JP2011064889A - Camera system - Google Patents

Camera system Download PDF

Info

Publication number
JP2011064889A
JP2011064889A JP2009214582A JP2009214582A JP2011064889A JP 2011064889 A JP2011064889 A JP 2011064889A JP 2009214582 A JP2009214582 A JP 2009214582A JP 2009214582 A JP2009214582 A JP 2009214582A JP 2011064889 A JP2011064889 A JP 2011064889A
Authority
JP
Japan
Prior art keywords
calibration operation
calibration
shake
camera
shake correction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009214582A
Other languages
Japanese (ja)
Inventor
Takayuki Shinohara
隆之 篠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2009214582A priority Critical patent/JP2011064889A/en
Publication of JP2011064889A publication Critical patent/JP2011064889A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Adjustment Of Camera Lenses (AREA)
  • Studio Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce imaging waiting time to the utmost by eliminating excessive calibration operation by a position detection means. <P>SOLUTION: Current ambient temperature T is compared with ambient temperature Ta (stored value) of a camera before shipping. If a temperature difference between them is over a predetermined value ΔT, regular calibration operation is performed. If the temperature difference is within the predetermined value ΔT, whether elapsed time t starting with a predetermined point of time when manufacturing the camera exceeds a predetermined time ta is determined. If the time t exceeds the time ta, the regular calibration operation is performed, and if the time t does not exceed the time ta, simple calibration operation is performed. The simple calibration operation is completed in a shorter time than the regular calibration operation. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、像振れ補正機能を備えたカメラシステムに関する。   The present invention relates to a camera system having an image blur correction function.

手振れ等に起因する像の振れを光学的に補正可能なカメラが知られている。この種のカメラは、カメラの振れを検出する振れ検出部と、撮影光軸と直交する方向に移動可能な振れ補正レンズとを有し、振れ検出部の出力に基づいて振れ補正レンズを駆動することで、結像面における像の振れを補正する。精度の高い振れ補正を行うには、常に補正レンズの正確な位置をリアルタイムで把握する必要があり、そのためにホール素子等を用いた位置検出装置が設けられている。しかし、カメラの使用環境温度や経年変化等の影響で、位置検出装置の出力と実際の補正レンズ位置との間にずれが生ずることがあり、このため、カメラ出荷後も位置検出装置の校正動作が不可欠となる。そこで、カメラの電源オンのたびに位置検出装置の校正動作を行うことで、常に高精度な振れ補正制御を可能としたカメラがある(例えば、特許文献1参照)。   A camera capable of optically correcting image shake caused by camera shake or the like is known. This type of camera has a shake detection unit that detects camera shake and a shake correction lens that is movable in a direction orthogonal to the photographing optical axis, and drives the shake correction lens based on the output of the shake detection unit. Thus, the shake of the image on the imaging plane is corrected. In order to perform highly accurate shake correction, it is necessary to always grasp the accurate position of the correction lens in real time, and for this purpose, a position detection device using a Hall element or the like is provided. However, there may be a gap between the output of the position detection device and the actual correction lens position due to the environment temperature of the camera and changes over time. Is essential. Therefore, there is a camera that can always perform highly accurate shake correction control by performing a calibration operation of the position detection device each time the camera is turned on (see, for example, Patent Document 1).

特開平9−80547号公報Japanese Patent Laid-Open No. 9-80547

位置検出装置の校正動作は、振れ補正制御の精度を高めるために重要であるが、過剰な校正動作は、徒に撮影待ち時間を長くするだけであり好ましくない。引用文献1では、この点については考慮されていない。   The calibration operation of the position detection device is important for improving the accuracy of shake correction control, but excessive calibration operation is not preferable because it only increases the waiting time for photographing. The cited document 1 does not consider this point.

本発明は、撮影光軸と交差する方向に駆動される振れ補正部材と、振れ補正部材の位置を検出する位置検出手段と、カメラまたはレンズ鏡筒の振れ量を検出する振れ検出手段と、振れ検出手段および位置検出手段の検出結果に基づき、カメラまたはレンズ鏡筒の振れに起因する像振れを補正すべく振れ補正部材を駆動する振れ補正制御を行う振れ補正制御手段とを備えたデジタルカメラシステムに適用され、振れ補正制御に先立ち、位置検出手段に対して予め決められた複数項目の調整を行う通常の校正動作と、複数項目のうちの一部の調整のみを行う簡易的な校正動作のいずれかを行う校正手段と、条件に応じて通常の校正動作および簡易的な校正動作のいずれを行うかを決定する校正制御手段とを具備することを特徴とする。   The present invention relates to a shake correction member that is driven in a direction crossing the imaging optical axis, a position detection unit that detects the position of the shake correction member, a shake detection unit that detects a shake amount of a camera or a lens barrel, and a shake A digital camera system including shake correction control means for performing shake correction control for driving a shake correction member to correct image shake caused by camera or lens barrel shake based on detection results of the detection means and the position detection means Before the shake correction control, a normal calibration operation for adjusting a plurality of predetermined items with respect to the position detecting means and a simple calibration operation for performing only a part of the plurality of adjustments are performed. It is characterized by comprising calibration means for performing any one of the above and calibration control means for determining whether a normal calibration operation or a simple calibration operation is performed according to conditions.

本発明によれば、位置検出手段の過剰な校正動作を排除して、撮影待ち時間を極力短くできる。   According to the present invention, it is possible to eliminate the excessive calibration operation of the position detection means and shorten the photographing waiting time as much as possible.

本発明の一実施形態におけるデジタルカメラの制御ブロック図。The control block diagram of the digital camera in one Embodiment of this invention. 振れ補正機構の詳細を示す構成図。The block diagram which shows the detail of a shake correction mechanism. 補正レンズの駆動範囲を説明する図。The figure explaining the drive range of a correction lens. 位置検出部の校正動作の概要を説明する図。The figure explaining the outline | summary of the calibration operation | movement of a position detection part. 本格的な(通常の)校正動作の手順例を示す図。The figure which shows the example of a procedure of a full-scale (normal) calibration operation | movement. 簡易的な校正動作の手順例を示す図。The figure which shows the example of a procedure of simple calibration operation | movement. 校正制御の手順を示すフローチャート。The flowchart which shows the procedure of calibration control. 校正制御の他の手順例を示すフローチャート。The flowchart which shows the other example of a procedure of calibration control. 簡易的な校正動作の他の手順例を示す図。The figure which shows the other example of a procedure of simple calibration operation | movement.

図1〜図7により本発明の一実施形態を説明する。
図1は、本実施の形態におけるデジタルカメラのブロック図である。カメラ1は、撮影レンズ2と、撮像素子3と、補正レンズ駆動部4と、補正レンズ位置検出部5と、Yaw方向振れ検出素子6と、Pitch方向振れ検出素子7と、制御部8と、アクチュエータ駆動部9と、絞り駆動部10と、フォーカス駆動部11と、操作部12と、画像処理部13と、液晶モニタ14と、温度センサ16とを備えている。
An embodiment of the present invention will be described with reference to FIGS.
FIG. 1 is a block diagram of a digital camera according to the present embodiment. The camera 1 includes a photographic lens 2, an image sensor 3, a correction lens driving unit 4, a correction lens position detection unit 5, a Yaw direction shake detection element 6, a Pitch direction shake detection element 7, a control unit 8, The actuator drive unit 9, the aperture drive unit 10, the focus drive unit 11, the operation unit 12, the image processing unit 13, the liquid crystal monitor 14, and the temperature sensor 16 are provided.

撮影レンズ2を透過した被写体光束は、撮像素子3で撮像され、その撮像信号は画像処理部13に入力される。画像処理部13は、画像処理回路や表示回路、記録/再生回路等を含み、画像処理回路は、入力された撮像信号に種々の処理を施して画像データを生成する。画像データは、表示回路による処理を経て、カメラ背面などに設けられた液晶モニタ14に表示される。   The subject luminous flux that has passed through the photographic lens 2 is imaged by the imaging device 3, and the imaging signal is input to the image processing unit 13. The image processing unit 13 includes an image processing circuit, a display circuit, a recording / reproducing circuit, and the like. The image processing circuit performs various processes on the input imaging signal to generate image data. The image data is displayed on a liquid crystal monitor 14 provided on the back of the camera or the like through processing by a display circuit.

撮影モード設定時には、上記撮像が繰り返され、その都度得られた画像データに基づく画像を液晶モニタ14に逐次更新表示する、いわゆるスルー画表示(ライブビュー表示)が行われる。撮影者は、そのスルー画表示を見ながら構図を決定することができる。レリーズ操作がなされると、改めて撮像が行われ、生成された画像データは、コンピュータで扱うことが可能な画像ファイルとして、記録/再生回路によりメモリカード等の記録媒体15に記録される。また再生モードでは、記録媒体15に記録された画像データを記録/再生回路にて読み出し、画像処理回路および表示回路による処理を経て液晶モニタ14に表示することができる。   When the shooting mode is set, the above imaging is repeated, and so-called through image display (live view display) is performed in which images based on the obtained image data are sequentially updated and displayed on the liquid crystal monitor 14. The photographer can determine the composition while viewing the live view display. When a release operation is performed, imaging is performed again, and the generated image data is recorded on a recording medium 15 such as a memory card by a recording / reproducing circuit as an image file that can be handled by a computer. In the reproduction mode, the image data recorded on the recording medium 15 can be read out by the recording / reproducing circuit and displayed on the liquid crystal monitor 14 through processing by the image processing circuit and the display circuit.

制御部8は、CPUやメモリ、その他の周辺回路から構成され、上記画像処理部13やアクチュエータ駆動部9などを制御するとともに、後述する振れ補正制御を行う。アクチュエータ駆動部9は、絞り駆動部10を介して絞りを駆動するとともに、フォーカス駆動部11を介して焦点調節(ピント合わせ)を行う。操作部12は、電源ボタンやレリーズボタン、再生操作や情報入力等で用いる各種操作部材等を含む。   The control unit 8 includes a CPU, a memory, and other peripheral circuits. The control unit 8 controls the image processing unit 13 and the actuator driving unit 9 and performs shake correction control described later. The actuator driving unit 9 drives the diaphragm through the diaphragm driving unit 10 and performs focus adjustment (focusing) through the focus driving unit 11. The operation unit 12 includes a power button, a release button, various operation members used for reproduction operation, information input, and the like.

次に、本実施形態における振れ補正制御について説明する。
撮影レンズ2は、手振れ等に起因する像の振れを補正するための補正レンズ2aを含み、補正レンズ2aは、補正レンズ駆動部4によって光軸と交わる方向に駆動されることにより、撮像素子3への被写体像の結像位置を補正する。補正レンズ位置検出部5は、補正レンズ2aの位置を検出する。
Next, shake correction control in this embodiment will be described.
The photographic lens 2 includes a correction lens 2a for correcting image blur caused by camera shake or the like, and the correction lens 2a is driven in a direction intersecting the optical axis by the correction lens driving unit 4 to thereby detect the imaging element 3 The image formation position of the subject image on is corrected. The correction lens position detection unit 5 detects the position of the correction lens 2a.

図2に、補正レンズ2a、補正レンズ駆動部4、および補正レンズ位置検出部5の具体的な構成例を示す。
補正レンズ2aはレンズ枠2bに保持され、レンズ枠2bとともに撮影光軸と交差する方向に移動可能とされる。その移動範囲は、可動制限枠2cによってメカ的に制限される。補正レンズ駆動部4は、ボイスコイルモータ(VCM)にて構成され、駆動用マグネット4aと、駆動マグネット用ヨーク4bと、コイル4cと、コイル用ヨーク4dとを有する。駆動用マグネット4aと駆動マグネット用ヨーク4bとは一体化されて可動制限枠2cに固定され、コイル用ヨーク4dも可動制限枠2cに固定されている。コイル4cは、レンズ枠2bに固定され、駆動用マグネット4aおよびコイル用ヨーク4dとの間に挟まれる形で配置されている。制御部8を介してコイル4cに通電すると、補正レンズ2aは可動制限枠2c内で光軸と交わる方向に移動する。
FIG. 2 shows a specific configuration example of the correction lens 2a, the correction lens driving unit 4, and the correction lens position detection unit 5.
The correction lens 2a is held by the lens frame 2b and can be moved together with the lens frame 2b in a direction crossing the photographing optical axis. The moving range is mechanically limited by the movable limit frame 2c. The correction lens driving unit 4 includes a voice coil motor (VCM), and includes a driving magnet 4a, a driving magnet yoke 4b, a coil 4c, and a coil yoke 4d. The drive magnet 4a and the drive magnet yoke 4b are integrated and fixed to the movable limit frame 2c, and the coil yoke 4d is also fixed to the movable limit frame 2c. The coil 4c is fixed to the lens frame 2b and is disposed so as to be sandwiched between the driving magnet 4a and the coil yoke 4d. When the coil 4c is energized via the controller 8, the correction lens 2a moves in the direction intersecting the optical axis within the movable limit frame 2c.

補正レンズ位置検出部5は、位置検出用マグネット5aと、位置検出用ヨーク5bと、ホール素子5cとで構成される。位置検出用マグネット5aと位置検出用ヨーク5bは、一体化されてレンズ枠2bに固定され、ホール素子5cは、可動制限枠2cに固定されている。この補正レンズ位置検出部5は、ホール素子5cからの出力電圧を制御部8へ出力し、制御部8は、補正レンズ位置検出部5からの出力電圧値(位置検出信号)に基づいて、補正レンズ2aの位置を検知する。   The correction lens position detection unit 5 includes a position detection magnet 5a, a position detection yoke 5b, and a hall element 5c. The position detection magnet 5a and the position detection yoke 5b are integrated and fixed to the lens frame 2b, and the Hall element 5c is fixed to the movable restriction frame 2c. The correction lens position detection unit 5 outputs the output voltage from the Hall element 5c to the control unit 8, and the control unit 8 corrects based on the output voltage value (position detection signal) from the correction lens position detection unit 5. The position of the lens 2a is detected.

図1において、Yaw方向振れ検出素子6は、カメラ1の本体のヨーイング、すなわち横方向の振れを検出するためのジャイロセンサである。また、Pitch方向振れ検出素子7は、カメラ1の本体のピッチング、すなわち縦方向の振れを検出するためのジャイロセンサである。Yaw方向振れ検出素子6、およびPitch方向振れ検出素子7は、それぞれの検出結果を制御部8へ出力する。制御部8は、Yaw方向振れ検出素子6、およびPitch方向振れ検出素子7からの出力、および位置検出部5の検出出力に基づいて、振れを打ち消すように補正レンズ2aを駆動制御する。   In FIG. 1, a Yaw direction shake detection element 6 is a gyro sensor for detecting yawing of the main body of the camera 1, that is, lateral shake. The pitch direction shake detection element 7 is a gyro sensor for detecting pitching of the main body of the camera 1, that is, vertical direction shake. The Yaw direction shake detection element 6 and the Pitch direction shake detection element 7 output the respective detection results to the control unit 8. Based on the outputs from the Yaw direction shake detection element 6 and the Pitch direction shake detection element 7 and the detection output of the position detection unit 5, the control unit 8 drives and controls the correction lens 2 a so as to cancel the shake.

図3は補正レンズ2aの駆動範囲を示す図である。補正レンズ2aは、駆動制限枠2cで囲まれたメカ駆動範囲内で移動が許容されるが、実際の振れ補正制御時には、メカ駆動範囲の中心を中心としたより狭い範囲(ソフト駆動範囲)AR内で駆動される。したがって、振れ補正制御時に補正レンズ2aが駆動制限枠2cに衝突することはない。   FIG. 3 is a diagram showing a driving range of the correction lens 2a. The correction lens 2a is allowed to move within the mechanical drive range surrounded by the drive restriction frame 2c, but in actual shake correction control, a narrower range (soft drive range) AR centered on the center of the mechanical drive range. Driven in. Therefore, the correction lens 2a does not collide with the drive restriction frame 2c during shake correction control.

なお、本実施形態は撮影レンズを固定的に備えたカメラを想定しているが、レンズ交換可能なカメラに適用した場合は、上記補正レンズ2a、補正レンズ駆動部4、補正レンズ位置検出部5および振れ検出素子6,7は、交換レンズ側に設けられる。   Note that this embodiment assumes a camera having a photographic lens fixedly. However, when applied to a camera with interchangeable lenses, the correction lens 2a, the correction lens drive unit 4, and the correction lens position detection unit 5 are used. The shake detection elements 6 and 7 are provided on the interchangeable lens side.

ところで、このような振れ補正制御を行うカメラでは、精度の高い位置検出を可能とするために、製品の出荷前にレンズ位置検出部5の校正動作を行う。校正動作時には、例えば図4(a)に示すように、補正レンズ2aを相対するメカ制限(可動制限枠)2cに当て、当てた状態での位置検出信号が、それぞれV1,V2(図4(b))となるように調整を行う。−L1,L1は、補正レンズ2aを両メカ制限に当てたときのレンズ位置を、51は校正によって実現すべき理想的な位置検出出力直線を、52は校正前における理想的でない同出力直線の一例をそれぞれ示している。
なお、図4は水平方向の調整例を示しているが、垂直方向も同様の調整を行う。
By the way, in a camera that performs such shake correction control, the lens position detector 5 is calibrated before shipping the product in order to enable highly accurate position detection. At the time of the calibration operation, for example, as shown in FIG. 4A, the correction lens 2a is applied to the opposing mechanical limit (movable limit frame) 2c, and the position detection signals in the applied state are V1, V2 (FIG. Adjustments are made so that b)). -L1 and L1 are lens positions when the correction lens 2a is subjected to both mechanical limitations, 51 is an ideal position detection output straight line to be realized by calibration, and 52 is a non-ideal same output straight line before calibration. An example is shown respectively.
4 shows an example of adjustment in the horizontal direction, the same adjustment is performed in the vertical direction.

上記校正動作の具体的な手順を図5に示す。
まず、補正レンズ2aを駆動して水平方向の一方のメカ制限に当て、そのときの位置検出信号がV1となるようにオフセット電圧調整信号Vh_offsetを調整する(第1の調整)。次に、補正レンズ2aを水平方向の他方のメカ制限に当て、そのときの位置検出信号がV2となるように調整する(第2の調整)。この第2の調整は、ホール素子駆動電流Vhiを調整することでゲイン、つまり出力直線の傾きを調整するとともに、オフセット電圧調整信号の調整によってオフセットレベルを調整することで行う。各調整で得た調整値は、不揮発性のメモリに記憶される。次に、補正レンズ2aを一方のメカ制限に再度当て、ソフト的な調整を行う(第3の調整)。これは、メカ制限に再度当てたときの位置検出信号とV1との誤差分を、補正値として記憶する処理である。実際に振れ補正制御を行うときは、得られた位置検出信号を上記補正値で補正した値を用いることで、精度の高い位置検出が行える。
なお、垂直方向も同様の処理を行う。
A specific procedure of the calibration operation is shown in FIG.
First, the correction lens 2a is driven to hit one of the horizontal mechanical limits, and the offset voltage adjustment signal Vh_offset is adjusted so that the position detection signal at that time becomes V1 (first adjustment). Next, the correction lens 2a is placed on the other mechanical limit in the horizontal direction and adjusted so that the position detection signal at that time becomes V2 (second adjustment). The second adjustment is performed by adjusting the Hall element drive current Vhi to adjust the gain, that is, the slope of the output straight line, and adjusting the offset level by adjusting the offset voltage adjustment signal. The adjustment value obtained in each adjustment is stored in a nonvolatile memory. Next, the correction lens 2a is again applied to one mechanical limit, and a soft adjustment is performed (third adjustment). This is a process of storing an error between the position detection signal and V1 when the mechanical restriction is again applied as a correction value. When the shake correction control is actually performed, highly accurate position detection can be performed by using a value obtained by correcting the obtained position detection signal with the correction value.
The same process is performed in the vertical direction.

上記記憶した各調整値を用いることで、位置検出信号の飽和を防止しつつダイナミックレンジを有効に使うことができ、正確な位置検出が可能となり、ひいては高精度の振れ補正制御を行うことができる。   By using each of the stored adjustment values, the dynamic range can be used effectively while preventing saturation of the position detection signal, accurate position detection is possible, and high-precision shake correction control can be performed. .

しかし、位置検出部5を構成するホール素子5cは温度による影響を受け易く、また経年変化による出力変動もあり、状況によっては出荷時の調整値を用いても精度の高い位置検出(振れ補正)は期待できない。そこで、出荷後もカメラの電源がオンされるたびに、制御部8は位置検出部5の校正動作を行い、その都度求めた調整値に基づいてその後の振れ補正制御を行う。   However, the Hall element 5c constituting the position detection unit 5 is easily affected by temperature, and also has output fluctuation due to secular change. Depending on the situation, highly accurate position detection (shake correction) can be performed even using an adjustment value at the time of shipment. Cannot be expected. Therefore, every time the camera is turned on after shipment, the control unit 8 performs a calibration operation of the position detection unit 5 and performs subsequent shake correction control based on the adjustment value obtained each time.

しかしながら、カメラ使用時の周囲温度が出荷前の校正時の温度に近く、かつ経年変化による影響を未だ受けない状況では、図5に示したような本格的な校正動作は不要であり、より簡易的な校正動作で十分な位置検出精度を得ることができる。かかる状況で本格的な校正動作を行うことは、徒にカメラの起動時間(電源オン操作から撮影可能となるまでの時間)を長くするだけであり、好ましくない。そこで本実施形態では、状況に応じて校正動作の方法を変えるようにした。   However, in the situation where the ambient temperature when using the camera is close to the temperature at the time of calibration before shipment and is not yet affected by the secular change, the full-scale calibration operation as shown in FIG. 5 is unnecessary and simpler. Sufficient position detection accuracy can be obtained by a typical calibration operation. Performing a full-scale calibration operation in such a situation is not preferable because it simply increases the start-up time of the camera (the time from when the power is turned on to when shooting is possible). Therefore, in this embodiment, the calibration operation method is changed according to the situation.

図6は簡易的な校正動作の一例を示している。この例では、補正レンズ2aを駆動して水平方向の一方のメカ制限に当て、そのときの位置検出信号がV1となるようにオフセット電圧調整信号Vh_offsetを調整し、次に補正レンズ2aを水平方向の他方のメカ制限に当て、ここでV2に対してソフト的な調整を行って終了する。各調整値はメモリに記憶される。図5に示したようなゲイン(傾き)の調整は行われず、振れ補正制御時には、当該校正動作で得たオフセットレベル調整値およびソフト的な調整値と、出荷前の校正動作で得られたゲイン調整値とが用いられる。   FIG. 6 shows an example of a simple calibration operation. In this example, the correction lens 2a is driven to be subjected to one mechanical limit in the horizontal direction, the offset voltage adjustment signal Vh_offset is adjusted so that the position detection signal at that time becomes V1, and then the correction lens 2a is moved in the horizontal direction. The other mechanical restriction is applied, and software adjustment is made for V2, and the process ends. Each adjustment value is stored in a memory. The gain (slope) adjustment as shown in FIG. 5 is not performed, and at the time of shake correction control, the offset level adjustment value and the software adjustment value obtained by the calibration operation, and the gain obtained by the calibration operation before shipment. Adjustment values are used.

この図6の校正(調整)動作では、ゲイン調整がなされないため、ゲインが低いときには位置検出信号の分解能が下がり、逆にゲインが上がると位置検出信号が飽和するおそれがある。また、メカ制限とソフト制限との関係が一部で逆転し、そのままでは補正レンズ2aがメカ制限に衝突するおそれもある。このような場合、ソフト制限を通常よりも狭めることで衝突自体は避け得るが、範囲を狭めると振れ補正性能の低下は免れない。しかし、カメラ使用時の温度が出荷前の校正時の温度と殆ど変わらず、かつ経年変化もない状況では、出荷前のゲイン調整値を用いても、上記のような分解能の低下や信号の飽和、補正レンズ2aの衝突といった不都合は起こらない可能性が高い。つまり、図6のような簡易調整だけ行えば、補正レンズ2aの駆動範囲を狭めることなく満足な振れ補正性能が得られる可能性が高い。そして、簡易的な校正動作は、本格的な校正動作と比べて短時間で済むので、その分だけカメラの起動時間を短くできる。   In the calibration (adjustment) operation of FIG. 6, since the gain is not adjusted, the resolution of the position detection signal decreases when the gain is low, and conversely, the position detection signal may be saturated when the gain increases. Further, the relationship between the mechanical limit and the soft limit is partially reversed, and the correction lens 2a may collide with the mechanical limit as it is. In such a case, the collision itself can be avoided by narrowing the soft limit more than usual, but if the range is narrowed, deterioration of the shake correction performance is inevitable. However, in the situation where the temperature when using the camera is almost the same as the temperature at the time of calibration before shipment and there is no change over time, even if the gain adjustment value before shipment is used, the above-mentioned decrease in resolution or signal saturation occurs. There is a high possibility that inconvenience such as the collision of the correction lens 2a does not occur. That is, if only simple adjustment as shown in FIG. 6 is performed, there is a high possibility that satisfactory shake correction performance can be obtained without narrowing the drive range of the correction lens 2a. Since the simple calibration operation requires a shorter time than the full-scale calibration operation, the camera start-up time can be shortened accordingly.

次に、図7のフローチャートを参照して、本格的な校正動作と簡易的な校正動作の使い分けについて説明する。
制御部8は、カメラの電源オン操作に伴って各部の初期化を行うとともに、図7に示す位置検出部5の校正処理を行う。まずステップS1で温度センサ16の出力を読み込み、現在のカメラ周囲温度Tを得る。ステップS2では、現在の周囲温度Tと出荷前の構成時の同温度Ta(記憶値)とを比較し、その差が所定値ΔT(例えば、15度)を超えていれば、本格的な校正動作が必要であると判断してステップS3に進む。ステップS3では、図5で説明したような本格的な校正動作を行う。
Next, with reference to the flowchart of FIG. 7, the proper use of the full-scale calibration operation and the simple calibration operation will be described.
The control unit 8 initializes each unit in accordance with the power-on operation of the camera, and performs calibration processing of the position detection unit 5 shown in FIG. First, in step S1, the output of the temperature sensor 16 is read to obtain the current camera ambient temperature T. In step S2, the current ambient temperature T is compared with the same temperature Ta (memory value) at the time of configuration before shipment, and if the difference exceeds a predetermined value ΔT (for example, 15 degrees), full-scale calibration is performed. It is determined that an operation is necessary, and the process proceeds to step S3. In step S3, a full-scale calibration operation as described in FIG. 5 is performed.

一方、温度差が所定値ΔT以内であれば、ステップS4に進み、カメラ製造時の所定時点を起点とした経過時間tが所定時間taを超えているか否かを判定する。この経過時間tは、カメラ内蔵の時計を用いて得ることができる。ステップS4が肯定されると、経年変化による位置検出部5の出力のずれが無視できないほど大きいと判断し、ステップS5で本格的な校正動作を行い、次いでステップS6でtaの値を更新する。   On the other hand, if the temperature difference is within the predetermined value ΔT, the process proceeds to step S4, and it is determined whether or not the elapsed time t starting from the predetermined time point when the camera is manufactured exceeds the predetermined time ta. This elapsed time t can be obtained using a clock built in the camera. If step S4 is affirmed, it is determined that the deviation of the output of the position detector 5 due to secular change is so large that it cannot be ignored, a full-scale calibration operation is performed in step S5, and then the value of ta is updated in step S6.

taは、例えばステップSで4での校正動作が行われるたびに、そのときの経過時間tに数値Δtを加えていくことで更新する。経年変化による影響が時間の経過に伴って顕著になることに鑑み、加える数値Δtは徐々に小さくすることが望ましい。   For example, ta is updated by adding a numerical value Δt to the elapsed time t each time the calibration operation is performed at 4 in step S, for example. In view of the fact that the influence due to secular change becomes conspicuous with the passage of time, it is desirable to gradually reduce the added numerical value Δt.

ステップS4が否定されると、経年変化による影響はないと判断し、また周囲温度TとTaとの差も小さいので、ステップS7において、図6で説明したような簡易的な校正動作を行う。ステップS3,S6,S7の後はメインの処理(不図示)にリターンし、撮影が許容される。   If step S4 is denied, it is determined that there is no influence due to secular change, and since the difference between the ambient temperatures T and Ta is small, a simple calibration operation as described in FIG. 6 is performed in step S7. After steps S3, S6, and S7, the process returns to the main process (not shown) and photographing is allowed.

図8は他の実施形態におけるフローを示し、これは、経年変化の判定方法が図7と異なる。
制御部8は、カメラの電源オン操作に伴って各部の初期化を行うとともに、図8に示す位置検出部5の校正処理を行う。ステップS11では、フラグのオン・オフを判定する。このフラグは、経年変化に対処するための本格的な校正動作を行うか否かを決めるものであり、カメラ出荷時にはオフに設定されている。
FIG. 8 shows a flow in another embodiment, which is different from FIG.
The control unit 8 initializes each unit in accordance with the power-on operation of the camera, and performs calibration processing of the position detection unit 5 shown in FIG. In step S11, it is determined whether the flag is on or off. This flag determines whether or not to perform a full-scale calibration operation to cope with the secular change, and is set to off when the camera is shipped.

フラグがオフであればステップS12に進み、上述と同様に温度センサ16からカメラ周囲温度Tを読取り、ステップS13で周囲温度Tと出荷前の構成時の同温度Ta(記憶値)とを比較する。温度差が所定値ΔT(例えば、15度)を超えていれば、ステップS14で本格的な校正動作を行い、所定値ΔT以内であれば、ステップS15で簡易的な校正動作を行う。   If the flag is off, the process proceeds to step S12, and the camera ambient temperature T is read from the temperature sensor 16 in the same manner as described above, and the ambient temperature T is compared with the same temperature Ta (stored value) at the time of configuration before shipment in step S13. . If the temperature difference exceeds a predetermined value ΔT (for example, 15 degrees), a full-scale calibration operation is performed in step S14, and if it is within the predetermined value ΔT, a simple calibration operation is performed in step S15.

ステップS16では、ステップS15での校正動作で得た調整値と、出荷前の校正動作で得た調整値(記憶値)とを比較し、その差が所定値未満であれば、ステップS17でフラグをオフしてリターンする。一方、上記調整値の差が所定値を超える場合は、ステップS18でフラグをオンしてリターンする。すなわち、温度差ΔTが所定値以内であるにも拘わらず調整値が大きく異なるということは、温度以外の何らかの要因(経年変化)によってずれが生じていると判断し、次回は本格的な校正動作を行うべくフラグをオンする。次回の電源オン時には、フラグがオンであるため、温度に拘わらず無条件で本格的な校正動作が行われる(ステップS11→S14)。   In step S16, the adjustment value obtained in the calibration operation in step S15 is compared with the adjustment value (stored value) obtained in the calibration operation before shipment. If the difference is less than the predetermined value, the flag is set in step S17. Turn off and return. On the other hand, if the difference between the adjustment values exceeds the predetermined value, the flag is turned on in step S18 and the process returns. That is, when the temperature difference ΔT is within a predetermined value, the adjustment value is greatly different. Therefore, it is determined that a deviation has occurred due to some factor other than temperature (aging), and next time full-scale calibration operation is performed. Turn on the flag to do. When the power is turned on next time, since the flag is on, a full-scale calibration operation is performed unconditionally regardless of the temperature (steps S11 → S14).

図9は簡易的な校正動作の他の例を示している。これは、図6の校正動作よりも更に簡易的なもので、補正レンズ2aを一方のメカ制限に当てて位置検出信号のレベルを確認し、次に他方のメカ制限に当ててソフト的な調整を行って終了する。ソフト的な調整値は、振れ補正制御に用いるものとしてメモリに記憶される。この場合は、実質的にソフト的な調整のみを行い、ゲイン調整もオフセットレベル調整もなされない。振れ補正制御時には、出荷前の校正動作で得たゲイン調整値およびオフセットレベル調整値とが用いられる。しかし、カメラ使用時の温度が出荷前の校正時の温度と殆ど変わらず、かつ経年変化もない状況では、図6の校正動作ほどではないにせよ、出荷前のゲイン調整値やオフセットレベル調整値を用いても、満足な振れ補正性能が得られる可能性は高い。そして、この図9の簡易的な校正動作は、図6の校正動作よりも更に短時間で済み、カメラの起動時間をより短縮することが可能となる。   FIG. 9 shows another example of a simple calibration operation. This is simpler than the calibration operation shown in FIG. 6, and the level of the position detection signal is confirmed by applying the correction lens 2a to one mechanical restriction, and then the software adjustment is applied to the other mechanical restriction. To finish. The software adjustment value is stored in the memory as used for shake correction control. In this case, substantially only soft adjustment is performed, and neither gain adjustment nor offset level adjustment is performed. During shake correction control, the gain adjustment value and the offset level adjustment value obtained by the calibration operation before shipment are used. However, in a situation where the temperature at the time of camera use is almost the same as the temperature at the time of calibration before shipment and there is no change over time, the gain adjustment value and offset level adjustment value before shipment are not as high as the calibration operation of FIG. Even if is used, there is a high possibility that satisfactory shake correction performance can be obtained. The simple calibration operation shown in FIG. 9 can be performed in a shorter time than the calibration operation shown in FIG. 6, and the startup time of the camera can be further shortened.

簡易的な校正動作として、図6および図9の校正動作のいずれを採用するかは、起動時間の高速化と振れ補正性能のいずれを重視するかで決めればよい。あるいは、簡易的な校正動作(例えば、図7のステップS7や図8のステップS15)を行うにあたり、温度差(|T−Ta|)が第1の所定値ΔT1(<ΔT)を超える場合は図6の校正動作を、ΔT1未満であれば図9の校正動作を行うようにしてもよい。   Which of the calibration operations of FIGS. 6 and 9 is adopted as a simple calibration operation may be determined depending on which of the start-up time and the shake correction performance is important. Alternatively, when performing a simple calibration operation (for example, step S7 in FIG. 7 or step S15 in FIG. 8), the temperature difference (| T−Ta |) exceeds the first predetermined value ΔT1 (<ΔT). If the calibration operation of FIG. 6 is less than ΔT1, the calibration operation of FIG. 9 may be performed.

なお、例えば経年変化が殆ど起きない位置検出部を用いた場合は、温度差のみで校正動作を使い分けてもよい。例えば図7の例に適用すると、ステップS4〜S6を削除し、ステップS2が否定されたときにステップS7に進むフローとなる。逆に温度差が問題とならない位置検出部を用いた場合は、経年変化のみで校正動作を使い分けてもよい。この場合は、ステップS2,S3を削除し、ステップS1からステップS4に進むフローとなる。   For example, when a position detection unit that hardly changes over time is used, the calibration operation may be selectively used only by the temperature difference. For example, when applied to the example of FIG. 7, steps S4 to S6 are deleted, and when step S2 is denied, the flow proceeds to step S7. On the contrary, when a position detection unit in which the temperature difference does not cause a problem is used, the calibration operation may be properly used only by secular change. In this case, steps S2 and S3 are deleted, and the flow proceeds from step S1 to step S4.

以上では、撮影光学系を構成する補正レンズを駆動して像振れ補正を行う例を示したが、撮像素子を駆動して像振れ補正を行うカメラにも本発明を適用できる。   In the above, an example in which the correction lens constituting the photographing optical system is driven to perform image blur correction has been described. However, the present invention can also be applied to a camera that drives an image sensor to perform image blur correction.

1 カメラ、2 撮影レンズ、2a 補正レンズ、2b レンズ枠、2c 可動制限枠、3 撮像素子、4 補正レンズ駆動部、4a 駆動用マグネット、4b 駆動マグネット用ヨーク、4c コイル、4d コイル用ヨーク、5 補正レンズ位置検出部、5a
位置検出用マグネット、5b 位置検出用ヨーク、5c ホール素子、6 Yaw方向振れ検出素子、7 Pitch方向振れ検出素子、8 制御部、9 アクチュエータ駆動部、10 絞り駆動部、11 フォーカス駆動部、12 操作部、13 画像処理部、14 液晶モニタ、15 記録媒体、16 温度センサ
DESCRIPTION OF SYMBOLS 1 Camera, 2 Shooting lens, 2a Correction lens, 2b Lens frame, 2c Movable restriction frame, 3 Imaging element, 4 Correction lens drive part, 4a Drive magnet, 4b Drive magnet yoke, 4c coil, 4d Coil yoke, 5 Correction lens position detector 5a
Position detection magnet, 5b Position detection yoke, 5c Hall element, 6 Yaw direction shake detection element, 7 Pitch direction shake detection element, 8 Control section, 9 Actuator drive section, 10 Aperture drive section, 11 Focus drive section, 12 operation Part, 13 image processing part, 14 liquid crystal monitor, 15 recording medium, 16 temperature sensor

Claims (7)

撮影光軸と交差する方向に駆動される振れ補正部材と、
前記振れ補正部材の位置を検出する位置検出手段と、
カメラまたはレンズ鏡筒の振れ量を検出する振れ検出手段と、
該振れ検出手段および前記位置検出手段の検出結果に基づき、カメラまたはレンズ鏡筒の振れに起因する像振れを補正すべく前記振れ補正部材を駆動する振れ補正制御を行う振れ補正制御手段とを備えたデジタルカメラシステムにおいて、
前記振れ補正制御に先立ち、前記位置検出手段に対して予め決められた複数項目の調整を行う通常の校正動作と、前記複数項目のうちの一部の調整のみを行う簡易的な校正動作のいずれかを行う校正手段と、
条件に応じて前記通常の校正動作および前記簡易的な校正動作のいずれを行うかを決定する校正制御手段とを具備することを特徴とするカメラシステム。
A shake correction member driven in a direction intersecting the imaging optical axis;
Position detecting means for detecting the position of the shake correction member;
Shake detection means for detecting the shake amount of the camera or lens barrel;
And a shake correction control means for performing shake correction control for driving the shake correction member to correct image shake caused by shake of the camera or the lens barrel based on the detection results of the shake detection means and the position detection means. In the digital camera system
Prior to the shake correction control, either a normal calibration operation for adjusting a plurality of predetermined items with respect to the position detecting means or a simple calibration operation for performing only a part of the plurality of items for adjustment. Calibration means for
A camera system comprising calibration control means for determining whether to perform the normal calibration operation or the simple calibration operation according to a condition.
前記校正制御手段は、カメラ出荷前の所定時点からの経過時間が所定時間を超えるときに前記通常の校正動作を行わしめ、超えないときに前記簡易的な校正動作を行わしめることを特徴とする請求項1に記載のカメラシステム。   The calibration control means performs the normal calibration operation when an elapsed time from a predetermined time before camera shipment exceeds a predetermined time, and performs the simple calibration operation when the elapsed time does not exceed the predetermined time. The camera system according to claim 1. 前記校正制御手段は、現在の温度と、過去に校正動作を行ったときの温度との差が所定値を超えるときに前記通常の校正動作を行わしめ、超えないときに前記簡易的な校正動作を行わしめることを特徴とする請求項1に記載のカメラシステム。   The calibration control means performs the normal calibration operation when the difference between the current temperature and the temperature when the calibration operation has been performed in the past exceeds a predetermined value, and the simple calibration operation when the difference does not exceed the predetermined value. The camera system according to claim 1, wherein: 前記校正制御手段は、現在の温度と、過去に校正動作を行ったときの温度との差が所定値未満であり、かつカメラ出荷前の所定時点からの経過時間が所定時間を超えないときに前記簡易的な校正動作を行わしめ、それ以外の場合に通常の校正動作を行わしめることを特徴とする請求項1に記載のカメラシステム。   When the difference between the current temperature and the temperature when the calibration operation was performed in the past is less than a predetermined value and the elapsed time from the predetermined time before camera shipment does not exceed the predetermined time, the calibration control means The camera system according to claim 1, wherein the simple calibration operation is performed, and a normal calibration operation is performed in other cases. 前記校正制御手段は、前記位置検出手段の経年変化による出力変動がが所定値を超えると判断した場合に前記通常の校正動作を行わしめ、超えないと判断した場合に前記簡易的な校正動作を行わしめることを特徴とする請求項1に記載のカメラシステム。   The calibration control unit performs the normal calibration operation when it is determined that the output fluctuation due to aging of the position detection unit exceeds a predetermined value, and performs the simple calibration operation when it is determined that the output variation does not exceed the predetermined value. The camera system according to claim 1, wherein the camera system is performed. 前記校正制御手段は、過去に行われた前記通常または簡易的な校正動作の校正結果と、該過去の校正動作と同一の温度条件で行った前記通常または簡易的な校正動作の校正結果とを比較し、その差が所定値以上の場合に経年変化による出力変動が所定値を超えると判断することを特徴とする請求項5に記載のカメラシステム。   The calibration control means includes a calibration result of the normal or simple calibration operation performed in the past and a calibration result of the normal or simple calibration operation performed under the same temperature condition as the past calibration operation. 6. The camera system according to claim 5, wherein when the difference is equal to or greater than a predetermined value, it is determined that output fluctuation due to secular change exceeds a predetermined value. 前記振れ補正制御手段は、前記通常の校正動作が行われた場合は、当該校正動作で得られた前記複数項目の調整結果を用いて前記振れ補正制御を行い、前記簡易的な校正動作が行われた場合は、当該校正動作で得られた一部の調整項目の調整結果と、過去の校正動作で得られた他の調整項目の調整結果とを用いて前記振れ補正制御を行うことを特徴とする請求項1〜6のいずれか1項に記載のカメラシステム。   When the normal calibration operation is performed, the shake correction control unit performs the shake correction control using the adjustment results of the plurality of items obtained by the calibration operation, and performs the simple calibration operation. In the case where the adjustment is performed, the shake correction control is performed using the adjustment results of some adjustment items obtained in the calibration operation and the adjustment results of other adjustment items obtained in the past calibration operation. The camera system according to any one of claims 1 to 6.
JP2009214582A 2009-09-16 2009-09-16 Camera system Pending JP2011064889A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009214582A JP2011064889A (en) 2009-09-16 2009-09-16 Camera system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009214582A JP2011064889A (en) 2009-09-16 2009-09-16 Camera system

Publications (1)

Publication Number Publication Date
JP2011064889A true JP2011064889A (en) 2011-03-31

Family

ID=43951212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009214582A Pending JP2011064889A (en) 2009-09-16 2009-09-16 Camera system

Country Status (1)

Country Link
JP (1) JP2011064889A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109493391A (en) * 2018-11-30 2019-03-19 Oppo广东移动通信有限公司 Camera calibration method and device, electronic equipment, computer readable storage medium
JP2019114920A (en) * 2017-12-22 2019-07-11 ローム株式会社 Actuator driver, imaging apparatus using the same, and calibration method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019114920A (en) * 2017-12-22 2019-07-11 ローム株式会社 Actuator driver, imaging apparatus using the same, and calibration method
CN109493391A (en) * 2018-11-30 2019-03-19 Oppo广东移动通信有限公司 Camera calibration method and device, electronic equipment, computer readable storage medium

Similar Documents

Publication Publication Date Title
US9769384B2 (en) Imaging apparatus capable of detecting position of movable image pickup device at first resolving power and at second resolving power higher than first resolving power and, at which second resolving power, deviation amount is less than or equal to pixel shift amount
JP2017195516A (en) Camera system and camera body
US11363203B2 (en) Image stabilization apparatus, image stabilization control method, and computer-readable storage medium
JP2009098274A (en) Optical apparatus having image blurring correction device
JP3940807B2 (en) Locking device for shake correction optical system
JP2009086186A (en) Imaging apparatus and program
CN104683687A (en) Image pickup apparatus and image pickup method
JP5053819B2 (en) Imaging apparatus and control method thereof
JP2017037130A (en) Imaging device
JP5441612B2 (en) Automatic focusing device and imaging device
JP4983151B2 (en) camera
US20130202280A1 (en) Imaging apparatus
JP2003307762A (en) Blur correcting photographic device
JP2011064889A (en) Camera system
JP2009134058A (en) Camera system and camera body
JP4306438B2 (en) Imaging device
JP3823389B2 (en) Blur detection device and photographing device
JP4487487B2 (en) An imaging device equipped with a shake correction device
JP2006064986A (en) Image recording apparatus, its control method, program and storage medium
JP2005003559A (en) Position detector, optical device, and position detection method
JP2007121492A (en) Lens unit and imaging system
US20190306406A1 (en) Lens apparatus, image capturing apparatus, camera system, determination method of correction value and storage medium
JP2010091947A (en) Shake correcting device and optical equipment
JP5168981B2 (en) Blur correction device and optical device
US11457161B2 (en) Imaging device moving an imaging element a predetermined amount for each exposure to acquire a plurality of images, image blur correction method, and recording medium