JP2011067383A - Flexible tube for endoscope, and apparatus and method for manufacturing the same - Google Patents

Flexible tube for endoscope, and apparatus and method for manufacturing the same Download PDF

Info

Publication number
JP2011067383A
JP2011067383A JP2009220765A JP2009220765A JP2011067383A JP 2011067383 A JP2011067383 A JP 2011067383A JP 2009220765 A JP2009220765 A JP 2009220765A JP 2009220765 A JP2009220765 A JP 2009220765A JP 2011067383 A JP2011067383 A JP 2011067383A
Authority
JP
Japan
Prior art keywords
flexible tube
resin
layer
passage
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009220765A
Other languages
Japanese (ja)
Other versions
JP5290921B2 (en
Inventor
Seiichi Yamamoto
誠一 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2009220765A priority Critical patent/JP5290921B2/en
Publication of JP2011067383A publication Critical patent/JP2011067383A/en
Application granted granted Critical
Publication of JP5290921B2 publication Critical patent/JP5290921B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To prevent separation of the respective layers of a skin layer molded in a multi-layer and to improve moldability. <P>SOLUTION: A flexible tube 10 includes: a cylindrical flexible tube raw material 14; and a two-layer skin layer 15 molded by stacking an inner layer 17 covering the whole peripheral surface in the circumferential direction of the flexible tube raw material 14 and an outer layer 18 covering the whole peripheral surface in the circumferential direction of the inner layer 17. When seen in a cross-section orthogonal to the axial direction of the flexible tube raw material 14, an interface 19 where the outer peripheral surface of the inner layer 17 and the inner peripheral surface of the outer layer 18 touch each other is shaped like an imperfect circle, to be concrete, an ellipse having the major axis R<SB>L</SB>and the minor axis R<SB>S</SB>. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、外皮層が多層成形された内視鏡用可撓管、及びこの内視鏡用可撓管を製造する製造装置、並びに製造方法に関する。   The present invention relates to an endoscope flexible tube having a multilayered outer skin layer, a manufacturing apparatus for manufacturing the endoscope flexible tube, and a manufacturing method.

患者の体腔内を観察するための医療用の内視鏡が知られている。体腔内に挿入される内視鏡の挿入部を構成する主な部品である可撓管は、金属帯片を螺旋状に巻いて形成された螺旋管と、この外周を覆う網状管とからなる可撓管素材を長手方向(軸方向)に搬送しながら、この外周面にウレタン樹脂などの熱可塑性樹脂を吐出して外皮層を成形したものである。   A medical endoscope for observing the inside of a body cavity of a patient is known. A flexible tube, which is a main part constituting an insertion portion of an endoscope that is inserted into a body cavity, is composed of a spiral tube formed by winding a metal strip in a spiral shape, and a mesh tube that covers this outer periphery. While the flexible tube material is conveyed in the longitudinal direction (axial direction), a thermoplastic resin such as urethane resin is discharged onto the outer peripheral surface to form an outer skin layer.

挿入部は、大腸などの複雑に曲がりくねった管道に挿入されるものであるため、可撓管には高い挿入性(挿入のしやすさ)が求められている。このため、以下に示すように、挿入性を向上するための様々な工夫がなされた可撓管が提案されている。   Since the insertion portion is inserted into a complicated and winding duct such as the large intestine, a high insertion property (ease of insertion) is required for the flexible tube. For this reason, as shown below, a flexible tube in which various devices for improving the insertability have been proposed.

特許文献1及び2には、硬さが異なる二種類の樹脂を混合した混合樹脂により外皮層を成形(混合成形)された可撓管が記載されている。こうした混合成形によれば、可撓管の軸方向において二種類の樹脂の混合比を変化させることで、例えば、挿入部の先端側は湾曲性を高めるために柔軟性を高く(柔らかく)、操作部に連設される後端側においては操作力の伝達性を高めるために柔軟性を低く(硬く)するというように、可撓管の軸方向において柔軟性を変化させることができる。   Patent Documents 1 and 2 describe a flexible tube in which an outer skin layer is molded (mixed molding) with a mixed resin obtained by mixing two types of resins having different hardnesses. According to such mixed molding, by changing the mixing ratio of the two types of resin in the axial direction of the flexible tube, for example, the distal end side of the insertion portion is highly flexible (soft) in order to increase the bendability, and can be operated. The flexibility can be changed in the axial direction of the flexible tube, such that the flexibility is lowered (hardened) in order to enhance the transmission of the operating force on the rear end side connected to the portion.

特許文献3には、二層成形により内層と外層の二層が積層された外皮層を持つ可撓管が記載されている。二層成形は、外皮層全体の厚みに対する、内層と外層の厚みの割合を可撓管の軸方向で変化させることで、混合成形と同様に柔軟性を変化させることができる。   Patent Document 3 describes a flexible tube having an outer skin layer in which two layers of an inner layer and an outer layer are laminated by two-layer molding. In the two-layer molding, the flexibility can be changed similarly to the mixed molding by changing the ratio of the thickness of the inner layer and the outer layer in the axial direction of the flexible tube to the thickness of the entire outer skin layer.

また、二層成形は、混合成形と異なり、内層の樹脂よりも耐薬品性が高い樹脂を外層に使用したり、外層と内層のそれぞれの樹脂の弾性力を異ならせるというように、硬さ以外でも、様々な物性が異なる二種類の樹脂を組み合わせることが可能となるので、多様な目的に合致した性能を発揮する可撓管を作りやすく、混合成形と比べて応用範囲が広い。さらに、二層成形は、二種類の樹脂の混合比の調整が難しい混合成形と比べて、成形もしやすい。   Also, unlike mixed molding, two-layer molding uses a resin with higher chemical resistance than the inner layer resin for the outer layer, or makes the elastic force of each resin of the outer layer and inner layer different from each other. However, since it is possible to combine two types of resins with different physical properties, it is easy to make a flexible tube that exhibits performance that meets various purposes, and its application range is wider than that of mixed molding. Furthermore, the two-layer molding is easier to mold than the mixed molding in which it is difficult to adjust the mixing ratio of the two types of resins.

特許文献4には、二層成形を応用した可撓管が記載されている。特許文献4の可撓管は、特定の方向に曲がりやすくするために、外皮層の軸回り(周方向)の一部に、他の部位とは物性が異なる変性部が設けられている。変性部は、外層の一部を切り欠いて切欠部分を形成し、その切欠部分に、内層の周方向の一部に形成された肉厚部や、外層及び内層とは別の材料を埋め込むことにより構成される。   Patent Document 4 describes a flexible tube to which two-layer molding is applied. The flexible tube of Patent Document 4 is provided with a denatured portion having physical properties different from those of other portions in a part around the axis of the outer skin layer (circumferential direction) in order to bend easily in a specific direction. The denatured part cuts out a part of the outer layer to form a cutout part, and the cutout part is embedded with a thick part formed in a part of the inner layer in the circumferential direction or a material different from the outer layer and the inner layer. Consists of.

上述の通り、二層成形は、混合成形と比べて、多様な目的に合った可撓管を形成しやすく、かつ、成形性もよいという利点を持つ。   As described above, the two-layer molding has an advantage that a flexible tube suitable for various purposes can be easily formed and the moldability is good as compared with the mixed molding.

特公平7−110270号公報Japanese Patent Publication No.7-110270 特許登録2641789号公報Japanese Patent No. 2641789 特公平5−50287公報Japanese Patent Publication No. 5-50287 特開2002−85335号公報JP 2002-85335 A

しかしながら、特許文献3の可撓管のように、軸方向と直交する断面において内層と外層の境界の形状が真円であると、可撓管の軸回りにねじりが加えられたときにねじり力が境界の全周に渡って境界の接線方向と平行に作用するので、境界には大きなせん断力が加わることになる。このため、外層と内層が剥離しやすいという問題があった。特許文献3では、こうした問題について何ら考慮されておらず、剥離を防止する対策について記載も示唆もない。   However, if the shape of the boundary between the inner layer and the outer layer is a perfect circle in a cross section orthogonal to the axial direction as in the flexible tube of Patent Document 3, the twisting force is applied when twisting is applied around the axis of the flexible tube. Acts on the entire circumference of the boundary in parallel with the tangential direction of the boundary, so that a large shear force is applied to the boundary. For this reason, there existed a problem that an outer layer and an inner layer were easy to peel. In Patent Document 3, no consideration is given to such a problem, and there is no description or suggestion of a measure for preventing peeling.

特許文献4のように、外層の一部を切り欠いて変性部を設ければ、外層と内層の境界の断面形状は真円ではなくなるため、ねじりによって境界に加わるせん断力を小さくすることはできる。しかし、特許文献4のように外皮層の一部に変性部を設けると、外層と変性部の境界が外部に露出するため、露出した境界部分の劣化による接着力の低下を招きやすく、その部分から剥離が生じやすいという問題がある。   If a modified portion is provided by cutting out a part of the outer layer as in Patent Document 4, the cross-sectional shape of the boundary between the outer layer and the inner layer is not a perfect circle, so the shearing force applied to the boundary by torsion can be reduced. . However, if a modified part is provided in a part of the outer skin layer as in Patent Document 4, the boundary between the outer layer and the modified part is exposed to the outside, and this tends to cause a decrease in adhesive force due to degradation of the exposed boundary part. There is a problem that peeling easily occurs.

また、特許文献4のように外皮層の周方向の一部に変性部を設ける構成は、変性部を設けずに二層成形する場合と比べて、層構造が複雑になるため成形性が悪いという問題もある。成形性は、製造コストや安定した製造品質の確保に影響する重要な要素であるため、特に問題となる。   In addition, the configuration in which the modified portion is provided in a part of the outer circumferential direction of the outer skin layer as in Patent Document 4 is poor in moldability because the layer structure is complicated compared to the case of forming two layers without providing the modified portion. There is also a problem. Formability is a particular problem because it is an important factor that affects production costs and ensuring stable production quality.

本発明は、上記事情を考慮してなされたものであり、物性の異なる樹脂層で多層成形した外皮層の各層の剥離を防止するとともに、成形性が良好な内視鏡用可撓管及びその製造装置並びに製造方法をローコストに提供することを目的とする。   The present invention has been made in consideration of the above circumstances, and prevents the peeling of each layer of the outer layer formed by multilayer molding with resin layers having different physical properties, and a flexible tube for an endoscope having good moldability and its It aims at providing a manufacturing apparatus and a manufacturing method at low cost.

上記目的を達成するために、可撓性を有する筒状の可撓管素材と、可撓管素材の軸回りの全周面を被覆する内層と、内層の前記軸回りの全周面を被覆する外層の少なくとも二層が積層され、内層及び外層がそれぞれ物性の異なる樹脂で形成される外皮層であり、前記可撓管素材の軸方向と直交する断面において、内層の外周と外層の内周が接する境界の形状が非真円形状である外皮層とからなることを特徴とする。   To achieve the above object, a flexible tubular flexible tube material, an inner layer covering the entire circumference of the flexible tube material around the axis, and an entire circumference of the inner layer around the axis are covered. The outer layer is an outer layer formed by laminating at least two layers of the outer layer, and each of the inner layer and the outer layer is made of resin having different physical properties, and in the cross section orthogonal to the axial direction of the flexible tube material, the outer periphery of the inner layer and the inner periphery of the outer layer It is characterized by comprising the outer skin layer having a non-circular shape in the shape of the boundary that touches.

また、前記境界の形状は、楕円形、多角形及び周方向に凹凸が形成されたギア状のいずれかであることが好ましい。さらにまた、前記境界の形状は楕円形であり、長軸と短軸との差が200μm以上、1000μm以下であることが好ましい。   Moreover, it is preferable that the shape of the boundary is any one of an ellipse, a polygon, and a gear shape in which irregularities are formed in the circumferential direction. Furthermore, it is preferable that the shape of the boundary is an ellipse, and the difference between the major axis and the minor axis is 200 μm or more and 1000 μm or less.

前記外皮層全体の厚みに対する前記内層及び前記外層の厚みの割合が、前記可撓管素材の軸方向において変化していることが好ましい。また、前記境界の形状は、前記可撓管素材の軸方向に渡って相似形であることが好ましい。   It is preferable that the ratio of the thickness of the inner layer and the outer layer to the thickness of the entire outer skin layer is changed in the axial direction of the flexible tube material. Moreover, it is preferable that the shape of the said boundary is similar over the axial direction of the said flexible tube raw material.

前記内層及び外層は、一方の層に軟質樹脂が、他方の層に硬質樹脂が使用されており、前記可撓管素材の軸方向の先端側において軟質樹脂が使用された層の厚みの割合が高く、基端側において硬質樹脂が使用された層の厚みの割合が高いことが好ましい。   In the inner layer and the outer layer, a soft resin is used for one layer and a hard resin is used for the other layer, and the ratio of the thickness of the layer in which the soft resin is used on the distal end side in the axial direction of the flexible tube material is It is preferable that the ratio of the thickness of the layer in which the hard resin is used on the base end side is high.

本発明の内視鏡可撓管の製造装置は、可撓性を有する筒状の可撓管素材が軸方向に沿って搬送される通路であり、前記可撓管素材の軸回りの全周面に対して、少なくとも内層及び外層からなる二層構成の外皮層を押し出し成形する成形通路と、前記外皮層の材料となる溶融状態の樹脂を前記成形通路に供給する樹脂通路であり、前記成形通路の外側に配置され、前記軸方向と直交する断面形状が前記成形通路と同心円をなす円形の樹脂通路とを有する内視鏡可撓管の製造装置において、前記内層の材料となる第1樹脂を前記樹脂通路に送り出す第1ゲートであり、前記断面形状が前記成形通路と同心円をなす円形の第1ゲートと、前記第1樹脂とは物性が異なり、前記外層の材料となる第2樹脂を前記樹脂通路に送り出す第2ゲートであり、前記第1ゲートの外側に配置され、前記断面形状が前記第1ゲートと同心円をなす円形の第2ゲートと、前記第1ゲート及び第2ゲートの下流端において、各ゲートが送り出す第1及び第2の各樹脂を合流させる合流部であり、前記断面形状が円形の合流部と、前記合流部の上流側において前記第1及び第2のゲートを分離する分離部と、前記分離部に形成され、前記第1樹脂と第2樹脂を合流させるために下流側に向けて先細となったエッジであり、前記軸方向と直交する断面形状が非真円形状であるエッジとを備えており、前記エッジを通過させ、溶融状態の第1及び第2樹脂を重なった状態で前記樹脂通路を通じて前記成形通路に供給することにより、前記軸方向と直交する断面において、内層と外層の境界の形状が非真円形状の外皮層を成形することを特徴とする。   The endoscope flexible tube manufacturing apparatus according to the present invention is a passage through which a flexible tubular flexible tube material is conveyed along the axial direction, and the entire circumference of the flexible tube material around the axis thereof. A molding passage for extruding at least a two-layered outer skin layer composed of an inner layer and an outer layer, and a resin passage for supplying molten resin as a material for the outer skin layer to the molding passage. In the endoscope flexible tube manufacturing apparatus, the first resin serving as the material of the inner layer is disposed outside the passage and has a circular resin passage whose cross-sectional shape perpendicular to the axial direction is concentric with the molding passage. A first gate having a cross-sectional shape that is concentric with the molding passage, and a second resin that is different in physical properties from the first resin and that serves as a material for the outer layer. A second gate for feeding into the resin passage; A circular second gate disposed outside the first gate and having a cross-sectional shape concentric with the first gate, and first and second gates sent out at the downstream ends of the first gate and the second gate. 2 is formed in the separation portion, the separation portion for separating the first and second gates on the upstream side of the merge portion, and the separation portion. An edge that is tapered toward the downstream side to join the first resin and the second resin, and has an edge whose cross-sectional shape perpendicular to the axial direction is a non-circular shape, By passing the edge and supplying the melted first and second resins to the molding passage through the resin passage, the shape of the boundary between the inner layer and the outer layer is not shown in the cross section orthogonal to the axial direction. Round outer skin Characterized by forming a.

なお、前記エッジの前記断面形状は、楕円形、多角形及び周方向に凹凸が形成されたギア状のいずれかであることが好ましい。   In addition, it is preferable that the cross-sectional shape of the edge is any one of an ellipse, a polygon, and a gear shape in which irregularities are formed in the circumferential direction.

本発明の内視鏡可撓管の製造方法は、可撓性を有する筒状の可撓管素材が軸方向に沿って成形通路を搬送させながら、前記成形通路の外側に配置され、前記軸方向と直交する断面形状が前記成形通路と同心円をなす円形の樹脂通路を通じて、前記成形通路に対して溶融状態の樹脂を供給することにより、前記可撓管素材の軸回りの全周面に対して、少なくとも内層及び外層からなる二層構成の外皮層を押し出し成形する内視鏡可撓管の製造方法において、前記断面形状が前記成形通路と同心円をなす円形の第1ゲートを通じて、前記内層の材料となる第1樹脂を前記樹脂通路に送り出す第1樹脂送り出しステップと、前記第1ゲートの外側に配置され、前記断面形状が前記第1ゲートと同心円をなす円形の第2ゲートを通じて、前記第1樹脂とは物性が異なり、前記外層の材料となる第2樹脂を、前記第1樹脂送り出しステップと同じタイミングで前記樹脂通路に送り出す第2樹脂送り出しステップと、前記第1ゲート及び第2ゲートの下流端と接続し、前記断面形状が円形の合流部において、各ゲートが送り出す第1及び第2の各樹脂を合流させる合流ステップと、前記合流ステップにおいて、前記合流部の上流側で前記第1及び第2のゲートを分離する分離部に形成され、前記第1樹脂と第2樹脂を合流させるために下流側に向けて先細となったエッジであり、前記軸方向と直交する断面形状が非真円形状であるエッジを通過させるエッジ通過ステップと、前記エッジを通過させ、溶融状態の第1及び第2樹脂を重なり合わせた状態で前記樹脂通路を通じて前記成形通路に供給する供給ステップとを含み、
前記軸方向と直交する断面において、内層と外層の境界の形状が非真円の外皮層を成形することを特徴とする。
In the endoscope flexible tube manufacturing method of the present invention, a flexible tubular flexible tube material is disposed outside the molding passage while conveying the molding passage along the axial direction. By supplying molten resin to the molding passage through a circular resin passage whose cross-sectional shape orthogonal to the direction is concentric with the molding passage, the entire circumference surface around the axis of the flexible tube material is supplied. Then, in a method of manufacturing an endoscope flexible tube in which an outer skin layer composed of at least an inner layer and an outer layer is extruded, the inner layer is passed through a circular first gate whose cross-sectional shape is concentric with the molding passage. A first resin delivery step of delivering a first resin as a material to the resin passage, and a second gate disposed outside the first gate and having a cross-sectional shape concentric with the first gate, through the first gate. 1 resin Have different physical properties, and a second resin delivery step for delivering the second resin, which is the material of the outer layer, to the resin passage at the same timing as the first resin delivery step, and downstream ends of the first gate and the second gate, Connecting, and joining the first and second resins sent out by the respective gates in the joining portion having a circular cross-sectional shape, and in the joining step, the first and second upstream of the joining portion. Formed in a separation portion for separating the gate of the first and second edges, and tapered toward the downstream side to join the first resin and the second resin, and a cross-sectional shape orthogonal to the axial direction is a non-circular shape An edge passing step for passing the edge, and supplying the molding passage through the resin passage in a state where the first and second resins passing through the edge are overlapped with each other. And a supply step that,
In the cross section orthogonal to the axial direction, an outer skin layer having a non-circular shape at the boundary between the inner layer and the outer layer is formed.

なお、前記エッジの前記断面形状は、楕円形、多角形及び周方向に凹凸が形成されたギア状のいずれかであることが好ましい。   In addition, it is preferable that the cross-sectional shape of the edge is any one of an ellipse, a polygon, and a gear shape in which irregularities are formed in the circumferential direction.

本発明によれば、可撓管素材の軸方向と直交する断面において、内層の外周と外層の内周とが接する境界の形状を非真円形状に形成しているので、内層と外層の剥離を防止することができる。また、内層は可撓管素材の軸回りの全周面を覆っており、外層は、内層の軸回りの全周面を覆っているので、層構造が複雑にならず、良好な成形性を確保することができる。   According to the present invention, in the cross section orthogonal to the axial direction of the flexible tube material, the boundary shape where the outer periphery of the inner layer and the inner periphery of the outer layer are in contact with each other is formed in a non-circular shape. Can be prevented. In addition, the inner layer covers the entire circumferential surface around the axis of the flexible tube material, and the outer layer covers the entire circumferential surface around the axis of the inner layer, so that the layer structure is not complicated and good moldability is achieved. Can be secured.

電子内視鏡の構成を示す外観図である。It is an external view which shows the structure of an electronic endoscope. 可撓管の概略的な構成を示す部分断面図である。It is a fragmentary sectional view showing a schematic structure of a flexible tube. 軸方向と直交する方向に切断した可撓管の断面図である。It is sectional drawing of the flexible tube cut | disconnected in the direction orthogonal to an axial direction. 従来の可撓管(A)及び本発明の可撓管にねじりが生じたときの状態を示す説明図である。It is explanatory drawing which shows a state when twist arises in the conventional flexible tube (A) and the flexible tube of this invention. 内視鏡用可撓管の製造装置の構成を概略的に示すブロック図である。It is a block diagram which shows roughly the structure of the manufacturing apparatus of the flexible tube for endoscopes. ヘッド部の構成を示す要部断面図である。It is principal part sectional drawing which shows the structure of a head part. 図6のA−A線で切断したヘッド部の要部断面図である。It is principal part sectional drawing of the head part cut | disconnected by the AA line of FIG. 外皮層の境界面を多角形に形成した例を示す断面図である。It is sectional drawing which shows the example which formed the boundary surface of the outer skin layer in the polygon. 外皮層の境界面を三角歯のギア状に形成した例を示す断面図である。It is sectional drawing which shows the example which formed the boundary surface of the outer skin layer in the gear shape of the triangular tooth. 外皮層の境界面を四角歯のギア状に形成した例を示す断面図である。It is sectional drawing which shows the example which formed the boundary surface of the outer skin layer in the shape of a square-tooth gear. ユニバーサルコード用の可撓管の概略的な構成を示す部分断面図である。It is a fragmentary sectional view showing a schematic structure of a flexible tube for universal cords.

本発明に係る可撓管が組み込まれた電子内視鏡を示す図1において、医療用として広く用いられる電子内視鏡2は、体腔内に挿入される挿入部3と、挿入部3の基端部分に連設された本体操作部5と、プロセッサ装置や光源装置に接続されるコネクタ部6と、本体操作部5、及びコネクタ部6間を繋ぐユニバーサルコード7とを備えている。   In FIG. 1 showing an electronic endoscope incorporating a flexible tube according to the present invention, an electronic endoscope 2 widely used for medical purposes includes an insertion portion 3 to be inserted into a body cavity, and a base of the insertion portion 3. A main body operation unit 5 connected to the end portion, a connector unit 6 connected to the processor device and the light source device, a main body operation unit 5 and a universal cord 7 connecting the connector unit 6 are provided.

挿入部3は、本体操作部5に連設される可撓管部3aと、可撓管部3aに連設されるアングル部3bと、その先端に連設され、体腔内撮影用の撮像装置(図示せず)が内蔵された先端部3cとから構成される。挿入部3の大半の長さをしめる可撓管部3aは、そのほぼ全長にわたって可撓性を有し、特に体腔等の内部に挿入される部位はより可撓性に富む構造となっている。   The insertion section 3 is provided with a flexible tube portion 3a provided continuously with the main body operation portion 5, an angle portion 3b provided continuously with the flexible tube portion 3a, and an imaging device for photographing inside the body cavity. (Not shown) is comprised from the front-end | tip part 3c with which it was incorporated. The flexible tube portion 3a, which is the length of most of the insertion portion 3, has flexibility over almost the entire length thereof, and in particular, the portion inserted into the body cavity or the like has a more flexible structure. .

可撓管部3aを構成する可撓管10(内視鏡用可撓管)は、図2に示すように、最内側に金属帯片11aを螺旋状に巻回することにより形成される螺旋管11に、金属線を編組してなる筒状網体12を被覆して両端に口金13をそれぞれ嵌合した可撓管素材14とし、さらに、その外周面に樹脂からなる外皮層15が被覆された構成となっている。また、外皮層15の外面に、耐薬品性のある例えばフッ素等を含有したコート膜16をコーティングしている。なお、外皮層15及びコート膜16は、層構造を明確に図示するため、可撓管素材14の径に比して厚く描いている。   As shown in FIG. 2, the flexible tube 10 (endoscopic flexible tube) constituting the flexible tube portion 3a is a spiral formed by spirally winding a metal strip 11a on the innermost side. The tube 11 is covered with a tubular mesh body 12 formed by braiding a metal wire, and a flexible tube material 14 is fitted with caps 13 at both ends, and an outer skin layer 15 made of resin is coated on the outer peripheral surface thereof. It has been configured. The outer surface of the outer skin layer 15 is coated with a coating film 16 containing, for example, fluorine having chemical resistance. The outer skin layer 15 and the coating film 16 are drawn thicker than the diameter of the flexible tube material 14 in order to clearly show the layer structure.

外皮層15は、可撓管素材14の外周面を被覆する。外皮層15は、可撓管素材14の外周面を被覆する内層17と、内層17の外周面を被覆する外層18とを積層した二層構成である。内層17と外層18には、硬さが異なる二種類の軟質樹脂及び硬質樹脂が使用される。内層17の材料には、軟質樹脂が使用され、外層18の材料には、硬質樹脂が使用される。   The outer skin layer 15 covers the outer peripheral surface of the flexible tube material 14. The outer skin layer 15 has a two-layer structure in which an inner layer 17 that covers the outer peripheral surface of the flexible tube material 14 and an outer layer 18 that covers the outer peripheral surface of the inner layer 17 are laminated. For the inner layer 17 and the outer layer 18, two types of soft resins and hard resins having different hardnesses are used. A soft resin is used as the material of the inner layer 17, and a hard resin is used as the material of the outer layer 18.

外皮層15は、可撓管素材14の長手方向(軸方向)においてほぼ均一な厚みで形成される。内層17及び外層18の厚みは、可撓管素材14の軸方向において、外皮層15の全体の厚みに対して、各層17,18の厚みの割合が変化するように形成されている。具体的には、本体操作部5に取り付けられる可撓管素材14の一端14a側(基端側)は、外皮層15の全体の厚みに対して、外層18の厚みの方が内層17の厚みよりも大きく、一端14aからアングル部3bに取り付けられる他端14b側(先端側)に向かって、徐々に外層18の厚みが漸減し、他端14b側では、内層17の厚みが外層18の厚みよりも大きくなっている。したがって、可撓管10は、一端14a側の柔軟性が低く(硬く)、他端14b側の柔軟性が高く(軟らかく)なるように、可撓管10の軸方向において柔軟性を変化させている。   The outer skin layer 15 is formed with a substantially uniform thickness in the longitudinal direction (axial direction) of the flexible tube material 14. The thicknesses of the inner layer 17 and the outer layer 18 are formed such that the ratio of the thicknesses of the layers 17 and 18 to the entire thickness of the outer skin layer 15 changes in the axial direction of the flexible tube material 14. Specifically, on the one end 14 a side (base end side) of the flexible tube material 14 attached to the main body operation unit 5, the outer layer 18 is thicker than the entire outer layer 15. The thickness of the outer layer 18 gradually decreases from the one end 14a to the other end 14b side (tip side) attached to the angle portion 3b. On the other end 14b side, the thickness of the inner layer 17 is the thickness of the outer layer 18. Is bigger than. Therefore, the flexibility of the flexible tube 10 is changed in the axial direction of the flexible tube 10 so that the flexibility on the one end 14a side is low (hard) and the flexibility on the other end 14b side is high (soft). Yes.

図3に示すように、外皮層15は、内層17が可撓管素材14の軸回り(周方向)の全周面を覆っており、外層18が内層17の周方向の全周面を覆っている。また、可撓管素材14の軸方向と直交する断面において、外層18の外周及び内層17の内周の形状は、真円となっている。これに対して、同じ断面において、内層17の外周面と外層18の内周面が接する境界19は、非真円形状になっており、具体的には長軸Rと短軸Rを有する楕円形になっている。 As shown in FIG. 3, in the outer skin layer 15, the inner layer 17 covers the entire circumferential surface around the axis of the flexible tube material 14 (circumferential direction), and the outer layer 18 covers the entire circumferential surface of the inner layer 17. ing. In addition, in the cross section orthogonal to the axial direction of the flexible tube material 14, the outer circumference of the outer layer 18 and the inner circumference of the inner layer 17 are perfect circles. On the other hand, in the same cross section, the boundary 19 where the outer peripheral surface of the inner layer 17 and the inner peripheral surface of the outer layer 18 are in contact with each other has a non-circular shape. Specifically, the major axis RL and the minor axis RS are It has an oval shape.

このように、境界19の断面形状を楕円形にすると、可撓管10の軸回りにねじりが加えられたときの内層17と外層18の境界面における剥離強度を向上させることができる。図4(A)に示す従来の可撓管111のように、境界119が真円の場合は、軸回り方向にねじれを受けると、そのねじり力Pが境界119の全周に渡って境界119の接線方向と平行に作用するので、境界119には大きなせん断力が加わることになる。このため、内層117と外層118の境界119において剥離が生じやすい。   Thus, if the cross-sectional shape of the boundary 19 is elliptical, the peel strength at the boundary surface between the inner layer 17 and the outer layer 18 when twisting is applied around the axis of the flexible tube 10 can be improved. As in the conventional flexible tube 111 shown in FIG. 4A, when the boundary 119 is a perfect circle, when the twist is applied in the direction around the axis, the torsional force P is spread over the entire circumference of the boundary 119. Therefore, a large shearing force is applied to the boundary 119. For this reason, peeling easily occurs at the boundary 119 between the inner layer 117 and the outer layer 118.

これに対して、図4(B)に示す本発明の可撓管10によれば、境界19が楕円形であるので、可撓管10が軸回りにねじれを受けると、そのねじり力Pの一部は、境界19の接線方向と平行に作用しなくなる。そのため、断面形状が円形である場合と比べて、断面形状が楕円形の境界19に加わるせん断力が小さくなり、内層17と外層18の境界19において剥離がしにくい。   On the other hand, according to the flexible tube 10 of the present invention shown in FIG. 4B, since the boundary 19 is elliptical, when the flexible tube 10 is twisted about its axis, the torsional force P Some will not work parallel to the tangential direction of the boundary 19. Therefore, compared with the case where the cross-sectional shape is circular, the shearing force applied to the boundary 19 having an elliptical cross-sectional shape is small, and separation at the boundary 19 between the inner layer 17 and the outer layer 18 is difficult.

また、境界19が楕円形の場合は、短軸Rを直径とする真円と比べれば、外周が長くなるので、内層17と外層18が接する境界面の面積が増加する。接触面積が増加することにより、内層17と外層18の境界19の剥離をより防止することができる。 Further, when the boundary 19 is elliptical, the outer periphery becomes longer compared to a perfect circle having the short axis R S as a diameter, so the area of the boundary surface where the inner layer 17 and the outer layer 18 are in contact increases. By increasing the contact area, peeling of the boundary 19 between the inner layer 17 and the outer layer 18 can be further prevented.

また、境界19が楕円形であると、可撓管10の曲がりやすさに方向性を持たせることができる。すなわち、外皮層15の全体の厚みに対する、軟質樹脂を使用した内層17の厚みの割合は、短軸R方向に比べて、長軸R方向が大きい。反対に、短軸R方向では、硬質樹脂を使用した外層18の厚みの割合が大きくなる。そのため、例えば、長軸R方向を左右方向、短軸R方向を上下方向とした場合には、上下方向に比べて左右方向の方が可撓管10は曲がり易い。 Further, when the boundary 19 is elliptical, the flexibility of the flexible tube 10 can be given directionality. That is, the ratio of the thickness of the inner layer 17 using the soft resin to the entire thickness of the outer skin layer 15 is larger in the major axis RL direction than in the minor axis RS direction. On the contrary, in the minor axis RS direction, the ratio of the thickness of the outer layer 18 using the hard resin increases. Therefore, for example, when the long axis RL direction is the left-right direction and the short axis RS direction is the up-down direction, the flexible tube 10 is more easily bent in the left-right direction than in the up-down direction.

このように可撓管10の曲がりやすさに方向性を持たせると、曲率半径が小さい管道に挿入する際に有利な場合が多く、挿入性の向上に寄与する。しかし、方向によって曲げやすさの差が大きすぎると、可撓管10の操作性を低下させてしまう可能性もある。このため、外皮層15全体の厚みが、200μm以上、1500μm以下に形成される可撓管10を例にすると、楕円形の寸法としては、例えば、長軸Rと短軸Rとの差が200μm以上、1000μm以下に形成されることが好ましい。この範囲であれば、可撓管10の操作性を低下させることなく、挿入性を向上することができる。 In this way, when the flexibility of the flexible tube 10 is given directionality, there are many cases where it is advantageous for insertion into a conduit having a small radius of curvature, which contributes to improvement of the insertability. However, if the difference in ease of bending depending on the direction is too large, the operability of the flexible tube 10 may be lowered. For this reason, when the flexible tube 10 formed with the entire outer skin layer 15 having a thickness of 200 μm or more and 1500 μm or less is taken as an example, the dimension of the ellipse is, for example, the difference between the long axis R L and the short axis R S Is preferably formed to 200 μm or more and 1000 μm or less. If it is this range, insertability can be improved, without reducing the operativity of the flexible tube 10. FIG.

また、上述したとおり、外皮層15は、可撓管素材14の軸方向において、内層17及び外層18の厚みがそれぞれ変化するように形成されている。このため、可撓管素材14の軸方向において、境界19の断面形状は、内層17及び外層18の厚みの変化に伴って長軸Rと短軸Rの寸法が変化するが、可撓管素材14の軸方向の全長に渡って相似形になっている。 Further, as described above, the outer skin layer 15 is formed so that the thicknesses of the inner layer 17 and the outer layer 18 change in the axial direction of the flexible tube material 14. For this reason, in the axial direction of the flexible tube material 14, the cross-sectional shape of the boundary 19 changes in the dimensions of the major axis RL and the minor axis RS as the thickness of the inner layer 17 and the outer layer 18 changes. The tube material 14 has a similar shape over the entire length in the axial direction.

内層17及び外層18に用いる樹脂としては、例えば、硬さが異なる二種類のポリウレタン系エラストマーが用いられている。内層17及び外層18の樹脂としては、上記に限定されることはなく、目的の性能に応じて、種々の樹脂を使用することができる。例えば、内層17と外層18で、弾性力を変化させたい場合には、ポリエステル系エラストマー、ポリスチレン系エラストマーを使用することが好ましい。また、内層17と外層18で、耐薬品性を変化させたい場合には、ポリオレフィン系エラストマー、ポリアミド系エラストマー、フッ素系エラストマー群から、選択することが好ましい。   As the resin used for the inner layer 17 and the outer layer 18, for example, two types of polyurethane elastomers having different hardnesses are used. The resin of the inner layer 17 and the outer layer 18 is not limited to the above, and various resins can be used according to the intended performance. For example, when it is desired to change the elastic force between the inner layer 17 and the outer layer 18, it is preferable to use a polyester elastomer or a polystyrene elastomer. In addition, when it is desired to change the chemical resistance between the inner layer 17 and the outer layer 18, it is preferable to select from a group of polyolefin elastomers, polyamide elastomers, and fluorine elastomers.

また、内層17と外層18にそれぞれ使用される二種類の樹脂は、硬さ、弾性力、耐薬品性の他、絶縁性、表面の滑り性といった種々の物性を変化させてもよい。また、組成が異なる樹脂を使用して物性を変化させてもよいし、同種の樹脂でも密度が異なる樹脂を使用して物性を変化させてよい。   In addition, the two types of resins used for the inner layer 17 and the outer layer 18 may change various physical properties such as insulation and surface slipperiness in addition to hardness, elasticity, and chemical resistance. Further, the physical properties may be changed using resins having different compositions, or the physical properties may be changed using resins of the same kind but having different densities.

以下、上記構成の可撓管10の製造方法について説明する。外皮層15を成形する連続成形機20の構成を示す図5において、連続成形機20は、ホッパ、スクリュー21a,22aなどからなる周知の押し出し部21,22と、可撓管素材14の外周面に外皮層15を被覆成形するためのヘッド部23と、冷却部24と、連結可撓管素材31をヘッド部23へ搬送する搬送部25と、これらを制御する制御部26とからなる。   Hereinafter, a method for manufacturing the flexible tube 10 having the above configuration will be described. In FIG. 5 which shows the structure of the continuous molding machine 20 which shape | molds the outer skin layer 15, the continuous molding machine 20 is the well-known extrusion parts 21 and 22 consisting of a hopper, screw 21a, 22a, etc., and the outer peripheral surface of the flexible tube raw material 14. The head part 23 for covering and forming the outer skin layer 15, the cooling part 24, the transport part 25 for transporting the connected flexible tube material 31 to the head part 23, and the control part 26 for controlling them.

搬送部25は、供給ドラム28と、巻取ドラム29とからなり、供給ドラム28には、複数の可撓管素材14をジョイント部材30で連結した連結可撓管素材31が巻き付けられる。供給ドラム28に巻き付けられた後、順次引き出されて、外皮層15が成形されるヘッド部23と、成形後の外皮層15が冷却される冷却部24とを通して巻取ドラム29に巻き取られる。これら供給ドラム28及び巻取ドラム29は、制御部26によって回転速度が制御され、連結可撓管素材31を搬送する搬送速度が切り替えられる。   The transport unit 25 includes a supply drum 28 and a take-up drum 29, and a connected flexible tube material 31 in which a plurality of flexible tube materials 14 are connected by a joint member 30 is wound around the supply drum 28. After being wound around the supply drum 28, it is sequentially drawn out and wound around the winding drum 29 through the head portion 23 where the outer skin layer 15 is formed and the cooling portion 24 where the outer skin layer 15 is cooled. The rotation speed of the supply drum 28 and the take-up drum 29 is controlled by the control unit 26, and the conveyance speed for conveying the connected flexible tube material 31 is switched.

図5及び図6に示すように、ヘッド部23は、ニップル32、ダイス33、及びこれらを固定的に支持する支持体34からなる。支持体34には、押し出し部21,22からそれぞれ押し出される溶融状態の軟質樹脂、硬質樹脂を樹脂通路38に送り出すためのゲート35,36が形成されている。   As shown in FIGS. 5 and 6, the head portion 23 includes a nipple 32, a die 33, and a support 34 that fixedly supports these. The support 34 is formed with gates 35 and 36 for feeding the soft resin and the hard resin in a molten state extruded from the extrusion portions 21 and 22 to the resin passage 38, respectively.

ニップル32及びダイス33には、それぞれの略中心を貫通するように成形通路37が形成されている。成形通路37は、搬送部25によって軸方向に搬送される連結可撓管素材31が通過する通路であり、軸方向と直交する断面形状は円形をしている(図7参照)。成形通路37は、樹脂通路38の下流端に相当する吐出口と接続しており、樹脂通路38から溶融状態の樹脂が成形通路37に供給される。   A molding passage 37 is formed in the nipple 32 and the die 33 so as to pass through the respective approximate centers. The forming passage 37 is a passage through which the connected flexible tube material 31 conveyed in the axial direction by the conveying unit 25 passes, and the cross-sectional shape orthogonal to the axial direction is circular (see FIG. 7). The molding passage 37 is connected to a discharge port corresponding to the downstream end of the resin passage 38, and molten resin is supplied from the resin passage 38 to the molding passage 37.

樹脂通路38は、ニップル32及びダイス33で挟まれた空間によって形成される。ニップル32の図中左端には、ダイス33の右端の円錐状凹部33aとともに樹脂通路38を形成する円錐状凸部32bが形成されている。また、成形通路37の図中右端に連設され、連結可撓管素材31の挿入をガイドするための円錐状凹部32a(図5参照)が形成されている。   The resin passage 38 is formed by a space sandwiched between the nipple 32 and the die 33. At the left end of the nipple 32 in the figure, a conical convex portion 32 b that forms a resin passage 38 together with the conical concave portion 33 a at the right end of the die 33 is formed. Further, a conical recess 32 a (see FIG. 5) is formed continuously to the right end of the forming passage 37 in the drawing and guides the insertion of the connecting flexible tube material 31.

ダイス33には、成形通路37の出口孔37aが形成されている。外皮層15が被覆成形された連結可撓管素材31は、出口孔37aを通過して冷却部24へ搬送される。冷却部24は水などの冷却液が貯留されており、冷却液の中を通過することにより外皮層15を冷却して硬化させる。なおこれに限らず、冷却液や空気などを外皮層15に吹き付けて冷却してもよい。   The die 33 is formed with an outlet hole 37 a of a molding passage 37. The connected flexible tube material 31 coated with the outer skin layer 15 passes through the outlet hole 37a and is conveyed to the cooling unit 24. The cooling unit 24 stores a coolant such as water, and cools and hardens the outer skin layer 15 by passing through the coolant. However, the present invention is not limited to this, and cooling liquid or air may be sprayed on the outer skin layer 15 to cool it.

樹脂通路38は、成形通路37の外側に配置されており、成形通路37の軸方向と直交する断面形状が、成形通路37と同心円をなす円形をしている。樹脂通路38の吐出口は、成形通路37の周方向の全周に接続している。このため、樹脂通路38の吐出口を通過する連結可撓管素材31の全周に向けて、溶融状態の樹脂が吐出される。   The resin passage 38 is disposed outside the molding passage 37, and the cross-sectional shape orthogonal to the axial direction of the molding passage 37 is a circle concentric with the molding passage 37. The discharge port of the resin passage 38 is connected to the entire circumference of the molding passage 37 in the circumferential direction. For this reason, molten resin is discharged toward the entire circumference of the connected flexible tube material 31 that passes through the discharge port of the resin passage 38.

押し出し部21,22は、吐出口21b,22bがヘッド部23のゲート35,36にそれぞれ結合されており、内層17及び外層18の材料となる、溶融状態の軟質樹脂及び硬質樹脂を、樹脂通路38を介してヘッド部23の成形通路37にそれぞれ押し出して供給する。スクリュー21a,22aの各回転数が制御部26によって制御されることにより、押し出し部21,22から吐出される溶融状態の軟質樹脂及び硬質樹脂の各量が調整される。   The extrusion parts 21 and 22 have discharge ports 21b and 22b coupled to the gates 35 and 36 of the head part 23, respectively, and a soft resin and a hard resin in a molten state, which are materials of the inner layer 17 and the outer layer 18, are made to pass through the resin passage. The material is extruded and supplied to the molding passage 37 of the head portion 23 via 38. By controlling the number of rotations of the screws 21a and 22a by the control unit 26, the amounts of the melted soft resin and hard resin discharged from the extruding units 21 and 22 are adjusted.

押し出し部21,22およびヘッド部23を加熱温調することにより軟質樹脂及び硬質樹脂の各温度を高温にするが、これに加え、スクリュー21a,22aの各回転数が高い程、軟質樹脂及び硬質樹脂の各温度はさらに高くなり、それぞれの流動性は増す。連結可撓管素材31の搬送速度を一定とし、溶融状態の軟質樹脂及び硬質樹脂の各吐出量を変更することにより、内層17及び外層18の各成形厚みが調整される。   The temperature of the soft resin and the hard resin is increased by heating and controlling the extruding parts 21 and 22 and the head part 23. In addition to this, the higher the rotational speeds of the screws 21a and 22a, the higher the soft resin and the hard resin. Each temperature of the resin becomes higher and the fluidity of each increases. The molding thicknesses of the inner layer 17 and the outer layer 18 are adjusted by changing the discharge amount of the soft resin and the hard resin in the molten state while keeping the conveying speed of the connected flexible tube material 31 constant.

ゲート35,36は、成形通路37を中心とし、ともに成形通路37の外側に配置されており、ゲート35の外側にゲート36が配置されている。ゲート35,36は、成形通路37の軸方向と直交する断面形状が円形をした略円筒状の通路である。ゲート35,36は、軟質樹脂及び硬質樹脂の送り出し方向の下流端が、樹脂通路38の上流端と接続している。この接続部分は、軟質樹脂及び硬質樹脂が合流する合流部となる。ゲート35,36の間には、両者を分離する分離部39が設けられている。   The gates 35 and 36 are centered on the molding passage 37 and are both disposed outside the molding passage 37, and the gate 36 is disposed outside the gate 35. The gates 35 and 36 are substantially cylindrical passages having a circular cross-sectional shape orthogonal to the axial direction of the forming passage 37. In the gates 35 and 36, the downstream end in the feeding direction of the soft resin and the hard resin is connected to the upstream end of the resin passage 38. This connecting portion serves as a joining portion where the soft resin and the hard resin join together. Between the gates 35 and 36, the separation part 39 which isolate | separates both is provided.

分離部39は、エッジ39aが合流部に配置されており、合流部の上流側においてゲート35,36を分離する。各ゲート35,36から送り出される軟質樹脂及び硬質樹脂は、エッジ39aを通過して合流する。エッジ39aは、二種類の樹脂を合流させるために、軸方向と平行な断面形状が、先端に向けて先細となっている。   The separating portion 39 has an edge 39a disposed at the joining portion, and separates the gates 35 and 36 on the upstream side of the joining portion. The soft resin and hard resin delivered from the gates 35 and 36 merge through the edge 39a. The edge 39a has a cross-sectional shape parallel to the axial direction that tapers toward the tip in order to join two kinds of resins.

合流部では、ゲート35から供給される溶融状態の軟質樹脂が内側に、ゲート36から供給される溶融状態の硬質樹脂が外側に重なるように合流する。合流した軟質樹脂及び硬質樹脂は、重なった状態で樹脂通路38内を流れる。軟質樹脂及び硬質樹脂は、重なった状態を保ったまま、成形通路37の周方向の全周と接続した吐出口から、連結可撓管素材31の全周に向けて吐出される。これにより、内層17と外層18の二層からなる外皮層15が成形される。   In the joining portion, the molten soft resin supplied from the gate 35 is joined inside, and the molten hard resin supplied from the gate 36 is joined outside. The merged soft resin and hard resin flow in the resin passage 38 in an overlapped state. The soft resin and the hard resin are discharged toward the entire circumference of the connected flexible tube material 31 from the discharge ports connected to the entire circumference in the circumferential direction of the molding passage 37 while maintaining the overlapping state. Thereby, the outer skin layer 15 which consists of the inner layer 17 and the outer layer 18 is formed.

図7に示すように、合流部に配置されるエッジ39a部は、軸方向と直交する断面において、エッジ39aの断面形状が楕円形に形成されている。この楕円形は、内層17と外層18の境界19の楕円形と相似形で形成される。エッジ39aの形状により、ゲート35,36の下流端のそれぞれの送り出し口の形状が規定される。すなわち、エッジ39aの長軸方向では、軟質樹脂のゲート35の送り出し口が広く、硬質樹脂のゲート36の送り出し口は狭い。反対に、エッジ39aの短軸方向では、ゲート35の送り出し口が狭く、ゲート36の送り出し口が広い。   As shown in FIG. 7, the edge 39a portion arranged in the merge portion has an elliptical cross-sectional shape in the cross section orthogonal to the axial direction. This ellipse is formed in a similar shape to the ellipse at the boundary 19 between the inner layer 17 and the outer layer 18. The shape of the delivery port at the downstream end of each of the gates 35 and 36 is defined by the shape of the edge 39a. That is, in the major axis direction of the edge 39a, the delivery port of the soft resin gate 35 is wide and the delivery port of the hard resin gate 36 is narrow. On the contrary, in the short axis direction of the edge 39a, the delivery port of the gate 35 is narrow and the delivery port of the gate 36 is wide.

各ゲート35,36から合流部に送り出される送り出し量は、エッジ39aの形状で規定された各送り出し口の大きさに応じて決まる。合流部では、送り出し口に応じた量の軟質樹脂及び硬質樹脂が樹脂通路38に送り出されて合流する。樹脂通路38では、送り出し口が広い部分では、その樹脂の厚みが厚く、狭い部分ではその樹脂の厚みは薄い状態で軟質樹脂と硬質樹脂が重なった状態となる。   The amount of delivery sent from each gate 35, 36 to the junction is determined according to the size of each delivery port defined by the shape of the edge 39a. In the joining portion, soft resin and hard resin in an amount corresponding to the delivery port are sent out to the resin passage 38 and joined together. In the resin passage 38, the resin is thick at the portion where the delivery port is wide, and the soft resin and the hard resin are overlapped with the resin being thin at the narrow portion.

軟質樹脂と硬質樹脂は、重なった状態で樹脂通路38を通じて成形通路37に供給されて連結可撓管素材31に積層されるため、図3で示すように、内層17と外層18の境界19がエッジ39aと相似形の楕円形となる。   Since the soft resin and the hard resin are supplied to the molding passage 37 through the resin passage 38 in a state of being overlapped and laminated on the connecting flexible tube material 31, the boundary 19 between the inner layer 17 and the outer layer 18 is formed as shown in FIG. It becomes an elliptical shape similar to the edge 39a.

上記構成の連続成形機20で連結可撓管素材31に外皮層15を成形するときのプロセスについて説明する。連続成形機20が成形工程を行うときは、押し出し部21,22から溶融状態の軟質樹脂及び硬質樹脂がヘッド部23へと押し出されるとともに、搬送部25が動作して連結可撓管素材31がヘッド部23へと搬送される。   A process when the outer skin layer 15 is formed on the connected flexible tube material 31 by the continuous molding machine 20 having the above configuration will be described. When the continuous molding machine 20 performs the molding process, melted soft resin and hard resin are extruded from the extruding units 21 and 22 to the head unit 23, and the conveying unit 25 operates to connect the connected flexible tube material 31. It is conveyed to the head unit 23.

このとき、押し出し部21,22は、軟質樹脂及び硬質樹脂を常時押し出してヘッド部23へ供給する状態であり、押し出し部21,22からゲート35,36へ押し出された軟質樹脂及び硬質樹脂は、断面形状が楕円形のエッジ39aを通過して合流し、重なった状態で樹脂通路38を通って成形通路37へ供給される。これにより、軟質樹脂を使用した内層17と硬質樹脂を使用した外層18の境界19が楕円形である、二層成形の外皮層15が形成される。   At this time, the extruding portions 21 and 22 are in a state of always extruding soft resin and hard resin and supplying them to the head portion 23, and the soft resin and hard resin extruded from the extruding portions 21 and 22 to the gates 35 and 36 are The cross-sectional shape passes through the elliptical edge 39a, merges, and is supplied to the molding passage 37 through the resin passage 38 in an overlapping state. As a result, a two-layered outer skin layer 15 is formed in which the boundary 19 between the inner layer 17 using the soft resin and the outer layer 18 using the hard resin is elliptical.

連結可撓管素材31は、複数の可撓管素材14が連結されたものであり、成形通路37内を搬送中に、複数の可撓管素材14に対して連続的に外皮層15が成形される。1つの可撓管素材14の一端14a側(基端側)から他端14b側(先端側)まで外皮層15を成形するときは、可撓管素材14の一端14aでは内層17よりも外層18の厚みが大きく、可撓管素材14の一端14a側から他端14b側へ向かって徐々に内層17の割合が漸増して、可撓管素材14の他端14b側では外層18よりも内層17の厚みが大きくなるように、制御部26は押し出し部21,22による樹脂の吐出量を制御する。   The connected flexible tube material 31 is formed by connecting a plurality of flexible tube materials 14, and the outer skin layer 15 is continuously formed with respect to the plurality of flexible tube materials 14 while being conveyed through the forming passage 37. Is done. When the outer skin layer 15 is formed from one end 14 a side (base end side) to the other end 14 b side (tip end side) of one flexible tube material 14, the outer layer 18 is formed at one end 14 a of the flexible tube material 14 rather than the inner layer 17. And the ratio of the inner layer 17 gradually increases from the one end 14 a side to the other end 14 b side of the flexible tube material 14, and the inner layer 17 is larger than the outer layer 18 on the other end 14 b side of the flexible tube material 14. The control unit 26 controls the amount of resin discharged by the extruding units 21 and 22 so that the thickness of the resin increases.

一方、ジョイント部材30の外周面に外皮層15を成形するときは、可撓管素材14の他端14bに隣接する位置では、外層18よりも内層17の厚みが大きく、可撓管素材14の他端14b側から次の可撓管素材14の一端14a側へ向かって徐々に外層18の割合が漸増して、次の可撓管素材14の一端14aに隣接する位置では、内層17よりも外層18の厚みが大きくなるように、制御部26は押し出し部21,22の吐出量を制御する。つまり、ジョイント部材30を利用して、1本の可撓管素材14から次の可撓管素材14に遷移する際の外層18と内層17のそれぞれの厚みに応じた吐出量の切り替えを行う。   On the other hand, when the outer skin layer 15 is formed on the outer peripheral surface of the joint member 30, the inner layer 17 is thicker than the outer layer 18 at a position adjacent to the other end 14 b of the flexible tube material 14. The ratio of the outer layer 18 gradually increases from the other end 14 b side toward the one end 14 a side of the next flexible tube material 14, and at a position adjacent to the one end 14 a of the next flexible tube material 14 than the inner layer 17. The control unit 26 controls the discharge amount of the extruding units 21 and 22 so that the thickness of the outer layer 18 is increased. That is, by using the joint member 30, the discharge amount is switched according to the thicknesses of the outer layer 18 and the inner layer 17 when transitioning from one flexible tube material 14 to the next flexible tube material 14.

そして、次の可撓管素材14の一端14a側から他端14b側まで外皮層15を成形するときは、同様に一端14a側から他端14b側へ向かって徐々に内層17の厚みが大きくなるように、押し出し部21,22を制御する。以降は同様にして押し出し部21,22の吐出量の切り替えを行って連結可撓管素材31に外皮層15を成形する。   When the outer skin layer 15 is formed from the one end 14a side to the other end 14b side of the next flexible tube material 14, the thickness of the inner layer 17 gradually increases from the one end 14a side to the other end 14b side. Thus, the extrusion parts 21 and 22 are controlled. Thereafter, similarly, the discharge amount of the extruding portions 21 and 22 is switched to form the outer skin layer 15 on the connected flexible tube material 31.

最後端まで外皮層15が成形された連結可撓管素材31は、連続成形機20から取り外された後、可撓管素材14からジョイント部材30が取り外され、各可撓管素材14に分離される。次に、分離された可撓管素材14に対して、外皮層15の上にコート膜16がコーティングされて、可撓管10が完成する。完成した可撓管10は、電子内視鏡2の組立工程へ搬送される。   The connected flexible tube material 31 in which the outer skin layer 15 has been molded to the end is removed from the continuous molding machine 20, and then the joint member 30 is removed from the flexible tube material 14 and separated into each flexible tube material 14. The Next, the separated flexible tube material 14 is coated with a coating film 16 on the outer skin layer 15 to complete the flexible tube 10. The completed flexible tube 10 is conveyed to the assembly process of the electronic endoscope 2.

以上説明したように、連続成形機20は、複数のゲート35,36から送り出される二種類の溶融状態の樹脂を合流させ、これらを重なった状態で樹脂通路38を通じて成形通路に送り出して成形するという、従来の二層成形のプロセスと同様のプロセスにより外皮層15を成形する。このため、外皮層の周方向の一部に変性部を設ける場合と比べて、複雑な工程がなく、成形性が良好である。また、連続成形機20は、従来の連続成形と異なる構成は、エッジ39aの形状のみであるので、従来の連続成形機を改造して作ることも容易である。   As described above, the continuous molding machine 20 joins two types of molten resin fed from the plurality of gates 35 and 36, and sends them to the molding passage through the resin passage 38 in a state where they are overlapped to be molded. The outer skin layer 15 is formed by the same process as the conventional two-layer forming process. For this reason, compared with the case where a modified part is provided in a part in the circumferential direction of the outer skin layer, there is no complicated process and the moldability is good. Further, since the continuous molding machine 20 is different from the conventional continuous molding only in the shape of the edge 39a, it is easy to modify the conventional continuous molding machine.

また、可撓管10の外皮層15は、内層17と外層18の境界19が楕円形であるので、電子内視鏡2の挿入部3に対してねじりが加えられた場合でも、境界が真円の場合と比べて、内層17と外層18の剥離がしにくい。   Further, the outer skin layer 15 of the flexible tube 10 has an elliptical boundary 19 between the inner layer 17 and the outer layer 18, so that the boundary is true even when the insertion portion 3 of the electronic endoscope 2 is twisted. Compared to the case of a circle, the inner layer 17 and the outer layer 18 are less likely to peel off.

上記例では、軸方向と直交する断面において、外皮層15の境界19の断面形状が楕円形の例で説明したが、非真円形状であれば楕円形でなくてもよい。外皮層15の境界19の断面形状が非真円形状であれば、可撓管10に軸回りのねじりが加わったときに境界19に作用するせん断力を小さくすることができるので、上記実施形態と同様の効果を得ることができる。   In the above example, the cross-sectional shape of the boundary 19 of the outer skin layer 15 is an ellipse in the cross section orthogonal to the axial direction. However, it may not be an ellipse as long as it is a non-circular shape. If the cross-sectional shape of the boundary 19 of the outer skin layer 15 is a non-circular shape, the shear force acting on the boundary 19 when the torsion around the axis is applied to the flexible tube 10 can be reduced. The same effect can be obtained.

例えば、図8に示す境界41のように断面形状が多角形(図8では八角形)でもよい。また、図9に示す境界42のように断面形状が周方向に凹凸が形成されるギア状でもよい。凹凸を構成する歯の形状は、図9に示す歯42aのように、三角形でなくてもよく、図10に示す境界43の歯43aのように四角形(溝も四角)でもよい。また、歯は曲線で形成されていてもよい。   For example, the cross-sectional shape may be a polygon (an octagon in FIG. 8) like a boundary 41 shown in FIG. Moreover, the cross-sectional shape may be a gear shape in which unevenness is formed in the circumferential direction like a boundary 42 shown in FIG. The shape of the teeth constituting the unevenness does not have to be a triangle like the tooth 42a shown in FIG. 9, and may be a rectangle (the groove is also a square) like the tooth 43a of the boundary 43 shown in FIG. Moreover, the tooth | gear may be formed in the curve.

境界を楕円形にした場合と同様に、連続成形機20のエッジ39aを、各境界41〜43の種々の断面形状に合わせて、それと相似形にすれば、これらの境界41〜43を持つ外皮層を形成することができる。   Similarly to the case where the boundaries are elliptical, if the edges 39a of the continuous molding machine 20 are matched to the various cross-sectional shapes of the respective boundaries 41 to 43 and similar to them, the outer shape having these boundaries 41 to 43 will be obtained. A skin layer can be formed.

上記実施形態においては、内層に軟質樹脂を外層に硬質樹脂を使用しているが、その反対に、内層に硬質樹脂を外層に軟質樹脂を使用してもよい。また、二層成形を例に説明しているが、内層、中層、外層の三層で外皮層を三層形成するというように、外皮層は二層以上の多層で構成されてもよい。   In the above embodiment, a soft resin is used for the inner layer and a hard resin is used for the outer layer. Conversely, a hard resin may be used for the inner layer and a soft resin may be used for the outer layer. Although the two-layer molding has been described as an example, the outer skin layer may be composed of two or more multilayers such that three outer skin layers are formed by three layers of an inner layer, a middle layer, and an outer layer.

上記実施形態においては、撮像装置を用いて被検体の状態を撮像した画像を観察する電子内視鏡を例に上げて説明しているが、本発明はこれに限るものではなく、光学的イメージガイドを採用して被検体の状態を観察する内視鏡にも適用することができる。   In the above-described embodiment, an electronic endoscope that observes an image obtained by imaging the state of the subject using the imaging apparatus is described as an example. However, the present invention is not limited to this, and an optical image is not limited thereto. The present invention can also be applied to an endoscope that employs a guide and observes the state of a subject.

また、上記実施形態では、可撓管10を電子内視鏡2の挿入部3に適用しているが、ユニバーサルコード7などの内視鏡用可撓管に適用してもよい。   Moreover, in the said embodiment, although the flexible tube 10 is applied to the insertion part 3 of the electronic endoscope 2, you may apply to the flexible tube for endoscopes, such as the universal cord 7. FIG.

また、上記実施形態では、可撓管10の軸方向において、内層と外層の厚みの割合を変化させることで、外皮層15の柔軟性を変化させる例を説明しているが、ユニバーサルコード7の外皮層もその軸方向に柔軟性を変化させる必要性が高い。以下では、ユニバーサルコード7の外皮層に適した柔軟性の変化のさせ方の例を説明する。   Moreover, although the said embodiment demonstrated the example which changes the softness | flexibility of the outer skin layer 15 by changing the ratio of the thickness of an inner layer and an outer layer in the axial direction of the flexible tube 10, The outer skin layer also needs to change its flexibility in the axial direction. Below, the example of how to change the softness | flexibility suitable for the outer skin layer of the universal cord 7 is demonstrated.

ユニバーサルコード7は、ライトガイドや、配線ケーブルが収納され、一端側が電子内視鏡2の本体操作部5、他端側がコネクタ部6に接続される。このため、ユニバーサルコード7の両端、すなわち、本体操作部5およびコネクタ部6付近の外皮層が軟らかいと、内容物、特にライトガイドが座屈したり、ねじれた状態になるため、内容物の保護の観点から好ましくない。一方、ユニバーサルコード7の軸方向の全長に渡って外皮層を硬くすると、ユニバーサルコード7の取り回しがしにくくなり、電子内視鏡2の操作性を低下させる。   The universal cord 7 stores a light guide and a wiring cable, and one end side is connected to the main body operation unit 5 of the electronic endoscope 2 and the other end side is connected to the connector unit 6. For this reason, if both ends of the universal cord 7, that is, the outer skin layer in the vicinity of the main body operation unit 5 and the connector unit 6 are soft, the contents, particularly the light guide, will be buckled or twisted. It is not preferable from the viewpoint. On the other hand, when the outer skin layer is hardened over the entire length of the universal cord 7 in the axial direction, the universal cord 7 becomes difficult to handle, and the operability of the electronic endoscope 2 is lowered.

そこで、図11に示すユニバーサルコード7用の可撓管50のように、両端部の柔軟性が低く(硬く)、中央部の柔軟性が高く(軟らかく)するように外皮層52を形成することが好ましい。   Therefore, as in the flexible tube 50 for the universal cord 7 shown in FIG. 11, the outer skin layer 52 is formed so that the flexibility at both ends is low (hard) and the flexibility at the center is high (soft). Is preferred.

可撓管50は、可撓管素材51の外周面に、軟質樹脂層53及び硬質樹脂層54を二層成形してなる外皮層52が被覆された構成となっている。なお、可撓管素材51の構成は、上記実施形態で説明した可撓管素材14と同様に、螺旋管11に筒状網体12を被覆して両端に口金13をそれぞれ嵌合したものであり、以下では説明を省略する。   The flexible tube 50 has a configuration in which an outer skin layer 52 formed by forming two layers of a soft resin layer 53 and a hard resin layer 54 on the outer peripheral surface of a flexible tube material 51 is covered. The configuration of the flexible tube material 51 is similar to the flexible tube material 14 described in the above embodiment, in which the spiral tube 11 is covered with the cylindrical mesh body 12 and the base 13 is fitted to both ends. There will be no description below.

外皮層52は、軸方向の全長に渡って均一な厚みで形成される。外皮層52は、本体操作部5、及びコネクタ部6に取り付けられる可撓管素材51の両端51a,51b側は、硬質樹脂層54の厚みが軟質樹脂層53の厚みよりも大きく、両端51a,51bから可撓管素材51の中央部に向かって、徐々に軟質樹脂層53の厚みが漸減し、可撓管素材51の中央部では、軟質樹脂層53の厚みが硬質樹脂層54の厚みよりも大きくなっている。   The outer skin layer 52 is formed with a uniform thickness over the entire length in the axial direction. The outer skin layer 52 has the hard resin layer 54 having a thickness larger than the soft resin layer 53 on both ends 51a and 51b side of the flexible tube material 51 attached to the main body operation section 5 and the connector section 6. The thickness of the soft resin layer 53 gradually decreases from 51b toward the central portion of the flexible tube material 51. In the central portion of the flexible tube material 51, the thickness of the soft resin layer 53 is greater than the thickness of the hard resin layer 54. Is also getting bigger.

これにより、可撓管50は、両端51a,51b側の柔軟性が低く(硬く)、中央部の柔軟性が高く(軟らかく)なる。また、従来は、本体操作部5及びコネクタ部6周辺の強度を上げるため、ユニバーサルコード7の本体操作部5及びコネクタ部6側の端部にはゴム製のカバーを装着していたが、上記のように可撓部50の両端51a,51b側を硬くしたため、カバーが不要になり、ローコスト化を図ることができる。   Thereby, the flexible tube 50 has low flexibility (hard) on both ends 51a and 51b side, and high flexibility (soft) at the center. Conventionally, in order to increase the strength around the main body operation unit 5 and the connector unit 6, a rubber cover is attached to the end of the universal cord 7 on the main body operation unit 5 and the connector unit 6 side. Since the both ends 51a and 51b side of the flexible part 50 is hardened as described above, a cover is unnecessary, and the cost can be reduced.

なお、可撓管素材51に外皮層52を被覆成形する場合、上記実施形態の連続成形機20を使用し、ジョイント部材30で可撓管素材51を連結した連結可撓管素材として成形工程を行うことができる。可撓管素材51に対する外皮層52の成形方法は、上記可撓管素材14に対する外皮層15の成形方法と同様である。外皮層52の各層53,54の厚みは、制御部26によって押し出し部21,22による樹脂の吐出量を制御することにより、変化させる。   When the outer skin layer 52 is coated and formed on the flexible tube material 51, the continuous forming machine 20 of the above embodiment is used, and the forming process is performed as a connected flexible tube material in which the flexible tube material 51 is connected by the joint member 30. It can be carried out. The method for forming the outer skin layer 52 on the flexible tube material 51 is the same as the method for forming the outer skin layer 15 on the flexible tube material 14. The thickness of each of the layers 53 and 54 of the outer skin layer 52 is changed by controlling the discharge amount of the resin by the extrusion units 21 and 22 by the control unit 26.

2 電子内視鏡(内視鏡)
3 挿入部
10,50,111 可撓管
14,51 可撓管素材
15,52,115 外皮層
17,53,117 内層
18,54,118 外層
19,41,42,43,119 境界
20 連続成形機(製造装置)
23 ヘッド部(成形型)
35,36 ゲート
37 成形通路
38 樹脂通路
39 分離部
39a エッジ
2 Electronic endoscope (endoscope)
3 Insertion portion 10, 50, 111 Flexible tube 14, 51 Flexible tube material 15, 52, 115 Outer layer 17, 53, 117 Inner layer 18, 54, 118 Outer layer 19, 41, 42, 43, 119 Boundary 20 Continuous molding Machine (manufacturing equipment)
23 Head (molding die)
35, 36 Gate 37 Molding passage 38 Resin passage 39 Separation part 39a Edge

Claims (10)

可撓性を有する筒状の可撓管素材と、
可撓管素材の軸回りの全周面を被覆する内層と、内層の前記軸回りの全周面を被覆する外層の少なくとも二層が積層され、内層及び外層がそれぞれ物性の異なる樹脂で形成される外皮層であり、前記可撓管素材の軸方向と直交する断面において、内層の外周と外層の内周が接する境界の形状が非真円形状である外皮層とからなることを特徴とする内視鏡用可撓管。
A tubular flexible tube material having flexibility;
At least two layers of an inner layer covering the entire peripheral surface around the axis of the flexible tube material and an outer layer covering the entire peripheral surface around the axis of the inner layer are laminated, and the inner layer and the outer layer are formed of resins having different physical properties. The outer layer is a non-circular outer layer having a non-circular shape at the boundary between the outer periphery of the inner layer and the inner periphery of the outer layer in a cross section perpendicular to the axial direction of the flexible tube material. Flexible tube for endoscope.
前記境界の形状は、楕円形、多角形及び周方向に凹凸が形成されたギア状のいずれかであることを特徴とする請求項1記載の内視鏡用可撓管。   2. The flexible tube for an endoscope according to claim 1, wherein the shape of the boundary is any one of an ellipse, a polygon, and a gear shape in which irregularities are formed in a circumferential direction. 前記境界の形状は楕円形であり、長軸と短軸との差が200μm以上、1000μm以下であることを特徴とする請求項2記載の内視鏡用可撓管。   The flexible tube for an endoscope according to claim 2, wherein a shape of the boundary is an ellipse, and a difference between a major axis and a minor axis is 200 µm or more and 1000 µm or less. 前記外皮層全体の厚みに対する前記内層及び前記外層の厚みの割合が、前記可撓管素材の軸方向において変化していることを特徴とする請求項1〜3のいずれかに記載の内視鏡用可撓管。   The endoscope according to any one of claims 1 to 3, wherein a ratio of the thickness of the inner layer and the outer layer to the thickness of the entire outer skin layer changes in the axial direction of the flexible tube material. Flexible tube. 前記境界の形状は、前記可撓管素材の軸方向に渡って相似形であることを特徴とする請求項4記載の内視鏡用可撓管。   The flexible tube for an endoscope according to claim 4, wherein the shape of the boundary is similar to the shape of the flexible tube material in the axial direction. 前記内層及び外層は、一方の層に軟質樹脂が、他方の層に硬質樹脂が使用されており、前記可撓管素材の軸方向の先端側において軟質樹脂が使用された層の厚みの割合が高く、基端側において硬質樹脂が使用された層の厚みの割合が高いことを特徴とする請求項4又は5記載の内視鏡用可撓管。   In the inner layer and the outer layer, a soft resin is used for one layer and a hard resin is used for the other layer, and the ratio of the thickness of the layer in which the soft resin is used on the distal end side in the axial direction of the flexible tube material is The flexible tube for an endoscope according to claim 4 or 5, wherein the ratio of the thickness of the layer in which the hard resin is used on the base end side is high. 可撓性を有する筒状の可撓管素材が軸方向に沿って搬送される通路であり、前記可撓管素材の軸回りの全周面に対して、少なくとも内層及び外層からなる二層構成の外皮層を押し出し成形する成形通路と、前記外皮層の材料となる溶融状態の樹脂を前記成形通路に供給する樹脂通路であり、前記成形通路の外側に配置され、前記軸方向と直交する断面形状が前記成形通路と同心円をなす円形の樹脂通路とを有する内視鏡可撓管の製造装置において、
前記内層の材料となる第1樹脂を前記樹脂通路に送り出す第1ゲートであり、前記断面形状が前記成形通路と同心円をなす円形の第1ゲートと、
前記第1樹脂とは物性が異なり、前記外層の材料となる第2樹脂を前記樹脂通路に送り出す第2ゲートであり、前記第1ゲートの外側に配置され、前記断面形状が前記第1ゲートと同心円をなす円形の第2ゲートと、
前記第1ゲート及び第2ゲートの下流端において、各ゲートが送り出す第1及び第2の各樹脂を合流させる合流部であり、前記断面形状が円形の合流部と、
前記合流部の上流側において前記第1及び第2のゲートを分離する分離部と、
前記分離部に形成され、前記第1樹脂と第2樹脂を合流させるために下流側に向けて先細となったエッジであり、前記軸方向と直交する断面形状が非真円形状であるエッジとを備えており、
前記エッジを通過させ、溶融状態の第1及び第2樹脂を重なった状態で前記樹脂通路を通じて前記成形通路に供給することにより、前記軸方向と直交する断面において、内層と外層の境界の形状が非真円形状の外皮層を成形することを特徴とする内視鏡可撓管の製造装置。
It is a passage through which a flexible tubular flexible tube material is conveyed along the axial direction, and has a two-layer structure consisting of at least an inner layer and an outer layer with respect to the entire peripheral surface around the axis of the flexible tube material. A molding passage for extruding the outer skin layer, and a resin passage for supplying molten resin, which is a material of the outer skin layer, to the molding passage, and is disposed outside the molding passage, and is a cross section orthogonal to the axial direction. In an endoscope flexible tube manufacturing apparatus having a circular resin passage whose shape is concentric with the molding passage,
A first gate that feeds the first resin, which is a material of the inner layer, into the resin passage, and a circular first gate in which the cross-sectional shape is concentric with the molding passage;
The second resin has a physical property different from that of the first resin, and is a second gate for feeding the second resin, which is a material of the outer layer, to the resin passage. The second gate is disposed outside the first gate, and the cross-sectional shape is the same as that of the first gate. A concentric circular second gate,
A joining portion for joining the first and second resins sent out by the gates at the downstream ends of the first gate and the second gate, and a joining portion having a circular cross-sectional shape;
A separation unit that separates the first and second gates upstream of the merge unit;
An edge formed in the separation portion and tapered toward the downstream side in order to join the first resin and the second resin, and an edge whose cross-sectional shape perpendicular to the axial direction is a non-circular shape; With
The shape of the boundary between the inner layer and the outer layer in the cross section perpendicular to the axial direction is obtained by passing the edge and supplying the melted first and second resins to the molding passage through the resin passage. An apparatus for manufacturing an endoscope flexible tube, wherein a non-circular outer skin layer is formed.
前記エッジの前記断面形状は、楕円形、多角形及び周方向に凹凸が形成されたギア状のいずれかであることを特徴とする請求項7記載の内視鏡用可撓管の製造装置。   8. The endoscope flexible tube manufacturing apparatus according to claim 7, wherein the cross-sectional shape of the edge is any one of an elliptical shape, a polygonal shape, and a gear shape in which irregularities are formed in a circumferential direction. 可撓性を有する筒状の可撓管素材が軸方向に沿って成形通路を搬送させながら、前記成形通路の外側に配置され、前記軸方向と直交する断面形状が前記成形通路と同心円をなす円形の樹脂通路を通じて、前記成形通路に対して溶融状態の樹脂を供給することにより、前記可撓管素材の軸回りの全周面に対して、少なくとも内層及び外層からなる二層構成の外皮層を押し出し成形する内視鏡可撓管の製造方法において、
前記断面形状が前記成形通路と同心円をなす円形の第1ゲートを通じて、前記内層の材料となる第1樹脂を前記樹脂通路に送り出す第1樹脂送り出しステップと、
前記第1ゲートの外側に配置され、前記断面形状が前記第1ゲートと同心円をなす円形の第2ゲートを通じて、前記第1樹脂とは物性が異なり、前記外層の材料となる第2樹脂を、前記第1樹脂送り出しステップと同じタイミングで前記樹脂通路に送り出す第2樹脂送り出しステップと、
前記第1ゲート及び第2ゲートの下流端と接続し、前記断面形状が円形の合流部において、各ゲートが送り出す第1及び第2の各樹脂を合流させる合流ステップと、
前記合流ステップにおいて、前記合流部の上流側で前記第1及び第2のゲートを分離する分離部に形成され、前記第1樹脂と第2樹脂を合流させるために下流側に向けて先細となったエッジであり、前記軸方向と直交する断面形状が非真円形状であるエッジを通過させるエッジ通過ステップと、
前記エッジを通過させ、溶融状態の第1及び第2樹脂を重なり合わせた状態で前記樹脂通路を通じて前記成形通路に供給する供給ステップとを含み、
前記軸方向と直交する断面において、内層と外層の境界の形状が非真円の外皮層を成形することを特徴とする内視鏡可撓管の製造方法。
A tubular flexible tube material having flexibility is disposed outside the molding passage while conveying the molding passage along the axial direction, and a cross-sectional shape perpendicular to the axial direction is concentric with the molding passage. By supplying molten resin to the molding passage through a circular resin passage, an outer skin layer having a two-layer structure composed of at least an inner layer and an outer layer with respect to the entire peripheral surface around the axis of the flexible tube material. In the method of manufacturing an endoscope flexible tube for extruding
A first resin delivery step of delivering a first resin as a material of the inner layer to the resin passage through a circular first gate having a cross-sectional shape concentric with the molding passage;
A second resin that is disposed outside the first gate and has a cross-sectional shape that is concentric with the first gate and having a physical property different from that of the first resin and serving as a material for the outer layer. A second resin delivery step for delivering to the resin passage at the same timing as the first resin delivery step;
A merging step for connecting the first and second resins sent out by the gates at a merging portion connected to the downstream ends of the first gate and the second gate and having a circular cross-sectional shape;
In the merging step, a separation portion that separates the first and second gates is formed on the upstream side of the merging portion, and is tapered toward the downstream side in order to merge the first resin and the second resin. An edge passing step for passing an edge having a non-circular cross-sectional shape perpendicular to the axial direction,
A supply step of passing through the edge and supplying the molten first and second resins to the molding passage through the resin passage in a state of being overlapped,
A method for manufacturing an endoscope flexible tube, comprising forming a skin layer having a non-circular shape at a boundary between an inner layer and an outer layer in a cross section perpendicular to the axial direction.
前記エッジの前記断面形状は、楕円形、多角形及び周方向に凹凸が形成されたギア状のいずれかであることを特徴とする請求項9記載の内視鏡用可撓管の製造方法。   The method for manufacturing a flexible tube for an endoscope according to claim 9, wherein the cross-sectional shape of the edge is any one of an ellipse, a polygon, and a gear shape in which irregularities are formed in a circumferential direction.
JP2009220765A 2009-09-25 2009-09-25 Endoscopic flexible tube, manufacturing apparatus and manufacturing method thereof Active JP5290921B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009220765A JP5290921B2 (en) 2009-09-25 2009-09-25 Endoscopic flexible tube, manufacturing apparatus and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009220765A JP5290921B2 (en) 2009-09-25 2009-09-25 Endoscopic flexible tube, manufacturing apparatus and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2011067383A true JP2011067383A (en) 2011-04-07
JP5290921B2 JP5290921B2 (en) 2013-09-18

Family

ID=44013308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009220765A Active JP5290921B2 (en) 2009-09-25 2009-09-25 Endoscopic flexible tube, manufacturing apparatus and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5290921B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014157375A1 (en) * 2013-03-27 2014-10-02 富士フイルム株式会社 Flexible tube for endoscopes and method for producing same
JP2014188217A (en) * 2013-03-27 2014-10-06 Fujifilm Corp Flexible tube for endoscope, and method of manufacturing the same
KR20200010846A (en) * 2018-07-23 2020-01-31 주식회사 엔도비전 Double tube for improving operation precision of endoscopic treatment and Treatment apparatus having the same

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59177882U (en) * 1983-05-13 1984-11-28 東洋ゴム工業株式会社 Irregular cross-section tubular body made of elastic polymer material
JPH02116402U (en) * 1989-03-07 1990-09-18
JPH0331401U (en) * 1989-08-02 1991-03-27
JPH0440933A (en) * 1990-06-06 1992-02-12 Mitsubishi Cable Ind Ltd Extra fine diameter oscillating endoscope
JPH06189898A (en) * 1992-12-25 1994-07-12 Olympus Optical Co Ltd Channel tube for endoscope
JP2001190494A (en) * 2000-01-06 2001-07-17 Asahi Optical Co Ltd Flexible pipe of endoscope
JP2007325794A (en) * 2006-06-08 2007-12-20 Olympus Medical Systems Corp Distal end cap for endoscope and endoscope
JP2009101075A (en) * 2007-10-25 2009-05-14 Fujinon Corp Method for manufacturing endoscope flexible tube
JP2009106632A (en) * 2007-10-31 2009-05-21 Fujinon Corp Method for manufacturing endoscope flexible tube

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59177882U (en) * 1983-05-13 1984-11-28 東洋ゴム工業株式会社 Irregular cross-section tubular body made of elastic polymer material
JPH02116402U (en) * 1989-03-07 1990-09-18
JPH0331401U (en) * 1989-08-02 1991-03-27
JPH0440933A (en) * 1990-06-06 1992-02-12 Mitsubishi Cable Ind Ltd Extra fine diameter oscillating endoscope
JPH06189898A (en) * 1992-12-25 1994-07-12 Olympus Optical Co Ltd Channel tube for endoscope
JP2001190494A (en) * 2000-01-06 2001-07-17 Asahi Optical Co Ltd Flexible pipe of endoscope
JP2007325794A (en) * 2006-06-08 2007-12-20 Olympus Medical Systems Corp Distal end cap for endoscope and endoscope
JP2009101075A (en) * 2007-10-25 2009-05-14 Fujinon Corp Method for manufacturing endoscope flexible tube
JP2009106632A (en) * 2007-10-31 2009-05-21 Fujinon Corp Method for manufacturing endoscope flexible tube

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014157375A1 (en) * 2013-03-27 2014-10-02 富士フイルム株式会社 Flexible tube for endoscopes and method for producing same
JP2014188217A (en) * 2013-03-27 2014-10-06 Fujifilm Corp Flexible tube for endoscope, and method of manufacturing the same
US11892104B2 (en) 2013-03-27 2024-02-06 Fujifilm Corporation Flexible tube for endoscopes and method for producing same
KR20200010846A (en) * 2018-07-23 2020-01-31 주식회사 엔도비전 Double tube for improving operation precision of endoscopic treatment and Treatment apparatus having the same
KR102172242B1 (en) 2018-07-23 2020-10-30 주식회사 엔도비전 Double tube for improving operation precision of endoscopic treatment and Treatment apparatus having the same

Also Published As

Publication number Publication date
JP5290921B2 (en) 2013-09-18

Similar Documents

Publication Publication Date Title
JP5755835B2 (en) Endoscopic flexible tube and manufacturing method thereof
JP5591043B2 (en) Endoscope and its flexible part
US8734695B2 (en) Endoscope flexible tube and its manufacturing method
JP4866824B2 (en) Method for manufacturing endoscope flexible tube
JP5312380B2 (en) Method for manufacturing endoscope flexible tube
WO2008032412A1 (en) Microcatheter
JP2000308614A (en) Flexible tube of endoscope
US11491304B2 (en) Extrusion with preferential bend axis
US20120273994A1 (en) Flexible tube device and endoscope
WO2010038738A1 (en) Multilayer coating equipment, and multilayer coating method
JP2010075352A (en) Flexible tube for endoscope and endoscope
JP5290921B2 (en) Endoscopic flexible tube, manufacturing apparatus and manufacturing method thereof
JP5968939B2 (en) Endoscopic flexible tube and manufacturing method thereof
JP2005081100A (en) Flexible tube of endoscope
JP2011206332A (en) Endoscope flexible tube, method of manufacturing the same, and endoscope
JP2010179025A (en) Method of manufacturing flexible tube for endoscope
JP2009226023A (en) Method for manufacturing flexible tube for endoscope
JP2009106632A (en) Method for manufacturing endoscope flexible tube
JP2011067384A (en) Connector used to manufacture flexible tube for endoscope and method of manufacturing flexible tube for endoscope
JP2002058637A (en) Flexible tube for endoscope
JP2003210576A (en) Tube for medical treatment and utensil for medical treatment
JP2009101075A (en) Method for manufacturing endoscope flexible tube
JP5117819B2 (en) Method for manufacturing endoscope flexible tube
JP2007050118A (en) Flexible tube for endoscope
WO2024030667A1 (en) Endoscope insertion tube with graded static stiffness

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130515

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130606

R150 Certificate of patent or registration of utility model

Ref document number: 5290921

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250