JP2011067877A - Method for adhering lubricant for machining tool and method for machining - Google Patents

Method for adhering lubricant for machining tool and method for machining Download PDF

Info

Publication number
JP2011067877A
JP2011067877A JP2009218517A JP2009218517A JP2011067877A JP 2011067877 A JP2011067877 A JP 2011067877A JP 2009218517 A JP2009218517 A JP 2009218517A JP 2009218517 A JP2009218517 A JP 2009218517A JP 2011067877 A JP2011067877 A JP 2011067877A
Authority
JP
Japan
Prior art keywords
processing
lubricating liquid
processing tool
liquid
tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009218517A
Other languages
Japanese (ja)
Inventor
Shinichi Nishijima
信一 西島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2009218517A priority Critical patent/JP2011067877A/en
Publication of JP2011067877A publication Critical patent/JP2011067877A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for adhering lubricant for a machining tool applying the minimum amount of lubricant required for machining only to a required position and a method for machining using the same. <P>SOLUTION: The method for applying the lubricant for the machining tool 10 machining a machined material 2 intermittently when seen from the machining tool 10 includes a step of applying the lubricant to machining involved regions R1, R2 of the machining tool 10 contacting the machined material 2 before the machining tool 10 contacts the worked material 2. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、加工具の潤滑液付着方法およびこれを用いた加工方法に関する。   The present invention relates to a method for attaching a lubricant to a processing tool and a processing method using the same.

機械加工において加工具や被加工材に液体を供給しながら加工されることが多い。液体を供給する目的としては、冷却作用、潤滑作用、切屑排出・洗浄作用等であるが、その中でも、特に潤滑作用が重要となっている。例えば、切削加工においては、切削が高速の場合、加工時の発熱量の内約8割を切屑が持ち去るとも言われている。更に、最近の加工具の耐熱性向上により、被加工材の種類や切削条件によっては、必ずしも加工具の冷却を必要としない場合がある。また、切削形状や切削条件によっては、切屑の排出や洗浄を供給される液の機能として必要としない場合もある。すなわち、供給される液体には、高い潤滑作用のみが求められる場合がある。
なお、供給される液体は、その目的・加工の種類によってさまざまな名称で呼ばれるが、本発明では、潤滑液と称する。
In machining, it is often processed while supplying a liquid to a processing tool or a workpiece. The purpose of supplying the liquid is a cooling action, a lubricating action, a chip discharging / cleaning action, etc., among which the lubricating action is particularly important. For example, in cutting, when cutting is performed at high speed, it is also said that about 80% of the amount of heat generated during machining is taken away by chips. Furthermore, due to recent improvements in heat resistance of processing tools, cooling of the processing tools may not necessarily be required depending on the type of workpiece and cutting conditions. Depending on the cutting shape and cutting conditions, chip discharge and cleaning may not be required as a function of the supplied liquid. That is, only a high lubricating action may be required for the supplied liquid.
The supplied liquid is called by various names depending on the purpose and the type of processing, but in the present invention, it is called a lubricating liquid.

潤滑液の供給に必要な動力費が、工作機械による加工コストの3割を占めているという報告もある。そのため、潤滑液費用の低減を求めて窒素、アルゴン、酸素等を供給しながら加工を行うドライ加工、あるいは、潤滑液の液滴を空気で送るMQL(Minimal Quantity Lubrication)が一部で実用化されている。   There is also a report that the power cost required to supply the lubricating liquid accounts for 30% of the machining cost of the machine tool. For this reason, some parts have been put into practical use, such as dry processing, which performs processing while supplying nitrogen, argon, oxygen, etc. in order to reduce the cost of the lubricating liquid, or MQL (Minimal Quantity Lubrication), which sends lubricating liquid droplets by air. ing.

しかしながら、ドライ加工は、適用分野が非常に狭い範囲に限られている。また、MQL加工は、余分なミストが作業環境等に飛散し、作業者の健康上の問題を引き起こすことが懸念されている。このため、生分解性が高いと言われる植物油由来合成エステルが潤滑液として使用されているが、植物油由来合成エステルは一般の潤滑液に対して価格が数倍もするため、製造コストの高騰に繋がっている。さらに、MQL加工は、潤滑液のミスト噴霧量(液量)に対して実際に加工点に付着する潤滑液の比率が小さいため、加工点付近に必要な厚さの潤滑液膜が常に形成されるとの確証はない。   However, dry processing is limited to a very narrow range of application. In addition, MQL processing is concerned that excess mist may scatter in the work environment and cause health problems for workers. For this reason, vegetable oil-derived synthetic esters, which are said to be highly biodegradable, are used as lubricating liquids. However, vegetable oil-derived synthetic esters are several times more expensive than general lubricating liquids, leading to increased manufacturing costs. It is connected. Further, in the MQL processing, since the ratio of the lubricating liquid that actually adheres to the processing point with respect to the mist spray amount (liquid amount) of the lubricating liquid is small, a lubricating liquid film having a necessary thickness is always formed near the processing point. There is no confirmation that.

加工点およびその近傍に対して集中的に潤滑液を供給する努力が行われてきた。例えば、特開2000−334653では、切断に作用するブレードの刃先部に向けて潤滑液を連続的に供給し、目詰まりや加工熱を除去する技術を開示している。   Efforts have been made to supply lubricating liquid intensively to the processing point and its vicinity. For example, Japanese Patent Application Laid-Open No. 2000-334653 discloses a technique for removing clogging and processing heat by continuously supplying a lubricating liquid toward the cutting edge of a blade that acts on cutting.

特開2000−334653号公報JP 2000-334653 A

しかしながら、ブレードの刃先部に潤滑液を連続的に供給する上述の方法では、切削工具として一般的に使用されている超硬工具等に適用した場合に、切削時の切削熱によって昇温した加工具が、非切削時に大量の潤滑液供給によって冷却されるため、熱サイクル疲労により刃先の微小チッピングを起こしやすい。また、潤滑液を刃先の周囲に連続的に供給することにより、潤滑液の使用量も多くなる。   However, in the above-described method of continuously supplying the lubricating liquid to the blade tip, when applied to a carbide tool or the like generally used as a cutting tool, the temperature is increased by the cutting heat during cutting. Since the tool is cooled by supplying a large amount of lubricating liquid when not cutting, the chip tends to cause minute chipping due to thermal cycle fatigue. Further, by continuously supplying the lubricating liquid around the cutting edge, the amount of the lubricating liquid used is increased.

上記問題点を鑑み、本発明は、潤滑液の使用量を少なくでき、加工具の寿命を向上させることが可能な加工具の潤滑液付着方法およびこれを用いた加工方法を提供することを課題とする。   In view of the above problems, the present invention is to provide a method of attaching a lubricating liquid to a processing tool and a processing method using the same, which can reduce the amount of the lubricating liquid used and improve the life of the processing tool. And

上記課題を解決するために、本発明者は鋭意検討の結果、断続加工において加工具が被加工材を加工する前に、予め加工具の加工関与領域に対して潤滑液を限定的に付着させることにより、加工に必要な最小限の潤滑液を必要な箇所にのみ付着させる方法を見出した。   In order to solve the above-mentioned problems, the present inventor has made extensive investigations, and before the processing tool processes the workpiece in the intermittent processing, the lubricant is applied in a limited manner to the processing participation area of the processing tool in advance. As a result, the present inventors have found a method of attaching a minimum amount of lubricating liquid necessary for processing only to a necessary portion.

以上の知見を基礎として完成した本発明は、一側面において、加工具からみて被加工材を断続的に加工する加工具の潤滑液付着方法であって、前記加工具が前記被加工材と接触する前に、前記被加工材と接触する前記加工具の加工関与領域に対して潤滑液を限定的に付着させる工程を含む加工具の潤滑液付着方法である。   The present invention completed on the basis of the above knowledge is, in one aspect, a method of attaching a lubricant to a processing tool for intermittently processing a workpiece as viewed from the processing tool, wherein the processing tool contacts the workpiece. This is a method for attaching a lubricating liquid to a processing tool, including a step of restricting a lubricating liquid to be applied to a processing-related region of the processing tool that comes into contact with the workpiece before the processing.

本発明に係る加工具の潤滑液付着方法は、一実施態様において、加工具の加工関与領域に対して潤滑液を付着させる工程が、加工関与領域に潤滑液の液滴を配列させる工程である。   In one embodiment of the method for attaching a lubricant to a processing tool according to the present invention, the step of attaching the lubricating liquid to the processing-related region of the processing tool is a step of arranging droplets of the lubricating liquid in the processing-related region. .

本発明に係る加工具の潤滑液付着方法は、一実施態様において、加工具の加工関与領域に対して潤滑液を付着させる工程が、潤滑液の液滴を連続的に吐出する装置により、加工関与領域に液滴を付着させることである。   In one embodiment, the method of attaching a lubricating liquid to a processing tool according to the present invention includes a step of attaching a lubricating liquid to a processing-related area of the processing tool by using a device that continuously discharges liquid droplets of the lubricating liquid. It is to deposit droplets on the involved area.

本発明に係る加工具の潤滑液付着方法は、一実施態様において、加工具の加工関与領域に対して潤滑液を付着させる工程が、潤滑液の液滴を帯電させ、帯電した液滴を加工関与領域に付着させることである。   In one embodiment, the method for adhering a lubricating liquid to a processing tool according to the present invention includes the step of adhering the lubricating liquid to a processing-related region of the processing tool, charging the liquid droplets of the lubricating liquid, and processing the charged liquid droplets. To attach to the involved area.

本発明に係る加工具の潤滑液付着方法は、一実施態様において、加工具の加工関与領域に対して潤滑液を付着させる工程が、ピエゾ素子アクチュエーター方式の供給機構を用いることである。   In one embodiment of the method for attaching a lubricating liquid to a processing tool according to the present invention, the step of attaching the lubricating liquid to the processing-related region of the processing tool is to use a piezo element actuator type supply mechanism.

本発明に係る加工具の潤滑液付着方法は、一実施態様において、加工具の加工関与領域に対して潤滑液を付着させる工程が、電磁バルブ方式の供給機構を用いることである。   In one embodiment of the method for attaching a lubricating liquid to a processing tool according to the present invention, the step of attaching the lubricating liquid to the processing-related region of the processing tool uses a supply mechanism of an electromagnetic valve system.

本発明に係る加工具の潤滑液付着方法は、一実施態様において、加工具の加工関与領域に対して潤滑液を付着させる工程が、加工関与領域に、液滴径10μm〜2mmの潤滑液の液滴を付着させることである。   In one embodiment, the method for adhering a lubricating liquid to a processing tool according to the present invention includes the step of adhering the lubricating liquid to the processing-related region of the processing tool, wherein the lubricating liquid having a droplet diameter of 10 μm to 2 mm is applied to the processing-related region. It is to deposit droplets.

本発明に係る加工具の潤滑液付着方法は、一実施態様において、加工関与領域が、加工具の刃の刃先、刃のすくい面における被加工材の切り屑との接触領域及び刃の逃げ面における被加工材との仕上げ面との接触領域である。   In one embodiment of the method for attaching a lubricating liquid to a processing tool according to the present invention, the processing-related area includes a cutting edge of the blade of the processing tool, a contact area with the chip of the workpiece on the rake face of the cutting tool, and a flank of the blade. It is a contact area | region with the finishing surface with the workpiece in.

本発明は、別の一側面において、加工具からみて被加工材を断続的に加工する加工方法であって、加工具が被加工材と接触する前に、被加工材と接触する加工具の加工関与領域に対して潤滑液を選択的に付着させる工程を含む加工方法である。   Another aspect of the present invention is a processing method for intermittently processing a workpiece as viewed from the processing tool, wherein the processing tool contacts the workpiece before the processing tool contacts the workpiece. This is a processing method including a step of selectively adhering a lubricating liquid to a processing participation area.

本発明に係る加工方法は、一実施態様において、加工具の加工関与領域に対して潤滑液を付着させる工程が、加工関与領域に潤滑液の液滴を配列させる工程である。   In one embodiment, in the processing method according to the present invention, the step of adhering the lubricating liquid to the processing participation region of the processing tool is a step of arranging the lubricant liquid droplets in the processing participation region.

本発明に係る加工方法は、一実施態様において、加工具の加工関与領域に対して潤滑液を付着させる工程が、潤滑液の液滴を連続的に吐出する装置を用いて、加工関与領域に液滴を配列させることである。   In one embodiment, the processing method according to the present invention is such that the step of attaching the lubricating liquid to the processing-related area of the processing tool is performed on the processing-related area using a device that continuously discharges the liquid droplets of the lubricating liquid. It is to arrange the droplets.

本発明に係る加工方法は、一実施態様において、加工具の加工関与領域に対して潤滑液を付着させる工程が、潤滑液の液滴を帯電させ、帯電した液滴を加工関与領域に配列させることである。   In one embodiment of the processing method according to the present invention, the step of attaching the lubricating liquid to the processing-related area of the processing tool charges the liquid droplets of the lubricating liquid and arranges the charged liquid droplets in the processing-related area. That is.

本発明に係る加工方法は、一実施態様において、加工具の加工関与領域に対して潤滑液を付着させる工程が、ピエゾ素子アクチュエーター方式の供給機構を用いるである。   In one embodiment of the processing method according to the present invention, the step of attaching the lubricating liquid to the processing-related region of the processing tool uses a piezo element actuator type supply mechanism.

本発明に係る加工方法は、一実施態様において、加工具の加工関与領域に対して潤滑液を付着させる工程が、電磁バルブ方式の供給機構を用いることである。   In one embodiment of the processing method according to the present invention, the step of attaching the lubricating liquid to the processing-related region of the processing tool is to use an electromagnetic valve type supply mechanism.

本発明に係る加工方法は、一実施態様において、加工具の加工関与領域に対して潤滑液を付着させる工程が、加工関与領域に、液滴径10μm〜2mmの潤滑液の液滴を付着させることである。   In one embodiment of the processing method according to the present invention, the step of attaching the lubricating liquid to the processing-related region of the processing tool attaches the droplet of the lubricating liquid having a droplet diameter of 10 μm to 2 mm to the processing-related region. That is.

本発明に係る加工方法は、一実施態様において、加工関与領域が、加工具の刃の刃先、刃のすくい面における被加工材の切り屑との接触領域及び刃の逃げ面における被加工材との仕上げ面との接触領域である。   In one embodiment, the processing method according to the present invention includes: a cutting tool edge of a processing tool; a contact area with a chip of a workpiece on a rake face of the blade; and a workpiece on a flank of the blade. This is the contact area with the finished surface.

本発明によれば、加工点に到達した刃先には常に必要な厚さの潤滑液膜が形成されるため、加工時に十分な潤滑効果が発揮される。また、切屑または被加工材に直接付着する余分な潤滑液も少なくて済み、潤滑液除去の前処理が不要となる。環境に排出される潤滑液の量も少なくなり、リサイクルコストの削減も期待される。また、加工具の急激な冷却が抑制されるため、熱サイクル疲労による刃のチッピングを防ぎ、加工具の寿命を延長させることができる。   According to the present invention, since a lubricating liquid film having a necessary thickness is always formed on the cutting edge that has reached the processing point, a sufficient lubricating effect is exhibited during processing. Further, the amount of extra lubricating liquid that directly adheres to the chips or the workpiece can be reduced, and pretreatment for removing the lubricating liquid becomes unnecessary. The amount of lubricating fluid discharged into the environment is also reduced, and it is expected to reduce recycling costs. Further, since rapid cooling of the processing tool is suppressed, chipping of the blade due to thermal cycle fatigue can be prevented, and the life of the processing tool can be extended.

本発明の実施の形態に係る加工具の潤滑液付着方法に利用可能な加工装置の一例を示す概略図である。It is the schematic which shows an example of the processing apparatus which can be utilized for the lubricating liquid adhesion method of the processing tool which concerns on embodiment of this invention. 切削加工における加工具の刃先部分の一例を示す説明図である。It is explanatory drawing which shows an example of the blade edge | tip part of the processing tool in cutting. 図3(a)〜図3(c)は、潤滑液滴の配列方法の例を示す模式図である。FIGS. 3A to 3C are schematic views showing an example of a method for arranging lubricating droplets. 図4(a)及び図4(b)は、潤滑液膜の形成範囲を例示する模式図である。FIG. 4A and FIG. 4B are schematic views illustrating the formation range of the lubricating liquid film.

次に、図面を参照して本発明の実施の形態を説明する。以下に示す実施の形態は、この発明の技術的思想を具体化するための方法を例示するものであり、この発明の技術的思想を下記のものに制限するものではない。   Next, embodiments of the present invention will be described with reference to the drawings. The embodiment described below exemplifies a method for embodying the technical idea of the present invention, and the technical idea of the present invention is not limited to the following.

−加工装置−
本発明の実施の形態に係る加工具の潤滑液付着方法に利用可能な加工装置100として、切削加工を行う加工装置100を例に説明する。図1に示すように、加工装置100は、被加工材2を切削加工する加工具10と、加工具10に潤滑液を供給する供給機構3a、3bを備える。
-Processing equipment-
A processing apparatus 100 that performs cutting will be described as an example of the processing apparatus 100 that can be used in the method for attaching a lubricant to a processing tool according to an embodiment of the present invention. As shown in FIG. 1, the processing apparatus 100 includes a processing tool 10 that cuts the workpiece 2 and supply mechanisms 3 a and 3 b that supply a lubricating liquid to the processing tool 10.

加工具10としては、潤滑液の供給を必要とする加工具10側からみて断続加工となる工具であれば特に限定されない。図1においては、円周方向に沿って刃1を複数個有するフライスカッターを加工具10として例示しているが、他にも、例えば、ギャングスリッター等の回転加工具、シャーリング、プレス等の往復加工具、旋盤での単刃による断続加工(被削材断面が断続形状のもの)を行う工具のすべてを加工具10の対象とすることができる。すなわち、本発明では、フライス加工や旋盤加工をはじめとする切削加工の他に、プレス加工、成形加工や剪断加工等の塑性加工のいずれかまたはそれらの組合せに適用することもできる。   The processing tool 10 is not particularly limited as long as it is an intermittent tool as viewed from the processing tool 10 side that requires supply of a lubricating liquid. In FIG. 1, a milling cutter having a plurality of blades 1 along the circumferential direction is illustrated as the processing tool 10, but in addition, for example, a rotary processing tool such as a gang slitter, reciprocation such as shearing and pressing, and the like. The processing tool 10 can be any tool that performs interrupted machining with a single blade on a processing tool or a lathe (having a workpiece material with an intermittent cross section). In other words, the present invention can be applied to any one or a combination of plastic working such as press working, forming work, shearing work, etc. in addition to cutting work including milling work and lathe work.

加工具10は、図1の矢印方向に回転することにより、円周方向に沿って配置された複数の刃1が被加工材2と断続的に接触し、被加工材2の表面が切削される。供給機構3a、3bは、刃1が被加工材2を切削していない間、すなわち、被加工材2を切削した後、回転し、次に被加工材2と接触するまでの間に、刃先11、切屑5と接する面である刃1のすくい面(図2参照)及び被加工材2と接する刃1の逃げ面12(図2参照)の少なくともいずれかに微量の潤滑液を供給することにより、被加工材2の加工関与領域に限定的に潤滑液を付着させる。   When the processing tool 10 rotates in the direction of the arrow in FIG. 1, the plurality of blades 1 arranged along the circumferential direction intermittently contact the workpiece 2 and the surface of the workpiece 2 is cut. The The supply mechanisms 3a and 3b are configured so that the blade 1 rotates while the blade 1 is not cutting the workpiece 2, that is, after the workpiece 2 is cut, until it rotates and then contacts the workpiece 2. 11. Supplying a small amount of lubricating liquid to at least one of the rake face (see FIG. 2) of the blade 1 that is in contact with the chips 5 and the flank 12 (see FIG. 2) of the blade 1 in contact with the workpiece 2 As a result, the lubricating liquid is attached in a limited manner to the processing-related area of the workpiece 2.

なお、供給機構3a、3bは、いずれか一方の備えでもよい。すなわち、潤滑液の供給は、供給機構3aの供給角度を調整して加工具10の外部から潤滑液を供給する形態(供給機構3a)であっても構わない。また、加工具10の内部から直接潤滑液を供給する形態、具体的には、刃1と刃1の間に設けられた溝などに供給部(図示省略)を設け、供給部から直接、刃1に潤滑液を供給する形態(供給機構3b)としてもよい。   The supply mechanisms 3a and 3b may be provided with either one. That is, the supply of the lubricating liquid may be in the form of supplying the lubricating liquid from the outside of the processing tool 10 by adjusting the supply angle of the supply mechanism 3a (supply mechanism 3a). Further, a mode in which the lubricating liquid is directly supplied from the inside of the processing tool 10, specifically, a supply portion (not shown) is provided in a groove or the like provided between the blade 1 and the blade 1, and the blade is directly provided from the supply portion. 1 may be configured to supply the lubricating liquid (supply mechanism 3b).

加工具10の溝に供給部を設けることにより、潤滑液の供給が、加工具10の回転による周囲の空気抵抗等の影響を受けにくくなるため、所定の範囲に対して高精度で潤滑液を供給することができる。なお、加工具10の内部に潤滑液を供給するための通路を設け、通路から潤滑液を供給する形態としてもよい。加工具10の潤滑を必要としない部分に潤滑液の付着を抑制するための所定の処理や機構を設けてもよい。   By providing the supply portion in the groove of the processing tool 10, the supply of the lubricating liquid is less affected by the surrounding air resistance due to the rotation of the processing tool 10. Can be supplied. In addition, it is good also as a form which provides the channel | path for supplying lubricating fluid inside the processing tool 10, and supplies lubricating fluid from a channel | path. A predetermined process or mechanism for suppressing adhesion of the lubricating liquid may be provided in a portion of the processing tool 10 that does not require lubrication.

潤滑液の供給は、潤滑液の液滴を連続的又は断続的に吐出する吐出装置が利用可能である。このような吐出装置としては、電磁バルブ方式、ピエゾ素子アクチュエーター方式、遠心力方式等のノズルを有する装置が利用可能である。または、吐出された液滴を帯電させる機構と潤滑液の液滴の投射方向を定めるための偏向電極とを含む吐出装置等も利用可能である。このような吐出装置としては、例えば、インクジェットヘッド等に用いられるピエゾ素子アクチュエーター等が利用可能である。液滴を帯電させ、偏向電極等によって液滴の投射方向を定めることにより、所定の大きさの液滴を所定の位置にピンポイントで着滴できる。   For supplying the lubricating liquid, a discharge device that discharges the liquid droplets of the lubricating liquid continuously or intermittently can be used. As such a discharge device, a device having a nozzle such as an electromagnetic valve method, a piezoelectric element actuator method, a centrifugal force method, or the like can be used. Alternatively, a discharge device including a mechanism for charging the discharged liquid droplets and a deflection electrode for determining the projection direction of the liquid droplets of the lubricating liquid can be used. As such an ejection device, for example, a piezo element actuator used for an inkjet head or the like can be used. By charging the droplet and determining the projection direction of the droplet with a deflection electrode or the like, a droplet having a predetermined size can be pinpointed to a predetermined position.

吐出装置は、加工具10の回転速度、刃1の形状等に応じて、吐出装置から吐出される液滴の吐出液滴径、吐出速度、吐出範囲をそれぞれ制御することにより、加工関与領域に着滴する液滴の径(着滴径)を制御できる。例えば、加工具10の回転が低速である場合には、例えば電磁バルブ方式のノズルを有する供給機構3a、3bが好適である。電磁バルブ方式のノズルを用いた場合、吐出液滴の最大吐出周波数を1kHz程度とすることができる。   The discharge device controls the discharge droplet diameter, discharge speed, and discharge range of the droplets discharged from the discharge device in accordance with the rotation speed of the processing tool 10, the shape of the blade 1, and the like. It is possible to control the diameter (droplet diameter) of a droplet to be deposited. For example, when the processing tool 10 rotates at a low speed, supply mechanisms 3a and 3b having, for example, electromagnetic valve type nozzles are suitable. When the electromagnetic valve type nozzle is used, the maximum discharge frequency of the discharged droplets can be set to about 1 kHz.

加工具10の回転が高速である場合は、インクジェットヘッド等に用いられるピエゾ素子アクチュエーター方式のノズルを有する供給機構3a、3bが好適である。ピエゾ素子アクチュエーター方式のノズルは、吐出液滴の最大速度が約10m/s程度と高速であり、吐出液滴径が数十μm〜数百μm程度とすることができる。ピエゾ素子アクチュエーター方式のノズルを用いた場合、吐出液滴の最大吐出周波数は1〜50kHz程度とすることができる。   When the processing tool 10 rotates at high speed, supply mechanisms 3a and 3b having a piezo element actuator type nozzle used for an ink jet head or the like are suitable. The nozzle of the piezo element actuator system has a maximum discharge droplet speed of about 10 m / s and a discharge droplet diameter of about several tens to several hundreds of μm. When a piezo element actuator type nozzle is used, the maximum ejection frequency of the ejected droplets can be about 1 to 50 kHz.

電磁バルブ方式のノズル又はピエゾ素子アクチュエーター方式のノズルを用いた供給機構3a、3bは、液滴を、刃1の特定領域のみに対して所定の間隔でピンポイントに並べることができる。このため、ミスト状の液滴を大気中に噴出させる従来方式とは異なり、吐出面に対して液滴が分散することがない。また、刃1の刃幅あるいは刃1の加工関与領域の面積に応じて角度や液滴径を調整することにより、動作中の加工具10に対しても、加工に必要な最小限の潤滑液の液滴を必要な箇所にのみに配列できる。   The supply mechanisms 3a and 3b using the electromagnetic valve type nozzle or the piezo element actuator type nozzle can arrange the liquid droplets at a predetermined interval with respect to only a specific region of the blade 1. For this reason, unlike the conventional method in which mist droplets are ejected into the atmosphere, the droplets are not dispersed on the ejection surface. Further, by adjusting the angle and the droplet diameter according to the width of the blade 1 or the area of the processing-related area of the blade 1, the minimum lubricating liquid necessary for processing is also applied to the operating tool 10 in operation. Droplets can be arranged only where needed.

例えば、図3(a)に示すように、加工具10上に付着する液滴41は、刃1の刃幅Wに沿って単層にピンポイントに配列できる。刃幅Wに沿って配列された液滴41は、表面張力等によって互いに連結され、膜状(潤滑液膜)になる。また、図3(b)に示すように、液滴41の層を重ねて膜長L4の長さを調整してもよい。また、図3(c)に示すように、液滴41の一部を刃先11からはみ出させるように、液滴41の付着位置を調整することもできる。潤滑液膜4の膜長L3〜L5(刃先11から液滴41の最外層までの距離)は、刃1の回転速度や刃1の形状、刃幅Wなどの種々の特性等を総合的に勘案して設定される。刃先11付近に実際に着滴される液滴41の液滴径(着滴径)としては、例えば、10μm〜2mm程度、あるいは0.5〜1mm程度である。   For example, as shown in FIG. 3A, the droplets 41 adhering on the processing tool 10 can be pinpointed in a single layer along the blade width W of the blade 1. The droplets 41 arranged along the blade width W are connected to each other by surface tension or the like to form a film (lubricating liquid film). Further, as shown in FIG. 3B, the length of the film length L4 may be adjusted by overlapping the layers of the droplets 41. Further, as shown in FIG. 3C, the attachment position of the droplet 41 can be adjusted so that a part of the droplet 41 protrudes from the blade edge 11. The film length L3 to L5 (the distance from the blade edge 11 to the outermost layer of the droplet 41) of the lubricating liquid film 4 comprehensively includes various characteristics such as the rotational speed of the blade 1, the shape of the blade 1, and the blade width W. Set with consideration. The droplet diameter (droplet diameter) of the droplet 41 actually deposited near the blade edge 11 is, for example, about 10 μm to 2 mm, or about 0.5 to 1 mm.

供給機構3a、3bにより、液滴41の付着位置を制御することが可能である。例えば、図4(a)に示すように、刃先11付近(逃げ面12及びすくい面13)のみに対して液滴41を膜長L6でピンポイントに配列させると、液滴の表面張力、加工具10の移動(回転)による慣性力、コアンダー効果等の相互作用によって、刃1に付着した複数の液滴41が連続すると同時に、図4(b)に示すように、刃先11を囲うように潤滑液膜4が形成される。特に、供給機構3a、3bとしてピエゾ素子アクチュエータ方式のノズルを用いた場合、吐出される液滴が微小であるから、各種条件を適切に制御することにより、刃先11からはみ出した液滴41の一部が、着滴時にコアンダ効果により着滴面の裏側に回って付着するため、大気に放出されることはない。また、微小液滴では表面張力の支配力が大きいため、加工具10に衝突した液滴41は周囲に飛散しない。   The attachment position of the droplet 41 can be controlled by the supply mechanisms 3a and 3b. For example, as shown in FIG. 4A, when the droplets 41 are arranged in a pinpoint manner with a film length L6 only in the vicinity of the cutting edge 11 (flank 12 and scooping surface 13), the surface tension and pressure of the droplets are increased. A plurality of droplets 41 adhering to the blade 1 are continuous due to an interaction such as an inertial force due to movement (rotation) of the tool 10 and a Counder effect, and at the same time, as shown in FIG. A lubricating liquid film 4 is formed. In particular, when a piezo element actuator type nozzle is used as the supply mechanism 3a, 3b, since the discharged liquid droplets are very small, one of the liquid droplets 41 protruding from the blade edge 11 can be controlled by appropriately controlling various conditions. Since the part rotates and adheres to the back side of the landing surface due to the Coanda effect at the time of landing, it is not released to the atmosphere. Moreover, since the dominant force of the surface tension is large in the micro droplet, the droplet 41 colliding with the processing tool 10 does not scatter around.

供給機構3a、3bの装置選択は、上述した電磁バルブやピエゾ素子アクチュエーターの他にも、様々な別の吐出装置を利用してもよい。すなわち、刃1に必要な潤滑範囲と必要十分な液滴の膜厚を確保するために、被加工材2の種類、加工条件等を総合的に考慮し、種々の吐出装置の中から最適な供給機構3a、3bを選択すればよい。   In addition to the electromagnetic valve and the piezo element actuator described above, various other discharge devices may be used for selecting the supply mechanisms 3a and 3b. That is, in order to ensure the lubrication range necessary for the blade 1 and the necessary and sufficient film thickness of the droplets, the type of the workpiece 2 and the processing conditions are comprehensively considered, and the optimum is selected from various discharge devices. What is necessary is just to select supply mechanism 3a, 3b.

被加工材2の種類は特に問わない。例えば、被加工材2としては、金属材料の他にも、炭素繊維複合材料やセラミックス、スリッターの場合には紙、フィルム等、バンドソーでの加工では木材等、その他様々な非金属材料を対象とすることができる。また、これまで被加工材への油の付着や潤滑油の環境への放出が許されていないために無潤滑で加工せざるを得なかった加工具に対しても、潤滑液として揮発性の高い潤滑油を利用して本実施形態に係る潤滑液付着方法を利用することが可能である。   The kind of the workpiece 2 is not particularly limited. For example, as the work material 2, in addition to metal materials, carbon fiber composite materials, ceramics, paper and films in the case of slitters, and other various non-metal materials such as wood in band saw processing are targeted. can do. In addition, volatile lubricants can be used as a lubricant for work tools that had to be processed without lubrication because the oil has not been allowed to adhere to the workpiece or the lubricant has not been released to the environment. It is possible to use the lubricating liquid adhesion method according to the present embodiment using high lubricating oil.

−加工関与領域−
図2を用いて、本発明の実施の形態に係る加工具の潤滑液付着方法に好適な潤滑液膜4の形成範囲(加工関与領域)の例を説明する。例えば、切削加工の場合は、加工具10の先端にある刃先11を、被加工材2の加工点21と接触させ、切削方向(図中矢印方向)に動かすことにより行われる。
この際、被加工材2の切屑5との接触面である刃1のすくい面13、被加工材2の仕上げ面22との接触面である刃の逃げ面12、加工点21と接する刃先11に対してそれぞれ摩擦力が生じる。このため、刃先11、逃げ面12、すくい面13には、必要十分な量の潤滑液膜4を形成しておくことが好ましい。しかしながら、切削時には刃先11が被加工材2の加工点21と直接接しているため、加工点21と接する刃先11を潤滑油で濡らすためには、刃先11と被加工材2の両方に潤滑油を付着させていた。
-Machining area-
With reference to FIG. 2, an example of the formation range (processing related region) of the lubricating liquid film 4 suitable for the lubricating liquid adhesion method for a processing tool according to the embodiment of the present invention will be described. For example, in the case of cutting, the cutting edge 11 at the tip of the processing tool 10 is brought into contact with the processing point 21 of the workpiece 2 and moved in the cutting direction (arrow direction in the figure).
At this time, the rake face 13 of the blade 1 which is a contact surface with the chip 5 of the workpiece 2, the flank face 12 of the blade which is a contact surface with the finish surface 22 of the workpiece 2, and the cutting edge 11 which is in contact with the machining point 21. Each produces a frictional force. For this reason, it is preferable to form a necessary and sufficient amount of the lubricating liquid film 4 on the cutting edge 11, the flank 12, and the rake face 13. However, since the cutting edge 11 is in direct contact with the machining point 21 of the workpiece 2 during cutting, in order to wet the cutting edge 11 in contact with the machining point 21 with lubricating oil, both the cutting edge 11 and the workpiece 2 are lubricated with lubricating oil. Was attached.

実施の形態に係る加工具の潤滑液の付着方法においては、刃先11が加工点21に到達する前に、刃先11を含む加工関与領域に対して潤滑液の液滴を配列させ、限定的に潤滑液膜4を形成させる。これにより、加工点21に到達した刃先11には、常に必要な厚さを有する潤滑液膜4が形成されるため、切削加工に十分な潤滑効果が発揮される。その結果、刃1の摩耗も少なくなる。   In the method of attaching the lubricating liquid of the processing tool according to the embodiment, before the cutting edge 11 reaches the processing point 21, the liquid droplets of the lubricating liquid are arranged in a region related to the processing including the cutting edge 11, and limitedly. A lubricating liquid film 4 is formed. As a result, the lubricating liquid film 4 having a necessary thickness is always formed on the cutting edge 11 that has reached the processing point 21, so that a sufficient lubricating effect for cutting is exhibited. As a result, the wear of the blade 1 is also reduced.

切削加工の場合、刃1の加工関与領域は、刃1の刃先11、刃1のすくい面13における切屑5との接触領域R1及び刃1の逃げ面12における仕上げ面22との接触領域R2となる。潤滑液膜4の形成範囲を加工関与領域に限定することにより、潤滑液の使用量を少なくできる。なお、潤滑液膜4の膜長L1、L2、膜厚T、膜幅(図示せず)は、刃1の回転速度や刃1の形状、刃幅W、被加工材2の材質、加工条件、形成条件などの種々の特性に応じて被加工材2との接触範囲から決定され、供給機構3a、3b(図2参照)により制御される。例えば、膜長L1は、仕上げ面22との接触箇所により、0.1〜0.5mm程度とすることができる。膜長L2は、切屑5の大きさに応じて例えば1〜5mm程度とすることができる。   In the case of cutting, the cutting-related area of the blade 1 is the cutting edge 11 of the blade 1, the contact area R1 of the rake face 13 of the blade 1 with the chip 5 and the contact area R2 of the flank 12 of the blade 1 with the finish surface 22. Become. By limiting the formation range of the lubricating liquid film 4 to the processing-related area, the amount of the lubricating liquid used can be reduced. The film lengths L1 and L2, the film thickness T, and the film width (not shown) of the lubricating liquid film 4 are the rotational speed of the blade 1, the shape of the blade 1, the blade width W, the material of the workpiece 2, and the processing conditions. It is determined from the contact range with the workpiece 2 according to various characteristics such as formation conditions, and is controlled by the supply mechanisms 3a and 3b (see FIG. 2). For example, the film length L <b> 1 can be set to about 0.1 to 0.5 mm depending on the contact point with the finished surface 22. The film length L2 can be set to about 1 to 5 mm, for example, depending on the size of the chips 5.

上記のように、本発明の実施の形態を記載したが、この開示の一部をなす論述及び図面はこの考案を限定するものであると理解すべきではない。この開示から当業者にはさまざまな代替実施の形態及び運用技術が明らかとなろう。   Although the embodiments of the present invention have been described as described above, it should not be understood that the descriptions and drawings constituting a part of this disclosure limit the present invention. From this disclosure, various alternative embodiments and operational techniques will be apparent to those skilled in the art.

上述の実施の形態においては、加工の一例として、切削加工を例に述べたが、加工具10に対して被加工材2が断続的に接触する断続加工となる加工であれば特に限定されない。例えば、フライス加工や旋盤加工をはじめとする切削加工、プレス加工、成形加工や剪断加工等の塑性加工のいずれかまたはそれらの組合せでもかまわない。また、潤滑液の性質としては、例えば、潤滑液の性質としては、水性、油性、エマルションタイプのいずれのものあってでも構わないし、揮発性でも不揮発性でも構わない。   In the above-described embodiment, the cutting process has been described as an example of the process. However, the process is not particularly limited as long as the process is an intermittent process in which the workpiece 2 intermittently contacts the processing tool 10. For example, it may be any one of cutting processing including milling processing and lathe processing, press processing, plastic processing such as forming processing and shearing processing, or a combination thereof. Further, as the property of the lubricating liquid, for example, the property of the lubricating liquid may be any of aqueous, oily, and emulsion types, and may be volatile or non-volatile.

以下、本発明の実施例を示すが、本発明は実施例に限定されるものではない。   Examples of the present invention will be described below, but the present invention is not limited to the examples.

被加工材として黄銅2種の板を使用し、被加工材の削り代を厚さ0.5mm、幅10mmとし、フライスカッターによる被加工材の側面切削を行った。フライスカッターのカッター径は100φ、刃数は6枚であり、回転数を955min−1(≒15.92sec-1)、切削速度を300m/min(=5m/sec)とした。切削油の動粘度は19mm2/secである。 Two types of brass plates were used as the workpiece, the machining allowance of the workpiece was 0.5 mm in thickness, and the width was 10 mm, and the workpiece was side cut with a milling cutter. The cutter diameter of the milling cutter was 100φ, the number of blades was 6, the rotational speed was 955 min −1 (≈15.92 sec −1 ), and the cutting speed was 300 m / min (= 5 m / sec). The kinematic viscosity of the cutting oil is 19 mm 2 / sec.

フライスカッターの刃のすくい面には、膜厚T0.1mm、膜長L0.8mm、膜幅W10mmの潤滑油膜(潤滑液膜)を形成させるため、潤滑液を吐出させるピエゾ素子アクチュエーターを加工点直近のカッター外側に設置した。動粘度19mm2/secの切削油を用い、ピエゾ素子アクチュエーターのノズル位置を調整し、80pL(ピコリットル)の油滴をピエゾ素子アクチュエーターから吐出させ、油滴の中心が刃先部分から0.4mmの位置に来るように設定した。このようなノズルを幅方向0.6mm間隔で17個並べ、吐出周波数を約96Hz、吐出速度約5m/secで潤滑油を塗布したところ、被加工材に潤滑油が付着することなく、すくい面の刃先にほぼ所望の潤滑油膜を形成することが出来た。 To form a lubricating oil film (lubricating liquid film) with a film thickness of T0.1 mm, a film length of L0.8 mm, and a film width of W10 mm on the rake face of the milling cutter blade, a piezo element actuator that discharges the lubricating liquid is located near the processing point. Was installed outside the cutter. Using a cutting oil with a kinematic viscosity of 19 mm 2 / sec, adjust the nozzle position of the piezo element actuator, discharge 80 pL (picoliter) of oil droplets from the piezo element actuator, and the center of the oil droplet is 0.4 mm from the blade edge part. It was set to come to the position. When 17 such nozzles are arranged at intervals of 0.6 mm in the width direction, and the lubricating oil is applied at a discharge frequency of about 96 Hz and a discharge speed of about 5 m / sec, the rake face does not adhere to the work material. An almost desired lubricating oil film could be formed on the blade edge of.

同様にして、フライスカッターの刃の逃げ面には膜厚T0.1mm、膜長L0.3mm、膜幅W10mmの潤滑油膜(潤滑液膜)を形成させるため、すくい面用とは別に潤滑液を吐出させるピエゾ素子アクチュエーターを加工点直近のカッター外側に設置した。動粘度19mm2/secの切削油を用い、ピエゾ素子アクチュエーターのノズル位置を調整し、11pL(ピコリットル)の油滴をピエゾ素子アクチュエーターから吐出させ、油滴の中心が刃先部分から0.3mmの位置に来るように設定した。このようなノズルを幅方向0.25mm間隔で40個並べ、吐出周波数約96Hz、吐出速度約5m/secで潤滑油を塗布したところ、被加工材に潤滑油が付着することなく、加工具逃げ面の刃先にほぼ所望の潤滑油膜を形成することが出来た。 Similarly, a lubricating oil film (lubricating liquid film) having a film thickness T of 0.1 mm, a film length L of 0.3 mm, and a film width W of 10 mm is formed on the flank face of the milling cutter blade. The piezo element actuator to be discharged was installed outside the cutter near the machining point. Using a cutting oil with a kinematic viscosity of 19 mm 2 / sec, adjust the nozzle position of the piezo element actuator, discharge 11 pL (picoliter) of oil droplet from the piezo element actuator, and the center of the oil drop is 0.3 mm from the blade edge part. It was set to come to the position. When 40 such nozzles are arranged at intervals of 0.25 mm in the width direction, and lubricating oil is applied at a discharge frequency of about 96 Hz and a discharge speed of about 5 m / sec, the lubricating oil does not adhere to the workpiece and the work tool escapes. A substantially desired lubricating oil film could be formed on the edge of the surface.

以上のように、本発明の実施の形態に係る加工具の潤滑液付着方法によれば、切削加工に必要な最小限の潤滑液を必要な箇所にのみ付着させることが可能となる。   As described above, according to the method for attaching a lubricant to a working tool according to an embodiment of the present invention, it is possible to attach a minimum amount of lubricant necessary for cutting only to a necessary portion.

1 刃
2 被加工材
3a、3b 供給機構
4 潤滑液膜
5 切屑
11 刃先
12 逃げ面
13 すくい面
11 刃先
21 加工点
22 仕上げ面
41 液滴
100 加工装置
DESCRIPTION OF SYMBOLS 1 Blade 2 Work material 3a, 3b Supply mechanism 4 Lubricating liquid film 5 Chip 11 Cutting edge 12 Flank surface 13 Drake surface 11 Cutting edge 21 Processing point 22 Finish surface 41 Droplet 100 Processing device

Claims (16)

加工具からみて被加工材を断続的に加工する加工具の潤滑液付着方法であって、
前記加工具が前記被加工材と接触する前に、前記被加工材と接触する前記加工具の加工関与領域に対して潤滑液を限定的に付着させる工程を含むことを特徴とする加工具の潤滑液付着方法。
A method of attaching a lubricating liquid to a processing tool for intermittently processing a workpiece as viewed from the processing tool,
A process tool comprising: a step of restricting a lubricant to be applied to a processing-related region of the processing tool that contacts the workpiece before the processing tool contacts the workpiece. Lubricant adhesion method.
前記加工具の加工関与領域に対して潤滑液を付着させる工程が、前記加工関与領域に前記潤滑液の液滴を配列させる工程であることを特徴とする請求項1に記載の加工具の潤滑液付着方法。   2. The lubrication of the processing tool according to claim 1, wherein the step of attaching the lubricating liquid to the processing-related region of the processing tool is a step of arranging droplets of the lubricating liquid in the processing-related region. Liquid adhesion method. 前記加工具の加工関与領域に対して潤滑液を付着させる工程が、前記潤滑液の液滴を連続的に吐出する装置により、前記加工関与領域に前記液滴を付着させることを特徴とする請求項1又は2に記載の加工具の潤滑液付着方法。   The step of adhering a lubricating liquid to a processing-related area of the processing tool is characterized in that the liquid droplet is attached to the processing-related area by an apparatus that continuously discharges the liquid droplets of the lubricating liquid. Item 3. A method for attaching a lubricant to a processing tool according to Item 1 or 2. 前記加工具の加工関与領域に対して潤滑液を付着させる工程が、前記潤滑液の液滴を帯電させ、帯電した前記液滴を前記加工関与領域に付着させることを特徴とする請求項1〜3のいずれか1項に記載の加工具の潤滑液付着方法。   The step of adhering a lubricating liquid to a processing-related area of the processing tool charges the liquid droplet of the lubricating liquid, and causes the charged liquid droplet to adhere to the processing-related area. 4. The method for attaching a lubricating liquid to a processing tool according to any one of 3 above. 前記加工具の加工関与領域に対して潤滑液を付着させる工程が、ピエゾ素子アクチュエーター方式の供給機構を用いることを特徴とする請求項3又は4に記載の加工具の潤滑液付着方法。   The method of attaching a lubricant to a processing tool according to claim 3 or 4, wherein the step of attaching the lubricating liquid to the processing-related region of the processing tool uses a piezo element actuator type supply mechanism. 前記加工具の加工関与領域に対して潤滑液を付着させる工程が、電磁バルブ方式の供給機構を用いることを特徴とする請求項3に記載の加工具の潤滑液付着方法。   The method of attaching a lubricant to a processing tool according to claim 3, wherein the step of attaching the lubricant to the processing-related area of the processing tool uses an electromagnetic valve type supply mechanism. 前記加工具の加工関与領域に対して潤滑液を付着させる工程が、前記加工関与領域に、液滴径10μm〜2mmの前記潤滑液の液滴を付着させることを特徴とする請求項1〜6のいずれか1項に記載の加工具の潤滑液付着方法。   7. The step of adhering a lubricating liquid to a processing participation region of the processing tool causes the droplets of the lubricating liquid having a droplet diameter of 10 μm to 2 mm to adhere to the processing participation region. The method of attaching a lubricant to a processing tool according to any one of the above. 前記加工関与領域が、前記加工具の刃の刃先、前記刃のすくい面における前記被加工材の切り屑との接触領域及び前記刃の逃げ面における前記被加工材との仕上げ面との接触領域であることを特徴とする請求項1〜7のいずれか1項に記載の加工具の潤滑液付着方法。   The processing-related area includes a cutting edge of the blade of the processing tool, a contact area with the chip of the workpiece on the rake face of the blade, and a contact area with the finish surface of the workpiece on the flank face of the blade The method for attaching a lubricating liquid to a processing tool according to claim 1, wherein the lubricating liquid is attached to the processing tool. 加工具からみて被加工材を断続的に加工する加工方法であって、
前記加工具が前記被加工材と接触する前に、前記被加工材と接触する前記加工具の加工関与領域に対して潤滑液を選択的に付着させる工程を含むことを特徴とする加工方法。
A processing method for intermittently processing a workpiece as viewed from a processing tool,
A processing method comprising the step of selectively adhering a lubricating liquid to a processing participation area of the processing tool in contact with the workpiece before the processing tool comes into contact with the workpiece.
前記加工具の加工関与領域に対して潤滑液を付着させる工程が、前記加工関与領域に前記潤滑液の液滴を配列させる工程であることを特徴とする請求項9に記載の加工方法。   The processing method according to claim 9, wherein the step of attaching the lubricating liquid to the processing-related region of the processing tool is a step of arranging droplets of the lubricating liquid in the processing-related region. 前記加工具の加工関与領域に対して潤滑液を付着させる工程が、前記潤滑液の液滴を連続的に吐出する装置を用いて、前記加工関与領域に前記液滴を配列させることを特徴とする請求項9又は10に記載の加工方法。   The step of adhering the lubricating liquid to the processing-related area of the processing tool is characterized in that the droplets are arranged in the processing-related area using a device that continuously discharges the liquid droplets of the lubricating liquid. The processing method according to claim 9 or 10. 前記加工具の加工関与領域に対して潤滑液を付着させる工程が、前記潤滑液の液滴を帯電させ、帯電した前記液滴を前記加工関与領域に配列させることを特徴とする請求項9〜11のいずれか1項に記載の加工方法。   The step of adhering a lubricating liquid to a processing-related area of the processing tool charges the liquid droplets of the lubricating liquid, and arranges the charged liquid droplets in the processing-related area. 11. The processing method according to any one of 11 above. 前記加工具の加工関与領域に対して潤滑液を付着させる工程が、ピエゾ素子アクチュエーター方式の供給機構を用いることを特徴とする請求項11又は12に記載の加工方法。   The processing method according to claim 11 or 12, wherein the step of attaching the lubricating liquid to the processing-related area of the processing tool uses a piezo element actuator type supply mechanism. 前記加工具の加工関与領域に対して潤滑液を付着させる工程が、電磁バルブ方式の供給機構を用いることを特徴とする請求項11に記載の加工方法。   12. The processing method according to claim 11, wherein the step of attaching the lubricating liquid to the processing-related area of the processing tool uses an electromagnetic valve type supply mechanism. 前記加工具の加工関与領域に対して潤滑液を付着させる工程が、前記加工関与領域に、液滴径10μm〜2mmの前記潤滑液の液滴を付着させることを特徴とする請求項9〜14のいずれか1項に記載の加工方法。   15. The step of adhering a lubricating liquid to a processing-related area of the processing tool causes the droplet of the lubricating liquid having a droplet diameter of 10 μm to 2 mm to adhere to the processing-related area. The processing method of any one of these. 前記加工関与領域が、前記加工具の刃の刃先、前記刃のすくい面における前記被加工材の切り屑との接触領域及び前記刃の逃げ面における前記被加工材との仕上げ面との接触領域であることを特徴とする請求項9〜15のいずれか1項に記載の加工方法。   The processing-related area includes a cutting edge of the blade of the processing tool, a contact area with the chip of the workpiece on the rake face of the blade, and a contact area with the finish surface of the workpiece on the flank face of the blade The processing method according to any one of claims 9 to 15, wherein:
JP2009218517A 2009-09-24 2009-09-24 Method for adhering lubricant for machining tool and method for machining Pending JP2011067877A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009218517A JP2011067877A (en) 2009-09-24 2009-09-24 Method for adhering lubricant for machining tool and method for machining

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009218517A JP2011067877A (en) 2009-09-24 2009-09-24 Method for adhering lubricant for machining tool and method for machining

Publications (1)

Publication Number Publication Date
JP2011067877A true JP2011067877A (en) 2011-04-07

Family

ID=44013686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009218517A Pending JP2011067877A (en) 2009-09-24 2009-09-24 Method for adhering lubricant for machining tool and method for machining

Country Status (1)

Country Link
JP (1) JP2011067877A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015000453A (en) * 2013-06-17 2015-01-05 株式会社ジェイテクト Vibration cutting device, and vibration cutting method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0448944A1 (en) * 1990-03-26 1991-10-02 Lonza Ag Method and device for intervalwise spraying of a suspension of lubricant
JPH09141537A (en) * 1995-11-20 1997-06-03 Kimio Ikeda Oil feeder and oil feeding method
JP2002066871A (en) * 2000-09-04 2002-03-05 Enshu Ltd Machining method, microscopic mist producing device, work cooling method and main spindle cooling method
JP2003181740A (en) * 2001-12-19 2003-07-02 Toshiba Mach Co Ltd Method for machining workpiece, device for supplying cutting fluid for machining workpiece, and product produced by using them

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0448944A1 (en) * 1990-03-26 1991-10-02 Lonza Ag Method and device for intervalwise spraying of a suspension of lubricant
JPH09141537A (en) * 1995-11-20 1997-06-03 Kimio Ikeda Oil feeder and oil feeding method
JP2002066871A (en) * 2000-09-04 2002-03-05 Enshu Ltd Machining method, microscopic mist producing device, work cooling method and main spindle cooling method
JP2003181740A (en) * 2001-12-19 2003-07-02 Toshiba Mach Co Ltd Method for machining workpiece, device for supplying cutting fluid for machining workpiece, and product produced by using them

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015000453A (en) * 2013-06-17 2015-01-05 株式会社ジェイテクト Vibration cutting device, and vibration cutting method

Similar Documents

Publication Publication Date Title
KR100861247B1 (en) Method and device for cooling and lubricating rollers on a rolling stand
JP4830377B2 (en) Cutting tools
CA2157474C (en) Separate lubrication and cooling for machining processes
US20100243612A1 (en) Electrical discharge machining
JP2006111940A (en) Pretreatment method before thermal spraying and cylinder block of engine
JP2010284791A (en) Grinding wheel, holder for the same, method and device for cooling the same
JP2018511480A (en) Gas nozzle with slidable valve sleeve
JP2006159389A (en) Roughening method, cutting tool and cylindrical member
KR20120134053A (en) Tools and method to mechanical roughning
JP4617806B2 (en) Thermal spray pretreatment method
JP2011067877A (en) Method for adhering lubricant for machining tool and method for machining
JP5787235B2 (en) Grinding fluid supply device and grinding method for superabrasive electrodeposition grinding wheel
Okada et al. Cutting characteristics of direct milling of cemented tungsten carbides using diamond-coated carbide end mills with untreated and treated cutting edge
KR100291455B1 (en) Gear shaper cutting method and apparatus
JP6446876B2 (en) Cutting tool
JP2011093040A (en) Surface-cutting device
JP6389205B2 (en) Machining method using drill and drill with coolant injection hole
JP2006088297A (en) Cutting device and cutting method
JP5124552B2 (en) Circular saw cutting machine
JP6314636B2 (en) Cutting device
JPH0724685A (en) Machining and working method
JP2000052119A (en) Machining drill for deep hole
JP2584604Y2 (en) Atomizer supply device
JP4507795B2 (en) Thermal spray pretreatment method
JP2007260785A (en) Milling machine and milling method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130806

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131203