JP2011066199A - Power controller - Google Patents

Power controller Download PDF

Info

Publication number
JP2011066199A
JP2011066199A JP2009215508A JP2009215508A JP2011066199A JP 2011066199 A JP2011066199 A JP 2011066199A JP 2009215508 A JP2009215508 A JP 2009215508A JP 2009215508 A JP2009215508 A JP 2009215508A JP 2011066199 A JP2011066199 A JP 2011066199A
Authority
JP
Japan
Prior art keywords
refrigerant
thermal expansion
power control
cooling
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009215508A
Other languages
Japanese (ja)
Inventor
Jun Nishizawa
純 西澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2009215508A priority Critical patent/JP2011066199A/en
Publication of JP2011066199A publication Critical patent/JP2011066199A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To improve cooling performance of a power controller while suppressing an increase in load on a supply source for a refrigerant. <P>SOLUTION: The power controller 10 includes substrates 15a, 15b having mounting surfaces where a plurality of elements 21 are mounted, respectively, and disposed so that surfaces on the opposite sides from the mounting surfaces may face each other, a cooling flow passage 22 formed in a cooling tube 20 to which the substrates 15a, 15b are joined and connected to an unillustrated pump configured to supply the refrigerant for exchanging heat with the elements 21, and a thermal expansion material 23 disposed in the cooling flow passage 22, the thermal expansion material 23 thermally expanding as the temperature of the refrigerant rises to reduce the flow passage sectional area of the cooling flow passage 22 to increase the flow velocity of the refrigerant. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、電力制御装置に関する。   The present invention relates to a power control apparatus.

従来、この種の電力制御装置としては、ハイブリッド自動車等に用いられるインバータ装置等であって、IGBT(Insulated Gate Bipolar Transistor)等のパワー半導体素子が実装された基板と、当該基板が接合された筐体の内部に形成された冷媒流路と、当該冷媒流路内に冷媒流通方向に沿う方向に配置され冷媒流路を区画するフィンとを備えるものが提案されている(例えば、特許文献1参照)。この電力制御装置では、発熱体であるパワー半導体素子の近くに配置されるフィンの側面に突起あるいはフィンの側面を貫通する孔等を設け、冷媒の流れの乱流発生を促進することで冷却性能を向上させている。   Conventionally, this type of power control device is an inverter device or the like used in a hybrid vehicle or the like, and includes a substrate on which a power semiconductor element such as an IGBT (Insulated Gate Bipolar Transistor) is mounted and a housing to which the substrate is bonded. An apparatus is proposed that includes a refrigerant flow path formed inside a body and fins that are arranged in the refrigerant flow direction along the refrigerant flow direction and define the refrigerant flow path (see, for example, Patent Document 1). ). In this power control device, a cooling performance is achieved by providing a protrusion or a hole penetrating the side surface of the fin on the side surface of the fin disposed near the power semiconductor element that is a heating element to promote the generation of turbulent flow of the refrigerant. Has improved.

特開2008−288330号公報JP 2008-288330 A

ところで、上述のような電力制御装置における冷却性能を向上させる他の手法としては、発熱体である半導体素子との間で熱交換を行った冷媒を速やかに入れ替えるために、冷媒の流速を増加させることが考えられる。しかしながら、冷媒の流速が増加すると冷媒流路における流路抵抗が増加することからポンプの負荷すなわちポンプに要求される吐出圧が大きくなり、それにより、ポンプの消費電力が増加したり、ポンプを大型化する必要が生じたりするおそれがある。   By the way, as another method for improving the cooling performance in the power control apparatus as described above, the flow rate of the refrigerant is increased in order to quickly replace the refrigerant that has exchanged heat with the semiconductor element that is a heating element. It is possible. However, since the flow resistance in the refrigerant flow path increases as the refrigerant flow rate increases, the pump load, that is, the discharge pressure required for the pump increases, thereby increasing the power consumption of the pump and increasing the size of the pump. There is a possibility that it will be necessary to make it.

本発明の電力制御装置は、冷媒の供給源の負荷増を抑制しながら冷却性能を向上させることを主目的とする。   The main purpose of the power control apparatus of the present invention is to improve the cooling performance while suppressing an increase in the load of the refrigerant supply source.

本発明の電力制御装置は、上述の主目的を達成するために以下の手段を採った。   The power control apparatus of the present invention employs the following means in order to achieve the main object described above.

本発明の電力制御装置は、電力制御用の素子が複数実装された少なくとも1つの基板と、冷媒の供給源に接続されると共に該冷媒と前記素子との熱交換を可能とするように前記基板の近傍に設けられた冷却流路とを備える電力制御装置であって、
前記冷却流路内には、熱膨張材を含むと共に、該熱膨張材の熱膨張を利用して前期冷却流路における前記冷媒の流速を前記供給源からの前記冷媒の流量変化を伴うことなく増加させる流速変更手段が配置されることを特徴とする。
The power control apparatus according to the present invention includes at least one substrate on which a plurality of power control elements are mounted, and the substrate connected to a refrigerant supply source and capable of heat exchange between the refrigerant and the element. A power control device provided with a cooling flow path provided in the vicinity of
The cooling channel contains a thermal expansion material, and the thermal expansion of the thermal expansion material is used to change the flow rate of the refrigerant in the previous cooling channel without changing the flow rate of the refrigerant from the supply source. The flow rate changing means for increasing is arranged.

本発明の電力制御装置では、熱膨張材の熱膨張を利用して冷却流路における冷媒の流速を供給源からの冷媒の流量変化を伴うことなく増加させる流速変更手段が冷却流路内に配置される。これにより、素子の温度が高いときには冷却流路における冷媒の流速を増加させることができるので、冷却流路内に冷媒を速やかに流通させて冷却性能を向上させることが可能となる。また、素子の温度が高いときには当該素子との熱交換により冷媒の温度も上昇して冷媒の粘性が低下することから、冷媒の流速を増加させたとしても冷却流路における流路抵抗の増加すなわち冷媒の供給源の負荷増を抑制することができる。そして、素子の温度が低いときには、冷却流路における冷媒の流速は素子の温度が高いときのように増加することはないので、冷却流路における流路抵抗の増加すなわち冷媒の供給源の負荷増を抑制することができる。従って、本発明の電力制御装置では、冷媒の供給源の負荷増を抑制しながら冷却性能を向上させることが可能となる。   In the power control apparatus of the present invention, the flow rate changing means for increasing the flow rate of the refrigerant in the cooling flow path using the thermal expansion of the thermal expansion material without changing the flow rate of the refrigerant from the supply source is disposed in the cooling flow path. Is done. Thereby, when the temperature of the element is high, the flow rate of the refrigerant in the cooling channel can be increased, so that it is possible to improve the cooling performance by quickly circulating the refrigerant in the cooling channel. Further, when the temperature of the element is high, the temperature of the refrigerant also rises due to heat exchange with the element and the viscosity of the refrigerant decreases, so that even if the flow rate of the refrigerant is increased, the flow resistance in the cooling flow path increases, that is, An increase in the load of the refrigerant supply source can be suppressed. When the temperature of the element is low, the flow rate of the refrigerant in the cooling channel does not increase as when the temperature of the element is high. Therefore, the flow resistance in the cooling channel is increased, that is, the load of the refrigerant supply source is increased. Can be suppressed. Therefore, in the power control apparatus of the present invention, it is possible to improve the cooling performance while suppressing an increase in the load of the refrigerant supply source.

前記流速変更手段は、前記冷媒の温度上昇に応じて前記冷却流路の流路断面積を減少させる手段であってもよいし、伸縮性を有する材料からなる袋体と、該袋体内に封入された所定値以上の熱膨張係数を有する流体とを含むものであってもよい。また、前記流速変更手段は、第1斜面を有すると共に前記冷却流路内に配置される第1部材と、前記第1部材の前記第1斜面と平行な第2斜面を有すると共に該第2斜面が前記第1斜面と当接するように前期冷却流路内に配置される第2部材とを含み、前記熱膨張材は、前記冷媒の温度変化に応じて前記第1斜面と前記第2斜面とが当接した状態で前記第1部材と前記第2部材とを互いに逆方向に相対移動させるように配置されるものであってもよい。あるいは、前記流速変更手段は、前記冷却流路内に前記冷媒の流れ方向に延在するように配置される第1部材と、前記第1部材により回動自在に支持された一端を有すると共に前記冷却流路の一部を閉塞可能な閉塞部材と、前記第1部材と前記閉塞部材との双方と当接するように配置される第2部材とを含み、前記熱膨張材は、前記冷媒の温度変化に応じて前記第1部材と前記第2部材とを相対移動させるように配置されるものであってもよい。さらに、前記冷却流路は、それぞれ前記冷媒の流れ方向に伸びる複数の通路に区画されており、前記流速変更手段は、前記熱膨張材に接続されると共に該熱膨張材の熱膨張により前記複数の通路の少なくとも何れかを閉鎖可能な弁体を含むものであってもよい。   The flow rate changing means may be a means for reducing the cross-sectional area of the cooling flow path in response to a rise in the temperature of the refrigerant, or a bag made of a stretchable material, and enclosed in the bag And a fluid having a thermal expansion coefficient equal to or greater than a predetermined value. The flow velocity changing means has a first slope and a first member disposed in the cooling channel, a second slope parallel to the first slope of the first member, and the second slope. And a second member disposed in the previous cooling channel so as to contact the first slope, and the thermal expansion material includes the first slope and the second slope according to a temperature change of the refrigerant. The first member and the second member may be arranged so as to move relative to each other in opposite directions in a state in which they are in contact with each other. Alternatively, the flow rate changing means includes a first member disposed in the cooling flow path so as to extend in the flow direction of the refrigerant, and one end rotatably supported by the first member. A closing member capable of closing a part of the cooling flow path; and a second member disposed so as to contact both the first member and the closing member, wherein the thermal expansion material is a temperature of the refrigerant. The first member and the second member may be arranged so as to move relative to each other according to the change. Further, the cooling flow path is partitioned into a plurality of passages extending in the refrigerant flow direction, and the flow rate changing means is connected to the thermal expansion material and the plurality of the flow rate changing means are thermally expanded by the thermal expansion material. It may include a valve body capable of closing at least one of the passages.

(a)および(b)は本発明の一実施例に係る電力制御装置10の要部を示す模式図である。(A) And (b) is a schematic diagram which shows the principal part of the electric power control apparatus 10 which concerns on one Example of this invention. (a)および(b)は本発明の変形例に係る電力制御装置10Bの要部を示す模式図である。(A) And (b) is a schematic diagram which shows the principal part of the electric power control apparatus 10B which concerns on the modification of this invention. (a)および(b)は本発明の変形例に係る電力制御装置10Cの要部を示す模式図である。(A) And (b) is a schematic diagram which shows the principal part of 10 C of electric power control apparatuses which concern on the modification of this invention. (a)および(b)は本発明の変形例に係る電力制御装置10Dの要部を示す模式図である。(A) And (b) is a schematic diagram which shows the principal part of power control apparatus 10D which concerns on the modification of this invention. (a)および(b)は本発明の変形例に係る電力制御装置10Eの要部を示す模式図である。(A) And (b) is a schematic diagram which shows the principal part of the electric power control apparatus 10E which concerns on the modification of this invention.

次に、本発明を実施するための形態を実施例を用いて説明する。   Next, the form for implementing this invention is demonstrated using an Example.

図1(a)および(b)は、本発明の一実施例に係る電力制御装置10の要部を示す模式図である。電力制御装置10は、例えばハイブリッド自動車や電気自動車に搭載されるモータの制御に用いられるものであり、スイッチング素子(例えばIGBT等の半導体素子等)を含む複数の素子21が実装される実装面をそれぞれ有すると共に実装面と反対側の面が互いに対向するように配置される基板15a,15bと、基板15aおよび15bが接合される冷却管20の内部に形成されると共に素子21と熱交換させるための冷媒を供給する図示しないポンプに接続される冷却流路22と、冷却流路22内に配置されると共に冷媒の温度上昇に応じて熱膨張する熱膨張材23とを備える。熱膨張材23は、例えば冷却流路22の図中上下方向における中央付近に固定される。ここで、熱膨張材23は、冷媒の温度上昇に応じて体膨張するものであれば、例えばアルミニウムやマグネシウムといった金属材料により形成されるものであってもよいし、ゴム等の弾性材料や樹脂材料により形成されるものであってもよい。なお、図1(a)および(b)中の矢印は冷却流路22内の冷媒の流れ方向および流速の大きさを示す。また、実施例において、電力制御装置10は、2つの対向する基板15a,15bを備えるものとしたが、一つあるいは三つ以上の基板を備えるものであってもよい。   FIGS. 1A and 1B are schematic views showing the main part of a power control apparatus 10 according to one embodiment of the present invention. The power control apparatus 10 is used for controlling a motor mounted on, for example, a hybrid vehicle or an electric vehicle, and has a mounting surface on which a plurality of elements 21 including switching elements (for example, semiconductor elements such as IGBT) are mounted. In order to exchange heat with the element 21 while being formed inside the cooling pipe 20 to which the substrates 15a and 15b are disposed so that the surfaces opposite to the mounting surface face each other and the substrates 15a and 15b are bonded to each other. A cooling flow path 22 connected to a pump (not shown) that supplies the refrigerant, and a thermal expansion material 23 that is disposed in the cooling flow path 22 and that thermally expands as the temperature of the refrigerant rises. The thermal expansion material 23 is fixed, for example, near the center of the cooling channel 22 in the vertical direction in the figure. Here, the thermal expansion material 23 may be formed of a metal material such as aluminum or magnesium, or may be an elastic material such as rubber or a resin, as long as it expands in response to a temperature rise of the refrigerant. It may be formed of a material. The arrows in FIGS. 1A and 1B indicate the flow direction of refrigerant in the cooling flow path 22 and the magnitude of the flow velocity. In the embodiment, the power control apparatus 10 includes two opposing substrates 15a and 15b. However, the power control device 10 may include one or three or more substrates.

上述のように構成された電力制御装置10において、素子21に電流が流されると当該素子21が発熱し、素子21から発生した熱が基板15a,15bと冷却管20とを介して冷却流路22内を流れる冷媒へと熱伝導することにより、素子21と冷媒との間で熱交換が行われて素子21が冷却される。一方、素子21との間で熱交換を行った冷媒は、素子21から受け取った熱量に応じて温度が上昇すると共に熱伝達等により周囲の冷媒の温度を上昇させる。従って、素子21の発熱量が比較的少ないときには、基板15a,15b近傍を流れる冷媒の温度はそれほど上昇しないため、熱膨張材23は、図1(a)に示す熱膨張前の状態あるいは僅かに熱膨張した状態となる。これに対して、素子21の発熱量が比較的多いときには、素子21の発熱量が多いほど基板15a,15b近傍を流れる冷媒の温度が上昇し、図1(b)に示すように、基板15a,15bの近傍に配置された熱膨張材23が冷媒の温度上昇に応じて熱膨張する。これにより、冷却流路22の流路断面積が冷媒の温度上昇に応じて減少し、基板15a,15bの近傍を流れる冷媒の流速が図1(a)に示す熱膨張材23の熱膨張前の状態に比して増加する。そして、素子21が冷却されて充分に降温したときには、基板15a,15b近傍を流れる冷媒の温度が低下し、熱膨張材23は、図1(a)に示す熱膨張前の状態あるいは僅かに熱膨張した状態となり、冷却流路22内の基板15a,15bの近傍における流路断面積および冷媒の流速は、熱膨張材23の熱膨張前と同一あるいは同程度となる。   In the power control device 10 configured as described above, when a current is passed through the element 21, the element 21 generates heat, and the heat generated from the element 21 flows through the cooling channels 20 through the substrates 15 a and 15 b and the cooling pipe 20. By conducting heat to the refrigerant flowing through the inside 22, heat exchange is performed between the element 21 and the refrigerant, and the element 21 is cooled. On the other hand, the refrigerant that has exchanged heat with the element 21 rises in temperature according to the amount of heat received from the element 21 and raises the temperature of the surrounding refrigerant by heat transfer or the like. Accordingly, when the element 21 generates a relatively small amount of heat, the temperature of the refrigerant flowing in the vicinity of the substrates 15a and 15b does not increase so much, so that the thermal expansion material 23 is in the state before thermal expansion shown in FIG. It will be in the state of thermal expansion. On the other hand, when the heat generation amount of the element 21 is relatively large, the temperature of the refrigerant flowing in the vicinity of the substrates 15a and 15b increases as the heat generation amount of the element 21 increases, and as shown in FIG. , 15b, the thermal expansion material 23 is thermally expanded in response to the temperature rise of the refrigerant. Thereby, the flow path cross-sectional area of the cooling flow path 22 decreases as the temperature of the refrigerant increases, and the flow velocity of the refrigerant flowing in the vicinity of the substrates 15a and 15b is before the thermal expansion of the thermal expansion material 23 shown in FIG. It increases compared to the state of. When the element 21 is cooled and sufficiently cooled, the temperature of the refrigerant flowing in the vicinity of the substrates 15a and 15b decreases, and the thermal expansion material 23 is in a state before thermal expansion shown in FIG. In the expanded state, the cross-sectional area of the channel and the flow rate of the refrigerant in the vicinity of the substrates 15 a and 15 b in the cooling channel 22 are the same as or similar to those before the thermal expansion of the thermal expansion material 23.

以上、説明したように、実施例の電力制御装置10では、冷媒の温度上昇に応じて熱膨張して冷却流路22の流路断面積を減少させる熱膨張材23が冷却流路22内に配置される。これにより、素子21の温度が高いときには冷却流路22における冷媒の流速を増加させることができるので、冷却流路22内に冷媒を速やかに流通させて冷却性能を向上させることが可能となる。また、素子21の温度が高いときには当該素子21との熱交換により冷媒の温度も上昇して冷媒の粘性が低下することから、冷媒の流速を増加させたとしても冷却流路22における流路抵抗の増加すなわちポンプの負荷増を抑制することができる。そして、素子21の温度が低いときには、冷却流路22における冷媒の流速は素子の温度が高いときのように増加することはないので、冷却流路22における流路抵抗の増加すなわちポンプの負荷増を抑制することができる。従って、実施例の電力制御装置10では、ポンプの負荷増を抑制しながら冷却性能を向上させることが可能となる。   As described above, in the power control apparatus 10 according to the embodiment, the thermal expansion material 23 that thermally expands in accordance with the temperature rise of the refrigerant and decreases the cross-sectional area of the cooling flow path 22 is provided in the cooling flow path 22. Be placed. Thereby, when the temperature of the element 21 is high, the flow rate of the refrigerant in the cooling flow path 22 can be increased. Therefore, it is possible to quickly circulate the refrigerant in the cooling flow path 22 and improve the cooling performance. Further, when the temperature of the element 21 is high, the temperature of the refrigerant also rises due to heat exchange with the element 21 and the viscosity of the refrigerant decreases. Therefore, even if the flow rate of the refrigerant is increased, the channel resistance in the cooling channel 22 Increase, that is, an increase in pump load can be suppressed. When the temperature of the element 21 is low, the flow rate of the refrigerant in the cooling flow path 22 does not increase as when the temperature of the element is high. Therefore, the flow resistance in the cooling flow path 22 is increased, that is, the pump load is increased. Can be suppressed. Therefore, in the power control apparatus 10 of the embodiment, it is possible to improve the cooling performance while suppressing an increase in the load on the pump.

図2(a)および(b)は、変形例に係る電力制御装置10Bの要部を示す模式図である。なお、重複した説明を避けるため、電力制御装置10Bの構成のうち上述の実施例の電力制御装置10の構成と同一の構成については同一の符号を付し、その詳細な説明を省略する。同図に示す電力制御装置10Bは、上述の電力制御装置10における熱膨張材23の代わりに熱膨張材24を備える。熱膨張材24は、ゴム等の弾性材料や樹脂材料といった伸縮性を有する材料から形成される袋体24aと、袋体24a内に封入されると共に所定値以上の熱膨張係数を有して冷却流路22内の冷媒の温度上昇に応じて袋体24aを伸張させることができる熱膨張流体24bとを含む。   FIGS. 2A and 2B are schematic views showing the main part of a power control apparatus 10B according to a modification. In addition, in order to avoid duplicate description, the same code | symbol is attached | subjected about the structure same as the structure of the power control apparatus 10 of the above-mentioned Example among the structures of the power control apparatus 10B, and the detailed description is abbreviate | omitted. The power control apparatus 10B shown in the figure includes a thermal expansion material 24 instead of the thermal expansion material 23 in the power control apparatus 10 described above. The thermal expansion material 24 is cooled by a bag body 24a formed of a stretchable material such as an elastic material such as rubber or a resin material, and enclosed in the bag body 24a and having a thermal expansion coefficient equal to or greater than a predetermined value. A thermal expansion fluid 24b that can expand the bag body 24a in accordance with the temperature rise of the refrigerant in the flow path 22.

上述のように構成された電力制御装置10Bでは、上述の電力制御装置10と同様に、素子21に電流が流されると当該素子21が発熱し、素子21と冷媒との間で熱交換が行われる。素子21の発熱量が比較的少ないときには、基板15a,15b近傍を流れる冷媒の温度はそれほど上昇しないため、熱膨張材24は、図2(a)に示す熱膨張前の状態あるいは僅かに熱膨張した状態となる。これに対して、素子21の発熱量が比較的多いときには、図2(b)に示すように、素子21の発熱量が多いほど熱膨張材24の袋体24a内に封入された熱膨張流体24bが冷媒から袋体24aを介して熱を受けて熱膨張し、袋体24aを伸張させることにより、熱膨張材24全体の体積が増加する。これにより、冷却流路22の流路断面積が冷媒の温度上昇に応じて減少し、基板15a,15bの近傍を流れる冷媒の流速が図2(a)に示す熱膨張材24の熱膨張前の状態に比して増加する。そして、素子21が冷却されて充分に降温したときには、基板15a,15b近傍を流れる冷媒の温度が低下し、熱膨張材24は、図2(a)に示す熱膨張前の状態あるいは僅かに熱膨張した状態となり、冷却流路22内の基板15a,15bの近傍における流路断面積および冷媒の流速も熱膨張材24の熱膨張前と同一あるいは同程度となる。従って、冷媒の温度上昇に応じて熱膨張して冷却流路22の流路断面積を減少させる熱膨張材24が冷却流路22内に配置される変形例の電力制御装置10Bにおいても、上述の電力制御装置10と同様の効果を得ることができる。   In the power control device 10B configured as described above, as in the power control device 10 described above, when a current is passed through the element 21, the element 21 generates heat, and heat exchange is performed between the element 21 and the refrigerant. Is called. When the amount of heat generated by the element 21 is relatively small, the temperature of the refrigerant flowing in the vicinity of the substrates 15a and 15b does not rise so much, so that the thermal expansion material 24 is in the state before thermal expansion shown in FIG. It will be in the state. On the other hand, when the element 21 generates a relatively large amount of heat, as shown in FIG. 2B, the larger the amount of heat generated by the element 21, the more thermally expanded fluid sealed in the bag body 24a of the thermal expansion material 24. 24b receives heat from the refrigerant through the bag body 24a and thermally expands to expand the bag body 24a, thereby increasing the volume of the thermal expansion material 24 as a whole. Thereby, the flow path cross-sectional area of the cooling flow path 22 decreases as the temperature of the refrigerant increases, and the flow rate of the refrigerant flowing in the vicinity of the substrates 15a and 15b is before the thermal expansion of the thermal expansion material 24 shown in FIG. It increases compared to the state of. When the element 21 is cooled and sufficiently cooled, the temperature of the refrigerant flowing in the vicinity of the substrates 15a and 15b decreases, and the thermal expansion material 24 is in the state before thermal expansion shown in FIG. In the expanded state, the flow path cross-sectional area and the flow rate of the refrigerant in the vicinity of the substrates 15 a and 15 b in the cooling flow path 22 are the same as or similar to those before the thermal expansion of the thermal expansion material 24. Therefore, also in the power control apparatus 10B of a modified example in which the thermal expansion material 24 that is thermally expanded in accordance with the temperature rise of the refrigerant and decreases the cross-sectional area of the cooling flow path 22 is disposed in the cooling flow path 22. The same effects as those of the power control apparatus 10 can be obtained.

図3(a)および(b)は、変形例に係る電力制御装置10Cの要部を示す模式図である。なお、重複した説明を避けるため、電力制御装置10Cの構成のうち上述の実施例の電力制御装置10の構成と同一の構成については同一の符号を付し、その詳細な説明を省略する。同図に示す電力制御装置10Cは、上述の電力制御装置10における熱膨張材23の代わりに流速変更機構30を備える。流速変更機構30は、それぞれ長手方向が冷却流路22の流路方向と概ね一致するように冷却流路22内に配置される可動部材31,32と、冷媒の温度上昇に応じて熱膨張する熱膨張材33a,33bと、熱膨張材33a,33bの一端をそれぞれ冷却流路22内に固定する固定部材34とを含む。ここで、熱膨張材33a,33bは、上述の電力制御装置10の熱膨張材23と同様に、例えば、アルミニウムやマグネシウムといった金属材料により形成されるものであり、冷媒の温度上昇に応じて体膨張または線膨張するものである。   FIGS. 3A and 3B are schematic diagrams illustrating a main part of a power control apparatus 10C according to a modification. In addition, in order to avoid duplicate description, the same code | symbol is attached | subjected about the structure same as the structure of the power control apparatus 10 of the above-mentioned Example among the structures of 10 C of power control apparatuses, and the detailed description is abbreviate | omitted. A power control device 10 </ b> C shown in the figure includes a flow rate changing mechanism 30 instead of the thermal expansion material 23 in the power control device 10 described above. The flow rate changing mechanism 30 is thermally expanded in accordance with the rise in the temperature of the refrigerant, and the movable members 31 and 32 disposed in the cooling channel 22 so that the longitudinal direction thereof substantially coincides with the channel direction of the cooling channel 22. Thermal expansion materials 33a and 33b and a fixing member 34 for fixing one end of each of the thermal expansion materials 33a and 33b in the cooling flow path 22 are included. Here, the thermal expansion materials 33a and 33b are formed of a metal material such as aluminum or magnesium, for example, in the same manner as the thermal expansion material 23 of the power control device 10 described above, and the body expands in response to the temperature rise of the refrigerant. It expands or linearly expands.

可動部材31は、略L字形状を呈しており、一端に形成された第1斜面311と、他端側に第1斜面311と平行をなすように形成された第2斜面312と、第1斜面311と第2斜面312の間で長手方向に延びる面313と、第2斜面の背後に可動部材31の長手方向と直交するように形成された垂直面314とを有する。可動部材32は、可動部材31と同一形状を有しており、一端に形成された第1斜面321と、他端側に第1斜面321と平行をなすように形成された第2斜面322と、第1斜面321と第2斜面322との間で長手方向に延びる面323と、第2斜面322の背後に可動部材32の長手方向と直交するように形成された垂直面324とを有する。可動部材31と可動部材32とは、可動部材31の第1斜面311と可動部材32の第2斜面322とが当接し合うと共に可動部材32の第1斜面321と可動部材31の第2斜面312とが当接し合い、かつ、面313と面323とが当接し合うように冷却流路22内の図中上下方向における中央付近に配置される。そして、熱膨張材33aの他端は、可動部材31の垂直面314に固定され、熱膨張材33bの他端は、可動部材32の垂直面324に固定される。   The movable member 31 is substantially L-shaped, and includes a first slope 311 formed at one end, a second slope 312 formed at the other end side so as to be parallel to the first slope 311, and a first slope 311. A surface 313 extending in the longitudinal direction between the inclined surface 311 and the second inclined surface 312 and a vertical surface 314 formed to be orthogonal to the longitudinal direction of the movable member 31 behind the second inclined surface. The movable member 32 has the same shape as the movable member 31, and includes a first slope 321 formed at one end, and a second slope 322 formed at the other end so as to be parallel to the first slope 321. And a surface 323 extending in the longitudinal direction between the first inclined surface 321 and the second inclined surface 322, and a vertical surface 324 formed behind the second inclined surface 322 so as to be orthogonal to the longitudinal direction of the movable member 32. The movable member 31 and the movable member 32 are configured such that the first inclined surface 311 of the movable member 31 and the second inclined surface 322 of the movable member 32 come into contact with each other, and the first inclined surface 321 of the movable member 32 and the second inclined surface 312 of the movable member 31. Are arranged near the center in the vertical direction in the drawing in the cooling channel 22 so that the surfaces 313 and 323 are in contact with each other. The other end of the thermal expansion material 33 a is fixed to the vertical surface 314 of the movable member 31, and the other end of the thermal expansion material 33 b is fixed to the vertical surface 324 of the movable member 32.

上述のように構成された電力制御装置10Cでは、素子21の発熱量が比較的少ないときには、基板15a,15b近傍を流れる冷媒の温度はそれほど上昇しないため、熱膨張材33a,33bは、図3(a)に示す熱膨張前の状態あるいは僅かに熱膨張した状態となり、可動部材31と可動部材32とは、面313と面323とが当接し合った状態を保つ。これに対して、素子21の発熱量の増加に伴って基板15a,15b近傍を流れる冷媒の温度が上昇すると、熱膨張材33a,33bが熱膨張し、熱膨張材33aが可動部材31の垂直面314に冷媒の流れと同方向に力を加えると共に熱膨張材33bが可動部材32の垂直面324に冷媒の流れと逆方向に力を加える。熱膨張材33a,33bから力を受けた可動部材31,32は、図3(b)に示すように、第1斜面311と第2斜面322とが当接し合うと共に第1斜面321と第2斜面312とが当接し合う状態で逆方向に相対移動することになり、それにより、可動部材31の垂直面314と可動部材32の第1斜面321とにより画成される面の面積と、可動部材32の垂直面324と可動部材31の第1斜面311とにより画成される面の面積とが拡大することになる。これにより、冷却流路22の流路断面積が冷媒の温度上昇に応じて減少し、基板15a,15bの近傍を流れる冷媒の流速が増加する。そして、素子21が冷却されて降温したときには、基板15a,15b近傍を流れる冷媒の温度が低下し、熱膨張材33a,33bが図3(a)に示す熱膨張前の状態あるいは僅かに熱膨張した状態となると共に可動部材31,32が図3(a)の状態あるいはそれに近い状態となり、冷却流路22内の基板15a,15bの近傍における流路断面積および冷媒の流速も熱膨張材33a,33bの熱膨張前と同一あるいは同程度となる。従って、冷媒の温度上昇に応じて熱膨張する熱膨張材31a,31bを利用して冷却流路22の流路断面積を減少させる流速変更機構30が冷却流路22内に配置される変形例の電力制御装置10Cにおいても、上述の電力制御装置10等と同様の効果を得ることができる。なお、可動部材31および32は、本実施例に示したような略L字形状のものに限られず、少なくとも1組の当接し合う斜面を有するものであってもよい。また、可動部材31および32の何れか一方を冷却流路22内に固定すると共に、当該一方に対して他方を移動可能としてもよい。   In the power control device 10C configured as described above, when the amount of heat generated by the element 21 is relatively small, the temperature of the refrigerant flowing in the vicinity of the substrates 15a and 15b does not increase so much. The state before thermal expansion shown in (a) or a state where thermal expansion has occurred slightly is achieved, and the movable member 31 and the movable member 32 maintain the state in which the surface 313 and the surface 323 are in contact with each other. On the other hand, when the temperature of the refrigerant flowing in the vicinity of the substrates 15 a and 15 b rises as the amount of heat generated by the element 21 increases, the thermal expansion materials 33 a and 33 b thermally expand and the thermal expansion material 33 a becomes perpendicular to the movable member 31. A force is applied to the surface 314 in the same direction as the flow of the refrigerant, and the thermal expansion member 33b applies a force to the vertical surface 324 of the movable member 32 in the direction opposite to the flow of the refrigerant. As shown in FIG. 3B, the movable members 31 and 32 that have received the force from the thermal expansion members 33a and 33b come into contact with the first inclined surface 311 and the second inclined surface 322, and the first inclined surface 321 and the second inclined surface 321. The surface of the movable member 31 is relatively moved in the opposite direction with the inclined surface 312 in contact with the inclined surface 312, so that the area of the surface defined by the vertical surface 314 of the movable member 31 and the first inclined surface 321 of the movable member 32 is movable. The area of the surface defined by the vertical surface 324 of the member 32 and the first inclined surface 311 of the movable member 31 is increased. Thereby, the cross-sectional area of the cooling flow path 22 decreases as the temperature of the refrigerant increases, and the flow rate of the refrigerant flowing in the vicinity of the substrates 15a and 15b increases. When the element 21 is cooled and the temperature is lowered, the temperature of the refrigerant flowing in the vicinity of the substrates 15a and 15b is lowered, and the thermal expansion materials 33a and 33b are in the state before thermal expansion shown in FIG. In addition, the movable members 31 and 32 are in the state shown in FIG. 3A or in a state close thereto, and the flow path cross-sectional area and the flow rate of the refrigerant in the vicinity of the substrates 15a and 15b in the cooling flow path 22 are also the thermal expansion material 33a. , 33b is the same as or similar to that before thermal expansion. Therefore, a modified example in which the flow rate changing mechanism 30 that reduces the channel cross-sectional area of the cooling channel 22 using the thermal expansion materials 31a and 31b that thermally expands in response to the temperature rise of the refrigerant is disposed in the cooling channel 22. Also in the power control apparatus 10C, the same effects as those of the power control apparatus 10 described above can be obtained. The movable members 31 and 32 are not limited to the substantially L-shaped members as shown in the present embodiment, and may have at least one pair of inclined surfaces that come into contact with each other. Further, either one of the movable members 31 and 32 may be fixed in the cooling flow path 22 and the other may be movable with respect to the one.

図4(a)および(b)は、変形例に係る電力制御装置10Dの要部を示す模式図である。なお、重複した説明を避けるため、電力制御装置10Dの構成のうち上述の実施例の電力制御装置10の構成と同一の構成については同一の符号を付し、その詳細な説明を省略する。同図に示す電力制御装置10Dは、上述の電力制御装置10Cにおける流速変更機構30の代わりに流速変更機構40を備える。流速変更機構40は、冷却流路22内に冷媒の流れ方向に延在するように配置される第1部材41と、それぞれ第1部材41により回動自在に支持された基端を有すると共に冷却流路22の一部を閉塞可能な複数の閉塞部材42と、それぞれ冷却流路22内に固定されると共に第1部材41と対応する閉塞部材42の遊端部との双方と当接するように配置される複数の第2部材43と、一端が第1部材41に固定されると共に冷媒の温度上昇に応じて熱膨張する熱膨張材44と、熱膨張材44の他端を冷却流路22内に固定する固定部材45とを含む。ここで、熱膨張材44は、上述の電力制御装置10の熱膨張材23と同様に、例えば、アルミニウムやマグネシウムといった金属材料により形成されるものであり、冷媒の温度上昇に応じて体膨張または線膨張するものである。   FIGS. 4A and 4B are schematic views showing the main part of a power control apparatus 10D according to a modification. In addition, in order to avoid duplication description, the same code | symbol is attached | subjected about the structure same as the structure of the power control apparatus 10 of the above-mentioned Example among the structures of power control apparatus 10D, and the detailed description is abbreviate | omitted. The power control device 10D shown in the figure includes a flow rate changing mechanism 40 instead of the flow rate changing mechanism 30 in the power control device 10C described above. The flow rate changing mechanism 40 has a first member 41 disposed in the cooling flow path 22 so as to extend in the flow direction of the refrigerant, and a base end that is rotatably supported by the first member 41 and is cooled. A plurality of blocking members 42 that can block a part of the flow path 22 are fixed in the cooling flow path 22 and both the first member 41 and the free end of the corresponding blocking member 42 are in contact with each other. A plurality of second members 43 to be arranged, a thermal expansion material 44 whose one end is fixed to the first member 41 and thermally expands in response to a temperature rise of the refrigerant, and the other end of the thermal expansion material 44 are connected to the cooling flow path 22. And a fixing member 45 to be fixed inside. Here, the thermal expansion material 44 is formed of, for example, a metal material such as aluminum or magnesium in the same manner as the thermal expansion material 23 of the power control device 10 described above. It is linearly expanded.

上述のように構成された電力制御装置10Dでは、素子21の発熱量が比較的少ないときには、基板15a,15b近傍を流れる冷媒の温度はそれほど上昇しないため、熱膨張材33a,33bは、図4(a)に示す熱膨張前の状態あるいは僅かに熱膨張した状態となり、流速変更機構40の第2部材43は、閉塞部材42の遊端部と当接した状態を保つ。これに対して、素子21の発熱量の増加に伴って基板15a,15b近傍を流れる冷媒の温度が上昇すると、熱膨張材44が熱膨張して第1部材41の一端に冷媒の流れと同方向に力を加える。熱膨張材44から力を受けた第1部材41は、図4(b)に示すように、各固定部材43に対して冷媒の流れ方向と同方向に移動し、第1部材41の移動に伴って各閉塞部材42が第2部材43に押し広げられるように、すなわち冷却流路22の一部を閉鎖するように開く。これにより、冷却流路22の流路断面積が冷媒の温度上昇に応じて減少し、基板15a,15bの近傍を流れる冷媒の流速が増加する。そして、素子21が冷却されて降温したときには、基板15a,15b近傍を流れる冷媒の温度が低下し、熱膨張材44が図4(a)に示す熱膨張前の状態あるいは僅かに熱膨張した状態となると共に第1部材41および閉塞部材42が図4(a)の状態あるいはそれに近い状態となり、冷却流路22内の基板15a,15bの近傍における流路断面積および冷媒の流速も熱膨張材44の熱膨張前と同一あるいは同程度となる。従って、冷媒の温度上昇に応じて熱膨張する熱膨張材44を利用して冷却流路22の流路断面積を減少させる流速変更機構40が冷却流路22内に配置される変形例の電力制御装置10Dにおいて、上述の電力制御装置10等と同様の効果を得ることができる。なお、本実施例では、第2部材43を冷却流路22内に固定すると共に第1部材41と閉塞部材42とが一体となって移動するものとしたが、閉塞部材42の基端を冷却流路22内に回動自在に支持すると共に第1部材41と第2部材43とが一体となって移動するものとしてもよい。   In the power control device 10D configured as described above, when the amount of heat generated by the element 21 is relatively small, the temperature of the refrigerant flowing in the vicinity of the substrates 15a and 15b does not increase so much. The state before the thermal expansion shown in (a) or a state where the thermal expansion is slightly performed is maintained, and the second member 43 of the flow velocity changing mechanism 40 keeps the state in contact with the free end portion of the closing member 42. On the other hand, when the temperature of the refrigerant flowing in the vicinity of the substrates 15a and 15b rises as the amount of heat generated by the element 21 increases, the thermal expansion material 44 thermally expands to the same temperature as the refrigerant flow at one end of the first member 41. Apply force in the direction. As shown in FIG. 4B, the first member 41 that receives the force from the thermal expansion material 44 moves in the same direction as the flow direction of the refrigerant with respect to each fixing member 43, and moves the first member 41. Accordingly, each closing member 42 is opened so as to be spread over the second member 43, that is, to close a part of the cooling flow path 22. Thereby, the cross-sectional area of the cooling flow path 22 decreases as the temperature of the refrigerant increases, and the flow rate of the refrigerant flowing in the vicinity of the substrates 15a and 15b increases. When the element 21 is cooled and cooled, the temperature of the refrigerant flowing in the vicinity of the substrates 15a and 15b decreases, and the thermal expansion material 44 is in a state before or slightly expanded as shown in FIG. The first member 41 and the closing member 42 are in the state shown in FIG. 4A or in a state close thereto, and the cross-sectional area of the channel and the flow rate of the refrigerant in the vicinity of the substrates 15a and 15b in the cooling channel 22 are also thermally expanded. It is the same as or similar to that before the thermal expansion of 44. Therefore, the electric power of the modified example in which the flow rate changing mechanism 40 that reduces the cross-sectional area of the cooling flow path 22 using the thermal expansion material 44 that thermally expands in response to the temperature rise of the refrigerant is disposed in the cooling flow path 22. In the control device 10D, the same effects as those of the power control device 10 and the like described above can be obtained. In the present embodiment, the second member 43 is fixed in the cooling flow path 22 and the first member 41 and the closing member 42 move together. However, the proximal end of the closing member 42 is cooled. The first member 41 and the second member 43 may be integrally moved while being supported rotatably in the flow path 22.

図5(a)および(b)は、変形例に係る電力制御装置10Eの要部を示す模式図である。なお、重複した説明を避けるため、電力制御装置10Eの構成のうち上述の実施例の電力制御装置10の構成と同一の構成については同一の符号を付し、その詳細な説明を省略する。同図に示す電力制御装置10Dにおいて、冷却流路22は、それぞれ冷媒の流れ方向に延びる3つの通路22a,22bおよび22cに区画される。また、電力制御装置10Dは、流速変更機構50を備える。流速変更機構50は、通路22bを閉鎖可能な弁体51と、一端が弁体51に固定されると共に冷媒の温度上昇に応じて熱膨張する熱膨張材52と、弁体51が通路22bの入口から離間するように熱膨張材52の他端を冷却流路22内に固定する固定部材53とを含む。ここで、熱膨張材52は、上述の電力制御装置10の熱膨張材23と同様に、例えば、アルミニウムやマグネシウムといった金属材料により形成されるものであり、冷媒の温度上昇に応じて体膨張または線膨張するものである。   FIGS. 5A and 5B are schematic views showing the main part of a power control apparatus 10E according to a modification. In addition, in order to avoid duplication description, the same code | symbol is attached | subjected about the structure same as the structure of the power control apparatus 10 of the above-mentioned Example among the structures of the power control apparatus 10E, and the detailed description is abbreviate | omitted. In the power control device 10D shown in the figure, the cooling flow path 22 is divided into three passages 22a, 22b, and 22c that extend in the refrigerant flow direction. The power control device 10 </ b> D includes a flow rate changing mechanism 50. The flow rate changing mechanism 50 includes a valve body 51 that can close the passage 22b, a thermal expansion material 52 that has one end fixed to the valve body 51 and that thermally expands in response to an increase in the temperature of the refrigerant, and the valve body 51 includes the passage 22b. And a fixing member 53 that fixes the other end of the thermal expansion material 52 in the cooling flow path 22 so as to be separated from the inlet. Here, the thermal expansion material 52 is formed of, for example, a metal material such as aluminum or magnesium, similarly to the thermal expansion material 23 of the power control device 10 described above. It is linearly expanded.

上述のように構成された電力制御装置10Eでは、素子21の発熱量が比較的少ないときには、基板15a,15b近傍を流れる冷媒の温度はそれほど上昇しないため、熱膨張材52は、図5(a)に示す熱膨張前の状態あるいは僅かに熱膨張した状態となり、弁体51は通路22bの入口から離間した状態を保つ。これに対して、素子21の発熱に伴って基板15a,15b近傍を流れる冷媒の温度が上昇すると、熱膨張材52が熱膨張して、弁体51に冷媒の流れと同方向に力を加える。熱膨張材52から力を受けた弁体51は、図5(b)に示すように、通路22bの入口へと移動して最終的に通路22bを閉鎖する。これにより、冷却流路22の流路断面積が減少し、通路22a,22cを流れる流量が増加することになるため、基板15a,15bの近傍を流れる冷媒の流速が増加する。また、素子21が冷却されて降温したときには、基板15a,15b近傍を流れる冷媒の温度はそれほど上昇しないため、熱膨張材52が図5(a)に示す熱膨張前の状態あるいは僅かに熱膨張した状態となると共に弁体51が図5(a)のように開弁した状態となり、通路22bが開放されて冷却流路22内の基板15a,15bの近傍における流路断面積および冷媒の流速も熱膨張材52の熱膨張前とほぼ同一となる。従って、冷媒の温度上昇に応じて熱膨張する熱膨張材52を利用して冷却流路22の流路断面積を減少させる流速変更機構50が冷却流路22内に配置される変形例の電力制御装置10Eにおいても、上述の電力制御装置10等と同様の効果を得ることができる。   In the power control device 10E configured as described above, when the amount of heat generated by the element 21 is relatively small, the temperature of the refrigerant flowing in the vicinity of the substrates 15a and 15b does not increase so much. The valve body 51 is kept away from the inlet of the passage 22b. On the other hand, when the temperature of the refrigerant flowing in the vicinity of the substrates 15a and 15b rises as the element 21 generates heat, the thermal expansion material 52 thermally expands and applies force to the valve body 51 in the same direction as the refrigerant flow. . As shown in FIG. 5B, the valve body 51 receiving the force from the thermal expansion material 52 moves to the inlet of the passage 22b and finally closes the passage 22b. As a result, the flow path cross-sectional area of the cooling flow path 22 decreases and the flow rate flowing through the passages 22a and 22c increases, so the flow rate of the refrigerant flowing near the substrates 15a and 15b increases. Further, when the element 21 is cooled and cooled, the temperature of the refrigerant flowing in the vicinity of the substrates 15a and 15b does not increase so much, so that the thermal expansion material 52 is in the state before thermal expansion shown in FIG. 5B, the valve body 51 is opened as shown in FIG. 5A, the passage 22b is opened, and the flow path cross-sectional area and the flow velocity of the refrigerant in the vicinity of the substrates 15a and 15b in the cooling flow path 22 are obtained. Is substantially the same as that before the thermal expansion of the thermal expansion material 52. Therefore, the electric power of the modified example in which the flow velocity changing mechanism 50 that reduces the cross-sectional area of the cooling flow path 22 using the thermal expansion material 52 that thermally expands in response to the temperature rise of the refrigerant is disposed in the cooling flow path 22. In the control device 10E, the same effect as that of the power control device 10 and the like described above can be obtained.

以上、本発明を実施するための形態について実施例を用いて説明したが、本発明はこうした実施例に何等限定されるものではなく、本発明の要旨を逸脱しない範囲内において、種々なる形態で実施し得ることは勿論である。   As mentioned above, although the form for implementing this invention was demonstrated using the Example, this invention is not limited at all to such an Example, In the range which does not deviate from the summary of this invention, it is with various forms. Of course, it can be implemented.

本発明は、電力制御装置の製造産業に利用可能である。   The present invention is applicable to the power control device manufacturing industry.

10 電力制御装置、15a,15b 基板、20 冷却管、21 素子、22 冷却流路、22a,22b,22c 通路、23,24,33a,33b,44、52 熱膨張材、24a 袋体、24b 熱膨張流体、30,40,50 流速変更機構、31,32 可動部材、34,45,53 固定部材、41 第1部材、42 閉塞部材、43 第2部材、51 弁体。   10 Power control device, 15a, 15b Substrate, 20 Cooling pipe, 21 Element, 22 Cooling flow path, 22a, 22b, 22c Passage, 23, 24, 33a, 33b, 44, 52 Thermal expansion material, 24a Bag body, 24b Heat Expansion fluid, 30, 40, 50 Flow rate changing mechanism, 31, 32 Movable member, 34, 45, 53 Fixed member, 41 First member, 42 Closure member, 43 Second member, 51 Valve body.

Claims (1)

電力制御用の素子が複数実装された少なくとも1つの基板と、冷媒の供給源に接続されると共に該冷媒と前記素子との熱交換を可能とするように前記基板の近傍に設けられた冷却流路とを備える電力制御装置であって、
前記冷却流路内には、熱膨張材を含むと共に、該熱膨張材の熱膨張を利用して前期冷却流路における前記冷媒の流速を前記供給源からの前記冷媒の流量変化を伴うことなく増加させる流速変更手段が配置される電力制御装置。
At least one substrate on which a plurality of power control elements are mounted and a cooling flow connected to the coolant supply source and provided near the substrate so as to allow heat exchange between the coolant and the device A power control device comprising a road,
The cooling channel contains a thermal expansion material, and the thermal expansion of the thermal expansion material is used to change the flow rate of the refrigerant in the previous cooling channel without changing the flow rate of the refrigerant from the supply source. A power control device in which a flow velocity changing means for increasing is arranged.
JP2009215508A 2009-09-17 2009-09-17 Power controller Pending JP2011066199A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009215508A JP2011066199A (en) 2009-09-17 2009-09-17 Power controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009215508A JP2011066199A (en) 2009-09-17 2009-09-17 Power controller

Publications (1)

Publication Number Publication Date
JP2011066199A true JP2011066199A (en) 2011-03-31

Family

ID=43952144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009215508A Pending JP2011066199A (en) 2009-09-17 2009-09-17 Power controller

Country Status (1)

Country Link
JP (1) JP2011066199A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014024291A1 (en) * 2012-08-09 2014-02-13 富士通株式会社 Heat receiving apparatus, cooling apparatus, and electronic apparatus
CN117238870A (en) * 2023-11-15 2023-12-15 中国海洋大学 Active refrigerating device for chip heat dissipation

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014024291A1 (en) * 2012-08-09 2014-02-13 富士通株式会社 Heat receiving apparatus, cooling apparatus, and electronic apparatus
US9545031B2 (en) 2012-08-09 2017-01-10 Fujitsu Limited Heat receiving apparatus, cooling apparatus, and electronic apparatus
CN117238870A (en) * 2023-11-15 2023-12-15 中国海洋大学 Active refrigerating device for chip heat dissipation
CN117238870B (en) * 2023-11-15 2024-01-30 中国海洋大学 Active refrigerating device for chip heat dissipation

Similar Documents

Publication Publication Date Title
RU2604572C2 (en) Electronic device with cooling via distributor with liquid metal
US8472193B2 (en) Semiconductor device
JP5343574B2 (en) Brazing method of heat sink
JP2003243590A (en) Loop thermosyphon using microchannel etched semiconductor as evaporator
WO2012077266A1 (en) Heat medium heating device
JP2015053318A (en) Semiconductor device
CN105578850B (en) The magnetic fluid microchannel heat control system of microsatellite unit
JP2009239043A (en) Cooling device equipped with fine channel and method for manufacturing the same
Rodrigues et al. A magnetically-activated thermal switch without moving parts
KR101848151B1 (en) Small heatsink
JP2011066199A (en) Power controller
JP2010245158A (en) Cooler
JP4391351B2 (en) Cooling system
JP5321526B2 (en) Semiconductor module cooling device
JP2012059857A (en) Power semiconductor device
JP2010212412A (en) Cooling structure of semiconductor device
US9953897B2 (en) Fluid-filled microchannels
JP5086732B2 (en) Cooling system
WO2019151375A1 (en) Electric power conversion apparatus and method for manufacturing self-excited vibration heat pipe
US20190086157A1 (en) Cooling system, cooler, and cooling method
US11948861B2 (en) Liquid cooling module and method of forming the same
KR102091698B1 (en) Phase change cooling device and phase change cooling method
JP2013143792A (en) Electric power generation system
JP2012069725A (en) Cooling device
JP2011096983A (en) Cooling device