JP2011065783A - Conductive paste and wiring board employing the same - Google Patents

Conductive paste and wiring board employing the same Download PDF

Info

Publication number
JP2011065783A
JP2011065783A JP2009213521A JP2009213521A JP2011065783A JP 2011065783 A JP2011065783 A JP 2011065783A JP 2009213521 A JP2009213521 A JP 2009213521A JP 2009213521 A JP2009213521 A JP 2009213521A JP 2011065783 A JP2011065783 A JP 2011065783A
Authority
JP
Japan
Prior art keywords
paste
metal
mass
wiring
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009213521A
Other languages
Japanese (ja)
Inventor
Taro Nakanoya
太郎 中野谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Electronics Materials Co Ltd
Original Assignee
Dowa Electronics Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Electronics Materials Co Ltd filed Critical Dowa Electronics Materials Co Ltd
Priority to JP2009213521A priority Critical patent/JP2011065783A/en
Publication of JP2011065783A publication Critical patent/JP2011065783A/en
Pending legal-status Critical Current

Links

Landscapes

  • Parts Printed On Printed Circuit Boards (AREA)
  • Conductive Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To lower a thixotropy ratio without adding a thixotropy agent to provide a paste combining printability, conductivity, and adhesion. <P>SOLUTION: The paste is composed of a metal powder element, a thermoplastic resin, and a dispersion medium. According to the paste, the mass of the metal accounts for 94 to 98% of the total mass of the metal and the resin, and metal grains consist of a group of metal grains 1 having an average primary grain diameter of ≤50 nm and a group of metal grains 2 having an average primary grain diameter of ≥100 nm. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、ファインパターン形成に優れ、低温での焼成が可能な導電性ペーストに関する。   The present invention relates to a conductive paste that is excellent in fine pattern formation and can be fired at a low temperature.

近年では電子機器のさらなる小型化に伴い、回路のファインパターン形成が従来にも増して求められるようになってきており、それに応じてファインパターン形成の可能なペーストが今までにも増して求められるようになってきた。   In recent years, with further miniaturization of electronic devices, there has been an increasing demand for fine pattern formation of circuits, and accordingly, pastes capable of forming fine patterns have been required more than ever. It has become like this.

また、耐熱性の劣るような基板にも配線を描けるように低温で焼結できるようなペーストの要望が高くなってきている。   In addition, there is an increasing demand for a paste that can be sintered at a low temperature so that wiring can be drawn on a substrate having poor heat resistance.

ファインパターン形成、低温焼結性を両立するための手法としては様々な方法が提案されているが、それらの方法の中でも有望なものの一つとして金属ナノ粒子を用いる手法が近年提案されるようになってきた。   Various methods have been proposed to achieve both fine pattern formation and low-temperature sinterability, but as one of the promising methods, a method using metal nanoparticles has recently been proposed. It has become.

しかし、金属ナノ粒子のような新規の材料では従来用いられて来た分散方法そのものが合致しておらず、チキソ比が高くなることに伴い、印刷時の均一塗布性が悪化するため印刷精度が悪化し、その結果配線表面の平滑性が失われてしまうことがある。   However, new materials such as metal nanoparticles do not match the dispersion methods that have been used in the past, and as the thixo ratio increases, the uniform application at the time of printing deteriorates, so the printing accuracy is improved. As a result, the smoothness of the wiring surface may be lost.

上述の不具合を解消するためには、大別して全く新たな分散プロセスを構築するか、あるいは分散剤等と言った添加物により、粒子に分散性を強制的に付与するという手法が考えられる。後者の例としては分散性やチキソ比をコントロールするために、特許文献1に記載されているようなチキソ剤などを用いる手法がある。   In order to eliminate the above-described problems, a method of roughly dividing a completely new dispersion process or forcibly imparting dispersibility to particles with an additive such as a dispersant can be considered. As an example of the latter, there is a technique using a thixotropic agent as described in Patent Document 1 in order to control dispersibility and a thixo ratio.

特開2003−151351号公報JP 2003-151351 A

特許文献1によれば、チキソ剤などを用いる事で分散性やチキソ性は改善することが示されている。ただし、これらのものは高分子化合物であることが多いため、一般的には低温で分解され難く、金属ナノ粒子の焼結するような低温での熱処理では、除去されきらなかったチキソ剤が金属膜中に残存することがある。その結果として、基板への影響を避けるため低温で熱処理すると、金属ナノ粒子を使用したとしても導電性が確保されないという問題があった。   According to Patent Document 1, it is shown that dispersibility and thixotropy are improved by using a thixotropic agent. However, since these are often polymer compounds, they are generally difficult to be decomposed at low temperatures, and thixotropic agents that could not be removed by heat treatment at low temperatures such as sintering of metal nanoparticles are metal. May remain in the film. As a result, when heat treatment is performed at a low temperature in order to avoid the influence on the substrate, there is a problem that conductivity is not ensured even if metal nanoparticles are used.

そこで本発明の解決すべき技術的課題としては、チキソ剤などを添加することなくチキソ比を低下させて印刷性、導電性、密着性の両立したペーストを提供することと定めた。   Therefore, the technical problem to be solved by the present invention is to provide a paste having both printability, conductivity and adhesion by reducing the thixotropy without adding a thixotropic agent.

発明者らは、上述の課題が後述する構成により解決できうることを見いだし、本願発明を完成させた。   The inventors have found that the above-described problems can be solved by the configuration described later, and have completed the present invention.

すなわち第一の構成として、金属粉末成分、熱可塑性樹脂、分散媒からなるペーストであって、金属と樹脂の合計質量に対する金属の割合(以降F値ということもある。この値は、加熱処理後に蒸散する成分、すなわち分散媒を除いた樹脂と金属成分(金属)の総和における金属成分値を指す。具体的には、F値=(金属成分1の群(質量%)+金属成分2の群(質量%))/(金属成分1の群(質量%)+金属成分2の群(質量%)+樹脂成分(質量%))×100で与えられる値である)が94〜98%を示すとともに、透過型電子顕微鏡写真により計測される平均一次粒子径が50nm以下である金属粒子1の群と、レーザー回折法により計測される平均一次粒子径が100nm以上である金属粒子2の群により構成することによって達成することができる。 That is, as a first configuration, a paste composed of a metal powder component, a thermoplastic resin, and a dispersion medium, the ratio of the metal to the total mass of the metal and the resin (hereinafter sometimes referred to as F value. This refers to the value of the metal component in the sum of the components to be evaporated, that is, the resin and the metal component (metal) excluding the dispersion medium, specifically F value = (group of metal component 1 (mass%) + group of metal component 2 (Mass%) / (group of metal component 1 (mass%) + group of metal component 2 (mass%) + resin component (mass%)) × 100) is 94 to 98% And a group of metal particles 1 having an average primary particle diameter of 50 nm or less measured by a transmission electron micrograph and a group of metal particles 2 having an average primary particle diameter of 100 nm or more measured by a laser diffraction method. By doing It can be.

加えて第二の構成として、25℃での回転数を1rpmと10rpmとしたときにおけるペーストの粘度の比(以後チキソ比ということもある)が2.0〜7.5である第一の構成に記載されたペーストである。   In addition, as a second configuration, the first configuration in which the ratio of the viscosity of the paste (hereinafter sometimes referred to as a thixo ratio) is 2.0 to 7.5 when the rotation speed at 25 ° C. is 1 rpm and 10 rpm. The paste described in 1.

第三の構成として、金属粒子1の表面には炭素数6〜8の脂肪酸が吸着している、第一または第二の構成に記載されたペーストである。   A third configuration is a paste described in the first or second configuration in which a fatty acid having 6 to 8 carbon atoms is adsorbed on the surface of the metal particle 1.

第四の構成として、質量比として金属粒子1の全金属成分に対する質量割合が10〜90質量%である、第一ないし第三のいずれかの構成に記載されたペーストである。   A fourth configuration is the paste described in any one of the first to third configurations, wherein the mass ratio of the metal particles 1 to the total metal components is 10 to 90% by mass as a mass ratio.

第五の構成として、ペーストを構成する樹脂はアクリル樹脂である、第一ないし第四のいずれかの構成に記載されたペーストである。   As a fifth configuration, the resin constituting the paste is an acrylic resin, and is the paste described in any one of the first to fourth configurations.

第六の構成として、ペーストを構成する分散媒は、ペーストの重量を100としたとき、20〜40である第一ないし第五のいずれかの構成に記載されたペーストである。   As a sixth configuration, the dispersion medium constituting the paste is the paste described in any one of the first to fifth configurations of 20 to 40 when the weight of the paste is 100.

第七の構成として、上記第一ないし第六に記載のペーストを用いることにより得られる導電性回路が提供される。   As a seventh configuration, there is provided a conductive circuit obtained by using the paste according to any one of the first to sixth.

第八の構成として、導電性回路の表面粗さ(以後Raということもある)が3.0μm以下である、上記第七に記載の導電性回路が提供される。   As an eighth configuration, there is provided the conductive circuit according to the seventh aspect, wherein the conductive circuit has a surface roughness (hereinafter sometimes referred to as Ra) of 3.0 μm or less.

第九の構成として、導電性回路の比抵抗値が10μΩ・cm以下である上記第七または第八に記載の導電性回路が提供される。   As a ninth configuration, there is provided the conductive circuit according to the seventh or eighth aspect, wherein the specific resistance value of the conductive circuit is 10 μΩ · cm or less.

上記の構成とすることにより、印刷性に優れた導電性ペーストを提供することができるとともに、該ペーストを使用することにより導電性が高く、かつ基板への密着性に優れた導電性回路を提供することができるようになる。   With the above structure, a conductive paste excellent in printability can be provided, and a conductive circuit having high conductivity and excellent adhesion to a substrate can be provided by using the paste. Will be able to.

実施例1にかかるポリイミド基板上に形成した配線のデジタルマイクロスコープ写真(拡大倍率:500倍)Digital microscope photograph of the wiring formed on the polyimide substrate according to Example 1 (enlargement magnification: 500 times) 実施例1にかかるポリイミド基板上に形成した配線の走査型電子顕微鏡写真(拡大倍率:50000倍)Scanning electron micrograph of the wiring formed on the polyimide substrate according to Example 1 (magnification: 50000 times) 実施例1にかかるポリイミド基板上に形成した配線の表面粗さプロファイルSurface roughness profile of wiring formed on a polyimide substrate according to Example 1 比較例1にかかるポリイミド基板上に形成した配線のデジタルマイクロスコープ写真(拡大倍率:500倍)Digital microscope photograph of the wiring formed on the polyimide substrate according to Comparative Example 1 (enlargement magnification: 500 times) 比較例1にかかるポリイミド基板上に形成した配線の走査型電子顕微鏡写真(拡大倍率:50000倍)Scanning electron micrograph of the wiring formed on the polyimide substrate according to Comparative Example 1 (magnification: 50000 times) 比較例1にかかるポリイミド基板上に形成した配線の表面粗さプロファイルSurface roughness profile of wiring formed on a polyimide substrate according to Comparative Example 1 比較例2にかかるポリイミド基板上に形成した配線のデジタルマイクロスコープ写真(拡大倍率:500倍)Digital microscope photograph of the wiring formed on the polyimide substrate according to Comparative Example 2 (enlargement magnification: 500 times) 比較例2にかかるポリイミド基板上に形成した配線の走査型電子顕微鏡写真(拡大倍率:50000倍)Scanning electron micrograph of the wiring formed on the polyimide substrate according to Comparative Example 2 (magnification: 50000 times) 比較例2にかかるポリイミド基板上に形成した配線の表面粗さプロファイルSurface roughness profile of wiring formed on polyimide substrate according to Comparative Example 2

<金属粒子1(ナノ粒子)の構成>
金属粒子1の粒子径は透過型電子顕微鏡もしくは高分解能の走査型電子顕微鏡により計測可能な粒子径(以降金属粒子1の一次粒子径ということがある)において、平均一次粒子径として1〜50nm、好ましくは1〜30nm、一層好ましくは1〜20nmである粒子を用いる。こうした粒子径のものを用いることにより、取り扱いが容易で、耐熱性の低い基板に影響を与えない程度の低温の熱処理条件で焼結し十分な導電性を付与できるようなペーストを得ることが出来る。
<Configuration of metal particle 1 (nanoparticle)>
The particle diameter of the metal particles 1 is 1 to 50 nm as an average primary particle diameter in a particle diameter that can be measured by a transmission electron microscope or a high-resolution scanning electron microscope (hereinafter sometimes referred to as a primary particle diameter of the metal particles 1). Particles that are preferably 1-30 nm, more preferably 1-20 nm are used. By using a particle having such a particle size, a paste that can be easily handled and sintered under a low-temperature heat treatment condition that does not affect the substrate having low heat resistance can be provided with sufficient conductivity can be obtained. .

このような範囲にある場合、平均一次粒子径の異なる粒子を併用しても構わない。その場合には先に示した1〜50nmの範囲に度数頻度のピークが2つ以上出現することがある。このように度数頻度のピークが2つ以上確認される場合、その一群を指して、「金属粒子1の群」という。   In such a range, particles having different average primary particle diameters may be used in combination. In that case, two or more frequency-frequency peaks may appear in the above-described range of 1 to 50 nm. Thus, when two or more frequency frequency peaks are confirmed, the group is referred to as “group of metal particles 1”.

金属ナノ粒子は、粒子表面の活性が大変高いため、金属表面があらわになっていると、隣接する粒子同士が焼結することがある。通常金属ナノ粒子の表面を有機化合物で被覆すれば、焼結が抑制されることから、金属ナノ粒子として独立に安定した状態で存在できることが知られている。しかし、この被覆する有機化合物の分子量が大きくなりすぎると、多少加熱しても分解もしくは蒸散しにくくなることが知られており、焼結膜の内部に残存することがある。そのような場合導電性に悪影響を及ぼすことから、こうしたものを使用すると導電剤としては不適切となることがある。   Since metal nanoparticles have very high particle surface activity, if the metal surface is exposed, adjacent particles may sinter. Usually, if the surface of a metal nanoparticle is coat | covered with an organic compound, since sintering will be suppressed, it is known that it can exist in a stable state independently as a metal nanoparticle. However, it is known that if the molecular weight of the organic compound to be coated becomes too large, it will be difficult to decompose or evaporate even if heated somewhat, and may remain inside the sintered film. In such a case, since conductivity is adversely affected, the use of such a material may be inappropriate as a conductive agent.

逆に分子量が小さすぎる場合、粒子そのものが不安定で取扱いが不便なものとなるため、これら表面を被覆する有機化合物は適度な分子量を有する必要がある。しかし、上述のように低温焼結性を得るためには適度に短い分子鎖である必要がある。本発明では、これらの要求をともに満足するものとして、表面を構成する有機化合物は比較的低分子量のカルボン酸とすることを提案する。また、このカルボン酸はその結合形態として飽和、不飽和の種類を問わず、構造中に二重、三重結合を有するものであっても支障なく、場合により構造中に芳香族環を有していても良い。   On the other hand, if the molecular weight is too small, the particles themselves are unstable and inconvenient to handle. Therefore, the organic compound covering these surfaces needs to have an appropriate molecular weight. However, in order to obtain low-temperature sinterability as described above, it is necessary to have a reasonably short molecular chain. In the present invention, it is proposed that the organic compound constituting the surface is a carboxylic acid having a relatively low molecular weight, in order to satisfy both of these requirements. In addition, this carboxylic acid has no problem even if it has a double or triple bond in the structure, regardless of the type of bond, saturated or unsaturated, and in some cases has an aromatic ring in the structure. May be.

本発明では、脂肪酸のうちでも特に炭素数が6〜8の低炭素のカルボン酸、具体的にはヘキサン酸、ヘプタン酸、オクタン酸、ソルビン酸、安息香酸、サリチル酸、m−ヒドロキシ安息香酸、p−ヒドロキシ安息香酸程度の長さであることが特に好ましい。このような有機物が被覆された粒子、例えばヘキサン酸やソルビン酸が被覆された粒子であれば、粉末状態として得ることもできることため取扱いにも都合がよい。   In the present invention, among the fatty acids, a low-carbon carboxylic acid having 6 to 8 carbon atoms, specifically hexanoic acid, heptanoic acid, octanoic acid, sorbic acid, benzoic acid, salicylic acid, m-hydroxybenzoic acid, p It is particularly preferred that the length be as high as -hydroxybenzoic acid. Particles coated with such an organic substance, such as particles coated with hexanoic acid or sorbic acid, can be obtained in a powder state, which is convenient for handling.

また、本発明では、1種類の有機物で被覆した金属ナノ粒子だけでなく、別々の有機物で被覆した金属ナノ粒子同士を混合して利用してもよい。例えば、飽和型脂肪酸を表面に被覆した金属ナノ粒子と不飽和型脂肪酸を表面に被覆した金属ナノ粒子を混合して用いることも好適である。   In the present invention, not only metal nanoparticles coated with one kind of organic substance, but also metal nanoparticles coated with different organic substances may be mixed and used. For example, it is also suitable to use a mixture of metal nanoparticles whose surface is coated with saturated fatty acid and metal nanoparticles whose surface is coated with unsaturated fatty acid.

<金属粒子2の群の構成>
本発明における金属粒子2とは、その平均粒子径が0.1μmすなわち100nm以上の粒子を指す。その上限に関しては特段の定めはないが、微細配線を指向するため、最大でも10.0μmすなわち10000nm以下であることが好ましい。より好ましくは0.1〜8.0μm、さらに好ましくは0.2〜5.0μmのものを使用する。こうすることで、平均粒子径の大きな粒子の隙間部分に金属ナノ粒子が混在しやすくなる。上記の範囲内にある場合において、平均一次粒子径の異なる粒子を併用しても特段の影響はない。この場合先に示した0.1〜1.0μmの範囲に度数頻度のピークが2つ以上出現することになる。このように度数頻度のピークが2つ以上確認される場合、その一群を指して、「金属粒子2の群」という。
<Configuration of group of metal particles 2>
The metal particles 2 in the present invention refer to particles having an average particle diameter of 0.1 μm, that is, 100 nm or more. The upper limit is not particularly defined, but is preferably 10.0 μm or 10000 nm or less at the maximum in order to direct fine wiring. More preferably 0.1 to 8.0 μm, and still more preferably 0.2 to 5.0 μm. By doing so, the metal nanoparticles are likely to be mixed in the gaps between the particles having a large average particle diameter. In the case of being in the above range, there is no particular influence even if particles having different average primary particle sizes are used in combination. In this case, two or more frequency-frequency peaks appear in the above-described range of 0.1 to 1.0 μm. When two or more frequency peaks are confirmed in this way, the group is referred to as a “group of metal particles 2”.

なお、金属粒子2における平均粒径D50は、金属ナノ粒子群1の測定方法とは異なるものであり、銀粉試料0.3gをイソプロピルアルコール50mLに入れ、出力50W超音波洗浄器で5分間分散させた後、マイクロトラック粒度分布測定装置(ハネウエル−日機装製の9320−X100)によってレーザー回折法で測定した際のD50(累積50質量%粒径)の値である。 The average particle diameter D 50 of the metal particles 2 is different from the measuring method of the metal nano-particles 1, put silver powder sample 0.3g of isopropyl alcohol 50 mL, 5 min dispersion in output 50W ultrasonic cleaner After that, the value of D 50 (cumulative 50% by mass particle size) when measured by a laser diffraction method with a microtrack particle size distribution measuring apparatus (Honeywell-Nikkiso 9320-X100).

金属粒子1および2は、金属粒子1の全金属成分に対する質量割合が10〜90質量%であるのが良く、より好ましくは20〜80質量%、さらに好ましくは30〜70質量%、最も好ましくは40〜70質量%である。すなわち全金属に対する金属粒子2は90〜10質量%の範囲にある。   The metal particles 1 and 2 may have a mass ratio of 10 to 90% by mass, more preferably 20 to 80% by mass, still more preferably 30 to 70% by mass, and most preferably, relative to the total metal components of the metal particles 1. It is 40-70 mass%. That is, the metal particle 2 with respect to all the metals exists in the range of 90-10 mass%.

<樹脂の選定>
本発明のペーストには配線の比抵抗をあげず、基板に対する密着性を確保するべく、必要最低限量の樹脂を添加する。樹脂は焼成後において、必要以上に残るのは好ましくないので焼成時にある程度分解が起こる熱可塑性樹脂であることが好ましい。熱可塑性樹脂のなかでも、アクリル樹脂やポリエステル樹脂を添加するのが好ましい、具体的名称を挙げると次のようなものが知られているが、上述の性質を有する場合には、本欄に記載のもの以外のものの使用を排除するものではない。アクリル樹脂としては、三菱レイヨン株式会社のダイヤナールシリーズ、東亞合成株式会社製のARUFRONシリーズ、ポリエステル樹脂としては、東洋紡績株式会社製のバイロンシリーズ、荒川化学工業株式会社製のマルキードNo1が例示できる。より好ましくはアクリル樹脂が良い。
<Selection of resin>
A minimum amount of resin is added to the paste of the present invention in order to ensure adhesion to the substrate without increasing the specific resistance of the wiring. Since it is not preferable that the resin remain more than necessary after firing, it is preferably a thermoplastic resin that decomposes to some extent during firing. Among thermoplastic resins, it is preferable to add an acrylic resin or a polyester resin. Specific names are as follows, but if they have the above properties, they are listed in this column. It does not exclude the use of anything other than those. Examples of the acrylic resin include a dialnal series manufactured by Mitsubishi Rayon Co., Ltd., an ARUFRON series manufactured by Toagosei Co., Ltd., and examples of polyester resins include Byron series manufactured by Toyobo Co., Ltd. and Marquide No. 1 manufactured by Arakawa Chemical Industries, Ltd. An acrylic resin is more preferable.

樹脂の添加量としては、金属と樹脂の合計質量に対して2〜6質量%、好ましくは2〜5質量%の添加量とするのがよい。添加をする樹脂量が多すぎると、焼成後に樹脂が必要以上に配線中に残ってしまい、導電性にも多大な影響を与えるため好ましくない。一方添加量を少なくすると配線と基板との密着性が確保できないため、少なくとも2質量%程度の添加は必要である。   The addition amount of the resin is 2 to 6% by mass, preferably 2 to 5% by mass, based on the total mass of the metal and the resin. If the amount of the resin to be added is too large, the resin remains in the wiring more than necessary after firing, which is not preferable because it has a great influence on the conductivity. On the other hand, if the addition amount is reduced, the adhesion between the wiring and the substrate cannot be ensured. Therefore, the addition of at least about 2% by mass is necessary.

<分散剤の選定>
本発明のペーストには分散剤を添加しなくともよいことに特徴をもつ。必要に応じて添加することもできるが、必要以上に添加をすると除去が不十分になるとともに、導電性にも多大な影響を与えるので好ましくない。
<Selection of dispersant>
The paste of the present invention is characterized in that it is not necessary to add a dispersant. Although it can be added as necessary, it is not preferable to add more than necessary because removal becomes insufficient and the conductivity is greatly affected.

<分散方法の選定>
また、分散液の分散方法としては、粒子の著しい改質を伴わないという条件下において、従来一般的に用いられてきている分散方法を用いることができる。具体的には、超音波分散、三本ロールミル、ボールミル、ビーズミル、二軸ニーダー、自公転式攪拌機などが例示でき、これらは単独あるいは複数を併用して使用することもできる。
<Selection of dispersion method>
In addition, as a dispersion method for the dispersion liquid, a dispersion method that has been generally used can be used under the condition that the particles are not significantly modified. Specific examples include ultrasonic dispersion, a three-roll mill, a ball mill, a bead mill, a twin-screw kneader, and a self-revolving stirrer, and these can be used alone or in combination.

以下に本発明で用いた測定方法について説明をする。
(TEM像からの平均一次粒子径の測定)
乾燥状態の銀粒子(以下銀粒子)2質量部をシクロヘキサン96質量部とオレイン酸2質量部との混合溶液に添加し、超音波分散によって分散させた。分散溶液を支持膜付きCuマイクログリッドに滴下し、乾燥させることでTEM試料とした。作成したマイクログリッドを透過型電子顕微鏡(日本電子株式会社製JEM−100CXMark−II型)を使用し、100kVの加速電圧で、明視野で粒子を観察した像を、174,000倍で撮影した。
The measurement method used in the present invention will be described below.
(Measurement of average primary particle diameter from TEM image)
2 parts by mass of dried silver particles (hereinafter referred to as silver particles) was added to a mixed solution of 96 parts by mass of cyclohexane and 2 parts by mass of oleic acid, and dispersed by ultrasonic dispersion. The dispersion solution was dropped on a Cu microgrid with a support film and dried to obtain a TEM sample. Using the transmission microscopic microscope (JEM-100CXMark-II type manufactured by JEOL Ltd.), the created microgrid was photographed at 174,000 times by observing particles in a bright field at an acceleration voltage of 100 kV.

平均一次粒子径の算出には、画像解析ソフト(旭化成エンジニアリング株式会社製A像くん(登録商標))を用いた。この画像解析ソフトは色の濃淡で個々の粒子を識別するものであり、174,000倍のTEM像に対して「粒子の明度」を「暗」、「雑音除去フィルタ」を「有」、「円形しきい値」を「20」、「重なり度」を「50」の条件で円形粒子解析を行って一次粒子平均径を測定した。なお、TEM像中に凝結粒子や異形粒子が多数ある場合は、測定不能であるとした。   For the calculation of the average primary particle size, image analysis software (A Image-kun (registered trademark) manufactured by Asahi Kasei Engineering Co., Ltd.) was used. This image analysis software identifies individual particles by color shading. For a 174,000 times TEM image, the “particle brightness” is “dark”, the “noise removal filter” is “present”, “ The primary particle average diameter was measured by performing circular particle analysis under the conditions of “20” for the “round threshold” and “50” for the “overlap degree”. In addition, when there were many condensed particles and irregular shaped particles in the TEM image, it was determined that measurement was impossible.

(銀含有量測定)
灰ぶん測定用灰ざらに試料を0.3g以上秤量し、マッフル炉(FO310、ヤマト科学株式会社製)にて約10℃/minの速度で700℃まで昇温させ、粒子表面に存在する有機物を除去した。
(Silver content measurement)
Weigh 0.3g or more of the sample on the ash blade for measuring ash, and raise the temperature to 700 ° C at a rate of about 10 ° C / min in a muffle furnace (FO310, manufactured by Yamato Scientific Co., Ltd.), and organic matter present on the particle surface. Was removed.

その後、自然放冷により炉内の温度が500℃以下となった段階で、灰ざらを取り出してデシケーター内で常温まで冷却する。冷却した試料重量と加熱処理前の重量を比較することで除去された有機物の量と銀含有量を算出した。 Thereafter, when the temperature in the furnace reaches 500 ° C. or lower by natural cooling, the ash is taken out and cooled to room temperature in a desiccator. The amount of organic matter removed and the silver content were calculated by comparing the cooled sample weight with the weight before heat treatment.

(粘度測定)
作製したペーストについて、レオメーター(Reostress600、HAAKE社製)を用いて25℃、5rpmにおける粘度を測定した。また、あわせて1rpmと10rpmにおける粘度を測定して1rpmと10rpmにおける粘度の比を本発明においてはチキソ比と定義した。
(Viscosity measurement)
About the produced paste, the viscosity in 25 degreeC and 5 rpm was measured using the rheometer (Reossless600, product made by HAAKE). In addition, the viscosity at 1 rpm and 10 rpm was measured, and the ratio of the viscosity at 1 rpm and 10 rpm was defined as the thixo ratio in the present invention.

ペーストの粘度は、印刷を行う装置に適したものに合わせると良く、概ね0.1mPa・s〜1000Pa・sの範囲である。ペーストのチキソ比は高すぎるとレベリングせず配線表面に凹凸が残ってしまい、逆に低すぎると配線がダレ広がってしまうので、2.0〜7.5が好ましく、2.0〜7.0であることがより好ましく、2.0〜6.5であることがさらに好ましい。   The viscosity of the paste may be adjusted to a value suitable for a printing apparatus, and is generally in the range of 0.1 mPa · s to 1000 Pa · s. If the thixo ratio of the paste is too high, leveling will not occur and unevenness will remain on the surface of the wiring, and conversely if too low, the wiring will sag and spread, so 2.0-7.5 is preferable, 2.0-7.0 More preferably, it is 2.0-6.5.

(配線の描画)
スクリーン印刷(MT−320T、マイクロテック社製)による配線描画を行った。線幅300μmの配線をポリイミドフィルム基板上に描画し、オーブン(DKM400、ヤマト科学株式会社製)で大気中200℃、60分間加熱して金属配線を形成させた。
(Drawing of wiring)
Wiring drawing was performed by screen printing (MT-320T, manufactured by Microtech). A wiring having a line width of 300 μm was drawn on a polyimide film substrate and heated in the atmosphere at 200 ° C. for 60 minutes in an oven (DKM400, manufactured by Yamato Scientific Co., Ltd.) to form a metal wiring.

(配線の表面粗さ評価)
基板上に作成した配線について、表面粗さ(Ra)を表面粗度計(サーフコム1500D、株式会社東京精密製)を用いて測定した。また、測定の長さを1.0mm以上取った。得られた表面粗さの測定プロファイルを図3,図6,図9として示す。
(Evaluation of surface roughness of wiring)
About the wiring created on the board | substrate, surface roughness (Ra) was measured using the surface roughness meter (Surfcom 1500D, Tokyo Seimitsu Co., Ltd. product). The measurement length was 1.0 mm or more. The obtained surface roughness measurement profiles are shown in FIGS.

導電性回路において配線には凹凸が少ない、すなわち表面粗さ(Ra)の値が小さいことが好ましい。本発明に従うペーストを用いることによって、Raは3.0μm以下、あるいは2.5μm以下、さらには2.0μm以下という極めて平滑な配線を形成することが可能である。   In the conductive circuit, it is preferable that the wiring has less unevenness, that is, the surface roughness (Ra) is small. By using the paste according to the present invention, it is possible to form an extremely smooth wiring with Ra of 3.0 μm or less, or 2.5 μm or less, and further 2.0 μm or less.

(配線の比抵抗測定)
基板上に作成した配線について、線抵抗をデジタルマルチメーター(ミリオームハイテスタ、日置電機株式会社製)、配線の厚みを表面粗度計(サーフコム1500D、株式会社東京精密製)、配線の幅をデジタルマイクロスコープ(VHX−900、株式会社キーエンス製)にて測定し比抵抗を算出した。なお比抵抗を算出する式(1)としては以下のようになる。
・・(1)
(Measurement of wiring resistivity)
For the wiring created on the substrate, the line resistance is a digital multimeter (Milliohm Hitester, manufactured by Hioki Electric Co., Ltd.), the wiring thickness is a surface roughness meter (Surfcom 1500D, manufactured by Tokyo Seimitsu Co., Ltd.), and the wiring width is digital The specific resistance was calculated by measuring with a microscope (VHX-900, manufactured by Keyence Corporation). The equation (1) for calculating the specific resistance is as follows.
(1)

本発明に従うペーストで描画した配線において上記の算出方法により得られる抵抗値は、10μΩ・cm以下であり、低いものでは8μΩ・cm以下といった小さい値を示す。10μΩ・cmよりも高い場合には、導電性にやや難があると言えるので好ましくない。 In the wiring drawn with the paste according to the present invention, the resistance value obtained by the above calculation method is 10 μΩ · cm or less, and a low value shows a small value of 8 μΩ · cm or less. If it is higher than 10 μΩ · cm, it can be said that there is some difficulty in conductivity, which is not preferable.

(配線の密着性評価)
基板上の配線にセロハンテープ(幅24mm、ニチバン社製)を貼り付け、5kg重程度の荷重をかけ、配線にセロハンテープを貼り付ける。その後、配線とセロハンテープの間の気泡がなくなるよう該加重を擦過させることで、気泡を除去してテープと基板を密着させた。基板が固定できたらテープを持ち上げ、基板とテープの角度が約90度になるように注意しながら、約0.6秒の速度で一気に引き剥がす。
(Evaluation of adhesion of wiring)
A cellophane tape (width 24 mm, manufactured by Nichiban Co., Ltd.) is attached to the wiring on the substrate, a load of about 5 kg is applied, and the cellophane tape is attached to the wiring. Thereafter, the weight was rubbed so as to eliminate air bubbles between the wiring and the cellophane tape, thereby removing the air bubbles and bringing the tape and the substrate into close contact with each other. When the substrate is fixed, the tape is lifted and peeled off at a speed of about 0.6 seconds while taking care that the angle between the substrate and the tape is about 90 degrees.

少しでも剥離があると、断線などが生じやすく抵抗値に大きな影響を及ぼすので、剥離が全く確認されなければ○、一部でも剥離が確認された場合を×と評価した。 Even if there is even a slight peeling, disconnection or the like is likely to occur, and the resistance value is greatly affected. Therefore, if no peeling was confirmed at all, it was evaluated as “good”, and a case where some peeling was confirmed was evaluated as “x”.

以下、本発明による実施例について詳細に説明する。   Examples according to the present invention will be described in detail below.

(銀粒子1分散ペーストAの作製)
樹脂としてアクリル樹脂BR−102(三菱レイヨン株式会社製)を5.0g用意し、分散媒であるテルピネオール(和光純薬工業株式会社製)44.0gに溶解し、この中にヘキサン酸(炭素数:6)で被覆された一次粒子の平均粒径が20nmの銀粒子95.0gを加え、手攪拌で混合した。
(Preparation of silver particle 1 dispersion paste A)
As a resin, 5.0 g of acrylic resin BR-102 (manufactured by Mitsubishi Rayon Co., Ltd.) is prepared, dissolved in 44.0 g of terpineol (manufactured by Wako Pure Chemical Industries, Ltd.) as a dispersion medium, and hexanoic acid (carbon number) : 95.0 g of silver particles having an average particle diameter of 20 nm of the primary particles coated in 6) were added and mixed by hand stirring.

均一に混合し色ムラや粉の塊がないことを確認した後、混合物を三本ロールミルに通し、混練脱泡を行って導電性ペーストを作成した。   After uniformly mixing and confirming that there was no color unevenness or lump of powder, the mixture was passed through a three-roll mill and kneaded and defoamed to prepare a conductive paste.

この銀粒子1分散ペーストAの銀濃度は64質量%、粘度は46Pa・s、チキソ比は7.7であった。物性等を表1に示した。   The silver particle 1-dispersed paste A had a silver concentration of 64% by mass, a viscosity of 46 Pa · s, and a thixo ratio of 7.7. The physical properties are shown in Table 1.

(銀粒子2分散ペーストB−1の作製)
樹脂としてアクリル樹脂BR−102(三菱レイヨン株式会社製)を5.0g用意し、分散媒であるテルピネオール(和光純薬工業株式会社製)15.0gに溶解し、この中に一次粒子の平均粒径が800nmの市販されている球状銀粒子95.0gを加え、手攪拌で混合し、銀粒子1分散ペーストAと同様にして導電性ペーストB−1を作製した。
(Preparation of silver particle 2 dispersion paste B-1)
5.0 g of acrylic resin BR-102 (manufactured by Mitsubishi Rayon Co., Ltd.) is prepared as a resin and dissolved in 15.0 g of terpineol (manufactured by Wako Pure Chemical Industries, Ltd.), which is a dispersion medium. 95.0 g of commercially available spherical silver particles having a diameter of 800 nm were added and mixed by hand stirring to prepare a conductive paste B-1 in the same manner as the silver particle 1-dispersed paste A.

この銀粒子2分散ペーストB−1の銀濃度は質量82%、粘度は51Pa・s、チキソ比は2.4であった。物性等を表1にあわせて示した。   Silver concentration of this silver particle 2-dispersed paste B-1 was 82% by mass, viscosity was 51 Pa · s, and thixo ratio was 2.4. The physical properties are shown in Table 1.

(銀粒子2分散ペーストB−2の作製)
樹脂としてアクリル樹脂BR−102(三菱レイヨン株式会社製)を5.0g用意し、分散媒であるテルピネオール(和光純薬工業株式会社製)19.0gに溶解し、この中に一次粒子の平均粒径が7700nmの市販されているフレーク状銀粒子95.0gを加え、手攪拌で混合し、銀粒子1分散ペーストAと同様にして導電性ペーストB−2を作製した。
(Preparation of silver particle 2 dispersion paste B-2)
5.0 g of acrylic resin BR-102 (manufactured by Mitsubishi Rayon Co., Ltd.) is prepared as a resin and dissolved in 19.0 g of terpineol (manufactured by Wako Pure Chemical Industries, Ltd.), which is a dispersion medium. 95.0 g of commercially available flaky silver particles having a diameter of 7700 nm were added and mixed by hand stirring to prepare a conductive paste B-2 in the same manner as the silver particle 1-dispersed paste A.

この銀粒子2分散ペーストB−2の銀濃度は質量79%、粘度は49Pa・s、チキソ比は2.0であった。物性等を表1にあわせて示した。   The silver concentration of the silver particle 2-dispersed paste B-2 was 79% by mass, the viscosity was 49 Pa · s, and the thixo ratio was 2.0. The physical properties are shown in Table 1.

(実施例1)
銀粒子1分散ペーストAと銀粒子2分散ペーストB−1を銀の質量比で5:5になるように混合し混合ペーストを作製した。得られた混合ペーストは、銀濃度は質量72%、粘度は30Pa・s、チキソ比は4.6であった。得られたペーストを用いて印刷試験に付し、印刷性、比抵抗、密着性について評価した。
Example 1
Silver particle 1 dispersion paste A and silver particle 2 dispersion paste B-1 were mixed at a silver mass ratio of 5: 5 to prepare a mixed paste. The obtained mixed paste had a silver concentration of 72% by mass, a viscosity of 30 Pa · s, and a thixo ratio of 4.6. The obtained paste was used for a printing test and evaluated for printability, specific resistance, and adhesion.

その結果得られた配線は、Raが1.3μm、比抵抗が6.4μΩ・cm、密着性が○であった。すなわち、平滑性、低抵抗、高密着という3つの要素を満たす配線を描画できた。得られた配線特性の結果を表2に示す。デジタルマイクロスコープによる配線の外観、走査電子顕微鏡写真、表面粗さプロファイルをそれぞれ図1〜3に示す。   As a result, the obtained wiring had Ra of 1.3 μm, specific resistance of 6.4 μΩ · cm, and adhesion. That is, a wiring satisfying the three elements of smoothness, low resistance, and high adhesion could be drawn. Table 2 shows the results of the obtained wiring characteristics. The external appearance of the wiring by a digital microscope, a scanning electron micrograph, and a surface roughness profile are shown in FIGS.

(実施例2〜4、比較例1〜3)
表2に示すような混合比率でペーストを作成した以外は実施例1を繰り返し、実施例1と同様の評価を行った。得られた結果を表2にあわせて示す。
比較例1、2については、デジタルマイクロスコープによる配線の外観、走査電子顕微鏡写真、表面粗さプロファイルをそれぞれ図4〜6、図7〜9に示す。
(Examples 2-4, Comparative Examples 1-3)
Example 1 was repeated except that the paste was prepared at a mixing ratio as shown in Table 2, and the same evaluation as in Example 1 was performed. The obtained results are also shown in Table 2.
About Comparative Examples 1 and 2, the external appearance of a wiring by a digital microscope, a scanning electron micrograph, and a surface roughness profile are shown in FIGS. 4 to 6 and FIGS. 7 to 9, respectively.

比較例のようにペーストAまたはBを単独で用いると、印刷性、平滑性、比抵抗、密着性などの観点で見ていくと1つないし2つの点では特性が出ていても要求される全ての特性を満足するようなペーストを得られることは無かった。   When the paste A or B is used singly as in the comparative example, it is required even if the characteristics appear in one or two points from the viewpoint of printability, smoothness, specific resistance, adhesion and the like. It was not possible to obtain a paste satisfying all the characteristics.

ナノ粒子のみで形成したものは、走査型電子顕微鏡で見れば緻密な膜が形成されているように見えるが、外観ではかなり大きい紗の目といわれる凹凸が形成されている。また、このことは表面粗さのプロファイルを見ても明らかである。   What is formed only with nanoparticles appears to be a dense film when viewed with a scanning electron microscope, but has irregularities that are considered to be quite large in terms of appearance. This is also apparent from the surface roughness profile.

一方、ミクロン粒子のみで形成させたものは、走査型電子顕微鏡で見ても明らかなように凹凸が激しく、これは表面粗さプロファイルを見ても明らかにその傾向が確認される。   On the other hand, those formed only with micron particles have severe irregularities, as is apparent with a scanning electron microscope, and this tendency is clearly confirmed even when the surface roughness profile is observed.

それに対して、実施例のようにペーストAとBを混ぜ合わせることにより要求される全ての特性を満足するようなペーストを得られることがわかる。実施例1を代表して示した通り、表面は平坦で凹凸が少ないものが得られた。   On the other hand, it can be seen that a paste satisfying all the required characteristics can be obtained by mixing the pastes A and B as in the embodiment. As representatively shown in Example 1, a surface having a flat surface with little unevenness was obtained.

本発明に従う導電性ペーストはRFIDの配線などの各種配線形成に用いることが出来る。また、本発明に従う導電性ペーストは低温焼結が可能であるためフレキシブルなフィルムの上に配線を形成することが可能である。   The conductive paste according to the present invention can be used for forming various wirings such as RFID wiring. Moreover, since the conductive paste according to the present invention can be sintered at a low temperature, it is possible to form a wiring on a flexible film.

Claims (10)

透過型電子顕微鏡写真により計測される平均一次粒子径が50nm以下の金属粒子1の群と、レーザー回折法により計測される平均一次粒子径が100nm以上の金属粒子2の群により構成される金属粉末成分、熱可塑性樹脂、分散媒からなり、金属と樹脂の合計質量に対する金属の質量の割合が94〜98%を示すペースト。   Metal powder composed of a group of metal particles 1 having an average primary particle diameter of 50 nm or less measured by a transmission electron micrograph and a group of metal particles 2 having an average primary particle diameter of 100 nm or more measured by a laser diffraction method The paste which consists of a component, a thermoplastic resin, and a dispersion medium, and the ratio of the mass of the metal with respect to the total mass of a metal and resin shows 94 to 98%. 25℃での回転数が1rpmと10rpmにおけるペーストの粘度の比が2.0〜7.5である、請求項1に記載のペースト。   The paste of Claim 1 whose ratio of the viscosity of the paste in the rotation speed in 25 degreeC is 1 rpm and 10 rpm is 2.0-7.5. 金属粒子1の表面には炭素数6〜8の脂肪酸が吸着している、請求項1または2のいずれかに記載されたペースト。   The paste according to claim 1, wherein a fatty acid having 6 to 8 carbon atoms is adsorbed on the surface of the metal particle 1. 質量比として金属粒子1の全金属成分に対する質量割合が10〜90質量%である、請求項1ないし3のいずれかに記載されたペースト。   The paste according to any one of claims 1 to 3, wherein the mass ratio of the metal particles 1 to the total metal components is 10 to 90 mass% in terms of mass ratio. 前記ペーストを構成する樹脂はアクリル樹脂である請求項1ないし4のいずれかに記載されたペースト。   The paste according to any one of claims 1 to 4, wherein the resin constituting the paste is an acrylic resin. 前記ペーストを構成する分散媒は、ペーストの重量を100としたとき、20〜40である、請求項1ないし5のいずれかに記載のペースト。 The paste according to any one of claims 1 to 5, wherein the dispersion medium constituting the paste is 20 to 40 when the weight of the paste is 100. 前記金属粒子1は銀である、請求項1ないし6のいずれかに記載のペースト。   The paste according to any one of claims 1 to 6, wherein the metal particles 1 are silver. 請求項1ないし6に記載のペーストを用いることにより得られる導電性回路。   A conductive circuit obtained by using the paste according to claim 1. 導電性回路の表面粗さ(Ra)が3.0μm以下である請求項8に記載の導電性回路。   The conductive circuit according to claim 8, wherein the surface roughness (Ra) of the conductive circuit is 3.0 μm or less. 導電性回路の比抵抗値が10μΩ・cm以下である請求項8または9のいずれかに記載の導電性回路。



The conductive circuit according to claim 8, wherein a specific resistance value of the conductive circuit is 10 μΩ · cm or less.



JP2009213521A 2009-09-15 2009-09-15 Conductive paste and wiring board employing the same Pending JP2011065783A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009213521A JP2011065783A (en) 2009-09-15 2009-09-15 Conductive paste and wiring board employing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009213521A JP2011065783A (en) 2009-09-15 2009-09-15 Conductive paste and wiring board employing the same

Publications (1)

Publication Number Publication Date
JP2011065783A true JP2011065783A (en) 2011-03-31

Family

ID=43951842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009213521A Pending JP2011065783A (en) 2009-09-15 2009-09-15 Conductive paste and wiring board employing the same

Country Status (1)

Country Link
JP (1) JP2011065783A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102651248A (en) * 2011-02-28 2012-08-29 三星电机株式会社 Conductive metal paste composition and method of manufacturing the same
JP2012243655A (en) * 2011-05-23 2012-12-10 Fukuda Metal Foil & Powder Co Ltd Copper particulate for paste for firing and method for forming fired copper film
CN102820072A (en) * 2011-06-08 2012-12-12 太阳控股株式会社 Conductive paste
KR20150108308A (en) * 2014-03-17 2015-09-25 제록스 코포레이션 Ink composition and method of determining a degree of curing of the ink composition
JP2016197582A (en) * 2015-04-06 2016-11-24 株式会社ノリタケカンパニーリミテド Substrate with conductive film, method for manufacturing the same, and conductive paste for polyimide substrate
JPWO2015102029A1 (en) * 2013-12-30 2017-03-23 株式会社Gocco. Identifier providing device for computer device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005294254A (en) * 2004-03-12 2005-10-20 Sumitomo Electric Ind Ltd Conductive silver paste and electromagnetic wave shielding member using it
JP2008091250A (en) * 2006-10-03 2008-04-17 Mitsuboshi Belting Ltd Low-temperature calcination type silver paste
JP2010153118A (en) * 2008-12-24 2010-07-08 Mitsuboshi Belting Ltd Metallic particle paste and method for manufacturing conductive substrate

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005294254A (en) * 2004-03-12 2005-10-20 Sumitomo Electric Ind Ltd Conductive silver paste and electromagnetic wave shielding member using it
JP2008091250A (en) * 2006-10-03 2008-04-17 Mitsuboshi Belting Ltd Low-temperature calcination type silver paste
JP2010153118A (en) * 2008-12-24 2010-07-08 Mitsuboshi Belting Ltd Metallic particle paste and method for manufacturing conductive substrate

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102651248A (en) * 2011-02-28 2012-08-29 三星电机株式会社 Conductive metal paste composition and method of manufacturing the same
JP2012182111A (en) * 2011-02-28 2012-09-20 Samsung Electro-Mechanics Co Ltd Conductive metal paste composition and manufacturing method thereof
JP2012243655A (en) * 2011-05-23 2012-12-10 Fukuda Metal Foil & Powder Co Ltd Copper particulate for paste for firing and method for forming fired copper film
CN102820072A (en) * 2011-06-08 2012-12-12 太阳控股株式会社 Conductive paste
KR20120136297A (en) * 2011-06-08 2012-12-18 다이요 홀딩스 가부시키가이샤 Conductive paste
JP2012256500A (en) * 2011-06-08 2012-12-27 Taiyo Holdings Co Ltd Conductive paste
KR102062401B1 (en) 2011-06-08 2020-01-03 다이요 홀딩스 가부시키가이샤 Conductive paste
JPWO2015102029A1 (en) * 2013-12-30 2017-03-23 株式会社Gocco. Identifier providing device for computer device
KR20150108308A (en) * 2014-03-17 2015-09-25 제록스 코포레이션 Ink composition and method of determining a degree of curing of the ink composition
JP2015175001A (en) * 2014-03-17 2015-10-05 ゼロックス コーポレイションXerox Corporation Ink composition and method of determining degree of curing of ink composition
KR102167706B1 (en) 2014-03-17 2020-10-19 제록스 코포레이션 Ink composition and method of determining a degree of curing of the ink composition
JP2016197582A (en) * 2015-04-06 2016-11-24 株式会社ノリタケカンパニーリミテド Substrate with conductive film, method for manufacturing the same, and conductive paste for polyimide substrate

Similar Documents

Publication Publication Date Title
JP4928639B2 (en) Bonding material and bonding method using the same
JP4934993B2 (en) Conductive paste and wiring board using the same
JP4832615B1 (en) Low-temperature sinterable conductive paste, conductive film using the same, and method for forming conductive film
KR101099237B1 (en) Conductive Paste and Conductive Circuit Board Produced Therewith
Park et al. Preparation of Pb-free silver paste containing nanoparticles
WO2011114543A1 (en) Bonding material and bonding method using same
JP2011065783A (en) Conductive paste and wiring board employing the same
WO2002035554A1 (en) Electroconductive metal paste and method for production thereof
JP5547570B2 (en) Conductive paste
WO2014054618A1 (en) Silver hybrid copper powder, method for producing same, conductive paste containing silver hybrid copper powder, conductive adhesive, conductive film and electrical circuit
JP2007194122A (en) Conductive paste and wiring board using it
JP6587631B2 (en) Conductive paste
JP2013136840A (en) Copper powder, copper paste, and method for producing the copper powder
JP2013199648A (en) Polymer thick film solder alloy/metal conductor compositions
JP2014039012A (en) Photonic sintering of polymer thick film conductor compositions
WO2022262794A1 (en) Nanoparticle copper paste suitable for high-precision direct-write 3d printing, and preparation and use thereof
JP2013149618A (en) Polymer thick film solder alloy conductor composition
JP2011060519A (en) Conductive paste, and wiring board using the same
JP2006009120A (en) Metal particulate-dispersed body
TWI663244B (en) Conductive adhesive composition
JP2015214722A (en) Method for manufacturing copper fine particle sintered body and conductive substrate
JP4441817B2 (en) Circuit board
JP2014175372A (en) Bonding material, semiconductor device arranged by use thereof, wiring material, and wiring line for electronic element arranged by use thereof
WO2019069936A1 (en) Silver microparticle dispersion liquid
JP6737873B2 (en) Photo-sintering of polymer thick film copper conductor composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120725

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120725

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130924

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131119

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140121