JP2011067800A - Method and apparatus for pyrolyzing waste - Google Patents

Method and apparatus for pyrolyzing waste Download PDF

Info

Publication number
JP2011067800A
JP2011067800A JP2009223325A JP2009223325A JP2011067800A JP 2011067800 A JP2011067800 A JP 2011067800A JP 2009223325 A JP2009223325 A JP 2009223325A JP 2009223325 A JP2009223325 A JP 2009223325A JP 2011067800 A JP2011067800 A JP 2011067800A
Authority
JP
Japan
Prior art keywords
pyrolysis
gas
waste
chlorine
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009223325A
Other languages
Japanese (ja)
Other versions
JP5621235B2 (en
Inventor
Mikio Mogi
幹夫 茂木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2009223325A priority Critical patent/JP5621235B2/en
Publication of JP2011067800A publication Critical patent/JP2011067800A/en
Application granted granted Critical
Publication of JP5621235B2 publication Critical patent/JP5621235B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock
    • Y02P20/143Feedstock the feedstock being recycled material, e.g. plastics

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Coke Industry (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a pyrolysis gas and a pyrolysis residue which can be used as a high-quality fuel. <P>SOLUTION: By heating waste 1 under an atmosphere of a low-concentration oxide at 250-300°C in a drying and concurrently de-hydrogen-chloride device 2, by vaporizing water and by discharging a chlorine content 6 out of plastics containing chlorine without pyrolyzing the waste 1, solid components 3 separated from gas components 4 containing the chlorine content 6 from steam 5 are recovered. At this time, since the solid components 3 hardly include ash components generated at the time of pyrolyzation, salt produced by reaction between isolated chlorine emitted from the plastics containing chlorine and an alkali metal in the ash components is hardly included. Then the solid components 3 are heated at 400-500°C in a cracker 7 for pyrolysis, thereby a pyrolysis gas 8, which is a combustible gas containing no chlorine, having less moisture and exhibiting high calorie, and a pyrolysis residue 9 containing fixed carbon as a main component containing no salt content originated from chlorine of the plastics containing chlorine are generated for recovery. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、都市ごみ等の廃棄物を熱分解処理して可燃性の熱分解ガスと固定炭素主体の熱分解残渣を回収する廃棄物の熱分解処理方法及び装置に関するものである。   TECHNICAL FIELD The present invention relates to a waste pyrolysis method and apparatus for pyrolyzing waste such as municipal waste to recover a combustible pyrolysis gas and pyrolysis residue mainly composed of fixed carbon.

都市ごみ等の廃棄物を処理し、再利用を図る手法の1つとして、廃棄物の熱分解処理が知られている。   As one of the methods for treating and reusing waste such as municipal waste, thermal decomposition treatment of waste is known.

これは、廃棄物を、低酸素雰囲気(無酸素雰囲気を含む、以下同様)下で所要温度に加熱して熱分解処理することにより、該廃棄物中の可燃分を熱分解させて可燃性の熱分解ガスと、固定炭素(チャー)を主体とする熱分解残渣を生成させ、上記熱分解ガスと熱分解残渣を分離して回収できるようにしたものであり、上記可燃性の熱分解ガスと熱分解残渣を共に溶融炉へ導き、少ない空気量(たとえば、空気比1.3程度)で高温にして燃焼させて、溶融スラグを取り出すようにした廃棄物の熱分解ガス化溶融システムや、上記回収される熱分解残渣を、炭化物として各種施設の石炭炊きボイラ等で燃料として再利用して、サーマルリサイクルを図るようにする廃棄物の炭化燃料化システム等の試みが行われてきている。更に、上記熱分解ガス化溶融システムや、廃棄物の炭化燃料化システムにおいて、回収される熱分解ガスの一部を、上記廃棄物の熱分解処理用の熱源とするための高温ガス(熱風)を発生させる熱風発生炉で燃料として利用することも考えられてきている。   This is because the waste is heated to a required temperature under a low oxygen atmosphere (including an oxygen-free atmosphere, the same applies below) and thermally decomposed to thermally decompose the combustible matter in the waste. A pyrolysis gas and a pyrolysis residue mainly composed of fixed carbon (char) are generated so that the pyrolysis gas and the pyrolysis residue can be separated and recovered. The combustible pyrolysis gas and A pyrolysis gasification and melting system for waste, in which the pyrolysis residue is introduced into a melting furnace, burned at a high temperature with a small amount of air (for example, an air ratio of about 1.3), and the molten slag is taken out, Attempts have been made to use a carbonization fuel system for waste, in which the recovered pyrolysis residue is reused as fuel in a coal-fired boiler or the like at various facilities as a carbide to achieve thermal recycling. Further, in the above pyrolysis gasification melting system and waste carbonization fuel system, a high temperature gas (hot air) for using a part of the recovered pyrolysis gas as a heat source for the pyrolysis treatment of the waste It has also been considered to use it as a fuel in a hot air generating furnace that generates heat.

ところで、上記都市ごみ等の廃棄物を熱分解処理する際には、廃棄物中の水分と、塩化ビニル樹脂を主体とする塩素含有プラスチックの混入が問題となる。   By the way, when the waste such as municipal waste is thermally decomposed, there is a problem of moisture in the waste and mixing of chlorine-containing plastic mainly composed of vinyl chloride resin.

すなわち、水分は、廃棄物の熱分解処理時に混入していても、加熱されて水蒸気になるだけだが、水分の混入した廃棄物を熱分解処理するためには、廃棄物の熱分解に必要とされる熱量に加えて、廃棄物中に混入している水分の蒸発潜熱が必要とされる。この際、水分量が多い廃棄物を処理する場合は、水分の蒸発潜熱が全体必要熱量の70〜80%を占めることもあり、そのため、廃棄物の熱分解処理時に多量の熱量が必要になるという問題が生じる。   In other words, even if moisture is mixed during the thermal decomposition of waste, it is only heated to become water vapor, but in order to thermally decompose waste mixed with moisture, it is necessary for thermal decomposition of the waste. In addition to the amount of heat generated, the latent heat of vaporization of water mixed in the waste is required. At this time, when processing a waste having a large amount of water, the latent heat of vaporization of water may occupy 70 to 80% of the total required heat. Therefore, a large amount of heat is required at the time of thermal decomposition of the waste. The problem arises.

更に、上記廃棄物の熱分解により発生する熱分解ガスに、上記廃棄物中の水分に由来する水蒸気が含まれることで、上記熱分解ガスの見かけ上の発熱量が低下するという問題も生じる。   Furthermore, when the pyrolysis gas generated by the thermal decomposition of the waste contains water vapor derived from the water in the waste, there is also a problem that the apparent calorific value of the pyrolysis gas is reduced.

一方、廃棄物に塩化ビニル樹脂を主体とする塩素含有プラスチックが混入している場合は、該塩素含有プラスチックの熱分解処理に伴って塩素(Cl)が放出され、この放出された塩素が有害な塩化水素ガスとなるため、廃棄物の熱分解処理によって得られる熱分解ガスのガス性状を著しく悪化させ、又、腐食性を助長するという問題が生じる。そのために、上記熱分解ガスの流通に用いる管路や燃焼に用いる燃焼装置やボイラ等の熱回収装置が大きく制限されてしまう。又、排ガス処理装置の設置も必要になる。   On the other hand, when a chlorine-containing plastic mainly composed of vinyl chloride resin is mixed in the waste, chlorine (Cl) is released along with the thermal decomposition of the chlorine-containing plastic, and this released chlorine is harmful. Since hydrogen chloride gas is used, there are problems that the gas properties of the pyrolysis gas obtained by the pyrolysis treatment of the waste are significantly deteriorated and the corrosivity is promoted. For this reason, heat recovery devices such as pipelines used for circulation of the pyrolysis gas and combustion devices and boilers used for combustion are greatly limited. In addition, it is necessary to install an exhaust gas treatment device.

更に、上記塩素含有プラスチックの熱分解処理時に放出される塩素の一部が、遊離した状態で熱分解残渣中の灰成分に含まれるK、Ca、Na等のアルカリ金属と反応して、KCl、CaCl、NaCl等の塩となり、これらの塩が熱分解残渣に含まれることになるが、この塩を含んだ熱分解残渣を、炭化物として取り出して燃料として燃焼させると、その時点で再び塩素が放出されて塩化水素ガスの発生に繋がる虞が生じるようになるため、上記熱分解残渣を燃料として用いるには、予め該熱分解残渣を水洗して脱塩する処理が必要になってしまう。 Further, a part of chlorine released during the pyrolysis treatment of the chlorine-containing plastic reacts with alkali metals such as K, Ca, Na and the like contained in the ash component in the pyrolysis residue in a free state, and KCl, It becomes a salt such as CaCl 2 , NaCl and the like, and these salts are contained in the pyrolysis residue. When the pyrolysis residue containing this salt is taken out as a carbide and burned as fuel, chlorine is again produced at that time. Since there is a possibility that hydrogen chloride gas will be generated due to the release, the use of the pyrolysis residue as a fuel requires a process of previously washing the pyrolysis residue with water and desalting it.

以上の点に鑑みて、本出願人は、たとえば、図2に示す如く、外熱キルン炉b内の廃棄物aを、熱風発生炉cで発生させた高温ガスdを熱源として乾燥、熱分解し、熱分解ガスe及び熱分解残渣fを下流の溶融炉gへ送って処理するようにしてある廃棄物熱分解ガス化溶融装置において、上記外熱キルン炉bの上流側に、該外熱キルン炉bに供給する前の廃棄物aを乾燥させるための通気乾燥機hを設置してなる構成として、廃棄物aを該通気乾燥機hで50%以上の水分を除去してから、この乾燥後の廃棄物aを上記外熱キルン炉bへ供給させる手法を従来提案している。   In view of the above, the present applicant, for example, as shown in FIG. 2, the waste a in the external heat kiln furnace b is dried and pyrolyzed using the high-temperature gas d generated in the hot air generator c as a heat source. In the waste pyrolysis gasification and melting apparatus in which the pyrolysis gas e and the pyrolysis residue f are sent to the downstream melting furnace g for processing, the external heat is introduced upstream of the external heat kiln furnace b. As a configuration in which a ventilation dryer h for drying the waste a before being supplied to the kiln furnace b is installed, the waste a is removed from the aeration dryer h by 50% or more of moisture, and this Conventionally, a method of supplying the waste a after drying to the external heat kiln furnace b has been proposed.

かかる手法によれば、上記外熱キルン炉bでは、上記通気乾燥機hで予め水分量が50%以下まで低減された廃棄物aを処理対象として、その乾燥と熱分解処理を行うことができるため、該外熱キルン炉bより回収される熱分解ガスe中に含まれる水蒸気(水分)を少なくすることができて、該熱分解ガスeの見かけ上の発熱量の低下を抑えて、高発熱量(高カロリー)のガスを取り出すことができるようにしてある(たとえば、特許文献1参照)。   According to such a method, in the external heat kiln furnace b, the waste a whose moisture content has been reduced to 50% or less in advance by the ventilation dryer h can be treated and dried and pyrolyzed. Therefore, it is possible to reduce the water vapor (moisture) contained in the pyrolysis gas e recovered from the external heat kiln furnace b, and to suppress a decrease in the apparent calorific value of the pyrolysis gas e. The calorific value (high calorie) gas can be taken out (see, for example, Patent Document 1).

又、本出願人は、図3に示す如く、廃棄物aを、一次熱分解炉iへ供給して低酸素雰囲気条件の下で塩素含有プラスチックが熱分解され且つアルミニウム合金の溶融が生じない温度範囲、具体的には、350〜450℃に加熱して熱分解し、発生する一次熱分解ガスjと一次熱分解残渣kを分離して回収した後、該一次熱分解炉iより回収された一次熱分解残渣kを、二次熱分解炉lへ供給して低酸素雰囲気条件の下でより高温の熱分解温度、たとえば、750℃まで加熱することにより更に熱分解し、発生する二次熱分解ガスmと二次熱分解残渣nとを分離して回収するようにした廃棄物の熱分解ガス化方法及び装置も従来提案している。   Further, as shown in FIG. 3, the present applicant supplies waste a to the primary pyrolysis furnace i, and the temperature at which the chlorine-containing plastic is pyrolyzed and the aluminum alloy does not melt under low oxygen atmosphere conditions. Range, specifically, pyrolyzed by heating to 350 to 450 ° C., and the primary pyrolysis gas j and primary pyrolysis residue k generated were separated and recovered, and then recovered from the primary pyrolysis furnace i. The secondary pyrolysis residue k is further pyrolyzed by supplying the primary pyrolysis residue k to the secondary pyrolysis furnace 1 and heating it to a higher pyrolysis temperature, for example, 750 ° C. under low oxygen atmosphere conditions. A waste pyrolysis gasification method and apparatus for separating and recovering the cracked gas m and the secondary pyrolysis residue n have also been proposed.

かかる構成としてある廃棄物の熱分解ガス化方法及び装置によれば、一次熱分解炉iで廃棄物aを350〜450℃に加熱して熱分解させ、この際発生する一次熱分解ガスjを一次熱分解残渣kより分離して回収することで、該一次熱分解jガス中に、処理対象とした水分を含んだ廃棄物aが上記一次熱分解炉i内で乾燥される際に放出される水蒸気(水分)、及び、上記廃棄物a中の塩素含有プラスチックに含まれる塩素に由来する塩化水素等の腐食性を有する成分を回収することができる。よって、その後、上記一次熱分解炉iより上記水分及び腐食性を有する成分を含んだ一次熱分解ガスjと分離された状態で回収される一次熱分解残渣kを、上記二次熱分解炉lへ供給して更に高温の熱分解温度で熱分解することにより、該二次熱分解炉lから、上記水分や塩化水素等の腐食性を有する成分を含まない高発熱量(高カロリー)で且つクリーンな可燃性ガスである二次熱分解ガスmと、固定炭素主体の二次熱分解残渣nとをそれぞれ回収できるようにしてある(たとえば、特許文献2参照)。   According to the pyrolysis gasification method and apparatus for waste having such a structure, the primary pyrolysis furnace i heats and decomposes the waste a to 350 to 450 ° C., and the primary pyrolysis gas j generated at this time is decomposed. By separating and recovering from the primary pyrolysis residue k, waste a containing moisture to be treated in the primary pyrolysis j gas is released when dried in the primary pyrolysis furnace i. It is possible to recover water vapor (water) and corrosive components such as hydrogen chloride derived from chlorine contained in the chlorine-containing plastic in the waste a. Therefore, after that, the primary pyrolysis residue k recovered in a state separated from the primary pyrolysis gas j containing the moisture and corrosive components from the primary pyrolysis furnace i is converted into the secondary pyrolysis furnace l. And is further pyrolyzed at a higher pyrolysis temperature, and has a high calorific value (high calorie) from the secondary pyrolysis furnace 1 and does not contain corrosive components such as moisture and hydrogen chloride. The secondary pyrolysis gas m, which is a clean flammable gas, and the secondary pyrolysis residue n mainly composed of fixed carbon can be recovered (for example, see Patent Document 2).

特開平11−141834号公報JP 11-141834 A 特開2007−238858号公報JP 2007-238858 A

ところが、上記特許文献1に示した手法は、通気乾燥機hで予め乾燥して水分を除去した後の廃棄物aを外熱キルン炉bで熱分解するようにしてあるため、水蒸気の低減した高発熱量の熱分解ガスeを回収するのに有効である。しかし、上記通気乾燥機hは、廃棄物aの完全な乾燥を行うことを目的としたものではないため、上記外熱キルン炉bより回収される熱分解ガスe中には、廃棄物a中の水分に由来する水蒸気(水分)が多少残ることがある。   However, the technique shown in the above-mentioned Patent Document 1 reduces the water vapor because the waste a after being dried in advance with a ventilation dryer h to remove moisture is thermally decomposed in an external heat kiln furnace b. It is effective for recovering the pyrolysis gas e having a high calorific value. However, since the above-described ventilation dryer h is not intended to completely dry the waste a, the pyrolysis gas e recovered from the external heat kiln furnace b includes the waste a Some water vapor (moisture) derived from the moisture of the water may remain.

又、上記特許文献1に示した手法では、上記外熱キルン炉bより回収される熱分解ガスeに、塩化ビニル樹脂等の塩素含有プラスチックに含まれる塩素に由来する塩化水素等の腐食性を有する成分が含まれないようにするための対策は特に図られていないというのが実状である。   In the method shown in Patent Document 1, the pyrolysis gas e recovered from the external heat kiln furnace b has corrosive properties such as hydrogen chloride derived from chlorine contained in a chlorine-containing plastic such as vinyl chloride resin. The actual situation is that no particular measures are taken to prevent the contained components from being included.

上記特許文献2に示した手法は、一次熱分解炉iで水分及び腐食性を有する成分を含んだ一次熱分解ガスjを分離してから、残る一次熱分解残渣kを二次熱分解炉lで更に高温の熱分解温度で熱分解することで、該二次熱分解炉lより高発熱量(高カロリー)でクリーンな二次熱分解ガスmと、固定炭素主体の二次熱分解残渣nを発生させて回収するのに有効である。しかし、上記一次熱分解炉iにおいても350〜450℃の温度条件での熱分解処理を行うようにしていることから、塩化ビニル樹脂を主体とする塩素含有プラスチックと、その他の350〜450℃の温度条件の下で熱分解される廃棄物a中の相当量の可燃分の熱分解反応が進行して可燃性ガスが生じるため、その分、二次熱分解炉lより回収されるクリーンな可燃性ガスである二次熱分解ガスmの回収量が減ってしまう。   The technique shown in the above-mentioned patent document 2 separates the primary pyrolysis gas j containing moisture and corrosive components in the primary pyrolysis furnace i, and then converts the remaining primary pyrolysis residue k into the secondary pyrolysis furnace l. The secondary pyrolysis gas m having a higher calorific value (higher calorie) than the secondary pyrolysis furnace l and the secondary pyrolysis residue n mainly composed of fixed carbon are obtained by pyrolysis at a higher pyrolysis temperature. It is effective to generate and recover. However, since the primary pyrolysis furnace i is also subjected to a pyrolysis treatment under a temperature condition of 350 to 450 ° C., chlorine-containing plastic mainly composed of vinyl chloride resin and other 350 to 450 ° C. Since the pyrolysis reaction of a considerable amount of combustible matter in the waste a that is pyrolyzed under temperature conditions proceeds to generate combustible gas, clean combustible fuel that is recovered from the secondary pyrolysis furnace l The amount of recovered secondary pyrolysis gas m, which is a natural gas, is reduced.

更に、上記一次熱分解炉iでは、上記塩素含有プラスチックの熱分解により発生する塩素の一部が、遊離した状態で、該一次熱分解炉iにおける350〜450℃の温度条件の下で塩素含有プラスチックやその他の廃棄物が熱分解されることで発生する一次熱分解残渣k中の灰成分に含まれるアルカリ金属と反応して塩になり、この塩が一次熱分解残渣kと一緒に二次熱分解炉lへ送られるようになるため、該二次熱分解炉lより回収される二次熱分解残渣n中にも、上記塩が含まれるようになる。よって、上記二次熱分解残渣nを燃料として使用する場合は、水洗等の脱塩処理が必要になるというのが実状である。   Further, in the primary pyrolysis furnace i, a part of chlorine generated by the pyrolysis of the chlorine-containing plastic is released, and the chlorine is contained under the temperature condition of 350 to 450 ° C. in the primary pyrolysis furnace i. It reacts with the alkali metal contained in the ash component in the primary pyrolysis residue k generated by the thermal decomposition of plastics and other wastes to form a salt, and this salt is secondary to the primary pyrolysis residue k. Since it is sent to the pyrolysis furnace l, the salt is also contained in the secondary pyrolysis residue n recovered from the secondary pyrolysis furnace l. Therefore, when the secondary pyrolysis residue n is used as a fuel, it is the actual situation that a desalination treatment such as washing with water is necessary.

そこで、本発明者は、上記した従来提案している手法を更に発展させて、高カロリーで且つ塩化水素等の腐食性を有する成分を含まない高品位の熱分解ガスをより多く回収できるようにすると共に、固定炭素(チャー)主体で且つ塩素含有プラスチックに含まれる塩素に由来して生成される塩の濃度が低いという性状を備えた高品位の熱分解残渣を回収できるようにするための工夫、研究を重ねた。その結果、塩素含有プラスチックの主体をなす塩化ビニル樹脂の低酸素雰囲気条件における脱塩化水素反応は280℃程度をピークとして250〜300℃程度の温度条件で進行する一方、この温度条件の下では該塩化ビニル樹脂におけるサーマルリサイクルに有効な炭化水素成分の分解が10%以下に抑えられる点、及び、プラスチックは種類により熱分解温度は大きく異なるが、生産量から4大プラスチックとして知られているポリエチレン、ポリプロピレン、塩化ビニル樹脂、ポリスチレンのうち、塩化ビニル樹脂以外のポリエチレン、ポリプロピレン、ポリスチレンは、いずれも400〜500℃程度の温度条件の下で熱分解の反応が進行する点、更に、木や紙等の主成分のセルロースの主要な熱分解反応は350℃程度をピークとして300〜400℃程度の温度条件の下で進行する点に着目して、熱分解処理する前の廃棄物を、低酸素雰囲気下で250〜300℃の温度条件で一旦加熱処理することで、上記廃棄物中に含まれている水分を蒸発させることができると共に、上記棄物中の可燃分の熱分解反応をあまり進行させることなく、該廃棄物中に含まれる塩素含有プラスチックについての脱塩化水素反応を効率よく進行させることができ、よって、上記加熱処理後に固体成分をガス成分より分離して回収することで、上記廃棄物中の可燃分を多く含み且つ水分と塩素含有プラスチックに由来する塩素が除去されてなる固体成分を得ることができて、この固体成分を熱分解処理することにより、水分及び塩素分が除去された可燃性ガスである熱分解ガスと、上記塩素分の除去に伴い塩の生成が抑えられた固定炭素主体の熱分解残渣を得ることができることを見出して本発明をなした。   Therefore, the present inventor further develops the above-described conventionally proposed method so as to recover more high-grade pyrolysis gas that does not contain high-calorie and corrosive components such as hydrogen chloride. In addition, a device for recovering high-grade pyrolysis residues with the property that the concentration of salt produced mainly from fixed carbon (char) and derived from chlorine contained in chlorine-containing plastics is low , Repeated research. As a result, the dehydrochlorination reaction in a low oxygen atmosphere condition of the vinyl chloride resin, which is the main component of the chlorine-containing plastic, proceeds at a temperature condition of about 250 to 300 ° C. with a peak at about 280 ° C. Under this temperature condition, Polyethylene, which is known as the four largest plastics in terms of production, although the decomposition of hydrocarbon components effective for thermal recycling in vinyl chloride resin is suppressed to 10% or less, and the thermal decomposition temperature varies greatly depending on the type of plastic. Among polypropylene, vinyl chloride resin, and polystyrene, polyethylene, polypropylene, and polystyrene other than vinyl chloride resin all undergo thermal decomposition reactions under temperature conditions of about 400 to 500 ° C., and wood and paper The main pyrolysis reaction of the main component of cellulose peaks at around 350 ° C. Paying attention to the point that it proceeds under a temperature condition of about 300-400 ° C., the waste before the thermal decomposition treatment is once heat-treated under a temperature condition of 250-300 ° C. in a low oxygen atmosphere, Moisture contained in the waste can be evaporated, and dechlorination of the chlorine-containing plastic contained in the waste can be carried out without causing much thermal decomposition of the combustible content in the waste. The hydrogen reaction can proceed efficiently, and therefore, after the heat treatment, the solid component is separated from the gas component and recovered, so that it contains a large amount of combustible matter in the waste and is derived from moisture and chlorine-containing plastic. A solid component from which chlorine has been removed can be obtained, and by pyrolyzing the solid component, a pyrolysis gas, which is a combustible gas from which moisture and chlorine have been removed, and the chlorine None of the present invention found that it is possible to produce a salt with the removal of obtaining thermal decomposition residue of the fixed carbon-based, which is suppressed.

したがって、本発明の目的とするところは、高カロリーで且つ塩化水素等の腐食性を有する成分を含まない高品位の熱分解ガスを多く回収できると共に、固定炭素主体で且つ塩素含有プラスチックに含まれる塩素に由来する塩の含有量が低減された高品位の熱分解残渣を回収することができる廃棄物の熱分解処理方法及び装置を提供しようとするものである。   Therefore, the object of the present invention is to recover a large amount of high-grade pyrolysis gas that is high in calories and does not contain corrosive components such as hydrogen chloride, and is mainly contained in fixed carbon and contained in chlorine-containing plastics. An object of the present invention is to provide a waste pyrolysis treatment method and apparatus capable of recovering a high-grade pyrolysis residue in which the content of salt derived from chlorine is reduced.

本発明は、上記課題を解決するために、請求項1に対応して、廃棄物を3%以下の低酸素雰囲気下で塩化ビニル樹脂を主体とする塩素含有プラスチックの脱塩化水素反応が進行し且つ該塩素含有プラスチックの炭化水素成分の分解が10%以下に抑えられる温度条件に加熱し、該加熱に伴い水蒸気及び塩素分を含むガス成分の放出後に残存する固体成分を、上記ガス成分より分離した状態で回収し、次に、上記固体成分を3%以下の低酸素雰囲気下で可燃分の主体を成すプラスチック類及びセルロースの熱分解反応が進行する温度条件で熱分解して、発生する熱分解ガスと熱分解残渣とを分離した状態でそれぞれ回収する廃棄物の熱分解処理方法とする。   In order to solve the above-mentioned problem, the present invention corresponds to claim 1 and proceeds with a dehydrochlorination reaction of chlorine-containing plastic mainly composed of vinyl chloride resin in a low oxygen atmosphere of 3% or less. In addition, heating is performed under a temperature condition in which the decomposition of the hydrocarbon component of the chlorine-containing plastic is suppressed to 10% or less, and the solid component remaining after the release of the gas component containing water vapor and chlorine with the heating is separated from the gas component. Next, the solid component is thermally decomposed under a temperature condition in which the thermal decomposition reaction of the plastics and cellulose mainly constituting the combustible component proceeds in a low oxygen atmosphere of 3% or less, and heat generated. A method for thermally decomposing waste, in which the cracked gas and the pyrolysis residue are separated, respectively, is collected.

又、請求項2に対応して、廃棄物を3%以下の低酸素雰囲気下で250〜300℃に加熱し、該加熱に伴い水蒸気及び塩素分を含むガス成分の放出後に残存する固体成分を、上記ガス成分より分離した状態で回収し、次に、上記固体成分を3%以下の低酸素雰囲気下で400〜500℃の温度条件で熱分解して、発生する熱分解ガスと熱分解残渣とを分離した状態でそれぞれ回収する廃棄物の熱分解処理方法とする。   Corresponding to claim 2, the waste is heated to 250 to 300 ° C. in a low oxygen atmosphere of 3% or less, and the solid component remaining after the release of the gas component containing water vapor and chlorine is accompanied by the heating. The solid component is recovered in a state separated from the gas component, and then the solid component is thermally decomposed under a temperature condition of 400 to 500 ° C. in a low oxygen atmosphere of 3% or less, and the generated pyrolysis gas and pyrolysis residue Is a thermal decomposition treatment method for wastes collected separately.

更に、請求項3に対応して、廃棄物を3%以下の低酸素雰囲気下で塩化ビニル樹脂を主体とする塩素含有プラスチックの脱塩化水素反応が進行し且つ該塩素含有プラスチックの炭化水素成分の分解が10%以下に抑えられる温度条件で加熱するための乾燥兼脱塩化水素処理装置と、該乾燥兼脱塩化水素処理装置より上記所要の温度条件での加熱に伴い放出される水蒸気及び塩素分を含むガス成分と分離した状態で回収する固体成分を、3%以下の低酸素雰囲気下で可燃分の主体を成すプラスチック類及びセルロースの熱分解反応が進行する温度条件で熱分解して発生する熱分解ガスと熱分解残渣とを分離して回収できるようにしてある熱分解装置とを備えてなる構成を有する廃棄物の熱分解処理装置とする。   Further, in accordance with claim 3, the dehydrochlorination reaction of the chlorine-containing plastic mainly composed of vinyl chloride resin proceeds in a low oxygen atmosphere of 3% or less of the waste, and the hydrocarbon component of the chlorine-containing plastic Drying / dehydrochlorination treatment apparatus for heating under a temperature condition in which decomposition is suppressed to 10% or less, and water vapor and chlorine content released from the drying / dehydrochlorination treatment apparatus with heating under the required temperature condition The solid component recovered in a state separated from the gas component containing hydrogen is generated by thermal decomposition under a temperature condition in which the thermal decomposition reaction of the plastics and cellulose mainly constituting the combustible component proceed in a low oxygen atmosphere of 3% or less. A waste pyrolysis treatment apparatus having a configuration including a pyrolysis apparatus configured to separate and recover pyrolysis gas and pyrolysis residue.

更に又、請求項4に対応して、廃棄物を3%以下の低酸素雰囲気下で250〜300℃に加熱するための乾燥兼脱塩化水素処理装置と、該乾燥兼脱塩化水素処理装置より上記所要の温度条件での加熱に伴い放出される水蒸気及び塩素分を含むガス成分と分離した状態で回収する固体成分を、3%以下の低酸素雰囲気下で400〜500℃の温度条件で熱分解して発生する熱分解ガスと熱分解残渣とを分離して回収できるようにしてある熱分解装置とを備えてなる構成を有する廃棄物の熱分解処理装置とする。   Furthermore, in accordance with claim 4, a drying and dehydrochlorination apparatus for heating waste to 250 to 300 ° C. in a low oxygen atmosphere of 3% or less, and the drying and dehydrochlorination apparatus The solid component recovered in a state separated from the gas component containing water vapor and chlorine released with heating under the required temperature condition is heated at a temperature condition of 400 to 500 ° C. in a low oxygen atmosphere of 3% or less. A waste pyrolysis apparatus having a configuration including a pyrolysis apparatus configured to separate and recover pyrolysis gas and pyrolysis residue generated by decomposition.

上述の各構成において、乾燥兼脱塩化水素処理装置を、廃棄物を熱源となる加熱ガスと直接接触させて加熱する形式のものとした構成とする。   In each of the above-described configurations, the drying and dehydrochlorination apparatus is configured to heat the waste by directly contacting the waste gas with a heating gas serving as a heat source.

更に、上記各構成において、熱分解装置を、熱風発生炉で発生させた加熱ガスを熱源とする外熱により固体成分を間接加熱して所定の温度条件で熱分解させる形式のものとし、且つ該熱分解装置における固体成分の熱分解用の熱源に供した後の加熱ガスを、乾燥兼脱塩化水素処理装置における廃棄物の加熱用の熱源として用いるようにした構成とする   Further, in each of the above configurations, the thermal decomposition apparatus is of a type in which the solid component is indirectly heated by external heat using a heated gas generated in a hot air generator as a heat source to thermally decompose it at a predetermined temperature condition, and The heating gas that has been supplied to the heat source for the thermal decomposition of the solid components in the thermal decomposition apparatus is configured to be used as a heat source for heating waste in the drying and dehydrochlorination treatment apparatus.

本発明によれば、以下のような優れた効果を発揮する。
(1)廃棄物を3%以下の低酸素雰囲気下で塩化ビニル樹脂を主体とする塩素含有プラスチックの脱塩化水素反応が進行し且つ該塩素含有プラスチックの炭化水素成分の分解が10%以下に抑えられる温度条件に加熱し、該加熱に伴い水蒸気及び塩素分を含むガス成分の放出後に残存する固体成分を、上記ガス成分より分離した状態で回収し、次に、上記固体成分を3%以下の低酸素雰囲気下で可燃分の主体を成すプラスチック類及びセルロースの熱分解反応が進行する温度条件で熱分解して、発生する熱分解ガスと熱分解残渣とを分離した状態でそれぞれ回収する廃棄物の熱分解処理方法及び装置、より具体的には、廃棄物を3%以下の低酸素雰囲気下で250〜300℃に加熱し、該加熱に伴い水蒸気及び塩素分を含むガス成分の放出後に残存する固体成分を、上記ガス成分より分離した状態で回収し、次に、上記固体成分を3%以下の低酸素雰囲気下で400〜500℃の温度条件で熱分解して、発生する熱分解ガスと熱分解残渣とを分離した状態でそれぞれ回収する廃棄物の熱分解処理方法及び装置としてあるので、廃棄物の上記所定の低酸素雰囲気下における塩化ビニル樹脂を主体とする塩素含有プラスチックの脱塩化水素反応が進行し且つ該塩素含有プラスチックのサーマルリサイクルに有効な炭化水素成分の分解が10%以下に抑えられる温度条件である250〜300℃への加熱により、該廃棄物に含まれていた水分は水蒸気として放出させることができると共に、廃棄物中の塩素含有プラスチックの塩素分をガス成分として放出させることができるため、このガス成分を分離した状態で回収する固体成分は、水分及び塩素分が除去されたものとすることができる。更に、上記温度条件では廃棄物の熱分解反応はほとんど進行しないために灰成分はほとんど発生しないことから、上記固体成分は、廃棄物より放出される塩素分中の遊離の塩素と灰成分に含まれるアルカリ金属との反応で生じる塩をほとんど含まないものとすることができる。よって、上記固体成分を、上記所定の低酸素雰囲気下で可燃分の主体を成すプラスチック類及びセルロースの熱分解反応が進行する温度条件である400〜500℃の温度条件で熱分解することにより、水蒸気及び塩素分を含まない高カロリーで且つ高品位な可燃性ガスとなる熱分解ガスと、廃棄物中の塩素含有プラスチックの塩素に由来する塩を含まない高品位の固定炭素主体の熱分解残渣を生成させることができる。
(2)以上により、分離して回収される上記熱分解ガス及び熱分解残渣を、それぞれ良質で高カロリーの燃料ガス、及び、良質な炭化燃料として利用することができて、廃棄物のサーマルリサイクルを図る場合に、上記熱分解ガスや熱分解残渣を燃料として広範な燃焼装置で利用することが可能になる。
(3)乾燥兼脱塩化水素処理装置を、廃棄物を熱源となる加熱ガスと直接接触させて加熱する形式のものとした構成とすることにより、上記乾燥兼脱塩化水素処理装置にて廃棄物を加熱するときの熱効率を高めることができると共に、廃棄物より放出される水蒸気や塩素分を含むガス成分を、該廃棄物の加熱用の熱源として用いる加熱ガスの流れに乗せて固体成分より容易に分離させることができる。
(4)熱分解装置を、熱風発生炉で発生させた加熱ガスを熱源とする外熱により固体成分を間接加熱して所定の温度条件で熱分解させる形式のものとし、且つ該熱分解装置における固体成分の熱分解用の熱源に供した後の加熱ガスを、乾燥兼脱塩化水素処理装置における廃棄物の加熱用の熱源として用いるようにした構成とすることにより、熱分解装置における固体成分の熱分解用の熱源に供した後の加熱ガスに残存する熱を、乾燥兼脱塩化水素処理装置における廃棄物の加熱用の熱源として有効利用することができるため、装置全体の熱効率を高めることが可能になる。
According to the present invention, the following excellent effects are exhibited.
(1) The dehydrochlorination reaction of the chlorine-containing plastic mainly composed of vinyl chloride resin proceeds in a low oxygen atmosphere of 3% or less, and the decomposition of the hydrocarbon component of the chlorine-containing plastic is suppressed to 10% or less. And the solid component remaining after the release of the gas component containing water vapor and chlorine is recovered in a state separated from the gas component, and then the solid component is 3% or less. Wastes that are pyrolyzed under the temperature conditions under which the pyrolysis reaction of cellulose and the main combustible components under low oxygen atmosphere are separated, and the generated pyrolysis gas and pyrolysis residue are recovered separately. And more specifically, after the waste is heated to 250 to 300 ° C. in a low oxygen atmosphere of 3% or less, and the gas component containing water vapor and chlorine is released along with the heating. The remaining solid component is recovered in a state separated from the gas component, and then the solid component is pyrolyzed under a temperature condition of 400 to 500 ° C. in a low oxygen atmosphere of 3% or less to generate the pyrolysis. Since there is a method and apparatus for the thermal decomposition treatment of waste that collects gas and thermal decomposition residue separately, the removal of chlorine-containing plastics mainly composed of vinyl chloride resin in the predetermined low oxygen atmosphere of waste It was contained in the waste by heating to 250 to 300 ° C., which is a temperature condition in which the hydrogen chloride reaction proceeds and decomposition of hydrocarbon components effective for thermal recycling of the chlorine-containing plastic is suppressed to 10% or less. Moisture can be released as water vapor and the chlorine content of the chlorine-containing plastic in the waste can be released as a gas component. Solid component is recovered in a state of separating the components, it can be made moisture and chlorine has been removed. Furthermore, since the thermal decomposition reaction of waste hardly proceeds under the above temperature conditions, almost no ash component is generated. Therefore, the above solid component is included in free chlorine and ash component in the chlorine released from the waste. The salt generated by the reaction with the alkali metal is hardly contained. Therefore, by thermally decomposing the solid component at a temperature condition of 400 to 500 ° C., which is a temperature condition in which a pyrolysis reaction of the plastics and cellulose mainly constituting a combustible component proceeds in the predetermined low oxygen atmosphere, Pyrolysis gas that is high-calorie and high-quality flammable gas that does not contain water vapor and chlorine, and high-grade fixed carbon-based pyrolysis residue that does not contain chlorine-derived salts of chlorine-containing plastics in waste Can be generated.
(2) By the above, the pyrolysis gas and pyrolysis residue recovered separately can be used as high-quality, high-calorie fuel gas and high-quality carbonized fuel, respectively, and thermal recycling of waste In this case, the pyrolysis gas and pyrolysis residue can be used as fuel in a wide range of combustion apparatuses.
(3) The drying and dehydrochlorination treatment apparatus is configured so that the waste is directly brought into contact with a heating gas serving as a heat source and heated, so that the waste and dehydrochlorination treatment apparatus can It is possible to increase the thermal efficiency when heating the waste gas, and to easily put the gas component containing water vapor and chlorine released from the waste on the flow of the heating gas used as a heat source for heating the waste than the solid component Can be separated.
(4) The thermal decomposition apparatus is of a type in which the solid component is indirectly heated by external heat using the heated gas generated in the hot air generator as a heat source, and is thermally decomposed under a predetermined temperature condition. By using the heated gas after being supplied to the heat source for thermal decomposition of the solid component as a heat source for heating waste in the drying and dehydrochlorination treatment device, Since the heat remaining in the heated gas after being supplied to the heat source for pyrolysis can be effectively used as a heat source for heating waste in the drying and dehydrochlorination treatment apparatus, it is possible to increase the thermal efficiency of the entire apparatus. It becomes possible.

本発明の廃棄物の熱分解処理方法及び装置の実施の一形態を示す概要図である。It is a schematic diagram showing one embodiment of the waste thermal decomposition method and apparatus of the present invention. 本出願人が従来提案している廃棄物の熱分解処理手法の一例の概要を示す図である。It is a figure which shows the outline | summary of an example of the thermal decomposition processing method of the waste which the present applicant has proposed conventionally. 本出願人が従来提案している廃棄物の熱分解ガス化方法及び装置の概要を示す図である。It is a figure which shows the outline | summary of the thermal decomposition gasification method and apparatus of the waste which the present applicant has proposed conventionally.

以下、本発明を実施するための形態を図面を参照して説明する。   Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings.

図1は本発明の廃棄物の熱分解処理方法及び装置の実施の一形態を示すもので、以下のようにしてある。   FIG. 1 shows an embodiment of a waste pyrolysis method and apparatus according to the present invention, which is as follows.

すなわち、廃棄物1を乾燥兼脱塩化水素処理装置2へ供給し、該乾燥兼脱塩化水素処理装置2へのリークによって生じる3%以下の低酸素雰囲気を保持した状態で、塩化ビニル樹脂を主体とする塩素含有プラスチックの脱塩化水素反応が進行し且つ該塩素含有プラスチックのサーマルリサイクルに有効な炭化水素成分の分解が10%以下に抑えられる温度条件である250〜300℃、たとえば、300℃に加熱して、上記廃棄物1の乾燥と、該廃棄物1中に含まれる塩化ビニル樹脂を主体とする塩素含有プラスチック(図示せず)の脱塩化水素反応を行わせる。   That is, the waste 1 is supplied to the drying and dehydrochlorination treatment apparatus 2, and the vinyl chloride resin is mainly used in a state where a low oxygen atmosphere of 3% or less caused by the leakage to the drying and dehydrochlorination treatment apparatus 2 is maintained. 250 to 300 ° C., for example, 300 ° C., which is a temperature condition in which the dehydrochlorination reaction of the chlorine-containing plastic proceeds and the decomposition of hydrocarbon components effective for thermal recycling of the chlorine-containing plastic is suppressed to 10% or less By heating, the waste 1 is dried and a dehydrochlorination reaction of a chlorine-containing plastic (not shown) mainly composed of vinyl chloride resin contained in the waste 1 is performed.

次に、上記乾燥兼脱塩化水素処理装置2より、固体成分3を、上記廃棄物1の乾燥に伴い放出された水蒸気(水分)5及び塩素含有プラスチックより放出された塩化水素ガス等の塩素分6を含むガス成分4と分離した状態で回収する。   Next, the solid component 3 is separated from the drying and dehydrochlorination treatment apparatus 2 by the water vapor (moisture) 5 released along with the drying of the waste 1 and the chlorine content such as hydrogen chloride gas released from the chlorine-containing plastic. 6 is recovered in a state separated from the gas component 4 containing 6.

次いで、上記乾燥兼脱塩化水素処理装置2より回収された固体成分3を、熱分解装置7へ供給し、該熱分解装置7へのリークによって生じる3%以下の低酸素雰囲気を保持した状態で、可燃分の主体を成すプラスチック類及びセルロースの熱分解反応が進行する温度条件である400〜500℃、たとえば、450℃に加熱して、上記固体成分3中の可燃分を熱分解して、可燃性ガスである熱分解ガス8と、固定炭素(チャー)を主体とする熱分解残渣9を生成させ、その後、該生成した熱分解ガス8と熱分解残渣9を分離して回収するようにする。   Next, the solid component 3 recovered from the drying and dehydrochlorination treatment apparatus 2 is supplied to the thermal decomposition apparatus 7 while maintaining a low oxygen atmosphere of 3% or less caused by leakage to the thermal decomposition apparatus 7. , By heating to 400 to 500 ° C., for example, 450 ° C., which is a temperature condition in which the pyrolysis reaction of the plastics and cellulose mainly constituting the combustible component proceeds, and pyrolyzing the combustible component in the solid component 3, A pyrolysis gas 8 which is a combustible gas and a pyrolysis residue 9 mainly composed of fixed carbon (char) are generated, and then the generated pyrolysis gas 8 and the pyrolysis residue 9 are separated and recovered. To do.

詳述すると、上記乾燥兼脱塩化水素処理装置2は、たとえば、円筒状のキルン本体10を一端の入口10a側よりも他端の出口10b側が低くなるように所要角度傾斜させて横置きに配置して回転駆動できるようにしてある。上記キルン本体10の上記入口10a側には、投入ホッパ11の下端部に接続したスクリューコンベヤ形式等の給じん機12を取り付けて、上記投入ホッパ11内に投入された廃棄物1を、上記給じん機12により上記キルン本体10内へ供給できるようにしてある。   More specifically, the drying and dehydrochlorination treatment apparatus 2 is disposed horizontally, for example, by tilting the cylindrical kiln main body 10 at a required angle so that the outlet 10b at the other end is lower than the inlet 10a at the other end. Thus, it can be rotated. At the inlet 10a side of the kiln main body 10, a screw conveyor type dust feeder 12 connected to the lower end of the charging hopper 11 is attached, and the waste 1 charged into the charging hopper 11 is supplied to the charging hopper 11 as described above. The dust machine 12 can supply the kiln body 10 with the dust machine 12.

上記キルン本体10の出口側には、固体成分回収口14を底部に備えた分離室13を設け、該分離室13に、加熱ガス入口15を設けると共に、助燃用のバーナ16が設置してある。更に、上記キルン本体10の入口10a側にガス出口17を設けた構成としてある。これにより、上記キルン本体10を低速で回転させた状態において、上記投入ホッパ11内の廃棄物1を給じん機12によりキルン本体10内へ徐々に供給しつつ、所要温度の加熱ガス18aを、上記キルン本体10内へ加熱ガス入口15より導入し、該キルン本体10内にて上記ガス出口17に向けて流通させることにより、上記キルン本体10内を上記所定の低酸素雰囲気に保持した状態にて、キルン本体10の回転に伴って該キルン本体10内を入口10a側から出口10b側へ順次移送される廃棄物1を、上記加熱ガス18aによる直接加熱により300℃に加熱できるようにしてある。   A separation chamber 13 having a solid component recovery port 14 at the bottom is provided on the outlet side of the kiln main body 10. A heating gas inlet 15 is provided in the separation chamber 13, and a burner 16 for auxiliary combustion is installed. . Furthermore, the gas outlet 17 is provided on the inlet 10a side of the kiln main body 10. Thereby, in a state where the kiln main body 10 is rotated at a low speed, the waste gas 1 in the charging hopper 11 is gradually supplied into the kiln main body 10 by the dust feeder 12, and the heating gas 18a at a required temperature is supplied. By introducing the heated gas inlet 15 into the kiln main body 10 and flowing the kiln main body 10 toward the gas outlet 17 in the kiln main body 10, the kiln main body 10 is maintained in the predetermined low oxygen atmosphere. Thus, the waste 1 that is sequentially transferred from the inlet 10a side to the outlet 10b side in the kiln body 10 as the kiln body 10 rotates can be heated to 300 ° C. by direct heating with the heating gas 18a. .

なお、上記加熱ガス18aにより上記キルン本体10内の廃棄物1を300℃に加熱するための必要熱量が得られない場合は、図1に二点鎖線で示すように、上記助燃用のバーナ16の燃焼により発生させる高温の燃焼ガス19を補助熱源として、上記キルン本体10内で廃棄物1を300℃に加熱できるようにしてある。よって、この廃棄物1の300℃への加熱に伴い、該廃棄物1中に含まれていた水分を蒸発させることができるようにしてあると共に、上記廃棄物1中に含まれている塩化ビニル樹脂を主体とする塩素含有プラスチックの脱塩化水素反応を進行させて、塩素分6を塩化水素ガス等のガスとして放出させることができるようにしてある。   In addition, when the heat quantity required for heating the waste 1 in the kiln main body 10 to 300 ° C. cannot be obtained by the heating gas 18a, as shown by a two-dot chain line in FIG. The waste 1 can be heated to 300 ° C. in the kiln main body 10 using the high-temperature combustion gas 19 generated by the combustion of as a supplementary heat source. Therefore, as the waste 1 is heated to 300 ° C., the water contained in the waste 1 can be evaporated, and the vinyl chloride contained in the waste 1 is provided. A dehydrochlorination reaction of a chlorine-containing plastic mainly composed of a resin is advanced so that a chlorine content of 6 can be released as a gas such as hydrogen chloride gas.

更に、上記所定温度の加熱処理により水分の除去と塩素分6の除去が行われた後に上記分離室13に達する固体成分3は、該分離室13の底部の固体成分回収口14より固体成分回収ライン20へ回収できるようにしてある。   Furthermore, the solid component 3 that reaches the separation chamber 13 after the moisture is removed and the chlorine content 6 is removed by the heat treatment at the predetermined temperature is recovered from the solid component recovery port 14 at the bottom of the separation chamber 13. It can be recovered to the line 20.

一方、上記廃棄物1の300℃への加熱用の熱源として供された後の加熱ガス18a、及び、必要に応じて補助熱源として供された後の上記助燃用のバーナ16の燃焼ガス19と、上記廃棄物1中に含まれていた水分の蒸発により生じた水蒸気5及び上記廃棄物1中の塩素含有プラスチックの脱塩化水素処理により生じた塩化水素ガス等の塩素分6を含むガス成分4は、上記ガス出口17より取り出して、ガス排出ライン21を通して図示しない所要の排ガス処理設備へ排出できるようにしてある。   On the other hand, a heating gas 18a after being provided as a heat source for heating the waste 1 to 300 ° C., and a combustion gas 19 of the auxiliary burner 16 after being provided as an auxiliary heat source as necessary, Gas component 4 containing chlorine content 6 such as water vapor 5 generated by evaporation of water contained in the waste 1 and hydrogen chloride gas generated by dehydrochlorination treatment of the chlorine-containing plastic in the waste 1 Can be taken out from the gas outlet 17 and discharged through a gas discharge line 21 to a required exhaust gas treatment facility (not shown).

上記熱分解装置7は、一端の入口23a側に供給管24を一体に接続し且つ他端の出口23b側に排出管25を一体に接続した内筒23と、その外側に同心状に配置した外筒26との間に加熱流路27を形成してなる二重筒構造とした熱分解キルン炉22を、上記内筒23の一端の入口23a側よりも他端の出口23b側が低くなるように所要角度傾斜させて横置きに配置して回転駆動できるようにしてある。   The thermal decomposition apparatus 7 is arranged concentrically on the outer side of an inner cylinder 23 in which a supply pipe 24 is integrally connected to the inlet 23a side of one end and a discharge pipe 25 is integrally connected to the outlet 23b side of the other end. The pyrolysis kiln furnace 22 having a double cylinder structure in which a heating flow path 27 is formed between the outer cylinder 26 and the outlet 23b side at the other end is lower than the inlet 23a side at one end of the inner cylinder 23. Inclined at a required angle to be placed horizontally and rotated.

上記熱分解キルン炉22における上記内筒23の入口23aには、上記乾燥兼脱塩化水素処理装置2における分離室13の固体成分回収口14より固体成分3を導く固体成分回収ライン20の下流側に接続したホッパ28の下端部に設けてあるスクリューコンベヤ形式等の供給装置29を取り付けて、上記投入ホッパ28内の固体成分3を、上記供給装置29により上記内筒23内へ供給できるようにしてある。   The inlet 23 a of the inner cylinder 23 in the pyrolysis kiln furnace 22 is downstream of the solid component recovery line 20 that leads the solid component 3 from the solid component recovery port 14 of the separation chamber 13 in the drying and dehydrochlorination apparatus 2. A supply device 29 such as a screw conveyor type provided at the lower end of the hopper 28 connected to the hopper 28 is attached so that the solid component 3 in the charging hopper 28 can be supplied into the inner cylinder 23 by the supply device 29. It is.

一方、上記熱分解キルン炉22における内筒23の出口23bには、上記固体成分3の熱分解処理により発生する熱分解ガス8と熱分解残渣9を分離させて、頂部の熱分解ガス回収口31と底部の熱分解残渣回収口32よりそれぞれ回収できるようにした分離室30が設けてある。   On the other hand, at the outlet 23b of the inner cylinder 23 in the pyrolysis kiln furnace 22, the pyrolysis gas 8 and pyrolysis residue 9 generated by the pyrolysis treatment of the solid component 3 are separated, and the pyrolysis gas recovery port at the top is separated. A separation chamber 30 is provided so that it can be recovered from 31 and a pyrolysis residue recovery port 32 at the bottom.

更に、上記内筒23と外筒26との間に形成した加熱流路27における内筒23の出口23b寄りに設けた加熱ガス入口33に、熱風発生炉34が加熱ガス供給ライン35を介して接続してある。   Further, a hot air generating furnace 34 is connected to a heating gas inlet 33 provided near the outlet 23 b of the inner cylinder 23 in the heating flow path 27 formed between the inner cylinder 23 and the outer cylinder 26 via a heating gas supply line 35. Connected.

上記加熱流路27における内筒23の入口23a寄りには加熱ガス出口36が設けてある。これにより、上記熱分解キルン炉22を低速で回転させた状態において、ホッパ28内の固体成分3を供給装置29により内筒23内へ徐々に供給しつつ、内筒23と外筒26との間に形成された加熱流路27内に、上記熱風発生炉34で所要の燃料の燃焼により発生させた高温の加熱ガス(熱風)18を、加熱ガス供給ライン35を介し加熱ガス入口33より導入すると共に、該加熱流路27内を加熱ガス出口36へ向けて流通させることにより、内筒23内を上記所定の低酸素雰囲気に保持した状態にて、熱分解キルン炉22の回転に伴って内筒23内を入口23a側から出口23b側へ順次移送される固体成分3を、内筒23の周壁を介して上記加熱ガス18を熱源とする外熱により450℃に間接加熱して、可燃性ガスである熱分解ガス8と固定炭素主体の熱分解残渣9に熱分解させることができるようにしてある。   A heating gas outlet 36 is provided near the inlet 23 a of the inner cylinder 23 in the heating channel 27. Thereby, in the state where the pyrolysis kiln furnace 22 is rotated at a low speed, the solid component 3 in the hopper 28 is gradually supplied into the inner cylinder 23 by the supply device 29, while the inner cylinder 23 and the outer cylinder 26 are High-temperature heated gas (hot air) 18 generated by combustion of the required fuel in the hot-air generating furnace 34 is introduced from the heated gas inlet 33 through the heated gas supply line 35 into the heating channel 27 formed therebetween. At the same time, by circulating the inside of the heating channel 27 toward the heating gas outlet 36, the pyrolysis kiln furnace 22 is rotated while the inner cylinder 23 is maintained in the predetermined low oxygen atmosphere. The solid component 3 sequentially transferred from the inlet 23a side to the outlet 23b side in the inner cylinder 23 is indirectly heated to 450 ° C. by external heat using the heated gas 18 as a heat source through the peripheral wall of the inner cylinder 23, and is combustible. Pyrolysis, a natural gas Scan 8 and are to be able to be thermally decomposed in the thermal decomposition residue 9 of the fixed carbon-based.

更に、上記固体成分3の熱分解により発生する熱分解ガス8と熱分解残渣9は、上記分離室30で分離させた後、熱分解ガス8は分離室30の頂部の熱分解ガス回収口31より熱分解ガス回収ライン37を通して回収できるようにしてある。一方、上記熱分解残渣9は上記分離室30の底部の熱分解残渣回収口32より熱分解残渣回収ライン38を通して回収できるようにしてある。   Further, after the pyrolysis gas 8 and pyrolysis residue 9 generated by pyrolysis of the solid component 3 are separated in the separation chamber 30, the pyrolysis gas 8 is separated from the pyrolysis gas recovery port 31 at the top of the separation chamber 30. Further, it can be recovered through the pyrolysis gas recovery line 37. On the other hand, the thermal decomposition residue 9 can be recovered through a thermal decomposition residue recovery line 38 from the thermal decomposition residue recovery port 32 at the bottom of the separation chamber 30.

上記熱分解ガス回収ライン37には、途中の所要位置より2本の熱分解ガスライン39と40をそれぞれ分岐させて設け、一方の熱分解ガスライン39を上記熱風発生炉34に接続して、上記可燃性ガスである熱分解ガス8の一部を、熱風発生炉34に供給して加熱ガス18を発生させるための燃料として利用できるようにしてある。   In the pyrolysis gas recovery line 37, two pyrolysis gas lines 39 and 40 are branched from a required position in the middle, and one pyrolysis gas line 39 is connected to the hot air generating furnace 34, A part of the pyrolysis gas 8 which is the combustible gas can be used as a fuel for supplying the hot air generating furnace 34 to generate the heating gas 18.

又、上記熱分解ガス回収ライン37より分岐させた他方の熱分解ガスライン40は、上記乾燥兼脱塩化水素処理装置2に設けた助燃用のバーナ16に接続して、上記熱分解ガス8の一部を、上記助燃用のバーナ16に供給して燃焼用燃料として利用できるようにしてある。   The other pyrolysis gas line 40 branched from the pyrolysis gas recovery line 37 is connected to a burner 16 for auxiliary combustion provided in the drying and dehydrochlorination treatment apparatus 2 so that the pyrolysis gas 8 flows. A part is supplied to the burner 16 for auxiliary combustion so that it can be used as a fuel for combustion.

上記熱分解装置7における加熱流路27の加熱ガス出口36には、循環ファン42を備えた加熱ガス循環ライン41が接続してあり、上記熱分解装置7における加熱流路27を流通して上記固体成分3の熱分解処理用の熱源に供された後に加熱ガス出口36より排出される加熱ガス18aを、上記熱風発生炉34に循環させることができるようにしてある。   A heating gas circulation line 41 provided with a circulation fan 42 is connected to the heating gas outlet 36 of the heating flow path 27 in the thermal decomposition apparatus 7, and flows through the heating flow path 27 in the thermal decomposition apparatus 7 and the above. The heated gas 18 a discharged from the heated gas outlet 36 after being supplied to the heat source for the thermal decomposition treatment of the solid component 3 can be circulated to the hot air generating furnace 34.

更に、上記加熱ガス循環ライン41における循環ファン42よりも下流側の所要個所に加熱ガス回収ライン43の上流側端部を接続すると共に、該加熱ガス回収ライン43の下流側端部を2本に分岐させて、一方の分岐ライン43aを、上記乾燥兼脱塩化水素処理装置2における分離室13の加熱ガス入口15に接続すると共に、他方の分岐ライン43bを上記ガス排出ライン21の途中位置に接続し、且つ上記各分岐ライン43aと43bに、上記乾燥兼脱塩化水素処理装置2の固定成分回収口14より固体成分3を導く固体成分回収ライン20上に温度検出部を接続した温度調節器44によって制御される流量調整弁45aと45bを、それぞれ設けた構成としてある。上記温度調節器44は、上記乾燥兼脱塩化水素処理装置2の固体成分回収口14より固体成分回収ライン20へ回収されて該温度調節器44の温度検出部により検出される固体成分3の温度が常に300℃に保持されるように、上記加熱ガス回収ライン43の各分岐ライン43a,43b上の各流量調整弁45a,45bへ制御指令を与えるようにしてある。これにより、上記熱分解装置7の加熱流路27を流通した後、加熱ガス出口36より加熱ガス循環ライン41へ導かれる加熱ガス18aの一部を、上記加熱ガス回収ライン43へ回収すると共に、該加熱ガス回収ライン43と上記一方の分岐ライン43aを通して上記乾燥兼脱塩化水素処理装置2の加熱ガス入口15へ供給することができるようにしてあり、この加熱ガス18aの保有する熱、すなわち、上記熱分解装置7における固体成分3の熱分解用熱源に供した後の加熱ガス18aに残存する熱を、乾燥兼脱塩化水素処理装置2にて廃棄物1を300℃まで加熱するための熱源として利用できるようにしてある。この際、上記乾燥兼脱塩化水素処理装置2にて加熱される廃棄物1の温度が300℃に保持されるように、上記温度調節器44により上記加熱ガス回収ライン43を通して導かれる加熱ガス18aの一方の分岐ライン43aを通した上記乾燥兼脱塩化水素処理装置2への供給量を適宜調整できるようにしてある。なお、上記加熱ガス18aの余剰分は、他方の分岐ライン43bを経てガス排出ライン21へ排出できるようにしてある。   Further, the upstream end of the heated gas recovery line 43 is connected to a required location downstream of the circulation fan 42 in the heated gas circulation line 41, and the downstream end of the heated gas recovery line 43 is divided into two. One branch line 43 a is branched and connected to the heated gas inlet 15 of the separation chamber 13 in the drying and dehydrochlorination apparatus 2, and the other branch line 43 b is connected to an intermediate position of the gas discharge line 21. And a temperature controller 44 in which a temperature detector is connected to each of the branch lines 43a and 43b on the solid component recovery line 20 for introducing the solid component 3 from the fixed component recovery port 14 of the drying and dehydrochlorination apparatus 2. The flow rate adjusting valves 45a and 45b controlled by the above are respectively provided. The temperature controller 44 is recovered from the solid component recovery port 14 of the drying and dehydrochlorination apparatus 2 to the solid component recovery line 20 and detected by the temperature detector of the temperature controller 44. Is always maintained at 300 ° C., a control command is given to the flow rate adjusting valves 45a and 45b on the branch lines 43a and 43b of the heated gas recovery line 43. Thereby, after circulating through the heating flow path 27 of the thermal decomposition apparatus 7, a part of the heating gas 18 a led to the heating gas circulation line 41 from the heating gas outlet 36 is recovered to the heating gas recovery line 43, Heat can be supplied to the heating gas inlet 15 of the drying and dehydrochlorination treatment apparatus 2 through the heating gas recovery line 43 and the one branch line 43a. Heat source for heating the waste 1 to 300 ° C. in the drying and dehydrochlorination apparatus 2 using the heat remaining in the heated gas 18a after being used as a heat source for the thermal decomposition of the solid component 3 in the thermal decomposition apparatus 7 It can be used as. At this time, the heated gas 18a introduced through the heated gas recovery line 43 by the temperature controller 44 so that the temperature of the waste 1 heated in the drying and dehydrochlorination treatment apparatus 2 is maintained at 300 ° C. The supply amount to the drying and dehydrochlorination apparatus 2 through one branch line 43a can be appropriately adjusted. The surplus of the heated gas 18a can be discharged to the gas discharge line 21 via the other branch line 43b.

以上により、上記熱分解装置7における固体成分3の熱分解処理によって生じる可燃性ガスである熱分解ガス8の燃焼熱を熱源として、上記熱分解装置7における固体成分3の熱分解処理と、上記乾燥兼脱塩化水素処理装置2における廃棄物1の300℃までの加熱を共に行わせることができるようにしてある。   As described above, the thermal decomposition treatment of the solid component 3 in the thermal decomposition apparatus 7 using the combustion heat of the thermal decomposition gas 8 that is a combustible gas generated by the thermal decomposition treatment of the solid component 3 in the thermal decomposition apparatus 7 as described above, The waste 1 in the drying and dehydrochlorination apparatus 2 can be heated to 300 ° C. together.

なお、本発明の廃棄物の熱分解処理装置の運転開始時等、上記熱分解装置7における固体成分3の熱分解処理が開始される以前は、上記熱分解ガス8は発生しないことから、上記乾燥兼脱塩化水素処理装置2の助燃用のバーナ16、及び、上記熱風発生炉34には、図示しない外部燃料の供給ラインをそれぞれ接続して、上記熱分解ガス8が燃焼用燃料として利用できるようになるまでは、上記外部燃料の燃焼熱を熱源として、上記乾燥兼脱塩化水素処理装置2における廃棄物1の300℃までの加熱と、上記熱分解装置7における固体成分3の450℃での熱分解処理を行わせることができるようにしてあるものとする。   Since the pyrolysis gas 8 is not generated before the pyrolysis treatment of the solid component 3 in the pyrolysis apparatus 7 is started, such as when the operation of the thermal decomposition apparatus for waste according to the present invention is started, the pyrolysis gas 8 is not generated. An external fuel supply line (not shown) is connected to the burner 16 for auxiliary combustion of the drying and dehydrochlorination treatment apparatus 2 and the hot air generating furnace 34 so that the pyrolysis gas 8 can be used as combustion fuel. Until this occurs, using the combustion heat of the external fuel as a heat source, heating the waste 1 in the drying and dehydrochlorination treatment apparatus 2 to 300 ° C. and the solid component 3 in the pyrolysis apparatus 7 at 450 ° C. It is assumed that the thermal decomposition treatment can be performed.

46は上記乾燥兼脱塩化水素処理装置2の助燃用のバーナ16へ供給する燃焼用空気、47は熱風発生炉34へ供給する燃焼用空気である。48は熱分解装置7の熱分解残渣回収口32より熱分解残渣9を導く熱分解残渣回収ライン38上に温度検出部を接続した温度調節器であり、該温度調節器48により、上記熱分解残渣回収ライン38を通して熱分解装置7より回収される熱分解残渣9の温度が450℃に保持されるように、図示しない調整手段を介して上記熱分解装置7の加熱流路27へ流通させる加熱ガス18の流量を適宜調整させるようにすればよい。   46 is combustion air supplied to the burner 16 for auxiliary combustion of the drying and dehydrochlorination treatment apparatus 2, and 47 is combustion air supplied to the hot air generating furnace 34. Reference numeral 48 denotes a temperature controller in which a temperature detection unit is connected to a thermal decomposition residue recovery line 38 for introducing the thermal decomposition residue 9 from the thermal decomposition residue recovery port 32 of the thermal decomposition apparatus 7. Heating that is circulated through the heating flow path 27 of the thermal decomposition apparatus 7 via an adjusting means (not shown) so that the temperature of the thermal decomposition residue 9 recovered from the thermal decomposition apparatus 7 through the residue recovery line 38 is maintained at 450 ° C. What is necessary is just to adjust the flow volume of the gas 18 suitably.

以上の構成としてある本発明の廃棄物の熱分解処理装置を用いる場合は、先ず、廃棄物1を乾燥兼脱塩化水素処理装置2へ供給し、キルン本体10内で上記所定の低酸素雰囲気を保持した状態で加熱ガス18aを熱源とし、又、必要に応じて燃焼させる助燃用のバーナ16の燃焼ガス19を補助熱源として300℃に加熱する。これにより、上記廃棄物1では、含まれていた水分が蒸発して水蒸気5として放出されると共に、該廃棄物1中に含まれる塩化ビニル樹脂を主体とする塩素含有プラスチックの脱塩化水素反応が進行することで、塩素分6がガスとして放出される。   When the waste pyrolysis apparatus of the present invention having the above-described configuration is used, first, the waste 1 is supplied to the drying and dehydrochlorination apparatus 2, and the predetermined low oxygen atmosphere is formed in the kiln body 10. While being held, the heating gas 18a is heated to 300 ° C. using the heating gas 18a as a heat source and, if necessary, the combustion gas 19 of the auxiliary burner 16 to be burned as an auxiliary heat source. Thereby, in the waste 1, the contained water is evaporated and released as the water vapor 5, and the dehydrochlorination reaction of the chlorine-containing plastic mainly composed of the vinyl chloride resin contained in the waste 1 is performed. By proceeding, chlorine content 6 is released as a gas.

上記のようにして廃棄物1より水蒸気5と塩素分6を含むガス成分4が放出されると、該ガス成分4は、上記乾燥兼脱塩化水素処理装置2のキルン本体10にて上記廃棄物1の加熱用の熱源として供された後の加熱ガス18a、及び、必要に応じて補助熱源として供された後の上記助燃用のバーナ16の燃焼ガス19と一緒にガス出口17よりガス排出ライン21を通して図示しない所要の排ガス処理設備へ排出されるようになるため、上記キルン本体10内で上記ガス成分4の分離が行われた後に残存する固体成分3は、水分及び塩素分6が除去されたものとなる。   When the gas component 4 containing the water vapor 5 and the chlorine content 6 is released from the waste 1 as described above, the gas component 4 is removed from the waste in the kiln main body 10 of the drying and dehydrochlorination apparatus 2. A gas discharge line from the gas outlet 17 together with the heating gas 18a after being provided as a heat source for heating 1 and the combustion gas 19 of the burner 16 for auxiliary combustion after being provided as an auxiliary heat source if necessary Accordingly, the solid component 3 remaining after the gas component 4 is separated in the kiln body 10 is freed of moisture and chlorine content 6. It will be.

しかも、上記乾燥兼脱塩化水素処理装置2における廃棄物1の加熱温度である300℃では、該廃棄物1の可燃分の熱分解反応はほとんど進行しないため、灰成分はほとんど発生しない。このため、上記廃棄物1より放出される塩素分6中の遊離の塩素が、灰成分に含まれるアルカリ金属と塩を生成する反応は抑制される。   Moreover, at 300 ° C., which is the heating temperature of the waste 1 in the drying and dehydrochlorination treatment device 2, the pyrolysis reaction of the combustible portion of the waste 1 hardly proceeds, so that almost no ash component is generated. For this reason, the reaction which the free chlorine in the chlorine content 6 discharge | released from the said waste material 1 produces | generates the alkali metal and salt contained in an ash component is suppressed.

よって、上記乾燥兼脱塩化水素処理装置2の固体成分回収口14より回収される固体成分3は、水分と塩素が除去され、且つ上記廃棄物1中の塩素含有プラスチックの塩素に由来する塩もほとんど含まないものとなる。   Therefore, the solid component 3 recovered from the solid component recovery port 14 of the drying and dehydrochlorination apparatus 2 is free of moisture and chlorine, and is also a salt derived from chlorine of the chlorine-containing plastic in the waste 1. It will be almost never included.

次いで、上記乾燥兼脱塩化水素処理装置2より回収した固体成分3が、熱分解装置7へ供給されると、該固体成分3を、熱分解装置7における熱分解キルン炉22内で、上記所定の低酸素雰囲気を保持した状態にて熱風発生炉34で発生させた加熱ガス18を熱源として450℃に加熱する。これにより、上記固体成分3では、上記乾燥兼脱塩化水素処理装置2にて予め塩素の除去が行われた塩化ビニル樹脂等の塩素含有プラスチックにおけるサーマルリサイクルに有効な炭化水素成分である可燃分と、残りの可燃分の主体を成すポリエチレン、ポリプロピレン、ポリスチレン等のプラスチック類、及び、木や紙等の主成分のセルロースの熱分解反応が行われて、可燃性ガスである熱分解ガス8と、固定炭素を主体とする熱分解残渣9が生成される。この際、上記したように熱分解の対象となる固体成分3が、予め水分と塩素が除去され且つ上記廃棄物1中の塩素含有プラスチックの塩素に由来する塩もほとんど含まないものとなっていることから、上記生成する熱分解ガス8は水分としての水蒸気及び塩素分を含まない高カロリーで且つ高品位な可燃性ガスとなり、又、熱分解残渣9は上記廃棄物1中の塩素含有プラスチックの塩素に由来する塩を含まない高品位の固定炭素主体のものとなる。   Next, when the solid component 3 recovered from the drying and dehydrochlorination treatment apparatus 2 is supplied to the thermal decomposition apparatus 7, the solid component 3 is converted into the predetermined temperature in the thermal decomposition kiln furnace 22 of the thermal decomposition apparatus 7. The heated gas 18 generated in the hot air generation furnace 34 in a state where the low oxygen atmosphere is maintained is heated to 450 ° C. as a heat source. Thereby, in the solid component 3, a combustible component which is a hydrocarbon component effective for thermal recycling in a chlorine-containing plastic such as vinyl chloride resin from which chlorine has been removed in advance in the drying and dehydrochlorination apparatus 2. The pyrolysis reaction of the main combustible components such as polyethylene, polypropylene, and polystyrene, and the main component cellulose such as wood and paper is carried out, and a pyrolysis gas 8 that is a combustible gas; A pyrolysis residue 9 mainly composed of fixed carbon is produced. At this time, as described above, the solid component 3 to be subjected to thermal decomposition has moisture and chlorine removed in advance and contains almost no salt derived from chlorine of the chlorine-containing plastic in the waste 1. Therefore, the generated pyrolysis gas 8 is a high-calorie and high-quality flammable gas that does not contain water vapor and chlorine as moisture, and the pyrolysis residue 9 is the chlorine-containing plastic in the waste 1. High-quality fixed carbon-based materials that do not contain chlorine-derived salts.

よって、上記高カロリーで且つ高品位の可燃性ガスである熱分解ガス8が、上記熱分解装置7より熱分解ガス回収ライン37を通して、又、高品位な固定炭素主体の熱分解残渣9が、上記熱分解装置7より熱分解残渣回収ライン38を通してそれぞれ回収されるようになる。   Therefore, the pyrolysis gas 8 which is the high-calorie and high-quality combustible gas passes through the pyrolysis gas recovery line 37 from the pyrolysis device 7, and the high-grade fixed carbon-based pyrolysis residue 9 is Recovered from the thermal decomposition apparatus 7 through a thermal decomposition residue recovery line 38.

このように、本発明の廃棄物の熱分解処理方法及び装置によれば、高カロリーで且つ高品位の熱分解ガス8を得ることができるため、該熱分解ガス8を良質で高カロリーの燃料ガスとして利用することができる。又、塩素含有プラスチックの塩素に由来する塩の低減された高品位の固定炭素主体の熱分解残渣9を得ることができるため、該熱分解残渣9を、良質な炭化燃料として利用することができる。よって、廃棄物1のサーマルリサイクルを図る場合に、上記熱分解ガス8や熱分解残渣9を燃料として広範な燃焼装置で利用することが可能になる。   Thus, according to the waste pyrolysis method and apparatus of the present invention, a high-calorie and high-grade pyrolysis gas 8 can be obtained. It can be used as a gas. Moreover, since the high-quality fixed carbon-based pyrolysis residue 9 with reduced salt derived from chlorine in the chlorine-containing plastic can be obtained, the pyrolysis residue 9 can be used as a high-quality carbonized fuel. . Therefore, when the waste 1 is to be thermally recycled, the pyrolysis gas 8 and the pyrolysis residue 9 can be used as fuel in a wide range of combustion apparatuses.

なお、本発明は上記実施の形態のみに限定されるものではなく、乾燥兼脱塩化水素処理装置2は、廃棄物1の加熱温度が250〜300℃であって、多少の酸素が存在していても廃棄物1の燃焼がほとんど進行しない温度条件であるため、熱効率の観点、及び、廃棄物1より放出させる水蒸気5や塩素分6を含むガス成分4を該廃棄物1の加熱用熱源として用いる加熱ガス18aや補助熱源として用いる助燃用のバーナ16の燃焼ガス19の流れに乗せて排出させることで固体成分3からの分離を容易に行うことができるという観点からすると、上記加熱ガス18aや燃焼ガス19を、廃棄物1に直接接触させる形式とすることが好ましいが、廃棄物1を3%以下の低酸素雰囲気下で250〜300℃に加熱すると共に固体成分3をガス成分4より分離して回収できれば、熱分解装置7における固体成分3の加熱方式と同様に、廃棄物1を上記加熱ガス18aや助燃用のバーナ16の燃焼ガス19により間接加熱する形式としてもよい。又、廃棄物1を上記所定の低酸素雰囲気下で250〜300℃に加熱すると共に固体成分3をガス成分4より分離して回収できれば、図示した以外のいかなる形式の乾燥兼脱塩化水素処理装置2を用いるようにしてもよい。   In addition, this invention is not limited only to the said embodiment, The drying and dehydrochlorination processing apparatus 2 is the heating temperature of the waste material 1 250-300 degreeC, and some oxygen exists. However, since it is a temperature condition in which the combustion of the waste 1 hardly proceeds, the viewpoint of thermal efficiency and the gas component 4 containing the water vapor 5 and the chlorine content 6 released from the waste 1 are used as a heat source for heating the waste 1. From the viewpoint that separation from the solid component 3 can be easily performed by being discharged on the flow of the combustion gas 19 of the heating gas 18a to be used and the combustion gas 19 of the auxiliary combustion burner 16 used as an auxiliary heat source, the heating gas 18a and Although it is preferable that the combustion gas 19 is in direct contact with the waste 1, the waste 1 is heated to 250 to 300 ° C. in a low oxygen atmosphere of 3% or less and the solid component 3 is converted into a gas component. If recovered by more separated, similarly to the heating method of the solid components 3 in the thermal cracking unit 7 may waste 1 as a form of indirect heating by combustion gases 19 of the burner 16 of the heating gas 18a and assistant 燃用. If the waste 1 is heated to 250 to 300 ° C. in the predetermined low oxygen atmosphere and the solid component 3 can be separated and recovered from the gas component 4, any type of drying and dehydrochlorination apparatus other than the one shown in the figure can be used. 2 may be used.

熱分解装置7は、上記乾燥兼脱塩化水素処理装置2より回収される固体成分3を3%以下の低酸素雰囲気下で400〜500℃に加熱して該固体成分3中の可燃分を熱分解することができるようにしてあれば、固体成分3を熱源により直接加熱する方式等、図示した以外のいかなる形式の熱分解装置7を採用してもよい。   The thermal decomposition apparatus 7 heats the combustible component in the solid component 3 by heating the solid component 3 recovered from the drying and dehydrochlorination apparatus 2 to 400 to 500 ° C. in a low oxygen atmosphere of 3% or less. As long as it can be decomposed, any type of thermal decomposition apparatus 7 other than the illustrated one, such as a method of directly heating the solid component 3 with a heat source, may be adopted.

熱分解装置7より回収される熱分解ガス8をより高温で処理してタール成分を分解させるようにしてもよい。又、熱分解装置7より回収される熱分解残渣9をより高温で処理することで、該熱分解残渣9に残存している揮発分をより多くガス化させて、可燃性ガスである熱分解ガス8の収量を増加させるようにしてもよい。   The thermal decomposition gas 8 recovered from the thermal decomposition apparatus 7 may be processed at a higher temperature to decompose the tar component. In addition, by treating the pyrolysis residue 9 recovered from the pyrolysis apparatus 7 at a higher temperature, the volatile matter remaining in the pyrolysis residue 9 is further gasified, so that the pyrolysis which is a flammable gas The yield of the gas 8 may be increased.

乾燥兼脱塩化水素処理装置2における廃棄物1の加熱用熱源、及び、熱分解装置7における固体成分3の熱分解処理用の熱源は、熱分解ガス8の燃焼熱により自給できる形式とすることが好ましいが、外部の熱源を使用するようにしてもよい。   The heat source for heating the waste 1 in the drying and dehydrochlorination treatment device 2 and the heat source for the thermal decomposition treatment of the solid component 3 in the pyrolysis device 7 should be of a type that can be self-supplied by the combustion heat of the pyrolysis gas 8. However, an external heat source may be used.

熱分解装置7より熱分解残渣9を回収する熱分解残渣回収ライン38の下流側に、該熱分解残渣9中の金属や不燃物を分離するための選別装置を設けて、熱分解残渣9における固定炭素の比率を高めるようにしてもよい。   In the pyrolysis residue 9, a sorting device is provided on the downstream side of the pyrolysis residue collection line 38 that collects the pyrolysis residue 9 from the pyrolysis device 7. You may make it raise the ratio of fixed carbon.

その他本発明の要旨を逸脱しない範囲内で種々変更を加え得ることは勿論である。   Of course, various modifications can be made without departing from the scope of the present invention.

1 廃棄物
2 乾燥兼脱塩化水素処理装置
3 固体成分
4 ガス成分
5 水蒸気
6 塩素分
7 熱分解装置
8 熱分解ガス
9 熱分解残渣
18,18a 加熱ガス
34 熱風発生炉
DESCRIPTION OF SYMBOLS 1 Waste 2 Drying and dehydrochlorination processing apparatus 3 Solid component 4 Gas component 5 Water vapor 6 Chlorine content 7 Pyrolysis apparatus 8 Pyrolysis gas 9 Pyrolysis residue 18, 18a Heating gas 34 Hot air generating furnace

Claims (6)

廃棄物を3%以下の低酸素雰囲気下で塩化ビニル樹脂を主体とする塩素含有プラスチックの脱塩化水素反応が進行し且つ該塩素含有プラスチックの炭化水素成分の分解が10%以下に抑えられる温度条件に加熱し、該加熱に伴い水蒸気及び塩素分を含むガス成分の放出後に残存する固体成分を、上記ガス成分より分離した状態で回収し、次に、上記固体成分を3%以下の低酸素雰囲気下でプラスチック類及びセルロースの熱分解反応が進行する温度条件で熱分解して、発生する熱分解ガスと熱分解残渣とを分離した状態でそれぞれ回収することを特徴とする廃棄物の熱分解処理方法。   Temperature conditions under which dehydrochlorination of chlorine-containing plastics mainly composed of vinyl chloride resin proceeds and decomposition of hydrocarbon components in chlorine-containing plastics is suppressed to 10% or less in a low oxygen atmosphere of 3% or less And the solid component remaining after the release of the gas component containing water vapor and chlorine is recovered in a state separated from the gas component, and then the solid component is recovered in a low oxygen atmosphere of 3% or less. Thermal decomposition treatment of waste, characterized by thermal decomposition under the temperature conditions under which the thermal decomposition reaction of plastics and cellulose proceeds, and collecting the generated pyrolysis gas and pyrolysis residue separately Method. 廃棄物を3%以下の低酸素雰囲気下で250〜300℃に加熱し、該加熱に伴い水蒸気及び塩素分を含むガス成分の放出後に残存する固体成分を、上記ガス成分より分離した状態で回収し、次に、上記固体成分を3%以下の低酸素雰囲気下で400〜500℃の温度条件で熱分解して、発生する熱分解ガスと熱分解残渣とを分離した状態でそれぞれ回収することを特徴とする廃棄物の熱分解処理方法。   Waste is heated to 250 to 300 ° C. in a low oxygen atmosphere of 3% or less, and the solid component remaining after the release of the gas component containing water vapor and chlorine is recovered in a state separated from the gas component. Next, the solid component is pyrolyzed under a temperature condition of 400 to 500 ° C. in a low oxygen atmosphere of 3% or less, and the generated pyrolysis gas and the pyrolysis residue are recovered separately. A method for thermally decomposing waste. 廃棄物を3%以下の低酸素雰囲気下で塩化ビニル樹脂を主体とする塩素含有プラスチックの脱塩化水素反応が進行し且つ該塩素含有プラスチックの炭化水素成分の分解が10%以下に抑えられる温度条件で加熱するための乾燥兼脱塩化水素処理装置と、該乾燥兼脱塩化水素処理装置より上記所要の温度条件での加熱に伴い放出される水蒸気及び塩素分を含むガス成分と分離した状態で回収する固体成分を、3%以下の低酸素雰囲気下でプラスチック類及びセルロースの熱分解反応が進行する温度条件で熱分解して発生する熱分解ガスと熱分解残渣とを分離して回収できるようにしてある熱分解装置とを備えてなる構成を有することを特徴とする廃棄物の熱分解処理装置。   Temperature conditions under which dehydrochlorination of chlorine-containing plastics mainly composed of vinyl chloride resin proceeds and decomposition of hydrocarbon components in chlorine-containing plastics is suppressed to 10% or less in a low oxygen atmosphere of 3% or less Recovered in a state separated from the gas component containing water vapor and chlorine released from the drying and dehydrochlorination treatment device with heating at the required temperature conditions. It is possible to separate and recover the pyrolysis gas and pyrolysis residue generated by pyrolysis under a temperature condition in which the pyrolysis reaction of plastics and cellulose proceeds under a low oxygen atmosphere of 3% or less. A waste pyrolysis apparatus characterized by comprising a thermal decomposition apparatus. 廃棄物を3%以下の低酸素雰囲気下で250〜300℃に加熱するための乾燥兼脱塩化水素処理装置と、該乾燥兼脱塩化水素処理装置より上記所要の温度条件での加熱に伴い放出される水蒸気及び塩素分を含むガス成分と分離した状態で回収する固体成分を、3%以下の低酸素雰囲気下で400〜500℃の温度条件で熱分解して発生する熱分解ガスと熱分解残渣とを分離して回収できるようにしてある熱分解装置とを備えてなる構成を有することを特徴とする廃棄物の熱分解処理装置。   Drying / dehydrochlorination apparatus for heating waste to 250-300 ° C. in a low oxygen atmosphere of 3% or less, and release from the drying / dehydrochlorination apparatus with heating at the required temperature conditions Pyrolysis gas and pyrolysis generated by pyrolyzing a solid component recovered in a state separated from a gas component containing water vapor and chlorine content in a low oxygen atmosphere of 3% or less under a temperature condition of 400 to 500 ° C. A waste pyrolysis apparatus characterized by comprising a pyrolysis apparatus configured to separate and recover residues. 乾燥兼脱塩化水素処理装置を、廃棄物を熱源となる加熱ガスと直接接触させて加熱する形式のものとした請求項3又は4記載の廃棄物の熱分解処理装置。   The waste pyrolysis treatment apparatus according to claim 3 or 4, wherein the drying and dehydrochlorination treatment apparatus is of a type in which the waste is heated in direct contact with a heating gas serving as a heat source. 熱分解装置を、熱風発生炉で発生させた加熱ガスを熱源とする外熱により固体成分を間接加熱して所定の温度条件で熱分解させる形式のものとし、且つ該熱分解装置における固体成分の熱分解用の熱源に供した後の加熱ガスを、乾燥兼脱塩化水素処理装置における廃棄物の加熱用の熱源として用いるようにした請求項3、4又は5記載の廃棄物の熱分解処理装置。   The pyrolysis apparatus is of a type in which a solid component is indirectly heated by external heat using a heated gas generated in a hot air generating furnace as a heat source and thermally decomposed at a predetermined temperature condition, and the solid component in the pyrolysis apparatus is 6. The waste pyrolysis apparatus according to claim 3, 4 or 5, wherein the heating gas after being supplied to the heat source for pyrolysis is used as a heat source for heating waste in the drying and dehydrochlorination apparatus. .
JP2009223325A 2009-09-28 2009-09-28 Waste pyrolysis treatment equipment Expired - Fee Related JP5621235B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009223325A JP5621235B2 (en) 2009-09-28 2009-09-28 Waste pyrolysis treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009223325A JP5621235B2 (en) 2009-09-28 2009-09-28 Waste pyrolysis treatment equipment

Publications (2)

Publication Number Publication Date
JP2011067800A true JP2011067800A (en) 2011-04-07
JP5621235B2 JP5621235B2 (en) 2014-11-12

Family

ID=44013626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009223325A Expired - Fee Related JP5621235B2 (en) 2009-09-28 2009-09-28 Waste pyrolysis treatment equipment

Country Status (1)

Country Link
JP (1) JP5621235B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105462615A (en) * 2015-12-14 2016-04-06 大连理工大学 Device utilizing waste plastics to thermally convert and prepare hydrogen-rich syngas and process

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08112580A (en) * 1994-10-14 1996-05-07 Nippon Steel Corp Continuous treatment of combined waste
JPH11141834A (en) * 1997-11-13 1999-05-28 Ishikawajima Harima Heavy Ind Co Ltd Device for thermal decomposing and gasifying waste material
JP2000005725A (en) * 1998-06-23 2000-01-11 Meidensha Corp Treatment of harmful component-containing matter and treating device
JP2000104082A (en) * 1998-09-30 2000-04-11 Kawasaki Steel Corp Method and apparatus for producing refuse derived solid fuel
JP2000144143A (en) * 1998-11-12 2000-05-26 Tokyo Kozai Kk Non-polluting pyrolytic carbonization and melt- reducuction having high temperature-thermostatic/ transporting equipment such as multistage thermostatic/ transporting equipment for pyrolytic carbonization and melt-reducting gasification equipment

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08112580A (en) * 1994-10-14 1996-05-07 Nippon Steel Corp Continuous treatment of combined waste
JPH11141834A (en) * 1997-11-13 1999-05-28 Ishikawajima Harima Heavy Ind Co Ltd Device for thermal decomposing and gasifying waste material
JP2000005725A (en) * 1998-06-23 2000-01-11 Meidensha Corp Treatment of harmful component-containing matter and treating device
JP2000104082A (en) * 1998-09-30 2000-04-11 Kawasaki Steel Corp Method and apparatus for producing refuse derived solid fuel
JP2000144143A (en) * 1998-11-12 2000-05-26 Tokyo Kozai Kk Non-polluting pyrolytic carbonization and melt- reducuction having high temperature-thermostatic/ transporting equipment such as multistage thermostatic/ transporting equipment for pyrolytic carbonization and melt-reducting gasification equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105462615A (en) * 2015-12-14 2016-04-06 大连理工大学 Device utilizing waste plastics to thermally convert and prepare hydrogen-rich syngas and process

Also Published As

Publication number Publication date
JP5621235B2 (en) 2014-11-12

Similar Documents

Publication Publication Date Title
JP5176363B2 (en) Waste pyrolysis gasification method and apparatus
JP5521187B2 (en) Combustible gas generator for gasifying waste and method for producing combustible gas
JP4502331B2 (en) Method and system for cogeneration with a carbonization furnace
JP2009028672A (en) Treatment method of high water-content waste and treatment apparatus
WO2020073092A1 (en) Process of treating carbonaceous material and apparatus therefor
JP2015007522A (en) Combustion system
JP4357517B2 (en) Nanocarbon generator
JP2006248838A (en) System for converting waste to fuel in cement production facility and method for producing cement using the system
JP5621235B2 (en) Waste pyrolysis treatment equipment
CZ43993A3 (en) Process for producing heating gas from a low-grade solid fuel, and apparatus for making the same
JP2006188396A (en) Converting system of halogen-containing material to fuel in cement manufacturing plant and cement manufacturing method using the converting system of halogen-containing material to fuel
JP3506893B2 (en) Method for producing carbide from waste solid fuel
JP6016367B2 (en) Method for suppressing generation of pyrolysis deposits in pyrolysis gasification system and pyrolysis gasification system
JP2005068435A (en) Method and plant for producing decontaminated syngas at high efficiency from feedstock rich in organic substance
JP2007238858A (en) Method and apparatus for pyrolysis gasification of waste
JP3501925B2 (en) Method for producing carbide from waste solid fuel
JP2011241339A (en) Desalter and desalting method for chlorine-containing waste material
JP2005308281A (en) Waste thermal decomposition installation
JP5040174B2 (en) Method and apparatus for producing mixed fuel of dry sludge and waste carbide
JPH10311515A (en) Refuse incinerating and melting equipment
JPH0755121A (en) Method and device for processing waste
WO2023188380A1 (en) Method for producing pyrolysis oil from waste plastics, and plant for conversion of waste plastics into oil
JP2009096943A (en) Waste carbonization treatment facility
JP3876502B2 (en) Waste pyrolysis gasification melting equipment
JP5892832B2 (en) Organic waste processing apparatus and organic waste processing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120724

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130305

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130404

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140826

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140908

R151 Written notification of patent or utility model registration

Ref document number: 5621235

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees