JP2015214722A - Method for manufacturing copper fine particle sintered body and conductive substrate - Google Patents

Method for manufacturing copper fine particle sintered body and conductive substrate Download PDF

Info

Publication number
JP2015214722A
JP2015214722A JP2014097154A JP2014097154A JP2015214722A JP 2015214722 A JP2015214722 A JP 2015214722A JP 2014097154 A JP2014097154 A JP 2014097154A JP 2014097154 A JP2014097154 A JP 2014097154A JP 2015214722 A JP2015214722 A JP 2015214722A
Authority
JP
Japan
Prior art keywords
copper fine
sintered body
fine particles
copper
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014097154A
Other languages
Japanese (ja)
Other versions
JP6562196B2 (en
Inventor
徹 米澤
Toru Yonezawa
徹 米澤
宏樹 塚本
Hiroki Tsukamoto
宏樹 塚本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokkaido University NUC
Original Assignee
Hokkaido University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokkaido University NUC filed Critical Hokkaido University NUC
Priority to JP2014097154A priority Critical patent/JP6562196B2/en
Publication of JP2015214722A publication Critical patent/JP2015214722A/en
Application granted granted Critical
Publication of JP6562196B2 publication Critical patent/JP6562196B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Parts Printed On Printed Circuit Boards (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide new methods for manufacturing a conductive copper fine particle sintered body and a conductive substrate using the sintered body, which can be applied to a coating machine or screen printing using a calcination binder and avoid problems accompanying solder resist coating, without requiring a large amount of a protective agent.SOLUTION: The method for manufacturing a conductive copper fine particle sintered body comprises producing a sintered body of copper fine particles having a resin coating film on a substrate through at least the following processes. The processes are: (A) applying a conductive ink comprising copper fine particles and a calcination binder on the substrate; (B) oxidizing the ink to obtain a cuprous oxide (CuO) fraction of 7 mass% or more in the copper particles after applied; and (C) reducing the ink after the oxidation. The copper fine particles applied on the substrate have an average particle diameter of 100 nm or more; and the calcination binder has a thermal decomposition temperature higher than the temperatures of the oxidation process and the reduction process.

Description

本発明は、プリント基板等の回路形成材料、その他の微小配線材料や帯電防止材、電磁波遮断材、赤外線遮断材等の分野において有用な、導電性の銅微粒子焼結体とこれを基板上に有する導電性基板の製造方法に関するものである。   The present invention is a conductive copper fine particle sintered body useful in the fields of circuit forming materials such as printed circuit boards, other fine wiring materials, antistatic materials, electromagnetic wave shielding materials, infrared shielding materials, etc. The present invention relates to a method for manufacturing a conductive substrate.

金属微粒子を含む導電性インクを既存の印刷技術を利用して所定の配線パターンとして描画させるプリンテッドエレクトロニクスは、従来のプリント基板作製法で用いられる露光やエッチングを必要とせず有害な化学物質を排出しないクリーンな製造工程として近年注目されている。その際の印刷技術としてはドクターブレード、ダイコーター、バーコーター、フローコーター、スピンコーターなどの塗工機や、スクリーン印刷、インクジェット、スプレーなどが知られている。また、導電性インクは主に金属微粒子に加えて分散安定剤、有機溶剤で構成されるが、コーターやスクリーン印刷では、インクに適度な流動性や接着性を与えるため焼成バインダーが添加される。焼成バインダーにはアクリル、フェノール、エポキシ等の合成樹脂や、アセチルセルロース、エチルセルロース等のセルロース類、ゴム類などが用いられる。   Printed electronics that draws conductive ink containing fine metal particles as a predetermined wiring pattern using existing printing technology eliminates harmful chemical substances without the need for exposure and etching used in conventional printed circuit board fabrication methods. Recently, it has been attracting attention as a clean manufacturing process. As printing techniques at that time, coating machines such as a doctor blade, a die coater, a bar coater, a flow coater, and a spin coater, screen printing, ink jet, and spray are known. The conductive ink is mainly composed of a dispersion stabilizer and an organic solvent in addition to the metal fine particles. In the case of a coater or screen printing, a baked binder is added in order to give appropriate fluidity and adhesion to the ink. As the baking binder, synthetic resins such as acrylic, phenol, and epoxy, celluloses such as acetyl cellulose and ethyl cellulose, rubbers, and the like are used.

ただ、印刷された導電性インクはそのままの状態では独立した微粒子の集合体であるため、導電性は極めて低い。このため、加熱処理をして金属微粒子の焼結体を形成することで導電性を付与している。一般的な金属の焼結は1000℃以上の温度で行われるが、プリント配線材料への適用においては、基板材料のエポキシ樹脂の熱分解温度250〜350℃を下回る低温での焼結が求められる。このための低温焼結法としては、金属粒子をnmオーダーまで微粒化させることで、バルク材料よりも低温度で原子や分子の移動が生じ、焼結が容易となることが知られている。そして、金属微粒子の生成過程においては、粒子径を制御するための有機保護剤が用いられ、これに伴い生成された微粒子は有機保護層により覆われている。焼結現象は金属粒子同士が接していなければ生じないため、焼結時はこれらの有機保護層を除去する必要があり、これまでにも様々な手法が考案されている。例えば、銅微粒子の周囲を覆う有機保護層を含酸素雰囲気中で分解させた後、含水素もしくは不活性雰囲気中で還元させる二段階の焼成手法により導電性薄膜を得る手法が考案されている(特許文献1、非特許文献1)。   However, since the printed conductive ink is an aggregate of independent fine particles as it is, the conductivity is very low. For this reason, conductivity is imparted by heat treatment to form a sintered body of metal fine particles. Although general metal sintering is performed at a temperature of 1000 ° C. or higher, application to printed wiring materials requires sintering at a low temperature below the thermal decomposition temperature of 250 to 350 ° C. of the epoxy resin of the substrate material. . As a low-temperature sintering method for this purpose, it is known that atomization of atoms and molecules occurs at a temperature lower than that of a bulk material by making metal particles atomized to the order of nm, thereby facilitating sintering. And in the production | generation process of a metal microparticle, the organic protective agent for controlling a particle diameter is used, and the microparticles | fine-particles produced | generated in connection with this are covered with the organic protective layer. Since the sintering phenomenon does not occur unless the metal particles are in contact with each other, it is necessary to remove these organic protective layers during the sintering, and various methods have been devised so far. For example, a method of obtaining a conductive thin film by a two-stage firing method in which an organic protective layer covering the periphery of copper fine particles is decomposed in an oxygen-containing atmosphere and then reduced in a hydrogen-containing or inert atmosphere has been devised ( Patent Document 1, Non-Patent Document 1).

こうして作製された配線材は、電気絶縁性の担保と、湿度環境におけるイオンマイグレーション防止のため、ソルダーレジストが施されて使用される。ソルダーレジストは基板全面にレジスト剤を印刷した後、レジスト形成面を紫外線硬化させ、アルカリ洗浄液で未硬化部分を洗浄除去して形成される。   The wiring material produced in this way is used with a solder resist applied to ensure electrical insulation and prevent ion migration in a humidity environment. The solder resist is formed by printing a resist agent on the entire surface of the substrate, then curing the resist forming surface with ultraviolet rays, and washing and removing uncured portions with an alkali cleaning liquid.

特開2007−262446号公報JP 2007-262446 A

Thin Solid Films 520 (2012) 2789-2793Thin Solid Films 520 (2012) 2789-2793

前記の特許文献1および非特許文献1の方法では、第一の焼成工程で微粒子周囲の有機保護剤を加熱分解して除去しているが、焼成バインダーをインクに添加した場合には、大量のバインダー樹脂が微粒子周囲に展開されることになり、これらを分解除去することは困難と考えられる。よって、この手法を焼成バインダーが必要となる塗工機やスクリーン印刷に適用することは難しい。   In the methods of Patent Document 1 and Non-Patent Document 1, the organic protective agent around the fine particles is removed by thermal decomposition in the first baking step. However, when the baking binder is added to the ink, a large amount of the organic protective agent is removed. Since the binder resin is developed around the fine particles, it is considered difficult to decompose and remove them. Therefore, it is difficult to apply this method to a coating machine or screen printing that requires a baking binder.

金属微粒子が小さいほど焼結温度低下が見込めるが、サブミクロンを下回る微粒子は凝集力が強いため溶液中で分散させることが難しい。また、粒子が小さいほど表面積が大きくなり、必然的に粒子周囲を覆う有機保護剤の量が多くなる。多量の保護剤は加熱分解を困難にする他、時折、インクのゲル化などを引き起こし、凝集しやすい粒子特性と相まって、インクジェットやスプレーなどのノズル詰まりなどの原因になりかねない。   The smaller the metal fine particles, the lower the sintering temperature can be expected, but the fine particles below submicron have a strong cohesive force and are difficult to disperse in the solution. In addition, the smaller the particles, the larger the surface area, and inevitably increases the amount of organic protective agent covering the periphery of the particles. A large amount of the protective agent makes heat decomposition difficult and sometimes causes gelation of the ink, which may cause clogging of nozzles such as ink jet and spraying in combination with particle characteristics that easily aggregate.

そして様々な提案がなされている従来の技術における大きな問題点は、化学物質によるエッチングを必要としないクリーンな製造工程として注目されているプリンテッドエレクトロニクスにおいても、配線形成後にソルダーレジストの塗工が必要であり、その工程は従来のプリント基板と同様に紫外線照射や有害な化学物質の使用を余儀なくされている点である。   And the big problem with the conventional technology that various proposals have been made is that, even in printed electronics, which is attracting attention as a clean manufacturing process that does not require chemical etching, it is necessary to apply a solder resist after wiring formation In this process, ultraviolet irradiation and use of harmful chemical substances are unavoidable as in the conventional printed circuit board.

本発明は、以上のとおりの事情に鑑みてなされたものであって、焼成バインダーを用いる塗工機やスクリーン印刷への適用が可能であって、多量の保護剤を必要とすることなく、ソルダーレジスト塗工にともなう不都合も懸念されない、導電性銅微粒焼結体とこれを用いた導電性基板の新しい製造方法を提供することを課題としている。   The present invention has been made in view of the circumstances as described above, and can be applied to a coating machine or a screen printing using a baked binder, without requiring a large amount of a protective agent, It is an object of the present invention to provide a new method for producing a conductive copper fine particle sintered body and a conductive substrate using the same, which is free from inconvenience associated with resist coating.

本発明の製造方法は以下のことを特徴としている。   The manufacturing method of the present invention is characterized by the following.

すなわち、少なくとも次の処理工程をもって基板上に樹脂被膜を有する銅微粒子の焼結体を生成させることを特徴とする導電性の銅微粒子焼結体の製造方法である。   That is, it is a method for producing a conductive copper fine particle sintered body characterized in that a copper fine particle sintered body having a resin film on a substrate is generated at least in the following processing steps.

(A)銅微粒子および焼成バインダーを含有する導電性インクの基板上への塗布
(B)前記塗布後の銅微粒子のうちの亜酸化銅(Cu2O)分率が7質量%以上となるものとする酸化処理
(C)前記酸化処理後の還元処理
上記製造方法においては、基板上に塗布する銅微粒子の平均粒子径は100nm以上であることが好ましい。
(A) Application of conductive ink containing copper fine particles and baked binder on substrate (B) Cuprous oxide (Cu 2 O) fraction of copper fine particles after application is 7% by mass or more (C) Reduction treatment after the oxidation treatment In the above production method, the average particle diameter of the copper fine particles applied on the substrate is preferably 100 nm or more.

また、焼成バインダーの熱分解開始温度は、酸化処理および還元処理の温度よりも高いことが好ましい。   Moreover, it is preferable that the thermal decomposition start temperature of a baking binder is higher than the temperature of an oxidation process and a reduction process.

空気中での加熱による酸化処理であることや、水素による還元処理であることも好ましい。   It is also preferable to be an oxidation treatment by heating in air or a reduction treatment with hydrogen.

そして本発明は、以上方法により形成することを特徴とする導電性基板の製造方法も提供する。   And this invention also provides the manufacturing method of the electroconductive board | substrate characterized by forming with the above method.

また、上記の方法により得られたものであることを特徴とする銅微粒子焼結体と、導電性基板も提供する。   Also provided are a copper fine particle sintered body obtained by the above method and a conductive substrate.

上記のとおりの本発明においては、銅微粒子は平均粒子径が100nm以上粒子を使用することができる。導電性インクは従来通りの手法で、有機保護層を有する銅微粒子、分散安定剤、有機溶剤、焼成バインダーにより構成するが、焼成バインダー樹脂は焼成温度より熱分解開始温度が高い材料を用いることが好ましい。作製した銅微粒子インクを基板に塗工後、焼成ターゲット温度の空気中で銅微粒子を亜酸化銅が7質量%以上になるまで酸化させる。その後、微量の水素を含む不活性雰囲気で還元し、導電性薄膜を得る。   In the present invention as described above, copper fine particles having an average particle diameter of 100 nm or more can be used. The conductive ink is composed of copper fine particles having an organic protective layer, a dispersion stabilizer, an organic solvent, and a baked binder in a conventional manner, but the baked binder resin should be made of a material having a higher thermal decomposition start temperature than the baked temperature. preferable. After the produced copper fine particle ink is applied to the substrate, the copper fine particles are oxidized in air at a firing target temperature until the cuprous oxide content becomes 7% by mass or more. Thereafter, reduction is performed in an inert atmosphere containing a small amount of hydrogen to obtain a conductive thin film.

本発明によれば、導電性インクにはバインダー樹脂が含まれるため、インクに適度な流動性や接着性が付与され、いかなる印刷手法にも適用可能となる。100nmを超える銅微粒子は粒子の凝集力を低下させインクの分散性の向上に寄与する。基板に塗工された銅微粒子は、亜酸化銅が7質量%以上になるまで空気中で加熱酸化されることで、銅と亜酸化銅の密度差により粒子の膨張が生じ、バインダー樹脂や有機保護剤の存在下においても隣接する金属粒子と接触することが可能となり焼結を容易にする。また、この時に生じる亜酸化銅微粒子は数10nm以下であるため、後の微量の水素を含む不活性雰囲気での加熱処理により銅に還元される過程で、融点降下による焼結が進行しやすい利点がある。一方、バインダー樹脂の熱分解開始温度は焼成温度よりも高いため、一部は還元雰囲気により炭化すると思われるものの、大半が加熱の影響を受けずに残り、焼結された銅微粒子の周囲に被膜を形成する。バインダー樹脂にアクリル樹脂、フェノール樹脂、エチルセルロース等の疎水性かつ熱安定性を有する材料を用いることで、ソルダーレジストと同様の機能を付与することが可能である。   According to the present invention, since the conductive ink contains the binder resin, appropriate fluidity and adhesiveness are imparted to the ink, and it can be applied to any printing technique. Copper fine particles exceeding 100 nm reduce the cohesive force of the particles and contribute to the improvement of the dispersibility of the ink. The copper fine particles coated on the substrate are heated and oxidized in air until the cuprous oxide content is 7% by mass or more, resulting in expansion of the particles due to the difference in density between copper and cuprous oxide. Even in the presence of a protective agent, it can come into contact with adjacent metal particles, facilitating sintering. In addition, since the cuprous oxide fine particles produced at this time are several tens of nanometers or less, the sintering is likely to proceed due to a melting point drop during the subsequent reduction to copper by heat treatment in an inert atmosphere containing a small amount of hydrogen. There is. On the other hand, since the thermal decomposition start temperature of the binder resin is higher than the firing temperature, some of it seems to be carbonized in a reducing atmosphere, but most of it remains unaffected by heating and is coated around the sintered copper fine particles. Form. By using a hydrophobic and heat-stable material such as an acrylic resin, a phenol resin, or ethyl cellulose as the binder resin, it is possible to impart the same function as the solder resist.

このようにして得られた導電性基板は、焼結により高い導電性が付与されると同時に、バインダー樹脂が焼結体の周囲に被膜を形成する。バインダー樹脂に疎水性と熱安定性に優れた材料を選定することで、作製した導電性基板にソルダーレジストと同様の機能を有するレジスト層を付与することが可能となる。以上により、本手法を用いれば、配線パターンの印刷から焼成に至る一連の工程で、レジスト層までを同時に形成することが可能となり、工程の大幅削減に寄与する他、有害な化学物質を一切排出しないクリーンな製造工程が実現可能となる。   The conductive substrate thus obtained is given high conductivity by sintering, and at the same time, the binder resin forms a film around the sintered body. By selecting a material excellent in hydrophobicity and thermal stability for the binder resin, a resist layer having the same function as a solder resist can be imparted to the produced conductive substrate. As described above, if this method is used, it is possible to simultaneously form the resist layer in a series of processes from wiring pattern printing to baking, which contributes to a significant reduction in the process and emits no harmful chemical substances at all. A clean manufacturing process that does not occur can be realized.

実施例1でのビヒクルTG計測結果。The vehicle TG measurement result in Example 1. 実施例1で得られた銅薄膜の断面SEM像。2 is a cross-sectional SEM image of the copper thin film obtained in Example 1. FIG. 実施例1でのXRD計測結果。The XRD measurement result in Example 1. 実施例1での印刷後のSEM像。2 is an SEM image after printing in Example 1. FIG. 実施例1での酸化処理後のSEM像。2 is an SEM image after the oxidation treatment in Example 1. FIG. 実施例1での還元処理後のSEM像。2 is an SEM image after reduction treatment in Example 1. FIG. 実施例1の各工程での粒子形状のTEM像。2 is a TEM image of particle shapes in each step of Example 1. FIG. 実施例1での酸化処理後粒子の高倍率TEM像。3 is a high-magnification TEM image of particles after oxidation treatment in Example 1. FIG. 本発明の焼結メカニズムの模式図。The schematic diagram of the sintering mechanism of this invention. 実施例2で得られた銅薄膜の断面SEM像。2 is a cross-sectional SEM image of the copper thin film obtained in Example 2. FIG. 実施例2でのXRD計測結果。The XRD measurement result in Example 2. 実施例2での酸化処理後のSEM像。3 is an SEM image after the oxidation treatment in Example 2. FIG. 実施例2での還元処理後のSEM像。FIG. 4 is an SEM image after reduction treatment in Example 2. FIG. 比較例1でのXRD計測結果。XRD measurement result in Comparative Example 1. 比較例1での還元処理後のSEM像。The SEM image after the reduction process in Comparative Example 1.

本発明の導電性の銅微粒子焼結体並びに導電性基板の製造方法は、前記のとおり、少なくとも次の処理工程をもって基板上に樹脂被膜を有する銅微粒子の焼結体を生成させることを必須としている。   As described above, the method for producing a conductive copper fine particle sintered body and a conductive substrate according to the present invention requires that a copper fine particle sintered body having a resin film on the substrate is generated at least in the following processing steps. Yes.

(A)銅微粒子および焼成バインダーを含有する導電性インクの基板上への塗布。   (A) Application of conductive ink containing copper fine particles and a baking binder on a substrate.

(B)前記塗布後の銅微粒子のうちの亜酸化銅(Cu2O)分率が7質量%以上となるものとする銅微粒子の酸化処理。 (B) An oxidation treatment of copper fine particles in which the cuprous oxide (Cu 2 O) fraction in the copper fine particles after coating is 7% by mass or more.

(C)前記酸化処理後の還元処理。   (C) Reduction treatment after the oxidation treatment.

まず処理工程(A)における導電性インクについて説明すると、銅微粒子と焼成バインダーを含むことを必須としている。ここで銅微粒子は平均粒子径が100nm以上であることが好ましい。このような銅微粒子の製造、調製方法については特に限定されないが、例えば、ヒドラジン還元法、ポリオール法、レーザーアブレーション法、液中プラズマ法等の方法が例示される。   First, the conductive ink in the processing step (A) will be described. It is essential to include copper fine particles and a fired binder. Here, the copper fine particles preferably have an average particle diameter of 100 nm or more. The method for producing and preparing such copper fine particles is not particularly limited, and examples thereof include a hydrazine reduction method, a polyol method, a laser ablation method, and a submerged plasma method.

前記のとおり、本発明においては、好ましくは、銅粒子の凝集力を低下させるために、平均粒子径を100nm以上とする。さらに好ましくは、平均粒子径は、100nm〜300nmの範囲内である。   As described above, in the present invention, preferably, the average particle diameter is set to 100 nm or more in order to reduce the cohesive force of the copper particles. More preferably, the average particle size is in the range of 100 nm to 300 nm.

ここで、銅粒子の平均粒子径は、SEM写真観察により視野から50個の粒子を無作為に抽出し、その投影径(定方向径)の数平均として求めることができる。   Here, the average particle diameter of the copper particles can be obtained as a number average of the projected diameters (constant direction diameters) by randomly extracting 50 particles from the field of view by SEM photograph observation.

そして焼成バインダーについては、その熱分解開始温度は、酸化処理および還元処理の温度よりも高いことや、疎水性、熱安定性を有する材料が好ましい。さらに粘性、取扱い性等を考慮すると、例えばセルロース系材料が好適なものとして例示される。エチルセルロース、寒天、ポリビニルブチラール、ポリアクリル、PEEK、ウレタン、ポリアミドイミド、ポリエーテルサルフォン等の高分子およびその共重合体等である。これ以外にもフェノール樹脂系材料、エポキシ系材料なども考慮される。   And about a baking binder, the thermal decomposition start temperature is higher than the temperature of an oxidation process and a reduction process, and the material which has hydrophobicity and heat stability is preferable. Further, considering viscosity, handleability and the like, for example, a cellulose-based material is exemplified as a suitable material. Polymers such as ethyl cellulose, agar, polyvinyl butyral, polyacryl, PEEK, urethane, polyamideimide, polyethersulfone, and copolymers thereof. In addition, phenol resin materials, epoxy materials, and the like are also considered.

本発明においては、焼結により高い導電性が付与されると同時に、焼成バインダー樹脂が焼結体の周囲に被膜を形成する。バインダー樹脂に疎水性と熱安定性に優れた材料を選定することで、作製した導電性基板にソルダーレジストと同様の機能を有するレジスト層を付与することが可能となる。配線パターンの印刷から焼成に至る一連の工程で、レジスト層までを同時に形成することが可能となり、工程の大幅削減に寄与する他、有害な化学物質を一切排出しないクリーンな製造工程が実現可能となる。また水素を含む不活性雰囲気における(C)還元処理工程においては、銅微粒子焼結体を内包したバインダー樹脂の表面が炭化することも考えられ、そのような場合には、より疎水性が付与されることでレジスト層の機能が強化されることを補足しておく。   In the present invention, high conductivity is imparted by sintering, and at the same time, the sintered binder resin forms a coating around the sintered body. By selecting a material excellent in hydrophobicity and thermal stability for the binder resin, a resist layer having the same function as a solder resist can be imparted to the produced conductive substrate. In a series of processes from wiring pattern printing to baking, it is possible to form the resist layer at the same time, contributing to drastic reduction of the process and realizing a clean manufacturing process that does not emit any harmful chemical substances. Become. In the (C) reduction treatment step in an inert atmosphere containing hydrogen, the surface of the binder resin containing the copper fine particle sintered body may be carbonized. In such a case, more hydrophobicity is imparted. This supplements that the function of the resist layer is strengthened.

また、エチルセルロースは150℃程度まで加熱することで軟化するため、焼結前工程における亜酸化銅形成による銅微粒子同士の接触を容易ならしめる上、また亜酸化銅の還元時には速やかに流動して焼結体の周囲に被膜を形成できる点で望ましい。   In addition, since ethyl cellulose softens when heated to about 150 ° C., it facilitates contact between the copper fine particles due to the formation of cuprous oxide in the pre-sintering process, and also rapidly flows and burns during the reduction of cuprous oxide. This is desirable because a film can be formed around the bonded body.

導電性インクには、さらに分散剤、溶媒等の配合が考慮される。分散剤としては、例えば、ポリアミン型、ポリカルボン酸型などの高分子型分散剤、アルキルポリアミンなどの界面活性剤、等が例示される。また溶媒としてはテルピネオール、エチレングリコール等が例示される。   In the conductive ink, a blend of a dispersant, a solvent and the like is further considered. Examples of the dispersant include polymer-type dispersants such as polyamine type and polycarboxylic acid type, and surfactants such as alkyl polyamines. Examples of the solvent include terpineol and ethylene glycol.

導電性インクの組成割合については、全体を100質量%とすると、一般的に次の範囲が例示される。   As for the composition ratio of the conductive ink, the following range is generally exemplified when the whole is 100 mass%.

銅微粒子:10重量〜70重量%
焼成バインダー: 10重量%以下
分散剤:0重量〜10重量%
溶媒:30重量〜90重量%
この組成割合について、処理工程(B)(C)において銅微粒子は焼成時に焼成バインダーの存在レベルを超えていることが好ましいことから、銅微粒子と焼成バインダーとの配合比は
33:1〜10:1(銅微粒子:焼成バインダー 重量比)
の範囲となるようにすることが好ましい。処理工程(B)においては、空気中での加熱や酸素ガスやその不活性ガスとの混合ガス等を用いて加熱することができる。
Copper fine particles: 10 to 70% by weight
Firing binder: 10% by weight or less Dispersant: 0% to 10% by weight
Solvent: 30% to 90% by weight
About this composition ratio, since it is preferable that the copper fine particle exceeds the presence level of a baking binder at the time of baking in processing process (B) (C), the compounding ratio of a copper fine particle and a baking binder is
33: 1-10: 1 (Copper fine particles: Binder weight ratio)
It is preferable to be in the range. In the treatment step (B), heating can be performed using air or a mixed gas with oxygen gas or an inert gas thereof.

処理工程(C)においては、水素ガスや水素ガスと不活性ガスとの混合ガス等を用いて加熱することができる。   In the treatment step (C), heating can be performed using hydrogen gas or a mixed gas of hydrogen gas and inert gas.

処理工程(B)では、隣接する銅微粒子同士の接触(後述の実施例3における酸化処理後のシート抵抗10MΩ/sq以下)を考慮すると、銅微粒子における亜酸化銅(Cu2O)分率が7%以上であるようにする。7%〜24%の範囲内であることが好ましい。空気中での加熱処理の場合には、加熱温度は130℃以上170℃以下を目安とすることができる。 In the treatment step (B), when considering the contact between adjacent copper fine particles (sheet resistance after oxidation treatment of 10 MΩ / sq or less in Example 3 described later), the cuprous oxide (Cu 2 O) fraction in the copper fine particles is Make sure it is at least 7%. It is preferably within the range of 7% to 24%. In the case of heat treatment in air, the heating temperature can be 130 ° C. or more and 170 ° C. or less.

これ以外の亜酸化銅(Cu2O)分率の範囲において30%を大きく超える場合は、空気下の加熱温度の目安が200℃を超えるような高温となり(実施例3に示す結果より)、加熱温度を下げるためには別途酸素ガス導入による酸素濃度の調整などが必要となる。また、多量の亜酸化銅の発生に伴い、還元処理に対しても、1)還元時間を長くする、2)還元温度を上げる、3)水素濃度を上げる等の対処が必要になると考えられる。   If the cuprous oxide (Cu2O) fraction other than this range greatly exceeds 30%, the heating temperature under air will be as high as 200 ° C (from the results shown in Example 3). In order to reduce the oxygen concentration, it is necessary to separately adjust the oxygen concentration by introducing oxygen gas. In addition, with the generation of a large amount of cuprous oxide, it is considered that measures such as 1) increasing the reduction time, 2) raising the reduction temperature, and 3) raising the hydrogen concentration are necessary for the reduction treatment.

本発明では、例えば、前記のとおり、100nm以上の銅微粒子は粒子の凝集力を低下させる。導電性インクには焼成バインダー樹脂を添加することで、インクに適度な流動性や接着性を与える。基板に塗工された銅微粒子は、亜酸化銅が7質量%以上になるまで空気中で加熱酸化されることで、銅と亜酸化銅の密度差により粒子の膨張が生じ、バインダー樹脂や有機保護剤の存在下においても隣接する金属粒子と接触する。この時に生じる亜酸化銅微粒子は数10nm以下であるため、後の微量の水素を含む不活性雰囲気での加熱処理により、銅に還元される過程で融点降下による焼結が進行する。バインダー樹脂は焼成温度より熱分解開始温度が高い材料を用いるため、大半は加熱の影響を受けずに残り、焼結された銅微粒子の周囲に被膜を形成する。   In the present invention, for example, as described above, copper fine particles of 100 nm or more reduce the cohesive strength of the particles. By adding a baked binder resin to the conductive ink, appropriate fluidity and adhesion are imparted to the ink. The copper fine particles coated on the substrate are heated and oxidized in air until the cuprous oxide content is 7% by mass or more, resulting in expansion of the particles due to the difference in density between copper and cuprous oxide. Even in the presence of a protective agent, it comes into contact with adjacent metal particles. Since the cuprous oxide fine particles generated at this time are several tens of nm or less, sintering by a melting point drop proceeds in the process of reduction to copper by subsequent heat treatment in an inert atmosphere containing a small amount of hydrogen. Since the binder resin uses a material having a thermal decomposition start temperature higher than the firing temperature, most of the binder resin remains unaffected by heating and forms a film around the sintered copper fine particles.

以下実施例を示し、さらに詳しく説明する。   Hereinafter, examples will be shown and described in more detail.

<実施例1>
有機保護剤としてゼラチン(新田ゼラチン製)、原料に酸化銅(II)(日進ケムコ製)、還元剤としてヒドラジン一水和物(関東化学製もしくは純正化学製)を用いて銅粒子を合成した。すなわち、まず、ゼラチンと純水を1:30の割合で十分に溶解させた水溶液に対して、酸化銅を8重量部添加し、アンモニア水を用いてpH11に調整した後、撹拌しながら80℃昇温した後、酸化銅1molに対し2.4mol分のヒドラジン一水和物を添加して2時間反応させた。デカント法により上澄み除去および水洗を行ない得られた銅粒子に対して、5重量部の分散剤、53重量部の焼成用ビヒクル(日新化成製ECビヒクル)、53重量部のαテルピネオールを混合した後、超高圧分散機を用いて約48wt%の銅微粒子のインクを調製した。前記焼成用ビヒクルは溶剤と焼成バインダーであるエチルセルロースで構成されており、溶媒は150℃でほぼ全量揮発し、エチルセルロースの分解開始温度はTGの計測結果から約210℃であることがわかっている(図1)。
<Example 1>
Copper particles were synthesized using gelatin (made by Nitta Gelatin) as an organic protective agent, copper (II) oxide (made by Nisshin Chemco) as a raw material, and hydrazine monohydrate (made by Kanto Chemical or Pure Chemical) as a reducing agent. . That is, first, 8 parts by weight of copper oxide was added to an aqueous solution in which gelatin and pure water were sufficiently dissolved at a ratio of 1:30, adjusted to pH 11 with aqueous ammonia, and then stirred at 80 ° C. After raising the temperature, 2.4 mol of hydrazine monohydrate was added to 1 mol of copper oxide and reacted for 2 hours. The copper particles obtained by removing the supernatant and washing with water by the decant method were mixed with 5 parts by weight of a dispersant, 53 parts by weight of a firing vehicle (EC vehicle manufactured by Nisshin Kasei) and 53 parts by weight of α-terpineol. Thereafter, an ink of about 48 wt% copper fine particles was prepared using an ultrahigh pressure disperser. The firing vehicle is composed of a solvent and ethyl cellulose which is a firing binder, and the solvent is almost completely volatilized at 150 ° C., and the decomposition start temperature of ethyl cellulose is found to be about 210 ° C. from the measurement result of TG ( Figure 1).

得られたインクはドクターブレードによりアルミナ基板上に20μmの塗工厚で印刷され、窒素中60℃での溶媒の乾燥、200℃空気中での4時間の酸化処理を経て、200℃の3%水素97%窒素混合雰囲気にて2時間の還元処理をして銅粒子の薄膜焼結体を得た。膜厚はSEM断面の観察結果より約2.7μmであった(図2)。   The obtained ink was printed on an alumina substrate with a doctor blade with a coating thickness of 20 μm, dried in a solvent at 60 ° C. in nitrogen, and oxidized for 4 hours in air at 200 ° C., and 3% at 200 ° C. A thin film sintered body of copper particles was obtained by reduction treatment for 2 hours in a 97% hydrogen mixed atmosphere. The film thickness was about 2.7μm from the observation result of the SEM cross section (Fig. 2).

導電性は抵抗率計測器Loresta-GPにより2cm角の試料で縦横3点ずつ計6点の計測を行い、平均体積抵抗率は3×10-5Ω・cmとバルク銅の1.55×10-6Ω・cmに対して良好な導電性を示した。 Conductivity is measured by a resistivity meter Loresta-GP, measuring 6 points in total, 3 points in length and width on a 2 cm square sample, with an average volume resistivity of 3 × 10 −5 Ω · cm, 1.55 × 10 −6 of bulk copper Good conductivity was exhibited for Ω · cm.

焼成過程のXRD測定結果(図3)は、a)印刷後、一旦、b)酸化処理後に試料が酸化された後、c)還元処理後に銅に再還元されていることを示している。XRDによる準定量(RIR法)の結果、この試料の酸化処理後は銅が71wt%、亜酸化銅が29wt%であった。   The XRD measurement result (FIG. 3) of the firing process shows that a) after printing, b) the sample was oxidized after the oxidation treatment, and c) re-reduced to copper after the reduction treatment. As a result of semi-quantitative analysis (RIR method) by XRD, after oxidation treatment of this sample, copper was 71 wt% and cuprous oxide was 29 wt%.

各工程におけるSEM観察は有機成分の残渣を確認するため、図4、図5、図6に示したように、a)二次電子像とb)反射電子像を撮影して比較した。b)反射電子像は原子番号依存性があることから、金属銅など原子番号の大きいものは明るく、有機成分など原子番号の小さいものは暗い像となる。印刷後は各々が有機成分に覆われた独立した粒子である(図4)。空気中で加熱を行うと数10nm以下の粒子が多く発生して各々の粒子間が接触する(図5)。更に3%水素中で加熱すると微小粒子が結合して焼結体を形成するが、その周囲はバインダー樹脂に覆われた状態であることが確認できる(図6)。   In SEM observation in each process, in order to confirm the residue of organic components, as shown in FIGS. 4, 5, and 6, a) secondary electron images and b) reflected electron images were taken and compared. b) Since the backscattered electron image has an atomic number dependency, a large atomic number such as metallic copper is bright, and a small atomic number such as an organic component is a dark image. After printing, each is an independent particle covered with organic components (Figure 4). When heated in air, many particles of several tens of nanometers or less are generated and the particles come into contact with each other (Fig. 5). Furthermore, when heated in 3% hydrogen, fine particles are bonded to form a sintered body, and it can be confirmed that the periphery is covered with a binder resin (FIG. 6).

各工程における粒子形状の変化を把握するため、合成した銅微粒子、酸化処理後、還元処理後の試料を少量剥離サンプリングさせてTEM像を観察した(図7)。a)銅粒子(合成後)のb)酸化処理後、100〜200nmほどの銅微粒子の周囲に10nmほどの微小粒子が発生する。c)還元処理後のTEM観察像からは粒子間が焼結されていることが明瞭に確認できる。b)酸化処理後に発生した10nmほどの微小粒子は、高倍率観察で確認された回折格子を計測した結果、a)視野1およびb)視野2の何れも亜酸化銅であることが確認できた(図8)。   In order to grasp the change of the particle shape in each step, a small amount of the synthesized copper fine particles, the oxidation treatment, and the reduction treatment sample were sampled by peeling and observed (FIG. 7). a) Copper particles (after synthesis) b) After oxidation treatment, fine particles of about 10 nm are generated around copper fine particles of about 100 to 200 nm. c) From the TEM observation image after the reduction treatment, it can be clearly confirmed that the particles are sintered. b) As a result of measuring the diffraction grating confirmed by high-magnification observation, the fine particles of about 10 nm generated after the oxidation treatment were confirmed to be cuprous oxide in both a) visual field 1 and b) visual field 2. (Figure 8).

以上のことから、本発明での焼成メカニズムは図9のようであると考えられる。a)印刷後の銅微粒子は各々が独立しているが、酸化処理工程では銅微粒子の酸化に伴い発生する亜酸化銅超微粒子形成過程で銅と亜酸化銅の密度差による体積膨張が生じて、隣り合った銅微粒子はバインダー樹脂の層を越えて亜酸化銅超微粒子を通して接触する。このようなb)酸化処理後に還元処理されることで超微粒子間の融点降下により焼結がなされると考えられる。c)還元処理後は体積収縮が生じるため、焼結された粒子はバインダー樹脂に内包される。
<実施例2>
実施例1と同じインクをドクターブレードによりアルミナ基板上に塗工厚40μmで印刷し、窒素中60℃での溶媒の乾燥、150℃空気中で4時間の酸化処理を経て、150℃の3%水素97%窒素混合雰囲気にて8時間の還元処理をして銅粒子の薄膜焼結体を得た。膜厚はSEM断面の観察結果より約5.3μmであった(図10)。
From the above, it is considered that the firing mechanism in the present invention is as shown in FIG. a) Although copper fine particles after printing are independent of each other, volume expansion occurs due to the difference in density between copper and cuprous oxide during the cuprous oxide ultrafine particle formation process that occurs with the oxidation of copper fine particles in the oxidation treatment process. Adjacent copper fine particles contact with each other through the cuprous oxide ultrafine particles beyond the binder resin layer. It is considered that sintering is performed due to a melting point drop between the ultrafine particles by such a b) reduction treatment after the oxidation treatment. c) Since the volume shrinkage occurs after the reduction treatment, the sintered particles are encapsulated in the binder resin.
<Example 2>
The same ink as in Example 1 was printed on an alumina substrate with a doctor blade with a coating thickness of 40 μm, dried in a solvent at 60 ° C. in nitrogen, and oxidized in air at 150 ° C. for 4 hours. A reduction treatment for 8 hours in a 97% hydrogen mixed atmosphere was performed to obtain a thin film sintered body of copper particles. The film thickness was about 5.3 μm from the observation result of the SEM cross section (FIG. 10).

導電性は抵抗率計測器Loresta-GPにより2cm角の試料で縦横3点ずつ計6点の計測を行い、平均体積抵抗率は3.1×10-5Ω・cmとバルク銅の1.55×10-6Ω・cmに対して良好な導電性を示した。 Conductivity is measured by a resistivity meter Loresta-GP, measuring 6 points in total, 3 points vertically and horizontally on a 2 cm square sample, with an average volume resistivity of 3.1 × 10 −5 Ω · cm, 1.55 × 10 −6 of bulk copper Good conductivity was exhibited for Ω · cm.

焼成過程のXRD測定結果は(図11)、実施例1と同様に、a)印刷後、一旦、b)酸化処理後、c)還元処理後に銅に再還元されていることを示している。XRDによる準定量(RIR法)の結果、この試料の酸化処理後は銅が85wt%、亜酸化銅が15wt%であった。   The XRD measurement result in the firing process (FIG. 11) shows that, as in Example 1, a) after printing, b) after oxidation treatment, and c) after reduction treatment, it was re-reduced to copper. As a result of semi-quantitative analysis (RIR method) by XRD, after the oxidation treatment of this sample, copper was 85 wt% and cuprous oxide was 15 wt%.

各工程におけるSEM観察は有機成分の残渣を確認するため、実施例1と同様にa)二次電子像とb)反射電子像を撮影して比較した。空気中で加熱して酸化を行うと数10nm以下の粒子が多く発生して各々の粒子間が接触する(図12)。更に3%水素中で加熱して還元すると微小粒子が結合して焼結体を形成するが、その周囲はバインダー樹脂に覆われた状態であることが確認できる(図13)。
比較例
実施例1と同じインクをドクターブレードによりアルミナ基板上に塗工厚40μmで印刷し、窒素中60℃での溶媒の乾燥、200℃窒素中(純度99.99%)で4時間の加熱処理を経て、200℃の3%水素97%窒素混合雰囲気にて4時間の還元処理を実施した。
In the SEM observation in each process, in order to confirm the residue of the organic component, a) secondary electron image and b) reflected electron image were taken and compared in the same manner as in Example 1. When oxidation is performed by heating in air, many particles of several tens of nanometers or less are generated and each particle comes into contact (Fig. 12). Furthermore, when reduced by heating in 3% hydrogen, fine particles are bonded to form a sintered body, and it can be confirmed that the periphery is covered with a binder resin (FIG. 13).
Comparative Example The same ink as in Example 1 was printed on an alumina substrate with a doctor blade with a coating thickness of 40 μm, dried in a solvent at 60 ° C. in nitrogen, and heated for 4 hours at 200 ° C. in nitrogen (purity 99.99%). Then, reduction treatment was performed for 4 hours in a mixed atmosphere of 3% hydrogen and 97% nitrogen at 200 ° C.

導電性は抵抗率計測器Loresta-GPにより2cm角の試料で縦横3点ずつ計6点の計測を行ったが、計測不能であり絶縁体であることを確認した。   Conductivity was measured with a resistivity meter Loresta-GP, measuring a total of 6 points, 3 cm in length and width, on a 2 cm square sample, but it was impossible to measure and it was confirmed to be an insulator.

焼成過程のXRD測定結果(図14)は、a)印刷後のb)熱処理後、並びにc)還元処理後に試料の組成に大きな変化がないことを示している。還元処理後のSEM観察像(図15)は、先に図4で示した印刷後のSEM像と比較しても殆ど変化がなく、各々が有機成分に覆われた独立した粒子であることが確認できる。このことから酸化処理を行わない系では粒子間が焼結されず、導電性が発現しないとことが明確となった。
<実施例3>
実施例1、実施例2と比較例とから、酸化処理後に亜酸化銅を介して銅粒子間が接触することが、その後の還元処理時の焼結に作用することが確認された。そこで、どの程度まで酸化を進行させれば銅粒子間が接触するのかを検討した。
The XRD measurement results during the firing process (FIG. 14) show that there is no significant change in the composition of the sample a) after printing b) after heat treatment and c) after reduction treatment. The SEM observation image after the reduction treatment (FIG. 15) is almost the same as the SEM image after printing shown in FIG. 4, and each is an independent particle covered with an organic component. I can confirm. From this, it was clarified that in the system in which the oxidation treatment is not performed, the particles are not sintered and the conductivity is not exhibited.
<Example 3>
From Example 1, Example 2 and the comparative example, it was confirmed that the contact between the copper particles via the cuprous oxide after the oxidation treatment affects the sintering during the subsequent reduction treatment. Therefore, to what extent the oxidation progresses, the copper particles were in contact with each other.

すなわち、実施例1と同じインクを、ドクターブレードによりアルミナ基板上に塗工厚40μmで印刷し、窒素中60℃で溶媒を乾燥させた印刷基板を複数枚用意し、これらを各々100℃、130℃、150℃、200℃の空気中で4時間の酸化処理を行い、XRDによる銅と亜酸化銅の準定量測定と、抵抗率計測器Loresta-GPによる導電性測定を実施した。また、比較例として200℃の窒素中(純度99.99%)で4時間の加熱処理を行ったものも作製し、同様の計測を行った。   That is, the same ink as in Example 1 was printed on an alumina substrate with a doctor blade at a coating thickness of 40 μm, and a plurality of printed substrates obtained by drying the solvent at 60 ° C. in nitrogen were prepared. Oxidation treatment was performed in air at ℃, 150 ℃ and 200 ℃ for 4 hours, and semi-quantitative measurement of copper and cuprous oxide by XRD and conductivity measurement by resistivity meter Loresta-GP were performed. Further, as a comparative example, a sample that was heat-treated in nitrogen at 200 ° C. (purity 99.99%) for 4 hours was produced, and the same measurement was performed.

結果を表1に示す。窒素中での加熱処理の場合は、酸化処理後に導電性が発現しなかった。空気中においては加熱温度が100℃の場合は導電性が発現しなかったが、130℃、150℃、200℃ではMΩオーダーの導通が確認できた。この結果から空気中では100℃では亜酸化銅の生成が少なく、隣接する銅微粒子同士の十分な接触に至らないため絶縁体を示すが、130℃以上に加熱すると亜酸化銅の生成と同時に抵抗が減少することがわかる。実施例1、実施例2の結果を鑑みると、この段階で隣接する銅微粒子同士が亜酸化銅を介して接触したと考えられる。150℃では亜酸化銅が増えて抵抗はさらに若干減少する。200℃まで温度を上げると抵抗は上昇に転ずる。これは全体に対して亜酸化銅の割合が増えることで、亜酸化銅の固有抵抗が支配的になってくるからと考えられる。以上の結果を踏まえ、さらに検討することで、好ましくは、本系におけるシート抵抗10MΩ/sq以下とするには、亜酸化銅分率が7%以上24%以下、空気中での加熱温度としては130℃以上170℃以下を目安とすることが考慮される。   The results are shown in Table 1. In the case of heat treatment in nitrogen, conductivity did not develop after the oxidation treatment. In air, when the heating temperature was 100 ° C., conductivity did not appear, but at 130 ° C., 150 ° C., and 200 ° C., conduction in MΩ order could be confirmed. From this result, in the air, there is little formation of cuprous oxide at 100 ° C, and it shows an insulator because it does not lead to sufficient contact between adjacent copper fine particles, but when heated to 130 ° C or more, resistance appears simultaneously with the formation of cuprous oxide. It can be seen that decreases. In view of the results of Example 1 and Example 2, it is considered that adjacent copper fine particles are in contact with each other through cuprous oxide at this stage. At 150 ° C, cuprous oxide increases and the resistance further decreases slightly. When the temperature is raised to 200 ° C, the resistance starts to rise. This is thought to be because the specific resistance of cuprous oxide becomes dominant as the ratio of cuprous oxide to the whole increases. Based on the above results, by further study, preferably, to make the sheet resistance in this system 10 MΩ / sq or less, the cuprous oxide fraction is 7% or more and 24% or less, and the heating temperature in air is It is considered that the standard is 130 ° C or higher and 170 ° C or lower.

Claims (8)

少なくとも次の処理工程をもって基板上に樹脂被膜を有する銅微粒子の焼結体を生成させることを特徴とする導電性の銅微粒子焼結体の製造方法。
(A)銅微粒子および焼成バインダーを含有する導電性インクの基板上への塗布
(B)前記塗布後の銅微粒子のうちの亜酸化銅(Cu2O)分率が7質量%以上となるものとする酸化処理
(C)前記酸化処理後の還元処理
A method for producing a conductive copper fine particle sintered body, comprising producing a sintered body of copper fine particles having a resin film on a substrate through at least the following processing steps.
(A) Application of conductive ink containing copper fine particles and baked binder on substrate (B) Cuprous oxide (Cu 2 O) fraction of copper fine particles after application is 7% by mass or more (C) Reduction treatment after the oxidation treatment
基板上に塗布する銅微粒子の平均粒子径は100nm以上であることを特徴とする請求項1に記載の銅微粒子焼結体の製造方法。   2. The method for producing a copper fine particle sintered body according to claim 1, wherein the average particle diameter of the copper fine particles applied on the substrate is 100 nm or more. 焼成バインダーの熱分解開始温度は、酸化処理および還元処理の温度よりも高いことを特徴とする請求項1または2に記載の銅微粒子焼結体の製造方法。   3. The method for producing a copper fine particle sintered body according to claim 1, wherein a thermal decomposition start temperature of the fired binder is higher than temperatures of the oxidation treatment and the reduction treatment. 空気中での加熱による酸化処理であることを特徴とする請求項1から3のうちのいずれか一項に記載の銅微粒子焼結体の製造方法。   4. The method for producing a copper fine particle sintered body according to any one of claims 1 to 3, wherein the method is an oxidation treatment by heating in air. 水素による還元処理であることを特徴とする請求項1から4のうちのいずれか一項に記載の銅微粒子焼結体の製造方法。   5. The method for producing a copper fine particle sintered body according to any one of claims 1 to 4, wherein the copper fine particle sintered body is a reduction treatment with hydrogen. 請求項1から5のうちのいずれか一項に記載の方法により形成することを特徴とする導電性基板の製造方法。   6. A method for producing a conductive substrate, which is formed by the method according to any one of claims 1 to 5. 請求項1から5のうちのいずれか一項に記載の方法により得られたものであることを特徴とする銅微粒子焼結体。   A copper fine particle sintered body obtained by the method according to any one of claims 1 to 5. 請求項6に記載の方法により得られたものであることを特徴とする導電性基板。   7. A conductive substrate obtained by the method according to claim 6.
JP2014097154A 2014-05-08 2014-05-08 Copper fine particle sintered body and method for producing conductive substrate Active JP6562196B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014097154A JP6562196B2 (en) 2014-05-08 2014-05-08 Copper fine particle sintered body and method for producing conductive substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014097154A JP6562196B2 (en) 2014-05-08 2014-05-08 Copper fine particle sintered body and method for producing conductive substrate

Publications (2)

Publication Number Publication Date
JP2015214722A true JP2015214722A (en) 2015-12-03
JP6562196B2 JP6562196B2 (en) 2019-08-21

Family

ID=54751872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014097154A Active JP6562196B2 (en) 2014-05-08 2014-05-08 Copper fine particle sintered body and method for producing conductive substrate

Country Status (1)

Country Link
JP (1) JP6562196B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107538010A (en) * 2017-07-17 2018-01-05 哈尔滨工业大学深圳研究生院 A kind of method for reducing nano-metal particle sintering temperature
JP2019007032A (en) * 2017-06-20 2019-01-17 住友金属鉱山株式会社 Nickel paste, method for producing the same, and method for producing nickel organic slurry
WO2019106739A1 (en) 2017-11-29 2019-06-06 国立大学法人北海道大学 Low-temperature-sinterable copper particle and method for manufacturing sintered compact using same
CN111517811A (en) * 2019-06-19 2020-08-11 贝国平 Rapid plasma sintering preparation method of ceramic PCB substrate
WO2022045252A1 (en) 2020-08-28 2022-03-03 国立大学法人北海道大学 Oxide-containing copper fine particles, method for manufacturing same, and method for manufacturing sintered compact using oxide-containing copper fine particles

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11217680A (en) * 1998-01-30 1999-08-10 Mitsubishi Materials Corp Production of copper tube having porous copper layer
JP2007080720A (en) * 2005-09-15 2007-03-29 Asahi Kasei Corp Conductive metal paste
JP2013136840A (en) * 2011-12-27 2013-07-11 Samsung Electro-Mechanics Co Ltd Copper powder, copper paste, and method for producing the copper powder

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11217680A (en) * 1998-01-30 1999-08-10 Mitsubishi Materials Corp Production of copper tube having porous copper layer
JP2007080720A (en) * 2005-09-15 2007-03-29 Asahi Kasei Corp Conductive metal paste
JP2013136840A (en) * 2011-12-27 2013-07-11 Samsung Electro-Mechanics Co Ltd Copper powder, copper paste, and method for producing the copper powder

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019007032A (en) * 2017-06-20 2019-01-17 住友金属鉱山株式会社 Nickel paste, method for producing the same, and method for producing nickel organic slurry
JP7091611B2 (en) 2017-06-20 2022-06-28 住友金属鉱山株式会社 Nickel paste and its manufacturing method, and nickel organic slurry manufacturing method
CN107538010A (en) * 2017-07-17 2018-01-05 哈尔滨工业大学深圳研究生院 A kind of method for reducing nano-metal particle sintering temperature
CN107538010B (en) * 2017-07-17 2021-06-04 哈尔滨工业大学深圳研究生院 Method for reducing sintering temperature of nano metal particles
WO2019106739A1 (en) 2017-11-29 2019-06-06 国立大学法人北海道大学 Low-temperature-sinterable copper particle and method for manufacturing sintered compact using same
CN111517811A (en) * 2019-06-19 2020-08-11 贝国平 Rapid plasma sintering preparation method of ceramic PCB substrate
WO2022045252A1 (en) 2020-08-28 2022-03-03 国立大学法人北海道大学 Oxide-containing copper fine particles, method for manufacturing same, and method for manufacturing sintered compact using oxide-containing copper fine particles

Also Published As

Publication number Publication date
JP6562196B2 (en) 2019-08-21

Similar Documents

Publication Publication Date Title
KR101099237B1 (en) Conductive Paste and Conductive Circuit Board Produced Therewith
JP6562196B2 (en) Copper fine particle sintered body and method for producing conductive substrate
JP5993812B2 (en) Manufacturing method of conductive film
TWI530963B (en) Sheet-like silver microparticles and methods for producing the same, and a paste using the same and a paste
JP7076591B2 (en) A method for manufacturing a copper oxide ink and a conductive substrate using the ink, a method for manufacturing a product containing a coating film and a product using the same, a method for manufacturing a product with a conductive pattern, and a product with a conductive pattern.
JP2023027058A (en) Dispersion, method for producing conductive pattern-equipped structure by using dispersion, and conductive pattern-equipped structure
KR20150064054A (en) Silver hybrid copper powder, method for producing same, conductive paste containing silver hybrid copper powder, conductive adhesive, conductive film and electrical circuit
JP2013206722A (en) Liquid composition, metal copper film, conductor wiring, and method for manufacturing metal copper film
JP2019090110A (en) Structure having conductive pattern region and method for manufacturing the same
JP2015149121A (en) Copper particle dispersion paste and manufacturing method of conductive substrate
EP3248713B1 (en) Electroconductive microparticles
JP2016105449A (en) Conductive substrate
KR102310824B1 (en) Silver powder
JP2016110690A (en) Conductive substrate
JP2020119737A (en) Conductive paste, base material with conductive film, production method of base material with conductive film
JP2018076594A (en) Copper powder
JP6175304B2 (en) Copper composite particles, copper paste containing the same, and circuit board manufacturing method using the same
JPWO2019069936A1 (en) Silver fine particle dispersion
WO2017179524A1 (en) Silver-coated copper powder and method for producing same
JP2012174375A (en) Method for producing conductive coating film and conductive coating film
KR101177084B1 (en) Conductive ink composite for forming build-up bump for multilayered PCB
KR101727218B1 (en) Manufacturing method of sintered object using composite ink having Sn-58Bi nanoparticles and sintered object thereof
JP2014186831A (en) Method of producing conductive film
JP6111170B2 (en) Conductive film forming composition and method for producing conductive film using the same
JP2015115147A (en) Metal particle, paste for forming conductive film, and article

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170329

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180424

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190618

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190709

R150 Certificate of patent or registration of utility model

Ref document number: 6562196

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250