逆打ち工法における構真柱の柱頭に取り付ける請求項1〜3の何れか一項に記載の免震建物形成方法。   The said laminated rubber support is a seismic isolation building formation method as described in any one of Claims 1-3 attached to the capital of a true pillar in the reverse driving method.
JP2009223149A 2009-09-28 2009-09-28 Seismic isolation building method Expired - Fee Related JP5432653B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009223149A JP5432653B2 (en) 2009-09-28 2009-09-28 Seismic isolation building method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009223149A JP5432653B2 (en) 2009-09-28 2009-09-28 Seismic isolation building method

Publications (2)

Publication Number Publication Date
JP2011069171A true JP2011069171A (en) 2011-04-07
JP5432653B2 JP5432653B2 (en) 2014-03-05

Family

ID=44014683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009223149A Expired - Fee Related JP5432653B2 (en) 2009-09-28 2009-09-28 Seismic isolation building method

Country Status (1)

Country Link
JP (1) JP5432653B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6319377A (en) * 1986-07-11 1988-01-27 株式会社大林組 Execution of earthquake damping structure
JP2000291031A (en) * 1999-04-07 2000-10-17 Toda Constr Co Ltd Construction method for base isolation structure

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6319377A (en) * 1986-07-11 1988-01-27 株式会社大林組 Execution of earthquake damping structure
JP2000291031A (en) * 1999-04-07 2000-10-17 Toda Constr Co Ltd Construction method for base isolation structure

Also Published As

Publication number Publication date
JP5432653B2 (en) 2014-03-05

Similar Documents

Publication Publication Date Title
TWI494486B (en) Combined steel sheet pile, diaphragm wall, and method of reutilizing combined steel sheet pile
KR20160075901A (en) Segment structure having shear key of island type and longitudinal strand for shield tunnel
JP6166560B2 (en) Extension structure of seismic isolation building
JP2008075393A (en) Steel panel, assembly thereof, and tunnel reinforcing structure and reinforcing method using the same
JP6147083B2 (en) Shield tunnel reinforcement structure and reinforcement method
JP6317122B2 (en) Yamazushi support work
JP2008031682A (en) Aseismically supporting structure during temporary bearing of building, and aseismically supporting method during temporary bearing of building
JP2011246910A (en) Construction method of underground structure
JP5432653B2 (en) Seismic isolation building method
JP6541255B2 (en) Pile design method and structure support structure
JP4958044B2 (en) Installation structure and installation method for shield tunnel approach
JP4787010B2 (en) Mechanical parking lot on the basement floor
JP2006348690A (en) Retrofitting method for base isolation of existing building
JP4228308B2 (en) Reinforcement method for existing floors and seismic isolation method for existing buildings
JP4844477B2 (en) Synthetic wall structure and its construction method
JP2007315136A (en) Foundation structure using existing pile and new pile
JP2006063595A (en) Earth reinforcing structure
JP5520156B2 (en) Temporary receiving structure of structure and temporary receiving method
JP6368758B2 (en) Foundation structure and foundation structure
JP2009041242A (en) Earth retaining structure, and corrugated steel plate panel for use in it
JP6449115B2 (en) Seismic structure and earthquake resistance method
JP2019157508A (en) Under-ground piled column and seismic base-isolated buildings
JP2008303587A (en) Top-down construction method for base-isolated building
JP6289230B2 (en) Temporary jack fixing structure
JP7038014B2 (en) Construction method of seismic isolation structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120627

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130411

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130529

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131206

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees