JP2011068511A - Superconductive material, superconductive thin film, and method for manufacturing the same - Google Patents

Superconductive material, superconductive thin film, and method for manufacturing the same Download PDF

Info

Publication number
JP2011068511A
JP2011068511A JP2009220102A JP2009220102A JP2011068511A JP 2011068511 A JP2011068511 A JP 2011068511A JP 2009220102 A JP2009220102 A JP 2009220102A JP 2009220102 A JP2009220102 A JP 2009220102A JP 2011068511 A JP2011068511 A JP 2011068511A
Authority
JP
Japan
Prior art keywords
superconducting
thin film
lnfeaso
less
iron arsenic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009220102A
Other languages
Japanese (ja)
Other versions
JP5334120B2 (en
Inventor
Akira Iyo
彰 伊豫
Hiroshi Eisaki
洋 永崎
Kiichi Miyazawa
喜一 宮沢
Parasharam Shirage
パラシャラム シラゲ
Kosuke Tanaka
康資 田中
Sei Kito
聖 鬼頭
Kunihiro Kikata
邦宏 木方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2009220102A priority Critical patent/JP5334120B2/en
Publication of JP2011068511A publication Critical patent/JP2011068511A/en
Application granted granted Critical
Publication of JP5334120B2 publication Critical patent/JP5334120B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a superconductive material and a superconductive thin film having a higher superconducting transition temperature Tc which exceeds 50 K in an iron-arsenide-based superconductive material, although Tc was hitherto raised by forming a fluorine-substituted type and an oxygen defective type. <P>SOLUTION: In an iron-arsenide-based superconductive material having a crystal structure of ZrCuSiAs type, an iron-arsenide-based super conductive material represented by the chemical formula: LnFeAsO<SB>1-y</SB>H<SB>x</SB>(wherein Ln is at least one of elements chosen from the group consisting of Y and lanthanoids; y is 0 or more and 0.5 or less; and x is 0.01 or more and 0.5 or less) is provided by incorporating hydrogen. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、超伝導転移温度(Tc)の高い鉄ヒ素系超電導材料、超伝導薄膜及びこれらの製造方法に関する。   The present invention relates to an iron arsenic superconducting material having a high superconducting transition temperature (Tc), a superconducting thin film, and a method for producing them.

近年、室温超伝導を目指す超伝導材料の開発が盛んに行われている。超伝導材料は、線材、薄膜、バルク材の形状で利用され、例えば超伝導送電線、超電導磁石(例としてリニアモーターカーやMRI用磁石)、超伝導デバイスに利用されている。その中で、高温超伝導体の材料として、鉄系超伝導体が報告され、開発が進められている。鉄系超伝導体として、化学式LnFeOPh(LnはY及び希土類元素の少なくとも一種であり、Phは、P、As、及びSbのうちの少なくとも1種)で示され、ZrCuSiAs型(空間群P4/nmm)の結晶構造を有する超伝導化合物が知られている(特許文献1)。特許文献1では、フッ素をドープした化学式LaFeOPh(Phは、P、As、及びSbのうちの少なくとも1種)を提案し、LaFeO0.940.06Asで超伝導転移温度が7K付近の超伝導体が得られることが記載されている。 In recent years, superconducting materials aiming at room temperature superconductivity have been actively developed. Superconducting materials are used in the form of wires, thin films, and bulk materials. For example, they are used in superconducting power transmission lines, superconducting magnets (eg, linear motor cars and MRI magnets), and superconducting devices. Among them, iron-based superconductors have been reported and developed as materials for high-temperature superconductors. The iron-based superconductor is represented by the chemical formula LnFeOPh (Ln is at least one of Y and rare earth elements, Ph is at least one of P, As, and Sb), and is of the ZrCuSiAs type (space group P4 / nmm ) Is known (Patent Document 1). In Patent Document 1, a chemical formula LaFeOPh (Ph is at least one of P, As, and Sb) doped with fluorine is proposed, and the superconducting transition temperature is around 7K at LaFeO 0.94 F 0.06 As. It is described that a superconductor can be obtained.

本発明者らは、LnFeAsO1−y(Lnは、ランタノイド元素でLn=La,Ce,Pr,Nd,Sm等、yは酸素欠損率)という化学式で表される新しい超伝導体(最高Tc〜54K)を開発した(非特許文献1、2)。この物質の新しい点は、従来フッ素を用いないと超伝導材料にならなかった物質LnFeAsOを、酸素を欠損させる(1−y)だけで、50Kを超える高いTcを得た点にある。 The present inventors have developed a new superconductor (maximum Tc˜) represented by the chemical formula LnFeAsO 1-y (Ln is a lanthanoid element and Ln = La, Ce, Pr, Nd, Sm, etc., y is an oxygen deficiency rate). 54K) was developed (Non-Patent Documents 1 and 2). The new point of this substance is that the substance LnFeAsO, which has not become a superconducting material unless fluorine is used conventionally, has a high Tc of over 50 K only by depleting oxygen (1-y).

特開2007−320829号公報JP 2007-320829 A

伊豫彰他、「鉄ヒ素系新高温超伝導体の合成と基礎物性」固体物理、Vol.43,No.10,2008,p.53−64Akira Ito et al., “Synthesis and Fundamental Properties of New Arsenic-Based High-Temperature Superconductors” Solid Physics, Vol. 43, no. 10, 2008, p. 53-64 伊豫彰、「鉄系新超伝導体の高圧合成」高圧力の科学と技術、Vol.19,No2,p.106−112Akira Ito, “High-pressure synthesis of iron-based new superconductors” High-pressure science and technology, Vol. 19, No. 2, p. 106-112

従来の鉄系超伝導材料(特許文献1)では、フッ素をドープして超伝導転移温度Tcの高い材料を得ている。しかしながら、フッ素がドープされにくいこと、安定なフッ素化合物LnOFが不純物として試料に残留しやすいことから、良質な試料の合成が困難であった。   In a conventional iron-based superconducting material (Patent Document 1), a material having a high superconducting transition temperature Tc is obtained by doping fluorine. However, since it is difficult to dope fluorine, and the stable fluorine compound LnOF tends to remain as impurities in the sample, it is difficult to synthesize a high-quality sample.

フッ素をドープしないで高いTcを得るために、本発明者らは、酸素欠損型の鉄ヒ素系材料を開発した(非特許文献1、2)。このLnFeAsO1−y(Lnは、ランタノイド元素でLn=La,Ce,Pr,Nd,Sm等)では、酸素の欠損量を多くするにつれ結晶格子が収縮し、Tcを向上できることがわかっている。なお、本発明者らは、LnFeAsO1−yで高いTcが得られる結晶構造上の特徴を見つけて出願をしている(特願2008−301827)。 In order to obtain high Tc without doping with fluorine, the present inventors have developed an oxygen-deficient iron arsenic material (Non-Patent Documents 1 and 2). It has been found that with this LnFeAsO 1-y (Ln is a lanthanoid element and Ln = La, Ce, Pr, Nd, Sm, etc.), the crystal lattice contracts as the amount of oxygen deficiency increases, and Tc can be improved. In addition, the present inventors have found and applied for a feature on the crystal structure in which high Tc can be obtained with LnFeAsO 1-y (Japanese Patent Application No. 2008-301827).

LnFeAsO1−yで高いTcが得られる結晶構造上を実現する為には、酸素を欠損させて結晶格子を収縮させることが重要であった。50K以上の高いTcを持つ超電導材料を得るためには、多くの酸素を欠損させる必要が有る。しかしながら、多くの酸素を欠損させると試料の合成が困難になるという問題があった。 In order to realize a crystal structure where high Tc can be obtained with LnFeAsO 1-y , it was important to shrink the crystal lattice by depleting oxygen. In order to obtain a superconducting material having a high Tc of 50K or more, it is necessary to deplete a large amount of oxygen. However, there is a problem that it becomes difficult to synthesize a sample if a large amount of oxygen is lost.

良質なバルク材合成や薄膜作製がより実用的な方法で作製できる鉄ヒ素系超伝導材料が望まれている。また、従来のフッ素を含む材料の薄膜作製では、フッ素が入りにくいため、超伝導になる薄膜を作製することが困難であるという問題があった。   There is a demand for an iron arsenic superconducting material capable of producing a high-quality bulk material and a thin film by a more practical method. Further, in the conventional thin film production of a material containing fluorine, there is a problem that it is difficult to produce a superconductive thin film because fluorine is difficult to enter.

本発明は、これらの問題を解決しようとするものであり、鉄ヒ素系超伝導材料において、高いTcを有する良質な超電導材料を得て、焼結体、単結晶体、薄膜を提供することを目的とするものである。また、そのための製造方法を提供することを目的とするものである。   The present invention is intended to solve these problems, and provides a sintered body, a single crystal body, and a thin film by obtaining a high-quality superconducting material having a high Tc in an iron arsenic superconducting material. It is the purpose. Moreover, it aims at providing the manufacturing method for it.

本発明は、上記目的を達成するために、以下の特徴を有するものである。   In order to achieve the above object, the present invention has the following features.

本発明の鉄ヒ素系超電導材料は、水素を含有することを特徴とする。本発明の鉄ヒ素系超電導材料は、ZrCuSiAs型の結晶構造を有することを特徴とする。本発明の鉄ヒ素系超電導材料は、酸素欠損型に水素を含有させることが好ましいが、酸素欠損型でない化学式LnFeAsOで表される母物質に水素を含有させても良い。具体的には、酸素欠損型とは、化学式LnFeAsO1−y(Y及びランタノイド元素からなる群から選択される少なくとも1種の元素、yは0以上で0.5以下)で表される物質である。yが0の場合は実質的に酸素欠損型でない母物質を表している。 The iron arsenic superconducting material of the present invention is characterized by containing hydrogen. The iron arsenic superconducting material of the present invention is characterized by having a ZrCuSiAs type crystal structure. The iron arsenic superconducting material of the present invention preferably contains hydrogen in an oxygen deficient type, but may contain hydrogen in a parent material represented by a chemical formula LnFeAsO that is not an oxygen deficient type. Specifically, the oxygen deficient type is a substance represented by the chemical formula LnFeAsO 1-y (at least one element selected from the group consisting of Y and a lanthanoid element, y is 0 or more and 0.5 or less). is there. When y is 0, it represents a matrix material that is not substantially oxygen deficient.

本発明の鉄ヒ素系超電導材料は、化学式LnFeAsO1−y(Y及びランタノイド元素からなる群から選択される少なくとも1種の元素、yは0以上0.5以下、xは0.01以上0.5以下)で表されることを特徴とする。具体例は、LnはLa、Ce、Pr、Nd、Sm、Gd、Tb、Dyなどである。 The iron arsenic superconducting material of the present invention has the chemical formula LnFeAsO 1-y H x (at least one element selected from the group consisting of Y and a lanthanoid element, y is 0 or more and 0.5 or less, and x is 0.01 or more. 0.5 or less). For example, Ln is La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, or the like.

本発明の方法は、鉄ヒ素系超電導材料を製造する方法であって、水素を含有させることを特徴とする。本発明の方法における鉄ヒ素系超電導材料は、ZrCuSiAs型の結晶構造を有することを特徴とする。具体的には、水素を含む物質を出発原料として用いて、化学式LnFeAsO1−y(ただし、LnはY及びランタノイド元素からなる群から選択される少なくとも1種の元素、yは0以上0.5以下、xは0.01以上0.5以下)で表される超電導材料を製造することを特徴とする。また、ZrCuSiAs型の結晶構造を有する化学式LnFeAsO1−y(ただし、LnはY及びランタノイド元素からなる群から選択される少なくとも1種の元素、yは0以上0.5以下)を合成した後に、水素を含有させて製造することを特徴とする。 The method of the present invention is a method for producing an iron arsenic superconducting material, characterized by containing hydrogen. The iron arsenic superconducting material in the method of the present invention has a ZrCuSiAs type crystal structure. Specifically, using a substance containing hydrogen as a starting material, the chemical formula LnFeAsO 1-y H x (where Ln is at least one element selected from the group consisting of Y and a lanthanoid element, y is 0 or more and 0) 0.5 or less, and x is 0.01 or more and 0.5 or less). Further, after synthesizing a chemical formula LnFeAsO 1-y having a ZrCuSiAs type crystal structure (where Ln is at least one element selected from the group consisting of Y and a lanthanoid element, y is 0 or more and 0.5 or less), It is characterized by containing hydrogen.

本発明の鉄ヒ素系超電導薄膜は、水素を含有することを特徴とする。本発明の鉄ヒ素系超電導薄膜は、ZrCuSiAs型の結晶構造を有することを特徴とする。本発明の鉄ヒ素系超電導薄膜の製造方法は、水素を含有する物質をターゲットとして用いて、化学式LnFeAsO1−y(ただし、LnはY及びランタノイド元素からなる群から選択される少なくとも1種の元素、yは0以上0.5以下、xは0.01以上0.5以下)で表される超電導薄膜を成膜することを特徴とする。また、水素を含む原料ガスを用いて、前記超電導薄膜を成膜することを特徴とする。また、水素ガスを含む雰囲気中で前記超電導薄膜を製造することを特徴とする。 The iron arsenic superconducting thin film of the present invention is characterized by containing hydrogen. The iron arsenic superconducting thin film of the present invention is characterized by having a ZrCuSiAs type crystal structure. The method for producing an iron arsenic superconducting thin film of the present invention uses a substance containing hydrogen as a target, and has a chemical formula LnFeAsO 1-y H x (where Ln is at least one selected from the group consisting of Y and a lanthanoid element) And a superconducting thin film represented by the following formula, wherein y is 0 or more and 0.5 or less, and x is 0.01 or more and 0.5 or less. Further, the superconducting thin film is formed using a source gas containing hydrogen. The superconducting thin film is manufactured in an atmosphere containing hydrogen gas.

本発明は、鉄ヒ素系超伝導材料に水素を含有させることにより、良質な超伝導体が得られた。水素を含有させることによって、結晶格子を大きく収縮させることができ、そのため、酸素を多く欠損させることなく、高いTcの超電導材料を得ることができた。また、結晶中に入らなかった余分な水素は、超電導材料から製造過程で自然に出て行くので、超電導材料中の不純物が少なくできるという効果が有る。   In the present invention, a high-quality superconductor was obtained by incorporating hydrogen into an iron arsenic superconductor material. By containing hydrogen, the crystal lattice can be greatly shrunk, so that a high Tc superconducting material can be obtained without losing much oxygen. In addition, since excess hydrogen that has not entered the crystal naturally comes out of the superconducting material during the manufacturing process, there is an effect that impurities in the superconducting material can be reduced.

本発明の鉄ヒ素系超電導材料は、酸素欠損型が好ましいが、酸素欠損型でない化学式LnFeAsOに水素を含有させても効果を奏する。酸素欠損型であれば、酸素が欠損した場所に水素が入りやすくなるため、より水素を含有させやすい効果があるので好ましい。   The iron arsenic superconducting material of the present invention is preferably an oxygen deficient type. However, even if hydrogen is contained in the chemical formula LnFeAsO which is not an oxygen deficient type, the effect can be obtained. The oxygen deficient type is preferable because hydrogen easily enters a location where oxygen is deficient, and thus has an effect of easily containing hydrogen.

本発明では、水素を含有させることにより、LnがLa、Ceの場合、従来のフッ素置換型、酸素欠損型に比べて、Tcが高くなる効果が得られた。また、水素を含有させることにより、LnがPrの場合、従来の酸素置換型に比べてTcが高くなる効果が得られた。また、水素を含有させることにより、従来のフッ素置換型に比べて純度の高い試料が得られた。即ち、実際に原料に水素を混ぜ込んで多結晶試料を合成することにより、不純物が大幅に低下する効果が得られた。水素を含有させることにより、フッ素を用いる場合と比較して、格子を収縮させる効果が大きいので、優れた超伝導特性を得ることができた。従来のフッ素置換型鉄ヒ素系超伝導材料では、フッ素を含む原材料を用いるので、どうしても材料中に、安定なフッ素化合物LnOFが不純物として残留し超伝導特性に影響を及ぼしていたが、本発明では、水素を含む原料を用いるので、余分な水素は材料外に自然に吐き出されて材料中に残留しないために、不純物による悪影響が少ない。余分な水素は、一時的にLn(OH)になると推測されるが、この化合物は高温では分解するため、試料中には残らないと考えられる。 In the present invention, by containing hydrogen, when Ln is La or Ce, the effect of increasing Tc is obtained as compared with the conventional fluorine substitution type and oxygen deficiency type. In addition, by adding hydrogen, when Ln is Pr, an effect of increasing Tc as compared with the conventional oxygen substitution type was obtained. Further, by containing hydrogen, a sample having higher purity than that of the conventional fluorine substitution type was obtained. That is, the effect of significantly reducing impurities was obtained by synthesizing a polycrystalline sample by actually mixing hydrogen into the raw material. By containing hydrogen, the effect of contracting the lattice is greater than when fluorine is used, so that excellent superconducting properties can be obtained. In the conventional fluorine-substituted iron arsenic superconducting material, since a raw material containing fluorine is used, a stable fluorine compound LnOF remains as an impurity in the material, which affects the superconducting properties. Since a raw material containing hydrogen is used, excess hydrogen is naturally discharged out of the material and does not remain in the material, so that there are few adverse effects due to impurities. Excess hydrogen is presumed to temporarily become Ln (OH) 3 , but this compound decomposes at high temperatures, and is considered not to remain in the sample.

本発明は、水素を含有させることにより、結晶格子を大きく収縮させることができるので、高圧合成において、従来より小さな圧力でTcの高い超電導材料を製造することができる。   In the present invention, since the crystal lattice can be greatly shrunk by containing hydrogen, a superconducting material having a high Tc can be produced in a high pressure synthesis at a pressure lower than that in the prior art.

本発明の超電導薄膜は、水素を含有させることにより、優れた超電導特性を示す。さらに、薄膜の格子定数を大きく変化させることができるため、基板と超電導薄膜の格子定数のマッチングを取りやすくなる。また、薄膜の格子定数を大きく変化させることができるため、用いる基板の選択肢が広がる。よって、水素を含有させることにより従来困難であった薄膜の形成が容易になった。   The superconducting thin film of the present invention exhibits excellent superconducting properties by containing hydrogen. Furthermore, since the lattice constant of the thin film can be greatly changed, it becomes easier to match the lattice constant of the substrate and the superconducting thin film. In addition, since the lattice constant of the thin film can be greatly changed, the choice of the substrate to be used is expanded. Therefore, the formation of a thin film, which has been difficult in the past, is facilitated by containing hydrogen.

本発明の実施例1の超電導材料の粉末X線回折パターンを示す図。The figure which shows the powder X-ray-diffraction pattern of the superconducting material of Example 1 of this invention. 本発明の実施例2の超電導材料(Ln=Sm)の格子定数(a軸長)と超電導転移温度(Tc)の関係を示す図。The figure which shows the relationship between the lattice constant (a-axis length) of the superconducting material (Ln = Sm) of Example 2 of this invention, and a superconducting transition temperature (Tc). 本発明の実施例3の超電導材料(Ln=La)の帯磁率の温度依存性を示す図。The figure which shows the temperature dependence of the magnetic susceptibility of the superconducting material (Ln = La) of Example 3 of this invention.

本発明の超電導材料は、水素を材料の構成要素として含むLnFeAsOをベースとする鉄系高温超電導材料であり、化学式で書くとLnFeAsO1−yに関する。ここで、Lnは、Y及びランタノイド元素(La,Ce,Pr,Nd,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,Lu)からなる群から選択される少なくとも一種の元素を表す。ランタノイドの具体的な元素として、例えば、La,Ce,Pr,Nd,Sm,Gd,Tb,Dyが挙げられる。これらの元素は、比較的良質な試料が合成しやすくTcが高い。酸素欠損率yは、LnFeAsO結晶からの酸素の欠損率を示している。y=0は、酸素が欠損していないことを示し、y=1は酸素がないことを示している。1−yは酸素が欠損していることを表している。上記化学式において、xとyは、等しくなくてよい。また、(1−y)とxの和が、1より大きくても良い。この場合は、水素原子が小さいので、結晶の隙間に入る可能性がある。即ち、(1−y)とxの和が、1以下でも1以上でもよい。 The superconducting material of the present invention is an iron-based high-temperature superconducting material based on LnFeAsO containing hydrogen as a component of the material, and relates to LnFeAsO 1-y H x when expressed by a chemical formula. Here, Ln is at least one element selected from the group consisting of Y and lanthanoid elements (La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu). Represents. Specific examples of lanthanoid elements include La, Ce, Pr, Nd, Sm, Gd, Tb, and Dy. These elements are easy to synthesize relatively good quality samples and have a high Tc. The oxygen deficiency rate y indicates the oxygen deficiency rate from the LnFeAsO crystal. y = 0 indicates that oxygen is not lost, and y = 1 indicates that there is no oxygen. 1-y indicates that oxygen is deficient. In the above chemical formula, x and y do not have to be equal. Further, the sum of (1-y) and x may be larger than 1. In this case, since the hydrogen atoms are small, there is a possibility of entering the gap between the crystals. That is, the sum of (1-y) and x may be 1 or less or 1 or more.

本発明の超電導材料を作製するには、LnFeAsOを母物質とする鉄系高温超電導材料を合成するときに、水素を材料の構成要素として用いることにより、超電導特性を飛躍的に高めることができる。本発明の超電導体の母物質であるLnFeAsOは、ZrCuSiAs型の結晶構造を有している。本発明では、水素を含有させることにより、鉄ヒ素系超電導材料の格子定数を収縮させてTcの高い超電導材料を作製した。以下、実施の形態について述べる。   In order to fabricate the superconducting material of the present invention, the superconducting properties can be dramatically improved by using hydrogen as a component of the material when synthesizing an iron-based high-temperature superconducting material using LnFeAsO as a base material. LnFeAsO which is a base material of the superconductor of the present invention has a ZrCuSiAs type crystal structure. In the present invention, by containing hydrogen, the lattice constant of the iron arsenic superconducting material is contracted to produce a superconducting material having a high Tc. Hereinafter, embodiments will be described.

(実施の形態1)
本発明の実施の形態1は、多結晶体の超電導材料に関する。従来のLnFeAsOの製造において用いていた原料に、水素を含有させるための原料として、Ln(OH)という水酸化物を用いる。ここでLnはランタニドの元素の少なくとも1つ以上を表す。まず、原料であるLnAs,Ln(OH),As,Fe,Feを適切な比率(例えばLnFeAsO0.70.2)で混合する。具体的には、LnAs前駆体、As、Fe粉(フルウチ化学、99.9%、100mesh)、αFe(レアメタリック、99.9%)とLn(OH)とを混合して混合粉とした。原料は、Ln:Fe:As:O:H=1:1:1:(1−y):xの組成比になるように秤量する。酸素量はFeとFe混合比により調節できる。
(Embodiment 1)
Embodiment 1 of the present invention relates to a polycrystalline superconducting material. A hydroxide of Ln (OH) 3 is used as a raw material for containing hydrogen in the raw material used in the production of conventional LnFeAsO. Here, Ln represents at least one of lanthanide elements. First, the raw materials LnAs, Ln (OH) 3 , As, Fe, and Fe 2 O 3 are mixed at an appropriate ratio (for example, LnFeAsO 0.7 H 0.2 ). Specifically, LnAs precursor, As, Fe powder (Furuuchi Chemical, 99.9%, 100 mesh), αFe 2 O 3 (rare metallic, 99.9%) and Ln (OH) 3 are mixed and mixed. Powdered. The raw materials are weighed so as to have a composition ratio of Ln: Fe: As: O: H = 1: 1: 1: (1-y): x. The amount of oxygen can be adjusted by the mixing ratio of Fe and Fe 2 O 3 .

次に混合粉を加圧してペレット状にする。ペレットに適切な圧力(1〜5万気圧)を加えた状態で、適切な温度(約800℃〜1200℃)で加熱する。以上の高圧合成法で行う。Smより原子番号が大きなランタノイドでは、Tc、格子定数の合成圧力依存性が大きい。一方LnがLaからNdまでは2GPa程度の圧力で合成できるので、より小型で簡便な高圧装置でも合成が可能である。なお、合成方法については、高圧合成法に限定するものではない。封管法を用いてもよい。   Next, the mixed powder is pressed into pellets. The pellet is heated at an appropriate temperature (about 800 ° C. to 1200 ° C.) with an appropriate pressure (1 to 50,000 atm) applied. The above high-pressure synthesis method is used. In the lanthanoid having an atomic number larger than Sm, Tc and the lattice constant are greatly dependent on the synthesis pressure. On the other hand, since Ln can be synthesized from La to Nd at a pressure of about 2 GPa, it can be synthesized even with a smaller and simpler high-pressure apparatus. Note that the synthesis method is not limited to the high-pressure synthesis method. A sealed tube method may be used.

(実施例1)
実施例1では、ランタノイドとしてSmを用いて超電導材料を合成した。原料としてSmAs、Sm(OH)、As、Fe、Feを適切な比率で混合した。SmFeAsO1−yにおける酸素欠損率yが0.2、水素の含有量xが0.15となるように、粉末の組成比を調整した。yはLnFeAsO結晶からの酸素の欠損率を示している。混合粉を加圧してペレット状にする。ペレットに2万気圧を加えた状態で、1100℃で加熱した。以上のような合成法で、SmFeAsO0.80.15の焼結体を合成した。
Example 1
In Example 1, a superconducting material was synthesized using Sm as a lanthanoid. As raw materials, SmAs, Sm (OH) 3 , As, Fe, and Fe 2 O 3 were mixed at an appropriate ratio. The composition ratio of the powder was adjusted so that the oxygen deficiency y in SmFeAsO 1-y H x was 0.2 and the hydrogen content x was 0.15. y represents the oxygen deficiency from the LnFeAsO crystal. The mixed powder is pressed into pellets. It heated at 1100 degreeC in the state which added 20,000 atmospheres to the pellet. A sintered body of SmFeAsO 0.8 H 0.15 was synthesized by the synthesis method as described above.

比較例1として、水素を原料に混ぜない点以外は同様の製法でSmFeAsO0.8を合成した。 As Comparative Example 1, SmFeAsO 0.8 was synthesized by the same production method except that hydrogen was not mixed with the raw material.

図1に、実施例1のSmFeAsO0.80.15と比較例1のSmFeAsO0.8の粉末X線回折パターンを示す。比較例のSmFeAsO0.8(図1下段)では、黒丸で示す不純物SmAsのピークが見られるのに対して、実施例1のSmFeAsO0.80.15(図1上段)では、不純物に由来するピークが無いので純度が高くなっていることがわかる。なお、図1の右上の黒丸は、黒丸がSmAsを示す説明のためのものである。また、実施例1のSmFeAsO0.80.15(図1上段)は、結晶格子の格子定数のa軸長が3.911Å、c軸長が3.443Åである。一方、水素を含有しない比較例1は、a軸長が3.927Å、c軸長が3.469Åである。このように、実施例1のSmFeAsO0.80.15の格子定数は、SmFeAsO0.8の格子定数より小さくなっている。また、比較例1のSmFeAsO0.8の超電導転移温度(Tc)が、約40Kであるのに対し、実施例1のSmFeAsO0.80.15のTcは約54Kであった。 FIG. 1 shows powder X-ray diffraction patterns of SmFeAsO 0.8 H 0.15 of Example 1 and SmFeAsO 0.8 of Comparative Example 1. In the SmFeAsO 0.8 (lower part of FIG. 1) of the comparative example, a peak of the impurity SmAs indicated by a black circle is seen, whereas in the SmFeAsO 0.8 H 0.15 (upper part of FIG. 1) of the impurity, It can be seen that the purity is high because there is no derived peak. Note that the black circle on the upper right in FIG. 1 is for explanation that the black circle indicates SmAs. Further, in SmFeAsO 0.8 H 0.15 (upper part of FIG. 1) of Example 1, the a-axis length of the lattice constant of the crystal lattice is 3.911Å and the c-axis length is 3.443Å. On the other hand, Comparative Example 1 containing no hydrogen has an a-axis length of 3.927 mm and a c-axis length of 3.469 mm. Thus, the lattice constant of SmFeAsO 0.8 H 0.15 of Example 1 is smaller than the lattice constant of SmFeAsO 0.8 . In addition, the superconducting transition temperature (Tc) of SmFeAsO 0.8 of Comparative Example 1 was about 40K, whereas the Tc of SmFeAsO 0.8 H 0.15 of Example 1 was about 54K.

(実施例2)
本実施例では、ランタノイドとしてSmを用い、結晶格子の格子定数のa軸長の異なる超電導材料を合成して、超電導材料の特性を調べた。原料としてSmAs、Sm(OH)、As、Fe、Feを適切な比率で混合した。SmFeAsO1−yにおける酸素欠損率yが0.15〜0.25、水素の含有量xが0.1〜0.2になるように原料の組成比を調整して、a軸長の異なる超電導材料を作製して、格子定数a軸長と超電導転移温度(Tc)の関係を調べた。実施例1と同様に合成した。
(Example 2)
In this example, Sm was used as a lanthanoid, superconducting materials having different a-axis lengths of the lattice constant of the crystal lattice were synthesized, and the characteristics of the superconducting material were examined. As raw materials, SmAs, Sm (OH) 3 , As, Fe, and Fe 2 O 3 were mixed at an appropriate ratio. The composition ratio of the raw materials was adjusted so that the oxygen deficiency y in SmFeAsO 1-y H x was 0.15 to 0.25 and the hydrogen content x was 0.1 to 0.2. Different superconducting materials were produced, and the relationship between the lattice constant a-axis length and the superconducting transition temperature (Tc) was examined. Synthesis was performed in the same manner as in Example 1.

比較例2として、水素を原料に混ぜない点以外は同様の製法でSmFeAsO1−yを合成した。酸素欠損率yを0.15〜0.35に変化させてa軸長の異なる超電導材料を作製して、格子定数a軸長と超電導転移温度(Tc)の関係を調べた。 As Comparative Example 2, SmFeAsO 1-y was synthesized by the same production method except that hydrogen was not mixed with the raw material. Superconducting materials having different a-axis lengths were produced by changing the oxygen deficiency y from 0.15 to 0.35, and the relationship between the lattice constant a-axis length and the superconducting transition temperature (Tc) was examined.

図2に、実施例2のSmFeAsO1−y(黒丸)と、水素を加えていない比較例2のSmFeAsO1−y(白丸)の、格子定数a軸長と超電導転移温度(Tc)の関係を示す。SmFeAsO1−yでは、a軸長が3.915Åまでしか縮まないのに対して、SmFeAsO1−yでは、3.897Åにまで大きく縮んでいる。水素を含有させた超電導材料におけるこの性質は、格子の収縮が超電導を引き起こすFe系超電導体にとって、大変都合が良い。また、図1に示すように、SmAs不純物を大きく減らす効果もあった。 FIG. 2 shows the lattice constant a-axis length and superconducting transition temperature (Tc) of SmFeAsO 1-y H x (black circle) of Example 2 and SmFeAsO 1-y (white circle) of Comparative Example 2 in which hydrogen is not added. Show the relationship. In SmFeAsO 1-y , the a-axis length shrinks only to 3.915 mm, whereas in SmFeAsO 1-y H x , it shrinks greatly to 3.897 mm. This property of superconducting materials containing hydrogen is very convenient for Fe-based superconductors in which lattice contraction causes superconductivity. Moreover, as shown in FIG. 1, there was also an effect of greatly reducing SmAs impurities.

(実施例3)
本実施例では、ランタノイドとしてLaを用いた。原料としてLaAs、La(OH)、As、Fe、Feを適切な比率で混合した。原料の粉末の量は、LaFeAsO1−yにおける酸素欠損率yが0.3、水素の含有量xが0.3となるように、粉末の混合量を調整した。酸素欠損率はLaFeAsO結晶からの酸素の欠損率を示している。混合粉を加圧してペレット状にする。ペレットに2万気圧を加えた状態で、1100℃で加熱した。以上の高圧合成法で、LaFeAsO0.70.3を合成した。
(Example 3)
In this example, La was used as the lanthanoid. LaAs, La (OH) 3 , As, Fe, and Fe 2 O 3 were mixed at appropriate ratios as raw materials. The amount of the raw material powder was adjusted so that the oxygen deficiency y in LaFeAsO 1-y H x was 0.3 and the hydrogen content x was 0.3. The oxygen deficiency rate indicates the oxygen deficiency rate from the LaFeAsO crystal. The mixed powder is pressed into pellets. It heated at 1100 degreeC in the state which added 20,000 atmospheres to the pellet. LaFeAsO 0.7 H 0.3 was synthesized by the above high-pressure synthesis method.

比較例3として、水素を原料に混ぜない点以外は同様の製法でLaFeAsO0.7を合成した。 As Comparative Example 3, LaFeAsO 0.7 was synthesized in the same manner except that hydrogen was not mixed with the raw material.

図3に、水素を加えた超電導材料LaFeAsO1−y(例LaFeAsO0.70.3)と、水素を加えていない超電導材料LaFeAsO1−y(例LaFeAsO0.7)との、帯磁率の温度依存性を示す。帯磁率に変化が出る温度(図3中に矢印で示す)が、超電導転移温度(Tc)である。LaFeAsO1−yでは、Tcは最高でも28Kであるのに対して、LaFeAsO1−yでは、35Kにまで上昇している。このTcは、LaFeAsOを母物質とする超電導体の最高記録である。なお、格子定数(a軸長)が、LaFeAsO0.7で4.02Åであるのに対して、LaFeAsO0.70.3では、3.99Åと縮まっているのが、Tcが増加した原因である。このように、Hを入れることにより、格子がより大きく収縮するためTcの高い超電導材料が実現する。 FIG. 3 shows a superconducting material LaFeAsO 1-y H x (example LaFeAsO 0.7 H 0.3 ) added with hydrogen and a superconducting material LaFeAsO 1-y (example LaFeAsO 0.7 ) not added with hydrogen. The temperature dependence of magnetic susceptibility is shown. The temperature at which the magnetic susceptibility changes (indicated by an arrow in FIG. 3) is the superconducting transition temperature (Tc). In LaFeAsO 1-y , the maximum Tc is 28K, whereas in LaFeAsO 1-y H x , it rises to 35K. This Tc is the highest record of a superconductor using LaFeAsO as a base material. Incidentally, the lattice constant (a-axis length), whereas a 4.02Å in LaFeAsO 0.7, the LaFeAsO 0.7 H 0.3, that has contracted with 3.99A, Tc increased Responsible. Thus, by adding H, the lattice contracts more greatly, so that a superconducting material having a high Tc is realized.

(実施例4)
本実施例では、ランタノイドとして、実施例3のLaに換えて、Ce、Prで実施した。LnとしてCeを用いた場合は、水素を含有させることにより、酸素欠損型およびフッ素置換型の場合と比べてTcが40Kから45Kに上昇した。また、LnとしてPrを用いた場合は、水素を含有させることにより、酸素欠損型の場合と比べてTcが45Kから50Kに上昇した。
Example 4
In this example, Ce and Pr were used as lanthanoids instead of La in Example 3. When Ce was used as Ln, inclusion of hydrogen increased Tc from 40K to 45K as compared to oxygen deficient and fluorine substituted types. When Pr was used as Ln, the inclusion of hydrogen increased Tc from 45K to 50K compared to the oxygen deficient type.

(実施の形態2)
本発明の実施の形態2は、超電導薄膜の作製に関する。化学式LnFeAsO1−y(ただし、LnはY及びランタノイド元素からなる群から選択される少なくとも1種の元素、yは0以上0.5以下、xは0.01以上0.5以下)で表される超電導薄膜を成膜する。超電導薄膜を作製する方法の一つとして、AsHなど水素を含む原料ガスを用いる。水素を含むガスを用いて、気相成長方法又は分子線エピタキシー法などによって成膜する。水素を含むガスとして、AsHなど水素を含む原料ガスや蒸気がある。
(Embodiment 2)
The second embodiment of the present invention relates to the production of a superconducting thin film. Chemical formula LnFeAsO 1-y H x (where Ln is at least one element selected from the group consisting of Y and lanthanoid elements, y is 0 or more and 0.5 or less, x is 0.01 or more and 0.5 or less) A superconducting thin film is formed. As one method for producing a superconducting thin film, a source gas containing hydrogen such as AsH 3 is used. A film containing hydrogen is used to form a film by a vapor deposition method, a molecular beam epitaxy method, or the like. Examples of the gas containing hydrogen include a source gas containing hydrogen such as AsH 3 and steam.

また、超電導薄膜を作製する方法の一つとして、実施の形態1で示したような水素を含むターゲットを用意して、スパッタリングやレーザーアブレーションにより薄膜試料を作製する。ここで、ターゲットは必ずしもLnFeAsO1−y超伝導体である必要は無く、Ln、Fe、As、O、Hが含まれる混合物でもよい。最終的に形成される膜の状態で、LnFeAsO1−yになっているようにターゲットを準備する。 In addition, as one method for manufacturing a superconducting thin film, a target containing hydrogen as shown in Embodiment Mode 1 is prepared, and a thin film sample is manufactured by sputtering or laser ablation. Here, the target does not necessarily need to be a LnFeAsO 1-y H x superconductor, and may be a mixture containing Ln, Fe, As, O, and H. A target is prepared so as to be LnFeAsO 1-y H x in a state of a film finally formed.

また、超電導薄膜を作製する方法として、水素ガスを含む雰囲気中で薄膜を合成する方法、または、薄膜を合成した後に、水素を含む雰囲気中で処理する方法により、水素を含有させる。   As a method for producing a superconducting thin film, hydrogen is contained by a method of synthesizing a thin film in an atmosphere containing hydrogen gas or a method of synthesizing a thin film and then processing in an atmosphere containing hydrogen.

上記実施例2で判明したように、鉄ヒ素系超電導材料に水素を含有させることにより、格子の収縮を引き起こす性質は、薄膜においても同様の性質がある。これを利用すれば、薄膜試料をある結晶基板の上にエピタキシャル成長させる時に、試料の格子定数を大きく変化させることができるため、基板と試料の格子定数のマッチングを取りやすくなる。また、薄膜成長に用いる基板の選択肢が広がる。したがって、水素を含有させることにより従来困難であった薄膜の形成が容易になった。   As found in Example 2 above, the property of causing lattice contraction by containing hydrogen in the iron arsenic superconducting material is similar to that of the thin film. If this is utilized, when the thin film sample is epitaxially grown on a certain crystal substrate, the lattice constant of the sample can be greatly changed, so that the lattice constant of the substrate and the sample can be easily matched. Moreover, the choice of the substrate used for thin film growth is expanded. Therefore, the formation of a thin film, which has been difficult in the past, has become easy by including hydrogen.

以上の実施の形態1及び2で示したものは、代表的な例である。実施の形態1では、Hを含む原料を用いて、LnFeAsO1−y超電導材料を合成する方法として、Ln(OH)という水酸化物を用いる例を示したが、Hを含む原料であれば、固体、ガス、液体など原料の形態を問わず、製造方法に応じて適宜最適な形態で水素を添加含有させることができる。 The above-described Embodiments 1 and 2 are typical examples. In the first embodiment, as an example of a method of synthesizing a LnFeAsO 1-y H x superconducting material using a raw material containing H, an example using a hydroxide of Ln (OH) 3 is shown. If it exists, hydrogen can be added and contained appropriately in an optimum form depending on the production method regardless of the form of the raw material such as solid, gas, liquid and the like.

本発明のLnFeAsO1−yにおいて、yは0以上0.5以下、xは0.01以上0.5以下であれば、本発明の、格子定数が収縮する性質が顕著であり、Tcを向上させる効果があるので、好ましい。yが0の場合は、酸素が欠損しない場合である。また、yが0より大きく0.5以下であるとき、酸素欠損型による効果があるのでさらに好ましい。実施例で示したy(実施例1では、0.2、実施例2では、0.15〜0.25、実施例3では0.3)に限定されないことは明らかである。酸素欠損型による効果は、本発明者らによる非特許文献1及び2で知られているように、鉄ヒ素系超電導材料において、酸素欠損率が大きくなるにつれてa軸長が減少し優れた超電導材料となる。yが0.5より大きいと物質を合成しにくくTcの向上効果が減少する。特にyが0.15以上0.3以下の数値範囲であると、Tcが50K以上(LnがNd、Sm、Gd、Tb、Dyの場合)であるので特に好ましい。また、LnがLa、Ce、Prの場合も、水素を含有しないものに比較してTcの向上効果が大きい。 In the LnFeAsO 1-y H x of the present invention, if y is 0 or more and 0.5 or less and x is 0.01 or more and 0.5 or less, the property of the present invention that the lattice constant shrinks is remarkable, and Tc This is preferable because it has an effect of improving. When y is 0, oxygen is not lost. Further, it is more preferable that y is greater than 0 and 0.5 or less, since there is an effect of oxygen deficiency type. It is obvious that the present invention is not limited to y (0.2 in the first embodiment, 0.15 to 0.25 in the second embodiment, and 0.3 in the third embodiment). As is known from Non-Patent Documents 1 and 2 by the present inventors, the effect of the oxygen deficiency type is an excellent superconducting material in which the a-axis length decreases as the oxygen deficiency rate increases in the iron arsenic superconducting material. It becomes. If y is larger than 0.5, it is difficult to synthesize the substance, and the effect of improving Tc decreases. In particular, it is particularly preferable that y is in a numerical range of 0.15 or more and 0.3 or less because Tc is 50K or more (when Ln is Nd, Sm, Gd, Tb, Dy). In addition, when Ln is La, Ce, or Pr, the effect of improving Tc is greater than those that do not contain hydrogen.

本発明において水素の含有量xは、xは0.01以上0.5以下であれば、Tcを向上させる効果があるので、好ましい。xが0.01より小さいときは、水素含有の効果が水素を含有させない場合に比して十分でない。さらに、xが0.05以上で0.3以下のとき、Tcが50K以上であるのでより好ましい。   In the present invention, it is preferable that the content x of hydrogen is 0.01 or more and 0.5 or less because x has an effect of improving Tc. When x is smaller than 0.01, the effect of containing hydrogen is not sufficient as compared with the case where hydrogen is not contained. Furthermore, when x is 0.05 or more and 0.3 or less, Tc is 50K or more, which is more preferable.

上記実施の形態等で示した例は、発明を理解しやすくするために記載したものであり、この形態に限定されるものではない。   The examples shown in the embodiment and the like are described for easy understanding of the invention, and are not limited to this embodiment.

本発明の鉄系超電導材料は、多結晶体、焼結体、単結晶体、薄膜の形態で製作できるので、超電導送電線、超超電導磁石、超電導デバイスなどに利用でき、有用である。また、高い超電導転移温度を有し、高純度の材料であるので、臨界電流密度の向上につながり、応用上有用である。   Since the iron-based superconducting material of the present invention can be manufactured in the form of a polycrystalline body, a sintered body, a single crystal body, or a thin film, it can be used for a superconducting power transmission line, a superconducting magnet, a superconducting device, and the like. Moreover, since it has a high superconducting transition temperature and is a high-purity material, it leads to an improvement in critical current density, which is useful in application.

Claims (12)

水素を含有することを特徴とする鉄ヒ素系超電導材料。   An iron arsenic superconducting material characterized by containing hydrogen. ZrCuSiAs型の結晶構造を有することを特徴とする請求項1記載の鉄ヒ素系超電導材料。   2. The iron arsenic superconducting material according to claim 1, which has a ZrCuSiAs type crystal structure. ZrCuSiAs型の結晶構造を有し、化学式LnFeAsO1−y(ただし、LnはY及びランタノイド元素からなる群から選択される少なくとも1種の元素、yは0以上0.5以下、xは0.01以上0.5以下)で表されることを特徴とする鉄ヒ素系超電導材料。 ZrCuSiAs type crystal structure, chemical formula LnFeAsO 1-y H x (where Ln is at least one element selected from the group consisting of Y and lanthanoid elements, y is 0 or more and 0.5 or less, x is 0 .01 or more and 0.5 or less), an iron arsenic superconducting material. 鉄ヒ素系超電導材料を製造する方法において、水素を含有させることを特徴とする鉄ヒ素系超電導材料の製造方法。   A method for producing an iron arsenic superconducting material, wherein hydrogen is contained in the method for producing an iron arsenic superconducting material. 前記鉄ヒ素系超電導材料はZrCuSiAs型の結晶構造を有することを特徴とする請求項4記載の鉄ヒ素系超電導材料の製造方法。   5. The method of manufacturing an iron arsenic superconducting material according to claim 4, wherein the iron arsenic superconducting material has a ZrCuSiAs type crystal structure. 水素を含む物質を出発原料として用いて、ZrCuSiAs型の結晶構造を有し、化学式LnFeAsO1−y(ただし、LnはY及びランタノイド元素からなる群から選択される少なくとも1種の元素、yは0以上0.5以下、xは0.01以上0.5以下)で表される超電導材料を製造することを特徴とする鉄ヒ素系超電導材料の製造方法。 Using a substance containing hydrogen as a starting material, it has a ZrCuSiAs type crystal structure, and has a chemical formula LnFeAsO 1-y H x (where Ln is at least one element selected from the group consisting of Y and a lanthanoid element, y Is a superconducting material represented by 0 to 0.5 and x is 0.01 to 0.5), a method for producing an iron arsenic superconducting material. ZrCuSiAs型の結晶構造を有する化学式LnFeAsO1−y(ただし、LnはY及びランタノイド元素からなる群から選択される少なくとも1種の元素、yは0以上0.5以下)を合成した後に、水素を含有させて、化学式LnFeAsO1−y(ただし、LnはY及びランタノイド元素からなる群から選択される少なくとも1種の元素、yは0以上0.5以下、xは0.01以上0.5以下)で表される超電導材料を製造することを特徴とする鉄ヒ素系超電導材料の製造方法。 After synthesizing a chemical formula LnFeAsO 1-y having a ZrCuSiAs type crystal structure (where Ln is at least one element selected from the group consisting of Y and a lanthanoid element, y is 0 or more and 0.5 or less), And the chemical formula LnFeAsO 1-y H x (where Ln is at least one element selected from the group consisting of Y and lanthanoid elements, y is 0 or more and 0.5 or less, and x is 0.01 or more and 0.00. 5 or less) is produced. A method for producing an iron arsenic superconducting material, characterized by comprising: 水素を含有することを特徴とする鉄ヒ素系超電導薄膜。   An iron arsenic superconducting thin film characterized by containing hydrogen. ZrCuSiAs型の結晶構造を有することを特徴とする請求項8記載の鉄ヒ素系超電導薄膜。   9. The iron arsenic superconducting thin film according to claim 8, which has a ZrCuSiAs type crystal structure. 水素を含有する物質をターゲットとして用いて、化学式LnFeAsO1−y(ただし、LnはY及びランタノイド元素からなる群から選択される少なくとも1種の元素、yは0以上0.5以下、xは0.01以上0.5以下)で表される超電導薄膜を成膜することを特徴とする鉄ヒ素系超電導薄膜の製造方法。 Using a substance containing hydrogen as a target, the chemical formula LnFeAsO 1-y H x (where Ln is at least one element selected from the group consisting of Y and lanthanoid elements, y is 0 or more and 0.5 or less, x Is a superconducting thin film expressed by 0.01 to 0.5), and a method for producing an iron arsenic superconducting thin film. 水素を含む原料ガスを用いて、化学式LnFeAsO1−y(ただし、LnはY及びランタノイド元素からなる群から選択される少なくとも1種の元素、yは0以上0.5以下、xは0.01以上0.5以下)で表される超電導薄膜を成膜することを特徴とする鉄ヒ素系超電導薄膜の製造方法。 Using a source gas containing hydrogen, the chemical formula LnFeAsO 1-y H x (where Ln is at least one element selected from the group consisting of Y and a lanthanoid element, y is 0 or more and 0.5 or less, x is 0 A method for producing an iron arsenic superconducting thin film, characterized in that a superconducting thin film represented by .01 or more and 0.5 or less is formed. 水素ガスを含む雰囲気中で、化学式LnFeAsO1−y(ただし、LnはY及びランタノイド元素からなる群から選択される少なくとも1種の元素、yは0以上0.5以下、xは0.01以上0.5以下)で表される超電導薄膜を製造することを特徴とする鉄ヒ素系超電導薄膜の製造方法。 In an atmosphere containing hydrogen gas, the chemical formula LnFeAsO 1-y H x (where Ln is at least one element selected from the group consisting of Y and lanthanoid elements, y is 0 or more and 0.5 or less, and x is 0.5. A method for producing an iron arsenic superconducting thin film, characterized in that a superconducting thin film represented by (01) to (0.5) is produced.
JP2009220102A 2009-09-25 2009-09-25 Superconducting material, superconducting thin film, and manufacturing method thereof Expired - Fee Related JP5334120B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009220102A JP5334120B2 (en) 2009-09-25 2009-09-25 Superconducting material, superconducting thin film, and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009220102A JP5334120B2 (en) 2009-09-25 2009-09-25 Superconducting material, superconducting thin film, and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2011068511A true JP2011068511A (en) 2011-04-07
JP5334120B2 JP5334120B2 (en) 2013-11-06

Family

ID=44014181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009220102A Expired - Fee Related JP5334120B2 (en) 2009-09-25 2009-09-25 Superconducting material, superconducting thin film, and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5334120B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101489802B1 (en) 2012-07-26 2015-02-04 이화여자대학교 산학협력단 Fe-BASED SUPERCONDUCTING MATERIAL, AND PREPARING METHOD OF THE SAME

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6418919A (en) * 1987-07-15 1989-01-23 Sharp Kk Production of superconductor
JPH01294505A (en) * 1988-05-24 1989-11-28 Tokin Corp Hydrogen-containing oxide superconductor and production thereof
JP2007320829A (en) * 2006-06-02 2007-12-13 Japan Science & Technology Agency Superconductive compound and method of manufacturing the same
JP2008081784A (en) * 2006-09-27 2008-04-10 Nikko Kinzoku Kk Electrolyzed sediment copper treatment method
WO2009104611A1 (en) * 2008-02-18 2009-08-27 独立行政法人科学技術振興機構 Superconducting compound and method for producing the same
JP2010126388A (en) * 2008-11-27 2010-06-10 National Institute Of Advanced Industrial Science & Technology Super conductive material

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6418919A (en) * 1987-07-15 1989-01-23 Sharp Kk Production of superconductor
JPH01294505A (en) * 1988-05-24 1989-11-28 Tokin Corp Hydrogen-containing oxide superconductor and production thereof
JP2007320829A (en) * 2006-06-02 2007-12-13 Japan Science & Technology Agency Superconductive compound and method of manufacturing the same
JP2008081784A (en) * 2006-09-27 2008-04-10 Nikko Kinzoku Kk Electrolyzed sediment copper treatment method
WO2009104611A1 (en) * 2008-02-18 2009-08-27 独立行政法人科学技術振興機構 Superconducting compound and method for producing the same
JP2010126388A (en) * 2008-11-27 2010-06-10 National Institute Of Advanced Industrial Science & Technology Super conductive material

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6013022806; 伊豫彰: 高圧力の科学と技術 Vol.19,No.2, 20090520, 106-112 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101489802B1 (en) 2012-07-26 2015-02-04 이화여자대학교 산학협력단 Fe-BASED SUPERCONDUCTING MATERIAL, AND PREPARING METHOD OF THE SAME

Also Published As

Publication number Publication date
JP5334120B2 (en) 2013-11-06

Similar Documents

Publication Publication Date Title
Ma Progress in wire fabrication of iron-based superconductors
Muralidhar et al. A low-cost batch process for high-performance melt-textured GdBaCuO pellets
JP2013545213A (en) Iron-based superconducting structure and manufacturing method thereof
Yang et al. The role of F-doping and oxygen vacancies on the superconductivity in SmFeAsO compounds
JP2005529832A (en) Superconducting material and synthesis method
Zhu et al. First order transition in Pb $ _ {10-x} $ Cu $ _x $(PO $ _4 $) $ _6 $ O ($0.9< x< 1.1$) containing Cu $ _2 $ S
Yang et al. Superconductivity in some heavy rare-earth iron arsenide REFeAsO1-δ (RE= Ho, Y, Dy and Tb) compounds
Lu et al. Superconductivity at 41.0 K in the F-doped LaFeAsO1− xFx
JP2012066960A (en) Iron-based superconductor and method for producing the same
US20240099162A1 (en) Solid State Synthetic Method for Semiconductor Material
JP5334120B2 (en) Superconducting material, superconducting thin film, and manufacturing method thereof
KR100481234B1 (en) MgB2 BASED SUPERCONDUCTOR AND METHOD FOR PREPARATION THEREOF
US20110045985A1 (en) Superconductor comprising lamellar compound and process for producing the same
Mimouni et al. Structural and Magneto-Electrical Properties of Bi 2-x Sm x Sr 2 CaCu 2 O 8+ δ High T c Superconductor Prepared by Pechini Method
Tajima et al. Synthesis of Bi2223 by Low $ P_ {{\rm O} 2} $ Sintering
Mu et al. Doping Dependence of Superconductivity and Lattice Constants in Hole Doped La1-x Sr x FeAsO
Corrales-Mendoza et al. Growth of NdFeAsO films by a combination of metal–organic chemical vapor deposition and Arsenic Diffusion Processes
Aoba et al. Generation of Sr2Ca (n-1) CunOy phases (n= 5-7) by high pressure synthesis
Ueda et al. Synthesis of (Hg, Re) Ba2Can− 1CunO2+ 2n+ δ (n= 2, 3, 4) single crystals and their magnetization properties
Margiani et al. Impact of Ca (BO 2) 2 Doping on High-T c Phase Formation and Transport Properties of Bi (Pb)-2223 Superconductor
US20020004461A1 (en) High temperature superconductor
Yanrong et al. Synthesis of High Critical Current Density MgB2 Bulks by an Improved Mg-diffusion Method
Chen et al. Powder Technology of Magnesium Diboride and Its Applications
Karpov et al. Plasma-Chemical Synthesis of YBa2Cu3O7–y/CuO Granular Composites
Kandyel Synthesis, structural and transport properties of (Hg, Fe)-1212 superconducting cuprate

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130521

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130625

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130723

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130724

R150 Certificate of patent or registration of utility model

Ref document number: 5334120

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees