JP2012066960A - Iron-based superconductor and method for producing the same - Google Patents

Iron-based superconductor and method for producing the same Download PDF

Info

Publication number
JP2012066960A
JP2012066960A JP2010212350A JP2010212350A JP2012066960A JP 2012066960 A JP2012066960 A JP 2012066960A JP 2010212350 A JP2010212350 A JP 2010212350A JP 2010212350 A JP2010212350 A JP 2010212350A JP 2012066960 A JP2012066960 A JP 2012066960A
Authority
JP
Japan
Prior art keywords
iron
based superconductor
feas
superconductor
transition temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010212350A
Other languages
Japanese (ja)
Inventor
Minoru Nohara
実 野原
Kazutaka Kudo
一貴 工藤
Tomomi Kakitani
知美 垣谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okayama University NUC
Original Assignee
Okayama University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okayama University NUC filed Critical Okayama University NUC
Priority to JP2010212350A priority Critical patent/JP2012066960A/en
Publication of JP2012066960A publication Critical patent/JP2012066960A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Powder Metallurgy (AREA)
  • Compounds Of Iron (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an iron-based superconductor having a higher super-conductive transition temperature.SOLUTION: The iron-based superconductor is produced by partially substituting Fe of an FeAs plane with another element in the iron-based super conductor having the FeAs plane and by introducing atomic vacancies in order to administer codoping. Especially, the iron-based superconductor is made into Ca(FePt)Asby setting 0.3≤x≤0.4 and 0.4≤δ≤0.6. The iron-based superconductor is produced by a process for mixing raw materials being calcium, iron, and arsenic in a molar ratio of 1:(1-x)(2-δ):x(2-δ):2 and a process for sintering mixed raw materials.

Description

本発明は、鉄系超伝導体及びその製造方法に関するものである。   The present invention relates to an iron-based superconductor and a method for producing the same.

近年、新たな超伝導体として鉄系の超伝導体が注目されている(例えば、特許文献1参照。)。鉄は、それ自体ではいくら冷却しても超伝導にならないことが知られているとともに、磁性の象徴とも考えられていたため、鉄の化合物が超伝導性を示すことは大きな驚きでもあった。   In recent years, iron-based superconductors have attracted attention as new superconductors (see, for example, Patent Document 1). It was known that iron itself would not become superconducting no matter how much it was cooled, and it was also considered a symbol of magnetism, so it was a big surprise that iron compounds show superconductivity.

特に、最近では、酸素を含まない鉄系の超伝導体も提案されてきており(例えば、特許文献2参照。)、新たな研究分野として注目され、活発な研究開発が行われている。   In particular, iron-based superconductors that do not contain oxygen have recently been proposed (see, for example, Patent Document 2), which has attracted attention as a new research field and is actively researched and developed.

超伝導体の研究開発では、より高温の超伝導転移温度を有する超伝導体を見つけ出すことに主眼が行われている。   In superconductor research and development, the main focus is on finding superconductors having a higher superconducting transition temperature.

特に、既によく知られている銅酸化物超伝導体における知見から、鉄系超伝導体においても、鉄系超伝導体内に層状に存在しているREO面(ここでREは希土類元素である)あるいはFeAs面に対して、元素置換や酸素欠損などによってキャリアを化学ドープすることにより、超伝導転移温度の向上が図れるとする考え方に基づいて、様々な組み合わせの鉄系超伝導体の作成が試みられている。   In particular, based on the well-known knowledge of copper oxide superconductors, even in iron-based superconductors, the REO surface exists in a layered form in iron-based superconductors (where RE is a rare earth element) Alternatively, we tried to create various combinations of iron-based superconductors based on the idea that the superconducting transition temperature can be improved by chemically doping carriers on the FeAs surface by element substitution or oxygen deficiency. It has been.

すなわち、鉄系超伝導体でも、キャリアの化学ドープによってFeAs面の電子状態を所定の状態とすることにより、超伝導性が生じていると考えられている。   That is, it is considered that superconductivity is also generated in an iron-based superconductor by setting the electronic state of the FeAs surface to a predetermined state by chemical doping of carriers.

国際特開2009/104611号International Publication No. 2009/104611 国際特開2010/007929号International Patent Publication No. 2010/007929

本発明者らも、より高い超伝導転移温度を有する鉄系超伝導体を提供しようとしているものであり、そのための研究開発において、超伝導転移温度を向上させていると思われる新しい機序を見出し、本発明を成すに至ったものである。   The present inventors are also trying to provide an iron-based superconductor having a higher superconducting transition temperature. In the research and development for that purpose, a new mechanism that seems to have improved the superconducting transition temperature has been proposed. The headline and the present invention have been achieved.

本発明の鉄系超伝導体は、FeAs面を有する鉄系超伝導体において、FeAs面のFeを部分的に他の元素に置換するとともに原子空孔を導入してコドーピングしているものである。さらに、当該他の元素がPtであることにも特徴を有し、xを0.3≦x≦0.4、δを0.4≦δ≦0.6として、当該鉄系超伝導体がCa(Fe1-xPtx)2-δAs2であることにも特徴を有するものである。 The iron-based superconductor of the present invention is an iron-based superconductor having a FeAs surface, in which Fe on the FeAs surface is partially substituted with other elements and co-doped by introducing atomic vacancies. is there. Further, the other element is Pt, where x is 0.3 ≦ x ≦ 0.4, δ is 0.4 ≦ δ ≦ 0.6, and the iron-based superconductor is Ca (Fe 1-x Pt x It is also characterized by being 2-δ As 2 .

また、本発明の鉄系超伝導体の製造方法は、鉄の原子空孔が存在するFeAs面を有する鉄系超伝導体の製造方法において、xを0.3≦x≦0.4、δを0.4≦δ≦0.6とし、カルシウムと鉄と白金とヒ素のモル比を、1:(1−x)(2−δ):x(2−δ):2として原料の混合を行う工程と、混合した原料を焼成する工程とを有するものである。   Further, the method for producing an iron-based superconductor of the present invention is the method for producing an iron-based superconductor having an FeAs surface in which iron atomic vacancies exist, wherein x is 0.3 ≦ x ≦ 0.4 and δ is 0.4 ≦ δ. ≦ 0.6, the molar ratio of calcium, iron, platinum and arsenic is 1: (1-x) (2-δ): x (2-δ): 2, and the mixed raw materials are mixed And a step of firing.

本発明では、FeAs面のFeを部分的に他の元素に置換するとともに原子空孔を導入してコドーピングを施した鉄系超伝導体とすることにより、FeAs面のFeを部分的に他の元素に置換しただけの鉄系超伝導体と比較して、超伝導転移温度を向上させることができる。   In the present invention, Fe on the FeAs surface is partially replaced with other elements and atomic vacancies are introduced to obtain a co-doped iron-based superconductor, so that Fe on the FeAs surface is partially replaced with other elements. The superconducting transition temperature can be improved as compared with an iron-based superconductor that is simply substituted with the above element.

鉄系超伝導体Ca(Fe1-xPtx)2-δAs2(x=0.33、δ=0.4)の10Oeの磁場を印加して測定した磁化の温度依存性を示すグラフである。Iron-based superconductors Ca (Fe 1-x Pt x ) 2-δ As 2 (x = 0.33, δ = 0.4) is a graph showing the temperature dependence of magnetization was measured by applying a magnetic field 10Oe of. 図1の超伝導転移温度Tc付近の拡大図である。FIG. 2 is an enlarged view near the superconducting transition temperature Tc in FIG. 1. 鉄系超伝導体Ca(Fe1-xPtx)2-δAs2(x=0.32、δ=0.4)の電気的効率の測定結果のグラフである。It is a graph of the measurement result of the electrical efficiency of the iron-based superconductor Ca (Fe 1-x Pt x ) 2-δ As 2 (x = 0.32, δ = 0.4).

従来、鉄系超伝導体だけでなく、銅酸化物超伝導体などのような化合物系の超伝導体の場合、FeAs面を構成しているFeやCuO2面を構成しているCuの原子軌道が超伝導を担う伝導バンドを形成していると考えられている。 Conventionally, in the case of not only iron-based superconductors but also compound-based superconductors such as copper oxide superconductors, Fe atoms constituting FeAs surfaces and Cu atoms constituting CuO 2 surfaces It is thought that the orbit forms a conduction band responsible for superconductivity.

そのため、FeAs面を構成しているFeやCuO2面を構成しているCuの欠損や置換が生じると、その物体は超伝導となることはないと一般的に考えられており、そのため、FeやCu以外のサイトの元素置換によってFeAs面あるいはCuO2面にキャリアの化学ドープを行うことだけが行われていた。 For this reason, it is generally considered that when the defect or substitution of Fe constituting the FeAs surface or Cu constituting the CuO 2 surface occurs, the object does not become superconducting. Only chemical doping of carriers on the FeAs surface or CuO 2 surface was performed by element substitution at sites other than Cu and Cu.

これに対して、本発明の鉄系超伝導体では、鉄系超伝導体中に層状に存在しているFeAs面を構成しているFeの一部を欠損させて、FeAs面に原子空孔を導入しているものである。   On the other hand, in the iron-based superconductor of the present invention, a part of Fe constituting the FeAs surface existing in layers in the iron-based superconductor is lost, and atomic vacancies are formed in the FeAs surface. Is introduced.

特に、本発明の鉄系超伝導体では、FeAs面のFeを部分的に他の元素に置換することにより電子をドーピングしており、さらにFeAs面にFeの原子空孔を導入することによりホールをドーピングして、コドーピングを施しているものである。   In particular, in the iron-based superconductor of the present invention, electrons are doped by partially replacing Fe on the FeAs surface with other elements, and holes are introduced by introducing Fe vacancies into the FeAs surface. And co-doping.

このように、本発明では、コドーピングを施すことにより、超伝導転移温度を向上させた鉄系超伝導体を提供するものである。   As described above, the present invention provides an iron-based superconductor having an improved superconducting transition temperature by co-doping.

FeAs面のFeを部分的に置換する他の元素は、基本的には何であってもよいが、FeAs面のFeを部分的に置換するとともに、FeAs面にFeの原子空孔を導入するためにはPtが好適であった。   The other elements that partially replace Fe on the FeAs surface may be basically any element, but in order to partially replace Fe on the FeAs surface and introduce Fe vacancies into the FeAs surface. Pt was preferred for.

より具体的には、xを0.3≦x≦0.4、δを0.4≦δ≦0.6として、Ca(Fe1-xPtx)2-δAs2である鉄系超伝導体が好適である。 More specifically, an iron-based superconductor of Ca (Fe 1−x Pt x ) 2−δ As 2 where x is 0.3 ≦ x ≦ 0.4 and δ is 0.4 ≦ δ ≦ 0.6 is preferable.

この鉄系超伝導体は、以下の手順により製造することができる。   This iron-based superconductor can be manufactured by the following procedure.

まず、原料粉末の混合を行う。原料としては、Caの供給源としてカルシウム(Ca)、Feの供給源としてヒ化鉄(FeAs)、Ptの供給源として白金(Pt)またはヒ化白金(PtAs2)、Asの供給源としてヒ素(As)を用いている。なお、これらの原料に限定するものではない。   First, raw material powders are mixed. As raw materials, calcium (Ca) as a source of Ca, iron arsenide (FeAs) as a source of Fe, platinum (Pt) or platinum arsenide (PtAs2) as a source of Pt, arsenic (As As) is used. Note that the present invention is not limited to these raw materials.

各原料は、Ca,Fe,Pt,Asのモル比が1:(1−x)(2−δ):x(2−δ):2となるように計量し、アルミナ坩堝に逐次投入して混合している。なお、0.3≦x≦0.4、0.4≦δ≦0.6である。   Each raw material is weighed so that the molar ratio of Ca, Fe, Pt, As is 1: (1-x) (2-δ): x (2-δ): 2, and is sequentially put into an alumina crucible. Mixed. Note that 0.3 ≦ x ≦ 0.4 and 0.4 ≦ δ ≦ 0.6.

原料粉末を混合して混合粉末を作製した後、当該混合粉末をアルミナ坩堝に入れたままで石英ガラスのアンプルに真空封入する。   After the raw material powders are mixed to produce a mixed powder, the mixed powder is vacuum-sealed in a quartz glass ampoule while still in the alumina crucible.

次いで、石英ガラスのアンプルを焼成炉に入れて混合粉末を焼成することにより鉄系超伝導体としている   Next, a quartz glass ampule is placed in a firing furnace and the mixed powder is fired to obtain an iron-based superconductor.

焼成条件は、1000℃−72時間、または1050〜1100℃−40時間としているが、アンプル内の混合粉末を焼結させることができるのであれば、焼成条件は適宜調整してよい。   The firing conditions are 1000 ° C.-72 hours or 1050-1100 ° C.-40 hours. However, the firing conditions may be appropriately adjusted as long as the mixed powder in the ampoule can be sintered.

焼成後は、自然冷却により徐冷している。   After firing, it is gradually cooled by natural cooling.

上記の製造方法により、FeAs面のFeを部分的にPtに置換するとともに原子空孔を導入してコドーピングを施した鉄系超伝導体Ca(Fe1-xPtx)2-δAs2を製造できる。 The iron-based superconductor Ca (Fe 1-x Pt x ) 2-δ As 2 in which Fe on the FeAs surface is partially substituted with Pt and co-doped by introducing atomic vacancies by the above manufacturing method. Can be manufactured.

図1は、x=0.33、δ=0.4とした鉄系超伝導体Ca(Fe1-xPtx)2-δAs2の10Oeの磁場を印加して測定した磁化の温度依存性を示すグラフである。零磁場中冷却(ZFC)の条件で、試料は完全反磁性のほぼ100%に対するシールディング効果を示した。また、磁場中冷却(FC)の条件で、磁束の排除(マイスナー効果)は完全反磁性に対して〜10%で、この鉄系超伝導体が実際にバルク超伝導であることを示している。 FIG. 1 is a graph showing the temperature dependence of magnetization measured by applying a 10 Oe magnetic field of iron-based superconductor Ca (Fe 1-x Pt x ) 2-δ As 2 where x = 0.33 and δ = 0.4. It is. Under the condition of cooling in zero magnetic field (ZFC), the sample showed a shielding effect for almost 100% of complete diamagnetism. Moreover, under the condition of cooling in a magnetic field (FC), the elimination of magnetic flux (Meissner effect) is 10% with respect to complete diamagnetism, indicating that this iron-based superconductor is actually a bulk superconductor. .

図2は、図1の超伝導転移温度Tc付近の拡大図であり、x=0.33、δ=0.4とした鉄系超伝導体Ca(Fe1-xPtx)2-δAs2の超伝導転移温度Tcが38Kであることを示している。 FIG. 2 is an enlarged view near the superconducting transition temperature Tc in FIG. 1, and the superconductivity of the iron-based superconductor Ca (Fe 1-x Pt x ) 2-δ As 2 with x = 0.33 and δ = 0.4. It shows that the transition temperature Tc is 38K.

図3は、x=0.32、δ=0.4とした鉄系超伝導体Ca(Fe1-xPtx)2-δAs2の電気的効率の測定結果のグラフである。この場合の鉄系超伝導体Ca(Fe1-xPtx)2-δAs2の超伝導転移温度Tcが33Kであることを示している。 FIG. 3 is a graph showing the measurement results of the electrical efficiency of the iron-based superconductor Ca (Fe 1−x Pt x ) 2−δ As 2 where x = 0.32 and δ = 0.4. In this case, the superconducting transition temperature Tc of the iron-based superconductor Ca (Fe 1-x Pt x ) 2-δ As 2 is 33K.

ちなみに、FeAs面にFeの原子空孔を導入していない状態の化合物Ca(Fe1-xPtx)2As2は、0.0≦x≦0.08の範囲でのみ生成しえるが、超伝導は示さない。Feを部分的にPtに置換して、Feの原子空孔を導入してコドーピングとすることにより、超伝導性を発現させることができている。 Incidentally, the compound Ca (Fe 1-x Pt x ) 2 As 2 with no Fe vacancies introduced into the FeAs surface can be produced only in the range of 0.0 ≦ x ≦ 0.08, but superconductivity is shown. Absent. Superconductivity can be achieved by partially substituting Fe for Pt and introducing Fe atomic vacancies for co-doping.

また、FeAs面にFeの原子空孔を導入していない状態の、Feを部分的にCoで置換した鉄系超伝導体Ca(Fe1-xCox)2As2の超伝導転移温度Tcは、0.0≦x≦0.1において18K以下であり、Feを部分的にPtに置換した場合には、Feの原子空孔を導入してコドーピングとすることにより、転移温度Tcを上昇させることができている。 In addition, the superconducting transition temperature Tc of the iron-based superconductor Ca (Fe 1-x Co x ) 2 As 2 in which Fe is partially substituted with Co without introducing Fe vacancies on the FeAs surface. Is 18K or less at 0.0 ≦ x ≦ 0.1, and when Fe is partially substituted with Pt, the transition temperature Tc is increased by introducing Fe atomic vacancies and co-doping. Is able to.

このように、本発明では、Feの原子空孔を導入してコドーピングとすることにより、超伝導性を発現させたり、あるいは転移温度Tcを上昇させたりすることができる。   Thus, in the present invention, superconductivity can be exhibited or the transition temperature Tc can be increased by introducing Fe vacancies into co-doping.

Claims (4)

FeAs面を有する鉄系超伝導体において、
前記FeAs面のFeを部分的に他の元素に置換するとともに原子空孔を導入してコドーピングした鉄系超伝導体。
In iron-based superconductors with FeAs surfaces,
An iron-based superconductor in which Fe on the FeAs surface is partially substituted with another element and co-doped by introducing atomic vacancies.
前記他の元素がPtである請求項1に記載の鉄系超伝導体。   The iron-based superconductor according to claim 1, wherein the other element is Pt. xを0.3≦x≦0.4、δを0.4≦δ≦0.6として、Ca(Fe1-xPtx)2-δAs2である請求項1または請求項2に記載の鉄系超伝導体。 3. The iron-based superconductor according to claim 1, wherein x is 0.3 ≦ x ≦ 0.4 and δ is 0.4 ≦ δ ≦ 0.6, and is Ca (Fe 1−x Pt x ) 2−δ As 2 . 鉄の原子空孔が存在するFeAs面を有する鉄系超伝導体の製造方法であって、
xを0.3≦x≦0.4、δを0.4≦δ≦0.6とし、カルシウムと鉄と白金とヒ素のモル比を、1:(1−x)(2−δ):x(2−δ):2として原料の混合を行う工程と、
混合した原料を焼成する工程と
を有する鉄系超伝導体の製造方法。
A method for producing an iron-based superconductor having an FeAs surface in which iron vacancies exist,
x is 0.3 ≦ x ≦ 0.4, δ is 0.4 ≦ δ ≦ 0.6, and the molar ratio of calcium, iron, platinum, and arsenic is 1: (1-x) (2-δ): x (2-δ): 2 Mixing raw materials as
The manufacturing method of the iron-type superconductor which has the process of baking the mixed raw material.
JP2010212350A 2010-09-22 2010-09-22 Iron-based superconductor and method for producing the same Pending JP2012066960A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010212350A JP2012066960A (en) 2010-09-22 2010-09-22 Iron-based superconductor and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010212350A JP2012066960A (en) 2010-09-22 2010-09-22 Iron-based superconductor and method for producing the same

Publications (1)

Publication Number Publication Date
JP2012066960A true JP2012066960A (en) 2012-04-05

Family

ID=46164694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010212350A Pending JP2012066960A (en) 2010-09-22 2010-09-22 Iron-based superconductor and method for producing the same

Country Status (1)

Country Link
JP (1) JP2012066960A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014031307A (en) * 2012-07-12 2014-02-20 Tokyo Metropolitan Univ BiS2-BASED SUPERCONDUCTOR
WO2014069481A1 (en) * 2012-11-02 2014-05-08 古河電気工業株式会社 Superconductive thin oxide film
WO2015045733A1 (en) * 2013-09-26 2015-04-02 国立大学法人岡山大学 Iron-containing superconductive substance, and method for producing same
CN105002562A (en) * 2015-07-22 2015-10-28 中国科学院上海微系统与信息技术研究所 Ferrum-arsenic-base high-temperature superconductor single crystal based on calcium fluorine layer and preparing method thereof
CN114822976A (en) * 2022-04-28 2022-07-29 中南大学 Preparation method of iron-arsenic compound and iron-based superconductor
WO2024061035A1 (en) * 2022-09-21 2024-03-28 中南大学 Arsenic-iron alloy, and preparation method and resourceful treatment method therefor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014031307A (en) * 2012-07-12 2014-02-20 Tokyo Metropolitan Univ BiS2-BASED SUPERCONDUCTOR
WO2014069481A1 (en) * 2012-11-02 2014-05-08 古河電気工業株式会社 Superconductive thin oxide film
US9812233B2 (en) 2012-11-02 2017-11-07 Furukawa Electric Co., Ltd. Superconducting oxide thin film
WO2015045733A1 (en) * 2013-09-26 2015-04-02 国立大学法人岡山大学 Iron-containing superconductive substance, and method for producing same
JPWO2015045733A1 (en) * 2013-09-26 2017-03-09 国立大学法人 岡山大学 Iron-based superconducting material and manufacturing method thereof
CN105002562A (en) * 2015-07-22 2015-10-28 中国科学院上海微系统与信息技术研究所 Ferrum-arsenic-base high-temperature superconductor single crystal based on calcium fluorine layer and preparing method thereof
CN114822976A (en) * 2022-04-28 2022-07-29 中南大学 Preparation method of iron-arsenic compound and iron-based superconductor
WO2024061035A1 (en) * 2022-09-21 2024-03-28 中南大学 Arsenic-iron alloy, and preparation method and resourceful treatment method therefor

Similar Documents

Publication Publication Date Title
Yao et al. Recent breakthrough development in iron-based superconducting wires for practical applications
Ma Progress in wire fabrication of iron-based superconductors
Zhang et al. Synthesis of Bi2Sr2CaCu2Ox superconductors via direct oxidation of metallic precursors
Namburi et al. Control of Y-211 content in bulk YBCO superconductors fabricated by a buffer-aided, top seeded infiltration and growth melt process
JP2012066960A (en) Iron-based superconductor and method for producing the same
Naito et al. Ti-doping effects on magnetic properties of dense MgB2 bulk superconductors
Bhagurkar et al. Synthesis of dense bulk MgB2 by an infiltration and growth process
Türk et al. Effect of tungsten (W) substitution on the physical properties of Bi-(2223) superconductors
Qi et al. Transport properties and anisotropy in rare-earth doped CaFe2As2 single crystals with Tc above 40 K
Kharissova et al. Recent advances on bismuth-based 2223 and 2212 superconductors: synthesis, chemical properties, and principal applications
Yang et al. Enhanced higher temperature irreversibility field and critical current density in MgB2 wires with Dy2O3 additions
Kulich et al. Effect of cold high pressure deformation on the properties of ex situ MgB2 wires
Xu et al. Microstructure and superconducting properties of nanocarbon-doped internal Mg diffusion-processed MgB2 wires fabricated using different boron powders
JP2019182739A (en) Superconductor
Muralidhar et al. Microstructure, critical current density and trapped field experiments in IG-processed Y-123
Wang et al. Comparison of the superconducting properties in GdBCO bulk superconductors fabricated with two different solid phases
JP6210587B2 (en) BiS2 superconductor
Li et al. A combined powder melt and infiltration growth technique for fabricating nano-composited Y− Ba− Cu− O single-grain superconductor
Zhang et al. Phase diagram of Er-Sn-Te system for diluted magnetic semiconductor developments
Mitchell et al. Optimization of a non-arsenic iron-based superconductor for wire fabrication
Guo et al. Advanced high-pressure transport measurement system integrated with low temperature and magnetic field
Zhang et al. Thermoelectric properties of CNTs/Mn0. 7Zn0. 3Fe2O4 composite fabricated by spark plasma sintering
Cao et al. Superconductivity induced by cobalt doping in iron-based oxyarsenides
Sarun et al. Enhanced Flux Pinning of an Nd‐Added (Bi, Pb)‐2212 Superconductor
Shi et al. Structural, transport and magnetic properties of RuSr2Sm1. 4Ce0. 6Cu2O10− δ