JP2011068500A - Method for producing multiple oxide nanoparticles - Google Patents

Method for producing multiple oxide nanoparticles Download PDF

Info

Publication number
JP2011068500A
JP2011068500A JP2009218355A JP2009218355A JP2011068500A JP 2011068500 A JP2011068500 A JP 2011068500A JP 2009218355 A JP2009218355 A JP 2009218355A JP 2009218355 A JP2009218355 A JP 2009218355A JP 2011068500 A JP2011068500 A JP 2011068500A
Authority
JP
Japan
Prior art keywords
acid
compound
water
oxide nanoparticles
transition metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009218355A
Other languages
Japanese (ja)
Other versions
JP5448673B2 (en
Inventor
Kunihito Kawamoto
邦仁 河本
Kiyofumi Katagiri
清文 片桐
Junpei Kamiya
純平 神谷
Kyoichi Fujinami
恭一 藤波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagoya University NUC
Tokuyama Corp
Original Assignee
Nagoya University NUC
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagoya University NUC, Tokuyama Corp filed Critical Nagoya University NUC
Priority to JP2009218355A priority Critical patent/JP5448673B2/en
Publication of JP2011068500A publication Critical patent/JP2011068500A/en
Application granted granted Critical
Publication of JP5448673B2 publication Critical patent/JP5448673B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide multiple oxide nanoparticles of an alkaline earth metal and a transition metal which achieve high crystallinity and high particle shape control, while using water having low impact on the environment as a solvent. <P>SOLUTION: An alkaline earth metal compound, for example, strontium hydroxide or barium hydroxide, is reacted with a water-soluble transition metal compound, for example, titanium ammonium peroxolactate or titanium ammonium peroxocitrate under conditions of 200°C and 24 h in the presence of an amphiphilic compound, for example, oleic acid or linoleic acid and a basic compound containing no metal element, for example, tetramethylammonium or hydrazine to obtain the objective multiple oxide nanoparticles of an alkaline earth metal and a transition metal having an average particle diameter of 1-60 nm. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、新規な複合酸化物ナノ粒子の製造方法に関する。   The present invention relates to a method for producing novel composite oxide nanoparticles.

ペロブスカイト型化合物に代表される複合酸化物粒子は強誘電性、熱電変換性、超伝導性、電子・イオン伝導性、触媒機能性などの多くの材料特性を持ち、機能性無機材料及びその原料として広く用いられている。   Complex oxide particles represented by perovskite type compounds have many material properties such as ferroelectricity, thermoelectric conversion, superconductivity, electron / ion conductivity, catalytic functionality, etc., as functional inorganic materials and their raw materials. Widely used.

近年、これらの複合酸化物粒子のさらなる高機能化を目的として、その粒子径が100ナノメートル以下の超微粒子(ナノ粒子)が種々検討されている。ナノ粒子の製造方法としては、噴霧熱分解法、共沈法、逆ミセル法、ホットソープ法、ゾルゲル法、ソルボサーマル法、水熱法等の方法が挙げられる。   In recent years, various ultrafine particles (nanoparticles) having a particle diameter of 100 nanometers or less have been studied for the purpose of further enhancing the functions of these composite oxide particles. Examples of the method for producing nanoparticles include a spray pyrolysis method, a coprecipitation method, a reverse micelle method, a hot soap method, a sol-gel method, a solvothermal method, and a hydrothermal method.

この中で、噴霧熱分解法、共沈法、逆ミセル法では、合成条件により粒子径を制御可能であり、高度に結晶化した粒子が得られるものの、粒子同士が凝集した状態で高温条件で結晶化が行われるため、凝集粒子しか得ることができず、粒子径が大きいものしか得られないという問題点があった。   Among them, the spray pyrolysis method, coprecipitation method, and reverse micelle method can control the particle size according to the synthesis conditions, and although highly crystallized particles can be obtained, the particles are agglomerated under high temperature conditions. Since crystallization is performed, only aggregated particles can be obtained, and only those having a large particle size can be obtained.

また、ホットソープ法は、高沸点の界面活性剤中で金属酸化物前駆体表面への界面活性剤の吸着、分解を利用して金属酸化物結晶の成長を制御する方法である。ホットソープ法では、ナノ粒子の結晶性、分散性とも良いものが得られるものの、合成のためには通常300℃程度の高温が必要であり、また、溶媒自体が界面活性剤であるために、界面活性剤の分解物などの不純物を取り込みやすいという問題点があった。   The hot soap method is a method of controlling the growth of metal oxide crystals using adsorption and decomposition of a surfactant on the surface of a metal oxide precursor in a high boiling point surfactant. In the hot soap method, although nanoparticles having good crystallinity and dispersibility can be obtained, a high temperature of about 300 ° C. is usually required for synthesis, and the solvent itself is a surfactant. There was a problem that impurities such as decomposition products of surfactants were easily taken up.

さらに、ゾルゲル法は、最も一般的に用いられる金属酸化物合成法のひとつであり、多くの研究例がある。具体的には、金属酸化物前駆体である金属アルコキシドを触媒の存在下、加水分解することにより金属酸化物ナノ粒子を得る方法であり、比較的単分散に近いナノサイズの粒子が得られる。しかし、ゾルゲル法では、低温で合成するために結晶性が不十分であり、さらに大量の未反応成分が残存するという問題点があった。   Furthermore, the sol-gel method is one of the most commonly used metal oxide synthesis methods, and there are many research examples. Specifically, it is a method of obtaining metal oxide nanoparticles by hydrolyzing a metal alkoxide that is a metal oxide precursor in the presence of a catalyst, and nano-sized particles that are relatively close to monodispersion are obtained. However, the sol-gel method has problems in that the crystallinity is insufficient because it is synthesized at a low temperature, and a large amount of unreacted components remain.

前記のような課題を解決し、比較的結晶性が高く、粒子形状もある程度制御可能である方法としてソルボサーマル法(特許文献1〜3)、水熱法(非特許文献1、2)が提案されている。これらはいずれも溶媒と複合酸化物原料をオートクレーブと呼ばれる耐圧容器に封入し、50乃至500℃の高温に置くことで高温高圧下での反応を行うものである。 しかしながら、ソルボサーマル法にあっては、粒子形状が略立方体形状に制御できるものの、反応系中に有機溶媒を含むことが必須であり環境に対する負荷が大きく、また粒子形状の制御も未だ十分とは言い難かった。他方、水熱法においては、水の存在により結晶本来の形状である立方体形状に沿った成長と同時に、界面エネルギーの大きな角の部分から優先的に溶解する反応が起こるため、立方体形状の粒子を得ることは困難であった。   Solvothermal methods (Patent Documents 1 to 3) and hydrothermal methods (Non-Patent Documents 1 and 2) have been proposed as methods for solving the above-described problems and having relatively high crystallinity and capable of controlling the particle shape to some extent. Has been. In any of these, a solvent and a composite oxide raw material are sealed in a pressure vessel called an autoclave and placed at a high temperature of 50 to 500 ° C. to perform a reaction under high temperature and high pressure. However, in the solvothermal method, although the particle shape can be controlled to a substantially cubic shape, it is essential to include an organic solvent in the reaction system, and the load on the environment is large, and the particle shape is still not sufficiently controlled. It was hard to say. On the other hand, in the hydrothermal method, a reaction that preferentially dissolves from the corner portion having a large interface energy occurs simultaneously with the growth along the cubic shape, which is the original shape of the crystal, due to the presence of water. It was difficult to get.

特開2007−269601号公報JP 2007-269601 A 特開2008−030966号公報JP 2008-030966 A 特開2008−230872号公報JP 2008-230872 A

「Journal of Crystal Growth(ジャーナル・オブ・クリスタル・グロース)」、281巻、669ページ、2005年“Journal of Crystal Growth”, 281 pages, 669 pages, 2005 「Journal of the Ceramic Society of Japan(ジャーナル・オブ・ザ・セラミックス・ソサイアティ・オブ・ジャパン)」、103巻、1220ページ、1995年“Journal of the Ceramic Society of Japan”, Volume 103, p. 1220, 1995

以上のように、種々の方法により複合酸化物ナノ粒子の製造が試みられているが、環境負荷の大きな有機溶媒を使用せず、さらに高い結晶性と粒子本来の形状である立方体形状を得る粒子形状制御を実現している製造方法があるとは言い難い状況であった。   As described above, attempts have been made to produce composite oxide nanoparticles by various methods, but particles that do not use an organic solvent with a large environmental burden and obtain a cubic shape that is the original shape of the particles with higher crystallinity. It was difficult to say that there was a manufacturing method that realized shape control.

本発明者らは、上記課題を解決すべく鋭意研究を重ねた結果、アルカリ土類金属化合物と水溶性遷移金属化合物とを、両親媒性化合物及び金属元素非含有塩基性化合物の存在下に水熱反応させることにより、粒子サイズ・形状が高度に制御され、さらに粒子の凝集が起こりにくい極めて高品質な複合酸化物ナノ粒子の製造が可能であることを見出し、本発明を完成させるに至った。   As a result of intensive studies to solve the above problems, the present inventors have made alkaline earth metal compounds and water-soluble transition metal compounds water in the presence of amphiphilic compounds and metal element-free basic compounds. By carrying out thermal reaction, it was found that the particle size and shape were highly controlled, and that it was possible to produce extremely high-quality composite oxide nanoparticles that did not easily cause particle aggregation, and the present invention was completed. .

即ち、本発明は、アルカリ土類金属化合物と水溶性遷移金属化合物とを、両親媒性化合物及び金属元素非含有塩基性化合物の存在下に水熱反応させることを特徴とする複合酸化物ナノ粒子の製造方法である。   That is, the present invention provides a composite oxide nanoparticle characterized by hydrothermal reaction of an alkaline earth metal compound and a water-soluble transition metal compound in the presence of an amphiphilic compound and a metal element-free basic compound It is a manufacturing method.

本発明によれば、環境負荷の小さな水を溶媒として用い、結晶化と粒子形状(特には立方体形状)を高度に制御した複合酸化物ナノ粒子を得ることができる。   According to the present invention, it is possible to obtain composite oxide nanoparticles with highly controlled crystallization and particle shape (particularly cubic shape) using water with a small environmental load as a solvent.

図1は、実施例1で得られた複合酸化物ナノ粒子の粒子形状を示す電子顕微鏡写真である。1 is an electron micrograph showing the particle shape of the composite oxide nanoparticles obtained in Example 1. FIG.

本発明で用いるアルカリ土類金属化合物は、アルカリ土類金属を含む化合物であれば特に限定されず公知のものを使用することができる。合成される複合酸化物ナノ粒子の性質がより有用である点から、マグネシウム、カルシウム、ストロンチウム、バリウムを含む化合物が好ましく、さらにはストロンチウムまたはバリウムを含む化合物が好ましい。   The alkaline earth metal compound used in the present invention is not particularly limited as long as it is a compound containing an alkaline earth metal, and a known one can be used. A compound containing magnesium, calcium, strontium, or barium is preferable, and a compound containing strontium or barium is more preferable because the properties of the composite oxide nanoparticles to be synthesized are more useful.

このような化合物を具体的に例示するならば、水酸化ストロンチウム、硝酸ストロンチウム、塩化ストロンチウム、臭化ストロンチウム、酢酸ストロンチウム、ストロンチウムジ(メトキシエトキシド)、ストロンチウムジピバロイルメタノート、ギ酸ストロンチウム、シュウ酸ストロンチウム、硫酸ストロンチウム、臭化バリウム、クロラニル酸バリウム、水酸化バリウム、硝酸バリウム、塩化バリウム、酢酸バリウム、バリウムジ(メトキシエトキシド)、バリウムジピバロイルメタナート、2−エチルヘキサン酸バリウム、フッ化バリウム、ヨウ化バリウム、乳酸バリウム、シュウ酸バリウム、過塩素酸バリウム、ステアリン酸バリウム、硫酸バリウム、チオ硫酸バリウム等を挙げることができる。   Specific examples of such compounds include strontium hydroxide, strontium nitrate, strontium chloride, strontium bromide, strontium acetate, strontium di (methoxyethoxide), strontium dipivaloylmethanonote, strontium formate, Strontium acid, strontium sulfate, barium bromide, barium chloranilate, barium hydroxide, barium nitrate, barium chloride, barium acetate, barium di (methoxyethoxide), barium dipivaloylmethanate, barium 2-ethylhexanoate, fluorine And barium iodide, barium iodide, barium lactate, barium oxalate, barium perchlorate, barium stearate, barium sulfate, and barium thiosulfate.

中でも、水酸化ストロンチウム及び水酸化バリウムは本発明の複合酸化物ナノ粒子を製造する際に障害となる恐れのある酸性基を含有しない点で有用であり、特に好適に用いられる。   Among them, strontium hydroxide and barium hydroxide are useful in that they do not contain an acidic group that may be an obstacle when producing the composite oxide nanoparticles of the present invention, and are particularly preferably used.

本発明で用いる水溶性遷移金属化合物は、遷移金属を含む水溶性の化合物を特に制限なく使用することができる。本発明の効果が顕著に現れる点から、3族、4族、5族の遷移金属を含むものが好ましく、チタン、ジルコニウム、ハフニウム等の4族元素を含む水溶性遷移金属化合物及びニオブ、タンタル等の5族元素を含む水溶性遷移金属化合物がより好ましい。   As the water-soluble transition metal compound used in the present invention, a water-soluble compound containing a transition metal can be used without particular limitation. From the point that the effect of the present invention appears remarkably, those containing transition metals of Group 3, 4, and 5 are preferred, water-soluble transition metal compounds containing Group 4 elements such as titanium, zirconium, hafnium, niobium, tantalum, etc. A water-soluble transition metal compound containing the group 5 element is more preferable.

本発明において用いることができる水溶性遷移金属化合物としては、三塩化チタン、四塩化チタン等の遷移金属塩化物や硫酸チタニル等の遷移金属硫酸塩、チタンペルオキソクエン酸錯体等の水溶性遷移金属錯体などが挙げられるが、中でも安定性等の観点から水溶性遷移金属錯体がより好ましい。   Examples of water-soluble transition metal compounds that can be used in the present invention include transition metal chlorides such as titanium trichloride and titanium tetrachloride, transition metal sulfates such as titanyl sulfate, and water-soluble transition metal complexes such as titanium peroxocitrate complexes. Among them, a water-soluble transition metal complex is more preferable from the viewpoint of stability and the like.

このような水溶性遷移金属錯体としては、エチレンジアミン四酢酸(EDTA)、ニトリロ三酢酸(NTA)、2,2’−ビピリジル(bpy)、ジエチレントリアミン四酢酸(DTPA)等のキレート剤;クエン酸、乳酸、酒石酸、リンゴ酸、ヒドロアクリル酸、グリセリン酸などのヒドロキシカルボン酸;及び、コハク酸、シュウ酸、マレイン酸、マロン酸、アクリル酸、プロピオン酸、酢酸等のカルボン酸;グリシン、アラニン、セリン、グルタミン酸、アスパラギン酸、システイン酸等のアミノ酸等により、遷移金属を安定化した錯体を挙げることができる。   Such water-soluble transition metal complexes include chelating agents such as ethylenediaminetetraacetic acid (EDTA), nitrilotriacetic acid (NTA), 2,2′-bipyridyl (bpy), diethylenetriaminetetraacetic acid (DTPA); citric acid, lactic acid Hydroxycarboxylic acids such as tartaric acid, malic acid, hydroacrylic acid, glyceric acid; and carboxylic acids such as succinic acid, oxalic acid, maleic acid, malonic acid, acrylic acid, propionic acid, acetic acid; glycine, alanine, serine, The complex which stabilized the transition metal with amino acids, such as glutamic acid, aspartic acid, cysteic acid, etc. can be mentioned.

具体的にはチタンペルオキソクエン酸アンモニウム、チタンペルオキソクエン酸アンモニウム、チタンペルオキソリンゴ酸アンモニウム、チタンペルオキソ酒石酸アンモニウム、チタンペルオキソ乳酸アンモニウム、チタンペルオキソグリコール酸アンモニウム、チタンペルオキソEDTAアンモニウム、タンタルペルオキソクエン酸アンモニウム、タンタルペルオキソリンゴ酸アンモニウム、タンタルペルオキソ酒石酸アンモニウム、タンタルペルオキソ乳酸アンモニウム、タンタルペルオキソEDTAアンモニウム、ニオブペルオキソクエン酸アンモニウム、ニオブペルオキソリンゴ酸アンモニウム、ニオブペルオキソ酒石酸アンモニウム、ニオブペルオキソ乳酸アンモニウム、ニオブペルオキソEDTAアンモニウム、チタンペルオキソセリンアンモニウム、チタンペルオキソシステイン酸アンモニウム等のカルボン酸、アミノ酸、キレート剤等を配位させた錯体等の水溶性遷移金属錯体及びこれらのアンモニウム錯体等が挙げられる。   Specifically, ammonium peroxocitrate ammonium, titanium peroxocitrate ammonium, titanium peroxomalate ammonium, titanium peroxotartrate ammonium, titanium peroxolactate ammonium, titanium peroxoglycolate ammonium, titanium peroxoEDTA ammonium, tantalum peroxocitrate ammonium, tantalum Ammonium peroxomalate, ammonium tantalum peroxotartrate, tantalum peroxoammonium lactate, ammonium tantalum peroxocitrate, ammonium niobium peroxocitrate, ammonium niobium peroxomalate, ammonium niobium peroxotartrate, ammonium niobium peroxolactate, ammonium niobium peroxoEDTA, titanium peroxy Serine ammonium, carboxylic acids such as ammonium titanium peroxo cysteic acid, amino acids, water-soluble transition metal complexes and their ammonium complexes such as complexes obtained by coordinating a chelating agent, and the like.

アルカリ土類金属化合物及び水溶性遷移金属化合物は、その量が少な過ぎる場合、得られる複合酸化物ナノ粒子の量が少なくなり、多過ぎる場合には不純物の生成が増えるために、それぞれ0.01mM(ミリモル/リットル)乃至5000mM(ミリモル/リットル)、好ましくは1mM(ミリモル/リットル)乃至2000mM(ミリモル/リットル)の濃度で用いられることが好ましい。   When the amount of the alkaline earth metal compound and the water-soluble transition metal compound is too small, the amount of the composite oxide nanoparticles obtained is decreased. When the amount is too large, the generation of impurities is increased. It is preferably used at a concentration of (mmol / liter) to 5000 mM (mmol / liter), preferably 1 mM (mmol / liter) to 2000 mM (mmol / liter).

また、アルカリ土類金属化合物と水溶性遷移金属化合物の使用量(モル比)は、特に制限されないが、一般的には1:100〜100:1の範囲であり、1:10〜10:1が好ましく、目的とする化合物中の元素同士のモル比が最も好ましい。   Moreover, the usage-amount (molar ratio) of an alkaline-earth metal compound and a water-soluble transition metal compound is although it does not restrict | limit, Generally, it is the range of 1: 100-100: 1, 1: 10-10: 1 The molar ratio of elements in the target compound is most preferable.

本発明で用いる両親媒化合物は、化合物中に親水基と疎水基を有していれば特に限定されず公知の化合物を制限なく使用可能である。例えば、アルキルカルボン酸、アルキルスルホン酸、アルキルリン酸化合物等の水中で乖離した場合に陰イオンとなる化合物、アルキルアンモニウム化合物等の水中で乖離した場合に陽イオンとなる化合物、ポリエチレングリコールやポリビニルアルコールのような水中で乖離しない高分子化合物等が挙げられる。中でも、環境に対する安全性や入手のしやすさから、アルキルカルボン酸、アルキルスルホン酸、アルキルリン酸化合物等の水中で乖離した場合に陰イオンとなる化合物を好ましく用いることができ、特に本発明の複合酸化物ナノ粒子を使用する際に不純物として好ましくない硫黄やリン等を含まない、アルキルカルボン酸がより好ましい。   The amphiphilic compound used in the present invention is not particularly limited as long as the compound has a hydrophilic group and a hydrophobic group, and a known compound can be used without limitation. For example, compounds that become anions when dissociated in water, such as alkyl carboxylic acids, alkyl sulfonic acids, and alkyl phosphate compounds, compounds that become cations when dissociated in water, such as alkyl ammonium compounds, polyethylene glycol and polyvinyl alcohol And polymer compounds that do not dissociate in water. Among them, from the viewpoint of safety to the environment and easy availability, compounds that become anions when separated in water, such as alkyl carboxylic acids, alkyl sulfonic acids, and alkyl phosphate compounds, can be preferably used. Alkylcarboxylic acids that do not contain undesirable sulfur and phosphorus as impurities when using composite oxide nanoparticles are more preferred.

本発明において両親媒性化合物として好適に用いられるアルキルカルボン酸を例示するならば、プロピオン酸、酪酸、吉草酸、カプロン酸、カプリル酸、カプリン酸、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、アラキジン酸、ベヘン酸、リグノセリン酸等の飽和脂肪酸類、α-リノレン酸、ステアリドン酸、エイコサペンタエン酸、ドコサヘキサエン酸、リノール酸、γ-リノレン酸、ジホモ-γ-リノレン酸、アラキドン酸、オレイン酸、エライジン酸、エルカ酸、ネルボン酸等の不飽和脂肪酸等が挙げられる。中でも炭素数6〜20の炭化水素鎖を持つ飽和脂肪酸であるカプロン酸、カプリル酸、カプリン酸、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸や、炭素数6〜20の炭化水素鎖を持つ不飽和脂肪酸であるオレイン酸、リノール酸、リノレン酸、アラキドン酸、エイコサペンタエン酸等が好適に使用される。さらに、本発明に対する効果が特に高く、生体為害性も少ないことからオレイン酸が最も好ましく用いることができる。   Examples of alkyl carboxylic acids preferably used as amphiphilic compounds in the present invention include propionic acid, butyric acid, valeric acid, caproic acid, caprylic acid, capric acid, lauric acid, myristic acid, palmitic acid, stearic acid, Saturated fatty acids such as arachidic acid, behenic acid, lignoceric acid, α-linolenic acid, stearidonic acid, eicosapentaenoic acid, docosahexaenoic acid, linoleic acid, γ-linolenic acid, dihomo-γ-linolenic acid, arachidonic acid, oleic acid, And unsaturated fatty acids such as elaidic acid, erucic acid, and nervonic acid. Among these, caproic acid, caprylic acid, capric acid, lauric acid, myristic acid, palmitic acid, stearic acid, which is a saturated fatty acid having a hydrocarbon chain having 6 to 20 carbon atoms, and a hydrocarbon chain having 6 to 20 carbon atoms. Saturated fatty acids such as oleic acid, linoleic acid, linolenic acid, arachidonic acid, eicosapentaenoic acid and the like are preferably used. Furthermore, oleic acid can be most preferably used because it has a particularly high effect on the present invention and has little biological harm.

両親媒性化合物の配合量は特に限定されず、目的とする化合物に応じて適宜設定すれば良いが、配合量が少ない場合、本発明の効果が発揮されず、得られる複合酸化物ナノ粒子の粒子径が大きくなり、逆に多すぎる場合には目的とする物質が得られなくなることがあるため、一般的には原料となるアルカリ土類金属化合物と水溶性遷移金属化合物の合計モル量に対して0.01〜100倍モル量であることが好ましく、さらに0.1〜10倍モル量であることがより好ましい。   The compounding amount of the amphiphilic compound is not particularly limited and may be appropriately set according to the target compound. However, when the compounding amount is small, the effect of the present invention is not exhibited, and the obtained composite oxide nanoparticles If the particle size is large and, on the contrary, the target substance may not be obtained if the amount is too large, generally the total molar amount of the alkaline earth metal compound and water-soluble transition metal compound as raw materials It is preferable that it is 0.01-100 times mole amount, and it is more preferable that it is 0.1-10 times mole amount.

本発明で用いる金属元素非含有塩基性化合物は、水溶液中で塩基性を示すものであれば特に限定されず公知の化合物を制限なく使用可能である。例えば、4級アンモニウム化合物、アミン化合物、アンモニア、ピリジン及びその誘導体等の金属元素を有さない塩基性有機化合物並びにヒドラジン及びその誘導体を使用することができる。中でも、本発明の複合酸化物粒子の性能に悪影響を及ぼす金属不純物を含まず、扱いが比較的容易である点でヒドラジン及びその誘導体あるいはアミン化合物を用いるのが好ましい。   The metal element-free basic compound used in the present invention is not particularly limited as long as it shows basicity in an aqueous solution, and any known compound can be used without limitation. For example, basic organic compounds having no metal elements such as quaternary ammonium compounds, amine compounds, ammonia, pyridine and derivatives thereof, and hydrazine and derivatives thereof can be used. Among these, hydrazine and its derivatives or amine compounds are preferably used because they do not contain metal impurities that adversely affect the performance of the composite oxide particles of the present invention and are relatively easy to handle.

本発明で好ましく用いられる金属元素非含有塩基性化合物を具体的に例示するならばヒドラジン、1−モノメチルヒドラジン、1,1−ジメチルヒドラジン、1−エチル−2−メチルヒドラジン等のヒドラジン誘導体;メチルアミン、エチルアミン、n−プロピルアミン、エタノールアミン等の1級アミン;ジメチルアミン、ジエチルアミン等の2級アミン;トリメチルアミン、トリエチルアミン等の3級アミン等を挙げることができる。中でも、本発明の複合酸化物粒子の形状制御に対する効果がより顕著である点からヒドラジン誘導体がより好ましく、ヒドラジンが最も好ましい。   Specific examples of the metal element-free basic compound preferably used in the present invention include hydrazine derivatives such as hydrazine, 1-monomethylhydrazine, 1,1-dimethylhydrazine and 1-ethyl-2-methylhydrazine; methylamine Primary amines such as ethylamine, n-propylamine and ethanolamine; secondary amines such as dimethylamine and diethylamine; tertiary amines such as trimethylamine and triethylamine. Among these, a hydrazine derivative is more preferable, and hydrazine is most preferable because the effect on the shape control of the composite oxide particles of the present invention is more remarkable.

これらの金属元素非含有塩基性化合物は2種以上併用することもできるが、そのうちの1種としてヒドラジン又はその誘導体を使用することが、得られる複合酸化物ナノ粒子の形状を立方体に制御できるために好ましい。   Two or more of these metal element-free basic compounds can be used in combination, but the use of hydrazine or a derivative thereof as one of them can control the shape of the resulting composite oxide nanoparticles into a cube. Is preferable.

金属元素非含有塩基性化合物の配合量は特に限定されず、目的とする化合物に応じて適宜設定すれば良いが、配合量が少ない場合、本発明の効果が発揮されず、得られる複合酸化物ナノ粒子の粒子径が大きくなり、多過ぎる場合には目的とする物質が得られなくなる場合があるため、一般的には原料となるアルカリ土類金属化合物と水溶性遷移金属化合物の合計モル量に対して0.0001〜10000倍モル量であり、1〜1000倍モル量であることが好ましい。   The compounding amount of the non-metal element-containing basic compound is not particularly limited, and may be set as appropriate according to the target compound. However, when the compounding amount is small, the effect of the present invention is not exhibited, and the obtained composite oxide Since the target particle may not be obtained if the particle size of the nanoparticle is too large and it is too large, generally the total molar amount of the alkaline earth metal compound and the water-soluble transition metal compound as raw materials On the other hand, the molar amount is 0.0001 to 10000 times, preferably 1 to 1000 times the molar amount.

本発明の水熱反応に用いる水に特に制限はないが、通常は、例えば、イオン交換水、脱塩水、蒸留水、水道水など、不純物を含まない水を好適に用いることができる。   Although there is no restriction | limiting in particular in the water used for the hydrothermal reaction of this invention, Usually, water which does not contain impurities, such as ion-exchange water, demineralized water, distilled water, tap water, can be used conveniently, for example.

また、本発明で用いる水には、効果を損なわない範囲で他の溶媒を加えることができる。該溶媒は特に制限なく公知の溶媒を用いることができるが、水に対して10体積%以下、好ましくは3体積%以下の有機溶媒を用いることができる。このような溶媒としては、炭化水素類、ハロゲン化炭化水素類、アルコール類、フェノール類、エーテル類、アセタール類、ケトン類、エステル類等が挙げられ、中でもメタノール、エタノール、イソプロピルアルコール、アセトン、メチルエチルケトン等の水溶性有機溶媒が好ましく用いられる。   Moreover, another solvent can be added to the water used by this invention in the range which does not impair an effect. As the solvent, a known solvent can be used without particular limitation, and an organic solvent of 10% by volume or less, preferably 3% by volume or less can be used with respect to water. Such solvents include hydrocarbons, halogenated hydrocarbons, alcohols, phenols, ethers, acetals, ketones, esters, etc., among which methanol, ethanol, isopropyl alcohol, acetone, methyl ethyl ketone. A water-soluble organic solvent such as is preferably used.

本発明の複合酸化物ナノ粒子の製造方法は、複合酸化物ナノ粒子の原料となるアルカリ土類金属化合物と水溶性遷移金属化合物とを、両親媒性化合物、金属元素非含有塩基性化合物、及び水とともにオートクレーブと呼ばれる耐熱耐圧容器に封入せしめ、一般的には50乃至300℃の条件で0.5乃至72時間保持する方法を採用することができる。   The method for producing composite oxide nanoparticles of the present invention comprises an alkaline earth metal compound and a water-soluble transition metal compound, which are raw materials for composite oxide nanoparticles, an amphiphilic compound, a metal element-free basic compound, and It is possible to employ a method of enclosing in a heat-resistant and pressure-resistant container called an autoclave together with water, and generally holding it at 50 to 300 ° C. for 0.5 to 72 hours.

反応温度が低すぎると結晶の品質が低くなり、反応温度が高くなり過ぎると得られる粒子が大きくなり粒子形状の制御もできなくなる恐れがあるため、反応温度は一般に50乃至300℃であり、さらに80乃至250℃であることが好ましい。また、反応時間が短すぎると目的とする結晶が得られなくなり、反応時間が長すぎると製造効率が低下するとともに、得られる粒子が大きくなってしまう恐れがあるため、反応時間は一般に0.5乃至72時間であることが好ましい。   If the reaction temperature is too low, the crystal quality will be low, and if the reaction temperature is too high, the resulting particles will be large and the particle shape may not be controllable, so the reaction temperature is generally 50 to 300 ° C. It is preferably 80 to 250 ° C. In addition, if the reaction time is too short, the target crystal cannot be obtained, and if the reaction time is too long, the production efficiency is lowered and the resulting particles may be increased. Preferably, it is from 72 hours.

本発明において、各成分がどのような役割を担っているかは必ずしも明確ではないが、金属元素非含有塩基性化合物は反応系中のpHを制御することで生成する結晶形状を制御していると考えられる。また、両親媒性化合物は反応途中では生成した結晶の表面に吸着することで結晶成長を抑制することで本発明のナノ粒子を得ることに貢献しており、さらに粒子生成後には粒子表面に引き続き留まることで粒子同士の凝集を防止する効果を有していると考えられる。   In the present invention, it is not always clear what role each component plays, but when the basic compound containing no metal element controls the crystal shape generated by controlling the pH in the reaction system Conceivable. In addition, the amphiphilic compound contributes to obtaining the nanoparticles of the present invention by suppressing crystal growth by adsorbing to the surface of the generated crystal in the middle of the reaction. It is thought that it has the effect which prevents aggregation of particle | grains by staying.

本発明において、反応場となる水のpHは、複合酸化物ナノ粒子の結晶形状の制御の点から7.5〜14に調整することが好ましい。このために配合する金属元素非含有塩基性化合物の量は、該化合物の塩基性の強さに応じて適宜設定すれば良いが、一般的には1μM〜12Mである。pHの具体的な調整方法は、金属元素非含有塩基性化合物を添加しながらpHを随時確認する方法が簡便である。   In the present invention, the pH of water as a reaction field is preferably adjusted to 7.5 to 14 in terms of controlling the crystal shape of the composite oxide nanoparticles. For this purpose, the amount of the basic compound not containing a metal element may be appropriately set according to the basic strength of the compound, but is generally 1 μM to 12M. As a specific method for adjusting the pH, a method of checking the pH at any time while adding a metal element-free basic compound is simple.

本発明の製造方法で製造した複合酸化物ナノ粒子は、1〜60nm、好ましくは1〜30nm、さらに好ましくは8〜20nmの平均粒子径を有し、立方体の形状であり、一般的には複合酸化物の単一相からなる。また、表面を両親媒性化合物で修飾されているために粒子同士の凝集が起こりにくいという性質を有している。   The composite oxide nanoparticles produced by the production method of the present invention have an average particle diameter of 1 to 60 nm, preferably 1 to 30 nm, more preferably 8 to 20 nm, are in a cubic shape, and are generally composite. It consists of a single phase of oxide. In addition, since the surface is modified with an amphiphilic compound, the particles are less likely to aggregate.

本発明の製造方法により製造される複合酸化物ナノ粒子は、特に限定されず公知の用途に使用可能であるが、例えば、熱電変換材料、光触媒、イオン伝導性材料、強誘電材料、磁性材料、触媒材料、酸素電極材料、圧電材料、焦電材料、非線形光学材料、充填剤等の用途に用いることができる。   The composite oxide nanoparticles produced by the production method of the present invention are not particularly limited and can be used for known applications. For example, thermoelectric conversion materials, photocatalysts, ion conductive materials, ferroelectric materials, magnetic materials, It can be used for applications such as a catalyst material, an oxygen electrode material, a piezoelectric material, a pyroelectric material, a nonlinear optical material, and a filler.

以下、実施例により本発明を具体的に示すが、本発明はこれら実施例によって何等限定されるものではない。   EXAMPLES Hereinafter, although an Example shows this invention concretely, this invention is not limited at all by these Examples.

実施例中に使用した化合物の略称を以下に示す。
(1)アルカリ土類金属化合物
Sr−H: 水酸化ストロンチウム
Sr−N: 硝酸ストロンチウム
Sr−A: 酢酸ストロンチウム
Ba−H: 水酸化バリウム
(2)水溶性遷移金属化合物
TALH: チタンペルオキソ乳酸アンモニウム
TACH: チタンペルオキソクエン酸アンモニウム
TAGH: チタンペルオキソグリコール酸アンモニウム
(3)両親媒性化合物
OA:オレイン酸
LA:リノール酸
SA:ステアリン酸
(4)金属元素非含有塩基性化合物
TMA:テトラメチルアンモニウム
HYD:ヒドラジン
MHYD:1−モノメチルヒドラジン
MA:メチルアミン
実施例1
50mL(ミリリットル)のテフロン(登録商標)容器中に、25mLの水、及び水に対して25mM(ミリモル/リットル)のチタンペルオキソ乳酸アンモニウム(TALH)、25mM(ミリモル/リットル)の水酸化ストロンチウム(Sr−H)を投入し、テトラメチルアンモニウム(TMA)1.8M(モル/リットル)を用いてpHを13.5に調整した。さらに100mM(ミリモル/リットル)のオレイン酸(OA)、4mM(ミリモル/リットル)のヒドラジン(HYD)を投入し、200℃の恒温槽中で24時間加熱処理を行った。
Abbreviations of the compounds used in the examples are shown below.
(1) Alkaline earth metal compound Sr-H: Strontium hydroxide Sr-N: Strontium nitrate Sr-A: Strontium acetate Ba-H: Barium hydroxide (2) Water-soluble transition metal compound TALH: Titanium peroxoammonium lactate TACH: Titanium peroxocitrate ammonium TAGH: Titanium peroxoglycolate ammonium (3) Amphiphilic compound OA: Oleic acid LA: Linoleic acid SA: Stearic acid (4) Metal element-free basic compound TMA: Tetramethylammonium HYD: Hydrazine MHYD : 1-monomethylhydrazine MA: methylamine Example 1
In a 50 mL (milliliter) Teflon container, 25 mL water and 25 mM (mmol / liter) titanium peroxoammonium lactate (TALH), 25 mM (mmol / liter) strontium hydroxide (Sr -H) was added, and the pH was adjusted to 13.5 using tetramethylammonium (TMA) 1.8 M (mol / liter). Further, 100 mM (mmol / liter) oleic acid (OA) and 4 mM (mmol / liter) hydrazine (HYD) were added, and a heat treatment was performed in a constant temperature bath at 200 ° C. for 24 hours.

得られた粉末を回収し、透過型電子顕微鏡(日立ハイテクノロジーズ社製「H−800」)により観察倍率30万倍にて観察したところ、平均粒子径10nmの立方体型の粒子が生成しており、粒子同士の凝集がないことが確認された。得られた粒子の透過型電子顕微鏡写真(倍率:30万倍)を図1に示す。また、得られた粉末の結晶は、粉末X線回折装置(リガク社製RINT2100)によりチタン酸ストロンチウムであることが確認された。
実施例2〜13、比較例1及び2
表1に示した原料及び反応条件に代えたこと以外は、実施例1と同様にして水熱反応を行い、複合酸化物を得た。結果を表1及び表2に示した。
The obtained powder was recovered and observed with a transmission electron microscope (“H-800” manufactured by Hitachi High-Technologies Corporation) at an observation magnification of 300,000 times. As a result, cubic particles having an average particle diameter of 10 nm were generated. It was confirmed that there was no aggregation between the particles. A transmission electron micrograph (magnification: 300,000 times) of the obtained particles is shown in FIG. Moreover, it was confirmed that the crystal | crystallization of the obtained powder was strontium titanate by the powder X-ray-diffraction apparatus (RINT2100 by Rigaku Corporation).
Examples 2-13, Comparative Examples 1 and 2
A composite oxide was obtained by performing a hydrothermal reaction in the same manner as in Example 1 except that the raw materials and reaction conditions shown in Table 1 were used. The results are shown in Tables 1 and 2.

Claims (1)

アルカリ土類金属化合物と水溶性遷移金属化合物とを、両親媒性化合物及び金属元素非含有塩基性化合物の存在下に水熱反応させることを特徴とする複合酸化物ナノ粒子の製造方法。 A method for producing composite oxide nanoparticles, wherein an alkaline earth metal compound and a water-soluble transition metal compound are subjected to hydrothermal reaction in the presence of an amphiphilic compound and a metal element-free basic compound.
JP2009218355A 2009-09-24 2009-09-24 Method for producing composite oxide nanoparticles Expired - Fee Related JP5448673B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009218355A JP5448673B2 (en) 2009-09-24 2009-09-24 Method for producing composite oxide nanoparticles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009218355A JP5448673B2 (en) 2009-09-24 2009-09-24 Method for producing composite oxide nanoparticles

Publications (2)

Publication Number Publication Date
JP2011068500A true JP2011068500A (en) 2011-04-07
JP5448673B2 JP5448673B2 (en) 2014-03-19

Family

ID=44014170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009218355A Expired - Fee Related JP5448673B2 (en) 2009-09-24 2009-09-24 Method for producing composite oxide nanoparticles

Country Status (1)

Country Link
JP (1) JP5448673B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013082600A (en) * 2011-10-10 2013-05-09 Samsung Electro-Mechanics Co Ltd Perovskite powder, method for producing the same, and laminated ceramic electronic component using the same
WO2015122181A1 (en) * 2014-02-14 2015-08-20 富士フイルム株式会社 Manufacturing method for strontium titanate fine particles, and strontium titanate fine particles
JP2015151303A (en) * 2014-02-14 2015-08-24 富士フイルム株式会社 Method for producing strontium titanate fine particles
JP2016044089A (en) * 2014-08-21 2016-04-04 住友金属鉱山株式会社 Method for producing metal oxide fine particles, and metal oxide fine particles as well as powder, dispersion liquid, dispersion and coated substrate thereof
WO2021000022A1 (en) * 2019-07-04 2021-01-07 Australian Advanced Materials Pty Ltd Rram materials and devices
WO2022070784A1 (en) * 2020-09-30 2022-04-07 サカタインクス株式会社 Method for producing strontium titanate microparticles
WO2022070785A1 (en) * 2020-09-30 2022-04-07 サカタインクス株式会社 Strontium titanate microparticles

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03115106A (en) * 1990-08-10 1991-05-16 Kanegafuchi Chem Ind Co Ltd Production of composite material
JP2002356326A (en) * 2001-04-09 2002-12-13 Samsung Corning Co Ltd Method for producing oxide powder
JP2005075700A (en) * 2003-09-02 2005-03-24 Sakai Chem Ind Co Ltd Method for manufacturing composition
JP2007269601A (en) * 2006-03-31 2007-10-18 Mitsubishi Chemicals Corp Method for manufacturing metal oxide nanocrystal
JP2010030861A (en) * 2008-07-30 2010-02-12 Kanto Denka Kogyo Co Ltd Barium titanate fine particle and its manufacturing method
JP2010168253A (en) * 2009-01-23 2010-08-05 Kanto Denka Kogyo Co Ltd Method and apparatus for producing fine inorganic particle
WO2010118423A2 (en) * 2009-04-10 2010-10-14 Eestor, Inc. Hydrothermal processing in the wet-chemical preparation of mixed metal oxide ceramic powders

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03115106A (en) * 1990-08-10 1991-05-16 Kanegafuchi Chem Ind Co Ltd Production of composite material
JP2002356326A (en) * 2001-04-09 2002-12-13 Samsung Corning Co Ltd Method for producing oxide powder
JP2005075700A (en) * 2003-09-02 2005-03-24 Sakai Chem Ind Co Ltd Method for manufacturing composition
JP2007269601A (en) * 2006-03-31 2007-10-18 Mitsubishi Chemicals Corp Method for manufacturing metal oxide nanocrystal
JP2010030861A (en) * 2008-07-30 2010-02-12 Kanto Denka Kogyo Co Ltd Barium titanate fine particle and its manufacturing method
JP2010168253A (en) * 2009-01-23 2010-08-05 Kanto Denka Kogyo Co Ltd Method and apparatus for producing fine inorganic particle
WO2010118423A2 (en) * 2009-04-10 2010-10-14 Eestor, Inc. Hydrothermal processing in the wet-chemical preparation of mixed metal oxide ceramic powders

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6013052835; Satoshi WADA et al.: '"Preparation of Barium Titanate Fine Particles by Hydrothermal Method and Their Characterization"' Journal of the Ceramic Society of Japan Vol.103, No.12, 1995, p.1220-1227 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013082600A (en) * 2011-10-10 2013-05-09 Samsung Electro-Mechanics Co Ltd Perovskite powder, method for producing the same, and laminated ceramic electronic component using the same
WO2015122181A1 (en) * 2014-02-14 2015-08-20 富士フイルム株式会社 Manufacturing method for strontium titanate fine particles, and strontium titanate fine particles
JP2015151303A (en) * 2014-02-14 2015-08-24 富士フイルム株式会社 Method for producing strontium titanate fine particles
JP2015151304A (en) * 2014-02-14 2015-08-24 富士フイルム株式会社 Method for producing strontium titanate fine particles and strontium titanate fine particles
JP2016044089A (en) * 2014-08-21 2016-04-04 住友金属鉱山株式会社 Method for producing metal oxide fine particles, and metal oxide fine particles as well as powder, dispersion liquid, dispersion and coated substrate thereof
WO2021000022A1 (en) * 2019-07-04 2021-01-07 Australian Advanced Materials Pty Ltd Rram materials and devices
WO2022070784A1 (en) * 2020-09-30 2022-04-07 サカタインクス株式会社 Method for producing strontium titanate microparticles
WO2022070785A1 (en) * 2020-09-30 2022-04-07 サカタインクス株式会社 Strontium titanate microparticles
CN116096677A (en) * 2020-09-30 2023-05-09 阪田油墨株式会社 Method for producing strontium titanate microparticles

Also Published As

Publication number Publication date
JP5448673B2 (en) 2014-03-19

Similar Documents

Publication Publication Date Title
JP5448673B2 (en) Method for producing composite oxide nanoparticles
Uekawa et al. Low-temperature synthesis of niobium oxide nanoparticles from peroxo niobic acid sol
Demoisson et al. Hydrothermal synthesis of ZnO crystals from Zn (OH) 2 metastable phases at room to supercritical conditions
Alavi et al. Syntheses and characterization of Mg (OH) 2 and MgO nanostructures by ultrasonic method
Einarsrud et al. 1D oxide nanostructures from chemical solutions
Fujinami et al. Sub-10 nm strontium titanate nanocubes highly dispersed in non-polar organic solvents
Amin Alavi et al. Ultrasonic-assisted synthesis of Ca (OH) 2 and CaO nanostructures
JP5401754B2 (en) Method for producing metal oxide nanocrystals
JP6081936B2 (en) Method for producing cubic or cuboid crystal of strontium titanate and strontium titanate fine particles
Ashiri et al. Low temperature synthesis of carbonate‐free barium titanate nanoscale crystals: toward a generalized strategy of titanate‐based perovskite nanocrystals synthesis
JP5002208B2 (en) Method for producing metal oxide nanocrystals
Inada et al. Facile synthesis of nanorods of tetragonal barium titanate using ethylene glycol
CN102925979B (en) Method for preparing perovskite lead titanate crystal nanosheet
JP5642787B2 (en) Method for producing titanium dioxide having nanometer dimensions and controlled shape
JP2005255450A (en) Zirconium oxide crystal particle and method for producing the same
Tadjarodi et al. A green synthesis of copper oxide nanoparticles by mechanochemical method
Kim et al. Facile one-pot synthesis of tungsten oxide (WO3− x) nanoparticles using sub and supercritical fluids
KR20120115851A (en) Manufacturing method of te and bismuth telluride nano wire by solvothermal synthesis
JP2007290887A (en) Bismuth titanate-based nanoparticle, piezoelectric ceramic using the same, and methods for producing them
Zhou et al. Solvothermal growth of sub-10 nm monodispersed BaTiO 3 nanocubes
Demoisson et al. Original supercritical water device for continuous production of nanopowders
He Nanostructured CeO2 microspheres synthesized by a novel surfactant-free emulsion
KR20230075394A (en) Strontium Titanate Particulate
JP2014129202A (en) Method for manufacturing layered double hydroxide
JP2011121786A (en) Aqueous dispersion type colloidal solution and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120822

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131029

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131224

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees