JP2011064644A - Stress analysis method in rolling fatigue - Google Patents

Stress analysis method in rolling fatigue Download PDF

Info

Publication number
JP2011064644A
JP2011064644A JP2009217546A JP2009217546A JP2011064644A JP 2011064644 A JP2011064644 A JP 2011064644A JP 2009217546 A JP2009217546 A JP 2009217546A JP 2009217546 A JP2009217546 A JP 2009217546A JP 2011064644 A JP2011064644 A JP 2011064644A
Authority
JP
Japan
Prior art keywords
rolling
stress
metallic
rolling element
strain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009217546A
Other languages
Japanese (ja)
Other versions
JP5111472B2 (en
Inventor
Takehiro Tsuchida
武広 土田
Eiichi Tamura
栄一 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2009217546A priority Critical patent/JP5111472B2/en
Publication of JP2011064644A publication Critical patent/JP2011064644A/en
Application granted granted Critical
Publication of JP5111472B2 publication Critical patent/JP5111472B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a stress analysis method for rolling fatigue which can obtain stress in the rolling fatigue of a metal base by simulating and obtaining the state of the stress and distortion around a nonmetal inclusion present in the metal base of a mechanical structural component without implementing a rolling fatigue test. <P>SOLUTION: A position of a rolling body B pressed to the metal base A is selected from five or more positions within a range forwardly or backwardly separated from a position immediately above the nonmetal inclusion C by the same length dimension d as a depth dimension d on a surface of the nonmetal inclusion C in the rolling direction of the rolling body C among positions at which the rolling body B rolls on a surface of the metal base A. Stress analysis is implemented in two or more cycles as the repetitive rolling times of the rolling body B rolling on the surface of the metal base A. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、玉軸受けやころ軸受けといった転がり軸受けなどの金属製の機械構造部品において、その金属製基体に内在する非金属介在物の影響による剥離等の損傷状態を推定するために行う転動疲労における応力解析方法に関するもの、より詳しくは、有限要素法を用いて非金属介在物の周囲の金属製基体の応力と歪の状態を計算により求めることで剥離等の損傷状態を推定することができる転動疲労における応力解析方法に関するものである。   The present invention relates to rolling fatigue performed to estimate a damage state such as delamination due to the influence of non-metallic inclusions existing in a metal base in a metal mechanical structural part such as a rolling bearing such as a ball bearing or a roller bearing. More specifically, the stress analysis method can be estimated by calculating the stress and strain states of the metal substrate around the non-metallic inclusions by using the finite element method. The present invention relates to a stress analysis method in rolling fatigue.

転がり軸受けなどの金属製の機械構造部品の寿命は、転動疲労によって、金属材料中に内在する酸化物系介在物、硫化物系介在物、窒化物系介在物等の非金属介在物を起点として発生するフレーキング(剥離)により決定されることが多い。しかしながら、これら非金属介在物を起点として剥離が発生するメカニズムについては不明な点が多く、軸受けなどの寿命を改善するための明確な指針が得られていないのが現状である。そこで、非金属介在物から疲労亀裂が発生するメカニズムや、その亀裂が進展するメカニズムを解明するためには、非金属介在物の周囲の金属製基体のマトリクスの損傷を計算する方法が重要になる。その計算によるシミュレーションを実施することにより、長寿命の軸受けの開発や、正確な寿命予測による小型で軽量の軸受けの開発に活用することができると想定される。   The life of metal mechanical structural parts such as rolling bearings originates from non-metallic inclusions such as oxide inclusions, sulfide inclusions, and nitride inclusions in the metal material due to rolling fatigue. Is often determined by the flaking (peeling) that occurs. However, there are many unclear points about the mechanism by which peeling occurs from these nonmetallic inclusions, and there is no clear guideline for improving the service life of bearings and the like. Therefore, in order to elucidate the mechanism by which fatigue cracks occur from non-metallic inclusions and the mechanism by which the cracks propagate, it is important to calculate the damage to the matrix of the metallic substrate surrounding the non-metallic inclusions. . By carrying out the simulation by the calculation, it is assumed that it can be utilized for the development of a long-life bearing and the development of a small and lightweight bearing by accurate life prediction.

従来から、転動疲労の現象を解析するために、非金属介在物の周囲の金属製基体のマトリクスの応力計算を、有限要素法(FEM)を用いて実施することはあったが、弾性変形の範囲内で、転動体を金属製基体表面のある1箇所に押し当てたときの応力計算を行うか、塑性変形を考慮する場合であっても、非金属介在物が内在する金属製基体の表面上に転動体を押し当てながら移動させたときに発生する応力、弾性歪、塑性歪を計算しただけのものであった。これらの方法では、転動疲労のように繰り返し金属製基体の表面上を転動体が転がって歪(内部損傷)が蓄積する現象を正確に模擬することはできなかった。   Conventionally, in order to analyze the phenomenon of rolling fatigue, the stress calculation of the matrix of the metallic substrate around the non-metallic inclusion has been carried out using the finite element method (FEM), but the elastic deformation Within the range, the stress calculation when the rolling element is pressed against a certain location on the surface of the metal substrate is performed, or even if the plastic deformation is taken into consideration, the metal substrate containing the non-metallic inclusions Only the stress, elastic strain, and plastic strain generated when the rolling element was moved while being pressed onto the surface were calculated. In these methods, it has not been possible to accurately simulate a phenomenon in which a rolling element repeatedly rolls on the surface of a metal substrate, such as rolling fatigue, and strain (internal damage) accumulates.

非金属介在物の周囲の金属製基体の応力計算を、有限要素法(FEM)を用いて行う方法としては、例えば、非特許文献1や非特許文献2記載の方法が実際にあったが、非特許文献1には、転動体が1回だけ移動する場合の弾性変形を計算することが記載されているに過ぎず、また、非特許文献2には、材料の降伏応力を計算に入れて組成変形を計算することが記載されてはいるものの、非特許文献1、非特許文献2共に、繰り返し負荷による歪の蓄積まで計算することは記載されておらず、また、その示唆もされていない。   As a method of performing stress calculation of a metal substrate around non-metallic inclusions using a finite element method (FEM), for example, there were actually methods described in Non-Patent Document 1 and Non-Patent Document 2, Non-Patent Document 1 only describes calculating elastic deformation when the rolling element moves only once, and Non-Patent Document 2 takes the yield stress of the material into account. Although it is described that the composition deformation is calculated, neither Non-Patent Document 1 nor Non-Patent Document 2 describes calculating the strain accumulation due to repeated loading, nor does it suggest it. .

山川耕志郎、外3名、「転がり接触下における内部欠陥の応力場への影響」、Koyo Engineering Journal、2004年、No.166、p.24−28Koshiro Yamakawa, 3 others, “Influence of internal defects on the stress field under rolling contact”, Koyo Engineering Journal, 2004, No. 166, p. 24-28 藤松威史、外3名、「転動面下の非金属介在物周囲の応力解析」Sanyo Technical Report、2006、Vol.13、No.1、p.62−65Takefumi Fujimatsu, 3 others, “Stress analysis around non-metallic inclusions under rolling surface”, Sanyo Technical Report, 2006, Vol. 13, no. 1, p. 62-65

本発明は、上記従来の実情に鑑みてなされたもので、転がり軸受けなどの金属製の機械構造部品における金属製基体に内在する非金属介在物の周囲の金属製基体の応力と歪の状態を、コンピューターによるシミュレーションによって求めることで、実際に転動疲労試験を実施することなく容易に、金属製基体の転動疲労における応力を求め出すことができる転動疲労における応力解析方法を提供することを課題とするものである。   The present invention has been made in view of the above-described conventional situation, and shows the state of stress and strain of the metal base around the non-metallic inclusions inherent in the metal base in a metal mechanical structural part such as a rolling bearing. Therefore, it is possible to provide a stress analysis method in rolling fatigue that can be obtained easily by calculating the stress in the rolling fatigue of a metal base without actually performing the rolling fatigue test by calculating by computer simulation. It is to be an issue.

請求項1記載の発明は、内部に非金属介在物が内在する金属製基体と、前記金属製基体の表面に一定の押し当て荷重で押し付けられながら転がる転動体とよりなる機械構造部品における前記非金属介在物の周囲の金属製基体の応力と歪の状態を計算により求めることによって、前記金属製基体の転動疲労における応力を解析する転動疲労における応力解析方法であって、前記金属製基体と転動体の形状、ヤング率、および応力歪特性と、前記非金属介在物の形状、およびヤング率と、前記非金属介在物の表面が位置する前記金属製基体表面からの深さに関する情報を入力する第1ステップと、前記各情報をもとに、要素分割を行う第2ステップと、前記転動体の前記金属製基体への押し当て位置および押し当て荷重、前記金属製基体の表面を繰返し転がる転動体の繰返し転がり回数に関する情報を入力する第3ステップと、前記転動体による押し当て位置毎に、荷重負荷時の前記非金属介在物の周囲の金属製基体の応力と歪を、有限要素法を用いて弾塑性計算すると共に、前記転動体を除荷した際の前記非金属介在物の周囲の金属製基体の応力と歪を、有限要素法を用いて弾塑性計算する第4ステップと、以上の計算結果を出力して前記非金属介在物の周囲の金属製基体の応力と歪の状態を求める第5ステップよりなり、前記転動体の前記金属製基体への押し当て位置は、前記転動体が前記金属製基体の表面を転がる範囲の位置のうち、前記非金属介在物の真上の金属製基体表面位置から、前記非金属介在物表面が位置する前記金属製基体表面からの深さ寸法と同じ長さ寸法分だけ前記転動体の転動方向の前後に離れた範囲内に位置する5箇所以上の位置とすると共に、前記第4ステップでの計算は、前記転動体が前記金属製基体の表面を転がる転動体の繰返し転がり回数に基づき2サイクル以上繰り返して行うことを特徴とする転動疲労における応力解析方法である。   The invention according to claim 1 is a non-mechanical structural part comprising: a metal base having non-metallic inclusions inside; and a rolling element that rolls while being pressed against the surface of the metal base with a constant pressing load. A stress analysis method in rolling fatigue for analyzing stress in rolling fatigue of the metal substrate by calculating stress and strain states of the metal substrate around the metal inclusions, the metal substrate Information on the shape of the rolling element, Young's modulus, and stress-strain characteristics, the shape of the non-metallic inclusion, the Young's modulus, and the depth from the surface of the metallic substrate where the surface of the non-metallic inclusion is located. The first step to be input, the second step to divide the elements based on each information, the pressing position and the pressing load of the rolling element to the metal substrate, the surface of the metal substrate The third step of inputting information related to the number of repeated rolling of the rolling element that rolls back, and the stress and strain of the metal base around the non-metallic inclusions under load are limited for each pressing position by the rolling element. Fourth step of calculating elastoplasticity using the finite element method while calculating elastoplasticity using the element method and stress and strain of the metal substrate around the nonmetallic inclusions when the rolling elements are unloaded. And the above calculation result is output to determine the stress and strain state of the metal base around the non-metallic inclusions, and the pressing position of the rolling element to the metal base is: From the position of the range where the rolling element rolls on the surface of the metal substrate, from the surface of the metal substrate just above the nonmetal inclusion, from the surface of the metal substrate where the surface of the nonmetal inclusion is located Only the same length as the depth The rolling element is set to five or more positions located within a range separated in the front-rear direction of the rolling direction of the rolling element, and the calculation in the fourth step is performed on the rolling element whose rolling element rolls on the surface of the metal base. It is a stress analysis method in rolling fatigue characterized by repeating two or more cycles based on the number of repeated rolling.

請求項2記載の発明は、前記第5ステップで、計算結果を出力して求める非金属介在物の周囲の金属製基体の応力と歪の状態は、せん断歪の変動幅と方向、および/または、引張歪の変動幅と方向である請求項1記載の転動疲労における応力解析方法である。   According to the second aspect of the present invention, in the fifth step, the stress and strain states of the metal substrate around the non-metallic inclusions obtained by outputting the calculation result are obtained by changing the shear strain variation range and direction, and / or The stress analysis method in rolling fatigue according to claim 1, which is a fluctuation range and direction of tensile strain.

請求項3記載の発明は、前記第5ステップで求めた非金属介在物の周囲のせん断歪の変動幅と方向、および/または、引張歪の変動幅と方向から、亀裂の発生位置と亀裂の発生方向を予測する請求項2記載の転動疲労における応力解析方法である。   According to the third aspect of the present invention, from the fluctuation range and direction of the shear strain around the nonmetallic inclusion obtained in the fifth step and / or the fluctuation range and direction of the tensile strain, The stress analysis method in rolling fatigue according to claim 2, wherein the generation direction is predicted.

本発明に係る転動疲労における応力解析方法によると、転がり軸受けなどの金属製の機械構造部品における金属製基体に内在する非金属介在物の周囲の金属製基体の応力と歪の状態を、コンピューターによるシミュレーションによって求めることで、実際に転動疲労試験を実施することなく容易に、金属製基体の転動疲労における応力を求め出すことができる。   According to the stress analysis method in rolling fatigue according to the present invention, the state of stress and strain of the metal base around the non-metallic inclusions existing in the metal base in the metal mechanical structural part such as a rolling bearing is calculated by the computer. Therefore, the stress in the rolling fatigue of the metal substrate can be easily obtained without actually performing the rolling fatigue test.

本発明の一実施形態に係る転動疲労における応力解析方法による応力シミュレーションを示すフローチャートである。It is a flowchart which shows the stress simulation by the stress analysis method in the rolling fatigue which concerns on one Embodiment of this invention. 金属製の機械構造部品の概要を示す斜視図である。It is a perspective view which shows the outline | summary of metal mechanical structure components. 実際の亀裂の発生状況を示す金属製基体の縦断面図であり、左下は非金属介在物の左側の位置の要部拡大縦断面図、右下は非金属介在物の右側の位置の要部拡大縦断面図である。It is the longitudinal cross-sectional view of the metal base | substrate which shows the actual crack generation | occurrence | production state, a lower left is the principal part expanded vertical sectional view of the position of the left side of a nonmetallic inclusion, and the lower right is a principal part of the position of the right side of a nonmetallic inclusion It is an enlarged vertical sectional view. 金属製基体に内在する非金属介在物の深さ位置と、転動体の金属製基体表面への押し当て位置の関係を示すための縦断面図である。It is a longitudinal cross-sectional view for demonstrating the relationship between the depth position of the nonmetallic inclusion which exists in a metal base | substrate, and the pressing position to the metal base | substrate surface of a rolling element. 本発明の一実施形態に係る転動疲労における応力解析方法に用いた応力シミュレーションモデルを示す2次元モデル図である。It is a two-dimensional model figure which shows the stress simulation model used for the stress analysis method in the rolling fatigue which concerns on one Embodiment of this invention. 実施例での転動体の金属製基体表面への押し当て位置を例示する縦断面図である。It is a longitudinal cross-sectional view which illustrates the pressing position to the metal base | substrate surface of the rolling element in an Example. 転動体が金属製基体の表面上を転がる回数を3サイクルとした転動疲労の解析による計算結果を示すグラフ図である。It is a graph which shows the calculation result by the analysis of rolling fatigue which made the frequency | count that a rolling element rolls on the surface of a metal base | substrate 3 cycles. 本発明に係る応力シミュレーションにより求めた亀裂の発生状況を示す金属製基体の縦断面図である。It is a longitudinal cross-sectional view of the metal base | substrate which shows the generation | occurrence | production state of the crack calculated | required by the stress simulation which concerns on this invention.

本発明者らは、転動疲労のように金属製基体の表面上を転動体が繰り返し転がって、その金属製基体の表面近傍に歪(内部損傷)が蓄積する現象を、実際に転動疲労試験を実施することなく、正確にシミュレーションにより模擬する方法を見出すために鋭意研究を重ねた。その結果、金属製基体の表面近傍に内在する歪の蓄積の原因となる非金属介在物の周囲の金属製基体のマトリクスの応力計算を、有限要素法(FEM)を用いて行うことで、シミュレーションにより正確に解析できることを見出し、本発明の完成に至った。   The present inventors have actually observed the phenomenon that rolling elements repeatedly roll on the surface of a metal substrate, such as rolling fatigue, and strain (internal damage) accumulates near the surface of the metal substrate. In order to find a method that can be accurately simulated by simulation without conducting a test, intensive research was repeated. As a result, the finite element method (FEM) is used to calculate the stress of the matrix of the metallic substrate around the nonmetallic inclusions that cause the accumulation of strain inherent in the vicinity of the surface of the metallic substrate. As a result, the present invention was completed.

以下、本発明を添付図面に示す実施形態に基づいて更に詳細に説明する。図2は実際の転がり軸受けなどの金属製の機械構造部品の概要を例示する図面であり、Aは転がり軸受けなどの金属製の機械構造部品を構成する金属製基体、Bはその金属製基体Aの表面に一定の押し当て荷重で押し付けられながら転がる転動体、Cは金属製基体Aの表面近傍に内在する酸化物系介在物、硫化物系介在物、窒化物系介在物などの非金属介在物である。フレーキング(剥離)の原因となる亀裂(クラック)1は、図3に示すように、その非金属介在物Cを起点として金属製基体Aのマトリクスの内部に発生する。   Hereinafter, the present invention will be described in more detail based on embodiments shown in the accompanying drawings. FIG. 2 is a diagram illustrating an outline of a metal mechanical structural part such as an actual rolling bearing, wherein A is a metal base constituting the metal mechanical structural part such as a rolling bearing, and B is a metal base A thereof. A rolling element that rolls while being pressed against the surface of the metal with a constant pressing load, C is a non-metallic inclusion such as an oxide inclusion, sulfide inclusion, nitride inclusion, etc., existing in the vicinity of the surface of the metal substrate A It is a thing. As shown in FIG. 3, the crack (crack) 1 that causes flaking (peeling) occurs in the matrix of the metallic substrate A starting from the nonmetallic inclusion C.

図1は、本発明の一実施形態に係る転動疲労における応力解析方法による応力シミュレーションを示すフローチャートであり、以下、その応力シミュレーションを、第1ステップS1から第5ステップS5に分け詳細に説明する。尚、これら各ステップの数字は便宜上示したもので、第1ステップS1から第5ステップS5の間、或いはその前後に別のステップが入っても構わない。   FIG. 1 is a flowchart showing a stress simulation by a stress analysis method in rolling fatigue according to an embodiment of the present invention. The stress simulation will be described below in detail from the first step S1 to the fifth step S5. . The numbers of these steps are shown for convenience, and other steps may be inserted between the first step S1 and the fifth step S5, or before and after that.

まず、第1ステップS1では、金属製基体Aと転動体Bの形状、ヤング率、および応力歪特性と、非金属介在物Cの形状、およびヤング率と、非金属介在物Cの表面が位置する金属製基体Aの表面からの深さd(図4に示す)に関する情報をコンピューターに入力する。   First, in the first step S1, the shape, Young's modulus, and stress-strain characteristics of the metallic substrate A and the rolling element B, the shape and Young's modulus of the nonmetallic inclusion C, and the surface of the nonmetallic inclusion C are positioned. Information relating to the depth d (shown in FIG. 4) from the surface of the metallic substrate A to be input is input to the computer.

非金属介在物Cの表面が位置する金属製基体Aの表面からの深さdについては、基本的には任意の深さdを設定して入力すれば良いが、転動疲労では、金属製基体Aと転動体Bの接触によって金属製基体Aの内部に発生するせん断応力が最も大きくなる深さ位置に存在する非金属介在物Cを起点として亀裂1が形成され、その結果フレーキング(剥離)が発生することが殆どであるため、その最大せん断応力深さ位置に非金属介在物Cの表面深さdを設定することで、転動疲労寿命を決める現象をより確実に模擬することができる。   As for the depth d from the surface of the metallic substrate A where the surface of the non-metallic inclusion C is located, basically, an arbitrary depth d may be set and input. A crack 1 is formed starting from a non-metallic inclusion C existing at a depth where the shear stress generated inside the metallic base A is the largest due to the contact between the base A and the rolling element B. As a result, flaking (peeling) occurs. ) Occurs in most cases, and by setting the surface depth d of the nonmetallic inclusion C at the maximum shear stress depth position, the phenomenon that determines the rolling fatigue life can be more reliably simulated. it can.

金属製基体Aと転動体Bの接触が単純形状同士の接触である場合は、解析解から最大せん断応力位置dmaxを計算して非金属介在物Cの表面深さdとするか、或いは、図5の右拡大図で示すように、有限要素法(FEM)で求めた金属製基体A内部のせん断応力分布から最大せん断応力位置dmaxを推定し、この最大せん断応力位置dmaxを非金属介在物Cの表面深さdに設定すれば良い。尚、この非金属介在物Cの表面深さdを深すぎる位置に設定すると、転動体Bの接触によって発生する金属製基体Aの内部の応力が小さくなり過ぎて転動疲労寿命を推定するには役立たなくなる。この転動疲労寿命を推定するためには、非金属介在物Cの表面深さdは最大せん断応力位置dmaxの1.5倍以下の深さとすることが望ましい。また、この非金属介在物Cの表面深さdを最大せん断応力位置dmaxより浅い位置に設定した場合は、転動疲労寿命の解析には役立つので、目的に応じて金属製基体Aの最表面から最大せん断応力位置dmaxの1.5倍の間に非金属介在物Cの表面深さdを設定すれば良い。   When the contact between the metal substrate A and the rolling element B is a simple shape contact, the maximum shear stress position dmax is calculated from the analytical solution to obtain the surface depth d of the nonmetallic inclusion C, or 5, the maximum shear stress position dmax is estimated from the shear stress distribution inside the metal substrate A obtained by the finite element method (FEM), and this maximum shear stress position dmax is determined as a non-metallic inclusion C. The surface depth d may be set. If the surface depth d of the non-metallic inclusion C is set too deep, the stress inside the metallic substrate A generated by the contact with the rolling element B becomes too small to estimate the rolling fatigue life. Is useless. In order to estimate the rolling fatigue life, it is desirable that the surface depth d of the nonmetallic inclusion C is 1.5 times or less the maximum shear stress position dmax. Further, when the surface depth d of the non-metallic inclusion C is set at a position shallower than the maximum shear stress position dmax, it is useful for analyzing the rolling fatigue life. And the surface depth d of the nonmetallic inclusion C may be set between 1.5 times the maximum shear stress position dmax.

第2ステップS2では、図5に示すように、シミュレーションモデルを2次元モデルとして簡略化し、次の第3ステップS3で有限要素法(FEM)を用いて弾塑性計算するために要素分割(メッシュ作成)を行う。   In the second step S2, as shown in FIG. 5, the simulation model is simplified as a two-dimensional model, and in the next third step S3, element division (mesh creation) is performed for elastoplastic calculation using the finite element method (FEM). )I do.

要素分割にあたっては、メッシュが細かければ細かいほど収束性が良くなり計算精度も高くなるので好ましいが、一方でその計算に要する時間が膨大になるため、要素分割のメッシュの大きさは、非金属介在物Cと金属製基体Aのマトリクスの界面付近で、0.001μm〜5μmの範囲とすれば良い。本発明は特に10μm〜100μm程度の非金属介在物Cが内在する金属製基体Aを応力シミュレーションの対象とするので、例えば、図5に示すように、非金属介在物Cと金属製基体Aのマトリクスの界面付近で要素分割のメッシュの大きさは1μm程度とすれば良く、図5に示す非金属介在物Cから離れた位置では計算の迅速性も考慮して1000μm程度とし、その間で順次メッシュの大きさを変えることで対応することが望ましい。   In element division, the finer the mesh, the better the convergence and the higher the calculation accuracy. However, since the time required for the calculation is enormous, the size of the element division mesh is non-metallic. In the vicinity of the interface between the inclusion C and the matrix of the metallic substrate A, the range may be 0.001 μm to 5 μm. In the present invention, a metal substrate A in which nonmetallic inclusions C of about 10 μm to 100 μm are present is the subject of stress simulation. For example, as shown in FIG. In the vicinity of the matrix interface, the size of the element division mesh may be about 1 μm, and in the position away from the non-metallic inclusion C shown in FIG. It is desirable to respond by changing the size of.

次の第3ステップS3では、転動体Bの金属製基体Aへの複数の押し当て位置、転動体Bの金属製基体Aへの押し当て荷重、金属製基体Aの表面を繰返し転がる転動体Bの繰返し転がり回数に関する情報を転動疲労条件としてコンピューターに入力する。   In the next third step S3, a plurality of pressing positions of the rolling element B to the metal substrate A, a pressing load of the rolling element B to the metal substrate A, and a rolling element B that repeatedly rolls the surface of the metal substrate A. Information on the number of repeated rolling is input to the computer as rolling fatigue conditions.

非金属介在物Cの真上にあたる金属製基体Aの表面位置を、転動体Bの金属製基体Aへの押し当て位置として計算するだけでは実際の転動疲労を正確に模擬することはできない。しかしながら、転動体Bを金属製基体Aの表面に一定の押し当て荷重で押し付けられながら転動させる場合、転動中の転動体Bが非金属介在物Cから一定寸法以上離れた位置では転動体Bと金属製基体Aが接触する際に発生する応力が非金属介在物Cには及ばない。従って、転動体Bが金属製基体Aの表面を転がる範囲の位置のうち、転動体Bと金属製基体Aが接触する際に発生する応力が及ぶ範囲内の複数の位置で、転動体Bの金属製基体Aへの押し当て位置を設定する。   It is not possible to accurately simulate actual rolling fatigue simply by calculating the surface position of the metallic substrate A directly above the non-metallic inclusion C as the pressing position of the rolling element B against the metallic substrate A. However, when the rolling element B is rolled while being pressed against the surface of the metal base A with a constant pressing load, the rolling element B is in a position where the rolling element B is rolling away from the non-metallic inclusion C by a certain dimension or more. The stress generated when B and the metallic substrate A contact each other does not reach the nonmetallic inclusion C. Accordingly, among the positions in the range where the rolling element B rolls on the surface of the metal base A, the rolling element B has a plurality of positions within the range where the stress generated when the rolling element B and the metal base A are in contact with each other. The pressing position on the metal substrate A is set.

具体的には、図4に示すように、非金属介在物Cの真上にあたる金属製基体Aの表面位置から、非金属介在物Cの表面が位置する金属製基体Aの表面からの深さ寸法dと同じ長さ寸法d分だけ転動体Bの転動方向の前後に離れた範囲内で、転動体Bの金属製基体Aへの押し当て位置を複数設定すれば良い。その理由は、図5の右拡大図で示すように、金属製基体Aの内部に発生するせん断応力は、転動体Bの押し当て位置から概ね45°程度内部の位置で大きくなるためである。   Specifically, as shown in FIG. 4, the depth from the surface of the metallic substrate A where the surface of the nonmetallic inclusion C is located from the surface position of the metallic substrate A which is directly above the nonmetallic inclusion C. A plurality of pressing positions of the rolling element B against the metal base A may be set within a range separated by the same length d as the dimension d in the front and rear directions in the rolling direction of the rolling element B. The reason is that, as shown in the right enlarged view of FIG. 5, the shear stress generated in the metal base A is increased at a position approximately 45 ° from the pressing position of the rolling element B.

また、転動体Bによる押し当て位置は、実際の転動疲労を正確に模擬することができる意味で5箇所以上とするが、非金属介在物Cの真上にあたる金属製基体Aの表面位置と、その位置から非金属介在物Cの表面が位置する金属製基体Aの表面からの深さ寸法dと同じ長さ寸法d分だけ転動体Bの転動方向の前後に離れた前後2箇所の位置と、それらの中間位置とすることが、実際の転動疲労を更に正確に模擬することはできる意味で望ましい。中間位置は転動体Bの転動方向の前後に離れた位置で夫々少なくとも1箇所以上とすれば良く、計算に要する時間も考慮すれば転動体Bによる押し当て位置は、5〜25箇所程度とすることが望ましい。図6では転動体Bによる押し当て位置を9箇所とした事例を示す。   Further, the pressing position by the rolling element B is 5 or more in the sense that the actual rolling fatigue can be accurately simulated, but the surface position of the metallic substrate A directly above the nonmetallic inclusion C is From the position, the front and rear two points separated by the same length dimension d as the depth dimension d from the surface of the metallic substrate A where the surface of the non-metallic inclusion C is located are separated from each other in the rolling direction of the rolling element B. The position and the intermediate position are desirable in the sense that it is possible to more accurately simulate actual rolling fatigue. The intermediate position may be at least one or more positions that are separated from each other in the rolling direction of the rolling element B, and the pressing position by the rolling element B is about 5 to 25 if the time required for calculation is taken into consideration. It is desirable to do. In FIG. 6, the example which made 9 pressing positions by the rolling element B is shown.

次の第4ステップS4では、まず、転動体Bによる最初の押し当て位置の荷重負荷時(押し付け負荷時)の非金属介在物Cの周囲の金属製基体Aマトリクスの応力と歪を、有限要素法を用いて弾塑性計算する。続いて、転動体Bによる最初の押し当て位置の転動体Bを除荷した際の非金属介在物Cの周囲の金属製基体Aのマトリクスの応力と歪を、同様に有限要素法を用いて弾塑性計算する。以上の転動体Bによる最初の押し当て位置の荷重負荷時、除荷時の計算を共に終了した後、第3ステップS3で設定した次の押し当て位置に進み、次の押し当て位置での荷重負荷時の弾塑性計算、除荷時の弾塑性計算を同様に行う。更に次の押し当て位置に進み、荷重負荷時の弾塑性計算、除荷時の弾塑性計算を夫々行い、これらの計算を最後の押し当て位置まで順次行う。尚、これら弾塑性計算に用いる構成式については特に限定しないが、例えば、弾塑性計算にはPrandtle−Reussの構成式を用いることができる。   In the next fourth step S4, first, the stress and strain of the metal base A matrix around the non-metallic inclusion C at the time of load application (pressing load) at the first pressing position by the rolling element B are determined as finite elements. Elasto-plastic calculation using the method. Subsequently, the stress and strain of the matrix of the metallic substrate A around the non-metallic inclusion C when the rolling element B at the initial pressing position by the rolling element B is unloaded are similarly calculated using the finite element method. Elasto-plastic calculation. After completing the calculation at the time of loading and unloading of the first pressing position by the rolling element B, the process proceeds to the next pressing position set in the third step S3, and the load at the next pressing position is reached. Evaluate elastoplasticity during loading and elastoplasticity during unloading. Further, the process proceeds to the next pressing position, and the elasto-plastic calculation at the time of load application and the elasto-plastic calculation at the time of unloading are performed, and these calculations are sequentially performed up to the final pressing position. Note that the constitutive equations used for the elastoplastic calculation are not particularly limited. For example, the constitutive equation of Brandle-Reuss can be used for the elastoplastic calculation.

以上の弾塑性計算では、転動体Bが金属製基体Aの表面上を1回目に通った際の非金属介在物Cの周囲の金属製基体Aのマトリクスの変形量は特に大きく、2回目以上でその変形量は安定する(図7に例示する。)ので、第4ステップS4における弾塑性計算は、繰返し金属製基体Aの表面に一定の押し当て荷重で押し付けられながら繰返し転がる転動体Bの繰返し転がり回数に合わせて2サイクル以上行う必要がある。   In the above elastoplastic calculation, the amount of deformation of the matrix of the metallic substrate A around the nonmetallic inclusion C when the rolling element B passes the surface of the metallic substrate A for the first time is particularly large, and the second or more times. Therefore, the amount of deformation is stabilized (illustrated in FIG. 7). Therefore, the elastoplastic calculation in the fourth step S4 is performed on the rolling element B that repeatedly rolls while being pressed against the surface of the metal base A with a constant pressing load. It is necessary to perform two or more cycles according to the number of repeated rolling.

最後に、第5ステップS5で計算結果として、非金属介在物Cの周囲の金属製基体Aのマトリクスの応力と歪の状態について必要な情報を出力する。転動疲労を解析する上では弾塑性計算による歪の情報が有用であり、例えば、せん断歪の変動幅と方向、引張歪の変動幅と方向を出力して、その変動が最大となる亀裂1の発生位置と亀裂1の発生方向を予測する指標として用いることができる。   Finally, as the calculation result in the fifth step S5, necessary information about the stress and strain state of the matrix of the metallic substrate A around the nonmetallic inclusion C is output. In analyzing rolling fatigue, strain information by elasto-plastic calculation is useful. For example, the variation range and direction of shear strain, the variation range and direction of tensile strain are output, and the crack 1 that maximizes the variation is output. It can be used as an index for predicting the occurrence position and the crack generation direction.

また、非金属介在物Cを起点として発生するフレーキング(剥離)については、非金属介在物Cとその周囲の金属製基体Aのマトリクスが接着しているか、剥離しているかによってその条件(応力分布)が大きく変わる。そのため、実際の転動疲労現象を精度良くシミュレーションで模擬するためには、非金属介在物Cとその周囲の金属製基体Aのマトリクスの界面の接着状態を計算に取り入れることが有効である。例えば、その界面を完全に接着した状態だけでなく、一部もしくは全部が剥離した状態として計算することで、より実際に近い状態でシミュレーションすることができる。   Further, the flaking (peeling) generated from the nonmetallic inclusion C as a starting point depends on whether the nonmetallic inclusion C and the matrix of the surrounding metallic substrate A are bonded or separated (stress). Distribution) changes greatly. Therefore, in order to accurately simulate the actual rolling fatigue phenomenon by simulation, it is effective to incorporate the adhesion state at the interface between the matrix of the nonmetallic inclusion C and the surrounding metallic substrate A in the calculation. For example, the simulation can be performed in a state closer to the actual state by calculating not only a state where the interface is completely adhered but also a state where a part or all of the interface is peeled off.

この応力シミュレーションの結果は、亀裂1の発生位置や発生方向の解析、亀裂1が発生するまでの寿命の解析に活用することができる。その際の応力パラメータとしては、相当応力やせん断応力(モードII)、引張応力(モードI)などを選択することができる。   The result of this stress simulation can be utilized for the analysis of the generation position and direction of the crack 1 and the analysis of the life until the crack 1 occurs. As a stress parameter at that time, equivalent stress, shear stress (mode II), tensile stress (mode I), or the like can be selected.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、本発明の趣旨に適合し得る範囲で適宜変更を加えて実施することも可能であり、それらは何れも本発明の技術的範囲に含まれる。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, and the present invention is implemented with appropriate modifications within a range that can meet the gist of the present invention. These are all included in the technical scope of the present invention.

本発明の妥当性を検討するために転動疲労における応力解析を、弾塑性有限要素解析(ソルバーはABAQUS 6.5)により実施した。この解析に用いた応力シミュレーションモデルの概略を図5に示す。この応力シミュレーションモデルでは、多種介在物形態の影響を解析できるように二次元モデルとして簡便化し、転動体Bを模擬した円形モデル(φ9.6mm)を、金属製基体(軸受鋼)Aを模擬した板モデルに変位制御で押し付けた場合の歪を解析により確認した。また、金属製基体Aに内在する非金属介在物Cと、その周囲の金属製基体Aのマトリクスの要素分割のメッシュの大きさは1μmとし、図5に示す非金属介在物Cから最も離れた位置では計算の迅速性も考慮してメッシュの大きさは1mmとし、その間で順次メッシュの大きさを変えることとした。   In order to examine the validity of the present invention, stress analysis in rolling fatigue was performed by elastoplastic finite element analysis (solver is ABAQUS 6.5). An outline of the stress simulation model used for this analysis is shown in FIG. This stress simulation model is simplified as a two-dimensional model so that the influence of various inclusion forms can be analyzed, a circular model (φ9.6 mm) simulating the rolling element B, and a metal substrate (bearing steel) A is simulated. The strain when pressed against the plate model by displacement control was confirmed by analysis. In addition, the size of the element division mesh of the matrix of the nonmetallic inclusion C existing in the metallic substrate A and the surrounding metallic substrate A is 1 μm, which is farthest from the nonmetallic inclusion C shown in FIG. In consideration of the speed of calculation, the mesh size is set to 1 mm at the position, and the mesh size is sequentially changed between them.

また、金属製基体Aを模擬した板モデルの材質は、降伏応力が1960MPaの弾完全塑性体とした。この板モデル内にはAlでなる非金属介在物Cを模擬した弾性体モデルを内在させ、その非金属介在物Cの弾性体モデルの表面を、転動体Bを模擬した円形モデルを押し付けた際の最大せん断応力位置dmaxに位置させた。この非金属介在物Cを模擬した弾性体モデルの縦弾性係数は400GPaとした。 Further, the material of the plate model simulating the metal base A was an elastic perfect plastic body having a yield stress of 1960 MPa. In this plate model, an elastic body model simulating the nonmetallic inclusion C made of Al 2 O 3 is included , and the surface of the elastic body model of the nonmetallic inclusion C is made a circular model simulating the rolling element B. The maximum shear stress position dmax when pressed was set. The elastic modulus of the elastic body model simulating this non-metallic inclusion C was 400 GPa.

本実施例では、転動体Bが金属製基体Aの表面に一定の押し当て荷重で押し付けられながら転がる挙動を模擬して解析を実施したが、解析の収束性、計算時間を考慮して、図6に示すように、転動体Bの押し当て位置を9箇所に限定し、(1)荷重負荷→除荷→移動→(2)荷重負荷→…(9)荷重負荷→除荷(図6では○囲み数字で示す。)という順に繰返して解析を実施した。転動体Bが金属製基体Aの表面上を転がる回数を3サイクルとして得た結果を図7のグラフにまとめて示す。   In the present embodiment, the analysis was performed by simulating the rolling behavior of the rolling element B while being pressed against the surface of the metal base A with a constant pressing load. However, considering the convergence of the analysis and the calculation time, As shown in FIG. 6, the pressing position of the rolling element B is limited to nine locations. (1) Load load → Unload → Move → (2) Load load →... (9) Load load → Unload (in FIG. ○ The analysis was repeated in the order of: The results obtained by setting the number of times the rolling element B rolls on the surface of the metal substrate A as 3 cycles are summarized in the graph of FIG.

この解析では、非金属介在物Cの弾性体モデルの形状を正方形とし、その上下の頂点にあたる位置(図7に示す要素a、要素b)での歪の計算結果をグラフにまとめた。このグラフから、要素a、要素b共に、1サイクル目の歪は2サイクル目以降の歪より大きく、繰返し負荷による疲労現象を模擬するには、歪が安定する2サイクル目以降の歪で評価することが妥当であることが分かる。   In this analysis, the shape of the elastic body model of the non-metallic inclusion C is a square, and the calculation results of the strain at the positions corresponding to the top and bottom vertices (element a and element b shown in FIG. 7) are summarized in a graph. From this graph, the strain in the first cycle is larger than the strain in the second cycle and thereafter in both the elements a and b, and in order to simulate the fatigue phenomenon due to repeated loading, the strain after the second cycle where the strain is stabilized is evaluated. It turns out that is reasonable.

また、転動疲労における亀裂1の発生の考察を行うために、非金属介在物Cの弾性体モデルの形状を、頂点を上下左右に位置させた正方形(15×15μm、縦弾性係数:400GPa)とし、その最大面圧を−4500MPaとしたときの解析結果を図8に示す。引張応力によるモードI変形により亀裂1が発生すると仮定し、解析結果から任意ベクトルの引張成分歪の変化(Δε)を求めた。このΔεが最大になるベクトル方向(両方向矢印)およびΔεの値(Δεmax)を図8に示す。また、図8には、この仮定に基づき推定される亀裂1の方向を点線で示す。この図8より亀裂1の方向は、何れの箇所からも右斜め上方向或いは左斜め下方向に進展すると推定される。   Further, in order to consider the occurrence of crack 1 in rolling fatigue, the shape of the elastic body model of the nonmetallic inclusion C is a square (15 × 15 μm, longitudinal elastic modulus: 400 GPa) with the apexes positioned vertically and horizontally. FIG. 8 shows the analysis result when the maximum surface pressure is −4500 MPa. Assuming that crack 1 occurs due to mode I deformation due to tensile stress, the change in tensile component strain (Δε) of an arbitrary vector was obtained from the analysis result. FIG. 8 shows the vector direction in which Δε is maximized (double-directional arrow) and the value of Δε (Δεmax). Further, in FIG. 8, the direction of the crack 1 estimated based on this assumption is indicated by a dotted line. From FIG. 8, it is estimated that the direction of the crack 1 progresses in an obliquely upper right direction or an obliquely lower left direction from any part.

一方、この応力シミュレーション結果が正しいことを証明するために、実際に転動疲労試験を実施した。その試験途中の金属製基体(軸受鋼)Aを切断して亀裂1を観察した結果を図3に示す。実際の断面写真を図面化した図3によると、亀裂1は非金属介在物(Al)Cから金属製基体Aのマトリクス内を右斜め上方向或いは左斜め下方向に進展しており、この結果は、図8に示す本発明の応力シミュレーションによる解析結果と一致する。 On the other hand, in order to prove that this stress simulation result is correct, a rolling fatigue test was actually performed. FIG. 3 shows the result of observing the crack 1 by cutting the metal substrate (bearing steel) A during the test. According to FIG. 3 which is a diagram of an actual cross-sectional photograph, the crack 1 has progressed from the non-metallic inclusion (Al 2 O 3 ) C in the matrix of the metallic substrate A in the upper right direction or the lower left direction. This result agrees with the analysis result by the stress simulation of the present invention shown in FIG.

また、転動体Bによる押し付け負荷の位置の数(押し当て位置数)と、転動体Bが金属製基体Aの表面を転がる回数(サイクル数)を逐次変えて応力シミュレーションを実施し、その応力シミュレーションに要した計算時間と、実際の亀裂1発生の観察結果との対応状況を表1に示した。   In addition, stress simulation is performed by sequentially changing the number of positions of the pressing load by the rolling element B (the number of pressing positions) and the number of times the rolling element B rolls the surface of the metal substrate A (number of cycles). Table 1 shows the correspondence between the calculation time required for the above and the observation result of actual crack 1 generation.

計算時間は、8時間未満であったものを◎、8時間〜24時間未満であったものを○、24時間以上かかったものを×として示した。実際に発生した亀裂1の観察結果との対応状況(観察結果との一致)は、計算による歪の変化(Δε)が高い位置と、実際の亀裂1の観察結果が一致しておれば○、一致しなければ×として示した。   The calculation time was shown as ◎ when it was less than 8 hours, ◯ when it was between 8 hours and less than 24 hours, and × when it took more than 24 hours. Correspondence with the observation result of the actually generated crack 1 (coincidence with the observation result) indicates that the position where the calculated strain change (Δε) is high and the observation result of the actual crack 1 match, If they do not match, they are indicated as x.

転動体Bによる押し付け負荷の位置の数(押し当て位置数)と、転動体Bが金属製基体Aの表面を転がる回数(サイクル数)が本発明の要件を満足するNo.1とNo.2は、応力シミュレーションに要した計算時間、実際の亀裂1発生の観察結果との対応状況は、共に○以上で合格であった。特に、転動体Bが金属製基体Aの表面を転がる回数(サイクル数)を5サイクルとしたNo.2では、計算に要する時間が特に短く優れていた。   The number of positions of pressing load by the rolling elements B (the number of pressing positions) and the number of times the rolling elements B roll on the surface of the metal substrate A (number of cycles) satisfy the requirements of the present invention. 1 and No. The result of 2 was that the calculation time required for the stress simulation and the corresponding situation with the observation result of actual crack 1 generation were both o or better and passed. In particular, the number of times (the number of cycles) the rolling element B rolls on the surface of the metal substrate A is 5 cycles. In 2, the time required for calculation was particularly short and excellent.

一方、転動体Bが金属製基体Aの表面を転がる回数(サイクル数)が1サイクルだけであったNo.3とNo.4は、応力シミュレーションと実際の観察結果が対応しなかった。これは、転動体Bが金属製基体Aの表面を転がる回数(サイクル数)が1サイクルだけであると、疲労現象を模擬するには歪が安定しないためと考えられる。   On the other hand, the number of times (number of cycles) the rolling element B rolls on the surface of the metal base A was only 1 cycle. 3 and no. For No. 4, the stress simulation did not correspond to the actual observation result. This is presumably because, when the rolling element B rolls the surface of the metal substrate A (the number of cycles) is only one cycle, the strain is not stable to simulate the fatigue phenomenon.

また、転動体Bが金属製基体Aの表面を転がる回数(サイクル数)を100サイクルとしたNo.5は、計算に要する時間が24時間(1日)以上かかり、応力シミュレーションを行うのに適していなかった。   In addition, when the rolling element B rolls the surface of the metal base A (number of cycles), No. No. 5 required 24 hours (one day) or more for calculation, and was not suitable for performing a stress simulation.

Figure 2011064644
Figure 2011064644

A…金属製基体
B…転動体
C…非金属介在物
1…亀裂
S1…第1ステップ
S2…第2ステップ
S3…第3ステップ
S4…第4ステップ
S5…第5ステップ
A ... Metal substrate B ... Rolling element C ... Non-metallic inclusion 1 ... Crack S1 ... First step S2 ... Second step S3 ... Third step S4 ... Fourth step S5 ... Fifth step

Claims (3)

内部に非金属介在物が内在する金属製基体と、前記金属製基体の表面に一定の押し当て荷重で押し付けられながら転がる転動体とよりなる機械構造部品における前記非金属介在物の周囲の金属製基体の応力と歪の状態を計算により求めることによって、前記金属製基体の転動疲労における応力を解析する転動疲労における応力解析方法であって、
前記金属製基体と転動体の形状、ヤング率、および応力歪特性と、前記非金属介在物の形状、およびヤング率と、前記非金属介在物の表面が位置する前記金属製基体表面からの深さに関する情報を入力する第1ステップと、
前記各情報をもとに、要素分割を行う第2ステップと、
前記転動体の前記金属製基体への押し当て位置および押し当て荷重、前記金属製基体の表面を繰返し転がる転動体の繰返し転がり回数に関する情報を入力する第3ステップと、
前記転動体による押し当て位置毎に、荷重負荷時の前記非金属介在物の周囲の金属製基体の応力と歪を、有限要素法を用いて弾塑性計算すると共に、前記転動体を除荷した際の前記非金属介在物の周囲の金属製基体の応力と歪を、有限要素法を用いて弾塑性計算する第4ステップと、
以上の計算結果を出力して前記非金属介在物の周囲の金属製基体の応力と歪の状態を求める第5ステップよりなり、
前記転動体の前記金属製基体への押し当て位置は、前記転動体が前記金属製基体の表面を転がる範囲の位置のうち、前記非金属介在物の真上の金属製基体表面位置から、前記非金属介在物表面が位置する前記金属製基体表面からの深さ寸法と同じ長さ寸法分だけ前記転動体の転動方向の前後に離れた範囲内に位置する5箇所以上の位置とすると共に、
前記第4ステップでの計算は、前記転動体が前記金属製基体の表面を転がる転動体の繰返し転がり回数に基づき2サイクル以上繰り返して行うことを特徴とする転動疲労における応力解析方法。
A metal base around the non-metallic inclusions in a mechanical structural part comprising a metallic base with non-metallic inclusions inside and a rolling element that rolls while being pressed against the surface of the metallic base with a constant pressing load. A stress analysis method in rolling fatigue for analyzing stress in rolling fatigue of the metal substrate by calculating the stress and strain state of the substrate,
The shape, Young's modulus, and stress-strain characteristics of the metallic substrate and rolling element, the shape and Young's modulus of the nonmetallic inclusion, and the depth from the surface of the metallic substrate where the surface of the nonmetallic inclusion is located. A first step of entering information about the length;
A second step of performing element division based on each piece of information;
A third step of inputting information relating to a position and a pressing load of the rolling element to the metal base, and the number of repeated rolling of the rolling element that repeatedly rolls on the surface of the metal base;
For each pressing position by the rolling element, the stress and strain of the metal base around the non-metallic inclusion at the time of loading are calculated elasto-plastically using a finite element method, and the rolling element is unloaded. A fourth step of elastoplastic calculation of the stress and strain of the metallic substrate surrounding the non-metallic inclusions using a finite element method;
The fifth step is to output the above calculation result and obtain the stress and strain state of the metal base around the non-metallic inclusion,
The pressing position of the rolling element to the metal substrate is determined from the position of the metal substrate surface immediately above the non-metallic inclusions in the range where the rolling element rolls on the surface of the metal substrate. And at least five positions located within a range separated by the same length as the depth from the surface of the metallic substrate on which the surface of the non-metallic inclusion is located ,
The stress analysis method in rolling fatigue characterized in that the calculation in the fourth step is repeated two or more cycles based on the number of repeated rolling of the rolling element on which the rolling element rolls on the surface of the metal substrate.
前記第5ステップで、計算結果を出力して求める非金属介在物の周囲の金属製基体の応力と歪の状態は、せん断歪の変動幅と方向、および/または、引張歪の変動幅と方向である請求項1記載の転動疲労における応力解析方法。   In the fifth step, the state of stress and strain of the metallic substrate around the non-metallic inclusions obtained by outputting the calculation result is the variation range and direction of the shear strain and / or the variation range and direction of the tensile strain. The stress analysis method in rolling fatigue according to claim 1. 前記第5ステップで求めた非金属介在物の周囲のせん断歪の変動幅と方向、および/または、引張歪の変動幅と方向から、亀裂の発生位置と亀裂の発生方向を予測する請求項2記載の転動疲労における応力解析方法。   The crack generation position and crack generation direction are predicted from the fluctuation range and direction of the shear strain around the nonmetallic inclusion determined in the fifth step and / or the fluctuation range and direction of the tensile strain. The stress analysis method in rolling fatigue as described.
JP2009217546A 2009-09-18 2009-09-18 Stress analysis method in rolling contact fatigue Expired - Fee Related JP5111472B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009217546A JP5111472B2 (en) 2009-09-18 2009-09-18 Stress analysis method in rolling contact fatigue

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009217546A JP5111472B2 (en) 2009-09-18 2009-09-18 Stress analysis method in rolling contact fatigue

Publications (2)

Publication Number Publication Date
JP2011064644A true JP2011064644A (en) 2011-03-31
JP5111472B2 JP5111472B2 (en) 2013-01-09

Family

ID=43951039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009217546A Expired - Fee Related JP5111472B2 (en) 2009-09-18 2009-09-18 Stress analysis method in rolling contact fatigue

Country Status (1)

Country Link
JP (1) JP5111472B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015028441A (en) * 2013-07-30 2015-02-12 日本精工株式会社 Role fatigue crack progress testing method and roll fatigue life estimation method
JP2017062177A (en) * 2015-09-25 2017-03-30 Ntn株式会社 Quality assurance method and device for machine element material
GB2585272A (en) * 2019-05-03 2021-01-06 Dirk Olaf Leimann Comparable stress for rolling bearings
CN113190926A (en) * 2021-04-20 2021-07-30 西安理工大学 Modeling method for microprotrusion contact containing nonmetallic inclusions

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0720031A (en) * 1993-06-30 1995-01-24 Toyota Central Res & Dev Lab Inc Method and device for thermal fatigue test
JP2004069638A (en) * 2002-08-09 2004-03-04 Kawasaki Heavy Ind Ltd Method for predicting crack development of elasto-plastic body and deformation predicting method
JP2005283130A (en) * 2004-03-26 2005-10-13 Kawasaki Heavy Ind Ltd Estimation method of ductile fracture limit, its program, recording medium and fracture testing machine
JP2006164219A (en) * 2004-11-09 2006-06-22 Phifit Kk Interface for analyzing finite-element, computer-readable storage medium which records program of interface for analyzing finite-element, method for analyzing finite-element using high value-added communication network, parallel processing computer for analyzing finite-element, and computer for analyzing finite-element
JP2006308019A (en) * 2005-04-28 2006-11-09 Nsk Ltd Rolling bearing
JP2008262263A (en) * 2007-04-10 2008-10-30 Ntn Corp Calculation method for contact surface pressure and subsurface stress
JP2009041993A (en) * 2007-08-07 2009-02-26 Nsk Ltd Predicting method of residual life of rolling bearing
JP2009191942A (en) * 2008-02-14 2009-08-27 Nsk Ltd Rolling bearing

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0720031A (en) * 1993-06-30 1995-01-24 Toyota Central Res & Dev Lab Inc Method and device for thermal fatigue test
JP2004069638A (en) * 2002-08-09 2004-03-04 Kawasaki Heavy Ind Ltd Method for predicting crack development of elasto-plastic body and deformation predicting method
JP2005283130A (en) * 2004-03-26 2005-10-13 Kawasaki Heavy Ind Ltd Estimation method of ductile fracture limit, its program, recording medium and fracture testing machine
JP2006164219A (en) * 2004-11-09 2006-06-22 Phifit Kk Interface for analyzing finite-element, computer-readable storage medium which records program of interface for analyzing finite-element, method for analyzing finite-element using high value-added communication network, parallel processing computer for analyzing finite-element, and computer for analyzing finite-element
JP2006308019A (en) * 2005-04-28 2006-11-09 Nsk Ltd Rolling bearing
JP2008262263A (en) * 2007-04-10 2008-10-30 Ntn Corp Calculation method for contact surface pressure and subsurface stress
JP2009041993A (en) * 2007-08-07 2009-02-26 Nsk Ltd Predicting method of residual life of rolling bearing
JP2009191942A (en) * 2008-02-14 2009-08-27 Nsk Ltd Rolling bearing

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015028441A (en) * 2013-07-30 2015-02-12 日本精工株式会社 Role fatigue crack progress testing method and roll fatigue life estimation method
JP2017062177A (en) * 2015-09-25 2017-03-30 Ntn株式会社 Quality assurance method and device for machine element material
GB2585272A (en) * 2019-05-03 2021-01-06 Dirk Olaf Leimann Comparable stress for rolling bearings
CN113190926A (en) * 2021-04-20 2021-07-30 西安理工大学 Modeling method for microprotrusion contact containing nonmetallic inclusions
CN113190926B (en) * 2021-04-20 2023-02-10 西安理工大学 Modeling method for microprotrusion contact containing nonmetallic inclusions

Also Published As

Publication number Publication date
JP5111472B2 (en) 2013-01-09

Similar Documents

Publication Publication Date Title
Kamaya et al. A procedure for determining the true stress–strain curve over a large range of strains using digital image correlation and finite element analysis
Ouladbrahim et al. Experimental crack identification of API X70 steel pipeline using improved Artificial Neural Networks based on Whale Optimization Algorithm
JP5111472B2 (en) Stress analysis method in rolling contact fatigue
Chung et al. Forming limit criterion for ductile anisotropic sheets as a material property and its deformation path insensitivity, Part II: Boundary value problems
Zhan et al. Investigations on failure-to-fracture mechanism and prediction of forming limit for aluminum alloy incremental forming process
Hu et al. Edge fracture prediction of traditional and advanced trimming processes for AA6111-T4 sheets
JP2007232715A (en) Method and device for breaking estimation, program and recording medium
Watson et al. Mode I traction-separation measured using rigid double cantilever beam applied to structural adhesive
McClain et al. A numeric investigation of the rake face stress distribution in orthogonal machining
Leem et al. Improving the accuracy of double-sided incremental forming simulations by considering kinematic hardening and machine compliance
Long et al. Finite element modeling of burr formation in orthogonal cutting
Chen et al. Numerical simulation of fine-blanking process using a mixed finite element method
Jafaraghaei et al. Peridynamics simulation of impact failure in glass plates
Verma et al. Effect of pre-strain on anisotropic hardening and springback behavior of an ultra low carbon automotive steel
Su et al. Fatigue reliability design for metal dual inline packages under random vibration based on response surface method
JP4703453B2 (en) Impact analysis method
Bagherifard et al. RETRACTED: Influence of mesh parameters on FE simulation of severe shot peening (SSP) aimed at generating nanocrystallized surface layer
Liu et al. Study on the residual stress fields, surface quality, and fatigue performance of cold expansion hole
Khayatzadeh et al. Characterisation and modelling of in-plane springback in a commercially pure titanium (CP-Ti)
CN113358678B (en) Semi-quantitative prediction and visualization method for mesoscopic stress and texture in alpha titanium deformation process
Shi et al. Effect of rate sensitivity on necking behavior of a laminated tube under dynamic loading
Agarwal et al. Fatigue crack propagation in a gear tooth in the presence of an inclusion
JP2023007165A (en) Characteristic estimation device of ferrous material, characteristic estimation model generation device of ferrous material, characteristic estimation method of ferrous material, characteristic estimation model generation method of ferrous material and program
JP2016168615A (en) Hole expansion ratio prediction method and hole expansion ratio predictor
CN109959555B (en) Method for predicting induction period of central crack tensile sample by considering thickness and crack depth influence

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110526

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120925

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120926

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121009

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151019

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5111472

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees