JP2011064527A - Gas analyzer and method by continuous concentration method - Google Patents

Gas analyzer and method by continuous concentration method Download PDF

Info

Publication number
JP2011064527A
JP2011064527A JP2009214083A JP2009214083A JP2011064527A JP 2011064527 A JP2011064527 A JP 2011064527A JP 2009214083 A JP2009214083 A JP 2009214083A JP 2009214083 A JP2009214083 A JP 2009214083A JP 2011064527 A JP2011064527 A JP 2011064527A
Authority
JP
Japan
Prior art keywords
gas
sample gas
separation filter
longitudinal direction
concentrator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009214083A
Other languages
Japanese (ja)
Other versions
JP5102816B2 (en
Inventor
Mayumi Matsuda
真由美 松田
Naozo Nagasawa
尚三 長沢
Keisuke Utani
啓介 宇谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
J-SCIENCE LAB CO Ltd
SCIENCE LAB CO Ltd J
Original Assignee
J-SCIENCE LAB CO Ltd
SCIENCE LAB CO Ltd J
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by J-SCIENCE LAB CO Ltd, SCIENCE LAB CO Ltd J filed Critical J-SCIENCE LAB CO Ltd
Priority to JP2009214083A priority Critical patent/JP5102816B2/en
Publication of JP2011064527A publication Critical patent/JP2011064527A/en
Application granted granted Critical
Publication of JP5102816B2 publication Critical patent/JP5102816B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To concentrate and measure sample gas by a concentrator having a simple and easily-operable/handleable structure. <P>SOLUTION: In the concentrator 1 for concentrating sample gas SG including a separation filter 12 formed by bundling many nonporous membrane hollow fibers, the sample gas SG is allowed to pass the separation filter 12 to obtain concentrated sample gas SG1. Further, the separation filter 12 is stored in a storage tube 11, and arranged so that the longitudinal direction of the separation filter 12 is the same as the longitudinal direction of the storage tube 11. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、分離フィルタを利用することで低濃度ガスを濃縮して分析するガス分析装置及び方法に関し、特に、濃縮器で連続的に濃縮して分析を行うことが可能なガス分析装置及び方法に関する。   The present invention relates to a gas analyzer and method for concentrating and analyzing a low-concentration gas by using a separation filter, and in particular, a gas analyzer and method capable of continuously concentrating and analyzing with a concentrator. About.

ガス分析装置の一例としてガスクロマトグラフ装置がある。ガスクロマトグラフによる測定装置は、例えば特許文献1に開示されている。そして、このガスクロマトグラフ測定において、サンプルガス中の検出対象ガスの濃度が低くて検出できない場合に、検出感度を向上させるために、サンプルガスを濃縮して検出対象ガスの濃度を高くして測定する。低濃度のサンプルガスを濃縮する器具は、例えば特許文献2に開示されている。   An example of the gas analyzer is a gas chromatograph device. A measuring apparatus using a gas chromatograph is disclosed in Patent Document 1, for example. In this gas chromatographic measurement, when the detection target gas concentration in the sample gas is low and cannot be detected, the sample gas is concentrated to increase the detection target gas concentration in order to improve the detection sensitivity. . An instrument for concentrating a low-concentration sample gas is disclosed in Patent Document 2, for example.

従来の濃縮器によれば、サンプルガスは、検出器に導入される前に、吸着剤を充填したトラップ管内を通過する。トラップ管は、液体窒素により極低温に冷却されており、サンプルガスがトラップ管内で凝縮される。その後、液体窒素からトラップ管を取り出し、トラップ管に外装されたヒータを加熱して、サンプルガスを吸着剤から分離する。これにより、サンプルガスは濃縮され、トラップ管に導入されるキャリヤーガスと共に分離カラムに導入される。   According to a conventional concentrator, the sample gas passes through a trap tube filled with an adsorbent before being introduced into the detector. The trap tube is cooled to a very low temperature by liquid nitrogen, and the sample gas is condensed in the trap tube. Thereafter, the trap tube is taken out from the liquid nitrogen, and the heater sheathed on the trap tube is heated to separate the sample gas from the adsorbent. Thereby, the sample gas is concentrated and introduced into the separation column together with the carrier gas introduced into the trap tube.

しかし、上記の濃縮器は、液体窒素やトラップ管、ヒータ等を用いるので非常に複雑で大掛かりな構成であって、操作も煩雑である。また、液体窒素などの冷媒はデュアー瓶での貯蔵が難しく、揮散するので随時補充しなければならず非常に煩雑である。また、上記の方式は、断続的な測定に適しており、連続的に濃縮サンプルガスを分析器に導入することができない。   However, the above-described concentrator uses liquid nitrogen, a trap tube, a heater, and the like, and thus has a very complicated and large-scale configuration and is complicated to operate. In addition, a refrigerant such as liquid nitrogen is difficult to store in a dewar and volatilizes, so it must be replenished at any time and is very complicated. Further, the above method is suitable for intermittent measurement, and the concentrated sample gas cannot be continuously introduced into the analyzer.

特開平5−99910号公報JP-A-5-99910 特開平7−31801号公報JP-A-7-31801

そこで、本発明が解決しようとする課題は、シンプルで操作や取り扱いが簡単な構造の濃縮器によって、サンプルガスを連続的に濃縮して測定することが可能なガス分析装置及び方法を提供することである。   Therefore, the problem to be solved by the present invention is to provide a gas analyzer and method capable of continuously concentrating and measuring a sample gas with a concentrator having a simple structure that is easy to operate and handle. It is.

上記課題を解決するために、本発明に係るガス分析装置は、
サンプルガスを濃縮器で濃縮して測定を行うガス分析装置において、濃縮器は、非多孔膜中空糸を多数本束ねた分離フィルタを備えており、サンプルガスを分離フィルタに通過させて濃縮サンプルガスとする。
In order to solve the above problems, a gas analyzer according to the present invention provides:
In a gas analyzer that performs measurement by concentrating sample gas with a concentrator, the concentrator includes a separation filter in which a large number of non-porous membrane hollow fibers are bundled, and the sample gas is passed through the separation filter to concentrate the sample gas. And

好ましくは、分離フィルタは収容管に収容されており、分離フィルタの長手方向が収容管の長手方向に向けて配置され、収容管は、その長手方向の一端にサンプルガスを供給するための供給流路と、その長手方向の他端にサンプルガスを排出する第1排出流路と、その外周面にサンプルガスを排出する第2排出流路とを備え、第1排出流路又は第2排出流路から排出された濃縮サンプルガスを測定する。   Preferably, the separation filter is housed in a housing tube, the longitudinal direction of the separation filter is arranged in the longitudinal direction of the housing tube, and the housing tube has a supply flow for supplying sample gas to one end in the longitudinal direction. A first discharge flow path for discharging the sample gas to the other end in the longitudinal direction thereof, and a second discharge flow path for discharging the sample gas to the outer peripheral surface thereof, the first discharge flow path or the second discharge flow Measure the concentrated sample gas discharged from the channel.

好ましくは、濃縮サンプルガスは連続的に分析器に導入されて連続測定される。   Preferably, the concentrated sample gas is continuously introduced into the analyzer and continuously measured.

また、上記課題を解決するために、本発明に係るガス分析方法は、
サンプルガスを濃縮器で濃縮して測定を行うガス分析方法において、非多孔膜中空糸を多数本束ねた分離フィルタを備えた濃縮器を準備し、サンプルガスを分離フィルタに通過させて濃縮サンプルガスとする。
In addition, in order to solve the above problems, a gas analysis method according to the present invention includes:
In a gas analysis method for measuring by concentrating sample gas with a concentrator, a concentrator equipped with a separation filter in which a large number of non-porous membrane hollow fibers are bundled is prepared, and the sample gas is passed through the separation filter to concentrate the sample gas. And

好ましくは、分離フィルタを収容管に収容し、分離フィルタの長手方向が収容管の長手方向に向けて配置され、収容管は、その長手方向の一端にサンプルガスを供給するための供給流路と、その長手方向の他端にサンプルガスを排出する第1排出流路と、その外周面にサンプルガスを排出する第2排出流路とを備え、第1排出流路又は第2排出流路から排出された濃縮サンプルガスを測定する。   Preferably, the separation filter is housed in the housing tube, the longitudinal direction of the separation filter is arranged in the longitudinal direction of the housing tube, and the housing tube includes a supply flow path for supplying sample gas to one end in the longitudinal direction. A first discharge channel for discharging the sample gas to the other end in the longitudinal direction, and a second discharge channel for discharging the sample gas on the outer peripheral surface thereof, from the first discharge channel or the second discharge channel. Measure the exhausted concentrated sample gas.

好ましくは、濃縮サンプルガスを連続的に分析器に導入して連続測定する。   Preferably, the concentrated sample gas is continuously introduced into the analyzer for continuous measurement.

上記の通り、本発明に係るガス分析装置及び方法は、非多孔膜中空糸を多数本束ねた分離フィルタを備えた濃縮器を使用する。分離フィルタは非多孔膜中空糸で構成されているので、サンプルガスを分離フィルタに通過させることで、サンプルガス中における各気体を選択的に透過・不透過して分離する。   As described above, the gas analyzer and method according to the present invention uses a concentrator equipped with a separation filter in which a large number of non-porous membrane hollow fibers are bundled. Since the separation filter is composed of a non-porous membrane hollow fiber, each gas in the sample gas is selectively permeated and imperviously separated by passing the sample gas through the separation filter.

例えば、水素を主成分とするサンプルガス中におけるアルゴン、窒素等(検出対象ガス)を検出する場合、所定量の水素だけを分離フィルタに透過させて外側へ排出することで、分離フィルタの内側で水素中におけるアルゴン、窒素等(検出対象ガス)の濃度を高くできる。   For example, when detecting argon, nitrogen, etc. (detection target gas) in a sample gas containing hydrogen as a main component, only a predetermined amount of hydrogen permeates through the separation filter and is discharged to the inside. The concentration of argon, nitrogen, etc. (detection target gas) in hydrogen can be increased.

また逆に、アルゴン、窒素等を主成分とするサンプルガス中における水素(検出対象ガス)を検出する場合、分離フィルタに水素だけを外側に透過することによって、外側の水素(検出対象ガス)の濃度を高くできる。   Conversely, when detecting hydrogen (detection target gas) in a sample gas containing argon, nitrogen, or the like as a main component, by passing only hydrogen to the outside through the separation filter, the outer hydrogen (detection target gas) The concentration can be increased.

即ち、相対的にベースガスが低分子(例えば水素)中の微量高分子成分(例えばアルゴン、窒素)を濃縮して測定したり、ベースガスが高分子(例えばアルゴン、窒素)中の微量低分子成分(例えば水素)を濃縮して測定できるので、ベースガスが低分子・高分子の双方で濃縮測定可能となっている。   That is, a relatively small amount of a high molecular weight component (for example, argon, nitrogen) in a low molecular weight (for example, hydrogen) is measured, or a small amount of a low molecular weight in a high molecular weight (for example, argon, nitrogen) is measured. Since the component (for example, hydrogen) can be concentrated and measured, the base gas can be concentrated and measured for both low and high molecules.

このように、シンプルな構造の分離フィルタを用いてサンプルガスを濃縮できるので、操作及び取り扱いが非常に簡単なよう構成されている。さらに、サンプルガスを濃縮器に通過させて濃縮できるので、連続的に分析器に導入して連続測定を行うことができる。   As described above, since the sample gas can be concentrated using the separation filter having a simple structure, the operation and handling are very simple. Furthermore, since the sample gas can be concentrated by passing it through a concentrator, it can be continuously introduced into the analyzer for continuous measurement.

ガスクロマトグラフ装置の第1実施形態を示すブロック図である。It is a block diagram which shows 1st Embodiment of a gas chromatograph apparatus. 濃縮器を示す断面図である。It is sectional drawing which shows a concentrator. 非多孔膜中空糸を示す斜視図である。It is a perspective view which shows a non-porous membrane hollow fiber. ガスクロマトグラフ装置の第2実施形態を示すブロック図である。It is a block diagram which shows 2nd Embodiment of a gas chromatograph apparatus. ガスクロマトグラフ装置によって得られたクロマトグラムを示す図である。It is a figure which shows the chromatogram obtained by the gas chromatograph apparatus.

以下、図面に基づいて、本発明に係るガス分析装置及び方法について説明する。なお下記では、ガス分析装置及び方法について、ガスクロマトグラフ装置及び方法を適用して説明するが、ガスクロマトグラフ−質量分析計、NOx計、SOx計等その他のガス測定用分析器についても適用可能である。   The gas analyzer and method according to the present invention will be described below with reference to the drawings. In the following, the gas analyzer and method will be described by applying the gas chromatograph device and method. However, the present invention can also be applied to other gas measurement analyzers such as a gas chromatograph-mass spectrometer, NOx meter, and SOx meter. .

[第1実施形態]
先ず、ガスクロマトグラフ装置の第1実施形態について説明する。
図1の通り、ガスクロマトグラフ装置は、サンプルガスSGを濃縮するための濃縮器1を備える。サンプルガスSGは、例えば水素を主成分とする試料ガスである。サンプルガスSGは供給流路5aを通じて濃縮器1へ供給される。供給流路5aは、一定速度で一定流量のサンプルガスSGを計測して送るためのフローコントローラFC及びストップバルブST1を備える。
[First Embodiment]
First, a first embodiment of a gas chromatograph apparatus will be described.
As shown in FIG. 1, the gas chromatograph apparatus includes a concentrator 1 for concentrating the sample gas SG. The sample gas SG is a sample gas mainly containing hydrogen, for example. The sample gas SG is supplied to the concentrator 1 through the supply channel 5a. The supply flow path 5a includes a flow controller FC and a stop valve ST1 for measuring and sending a sample gas SG having a constant flow rate at a constant speed.

図2の通り、濃縮器1は、円筒状の収容管11を備えており、収容管11に分離フィルタ12が収納されている。分離フィルタ12は、多数本の非多孔膜中空糸10(図3)が平行に束ねられて構成されており、その長手方向が収納管11の長手方向に向くように配置されている。   As shown in FIG. 2, the concentrator 1 includes a cylindrical storage tube 11, and a separation filter 12 is stored in the storage tube 11. The separation filter 12 is configured by bundling a large number of non-porous membrane hollow fibers 10 (FIG. 3) in parallel, and is arranged so that the longitudinal direction thereof faces the longitudinal direction of the storage tube 11.

図3の通り、非多孔膜中空糸10は、空孔10aを備えた円筒状の膜10bで構成されている。膜10bはポリイミド等で構成されており、熱振動で生成する分子間隙によって、サンプルガスSGの主成分(例えば水素)を透過ガスSG2として選択的に透過させるようになっている。   As shown in FIG. 3, the non-porous membrane hollow fiber 10 is composed of a cylindrical membrane 10b provided with pores 10a. The membrane 10b is made of polyimide or the like, and selectively transmits the main component (for example, hydrogen) of the sample gas SG as the permeating gas SG2 by molecular gaps generated by thermal vibration.

そして、図2の通り、収納管11は、一端1aが供給流路5aに接続され、他端1bが第1排出流路5bに接続されている。これにより、供給流路5aを通じて収納管11に供給されたサンプルガスSGは、分離フィルタ12における多数本の中空糸10の空孔10aを通じて排出される。収納管11は、外周面1cが第2排出流路7に接続されている。   As shown in FIG. 2, the storage tube 11 has one end 1a connected to the supply flow path 5a and the other end 1b connected to the first discharge flow path 5b. As a result, the sample gas SG supplied to the storage tube 11 through the supply channel 5 a is discharged through the holes 10 a of the multiple hollow fibers 10 in the separation filter 12. The storage tube 11 has an outer peripheral surface 1 c connected to the second discharge channel 7.

第2排出流路7は、吸引ポンプ4で吸引されている。従って、収納管11に供給されたサンプルガスSGは、中空糸10を通る際に、膜10bを透過する所定量の透過ガスSG2が第2排出流路7から排出される。これにより、サンプルガスSGは、所定量の主成分(例えば水素)が透過ガスSG2として排出されるので、膜10bを透過しない検出対象ガス(例えばアルゴン等)が多く含まれる濃縮された濃縮サンプルガス(分析ガス)SG1が第1排出流路5bから排出される。   The second discharge channel 7 is sucked by the suction pump 4. Therefore, when the sample gas SG supplied to the storage tube 11 passes through the hollow fiber 10, a predetermined amount of permeated gas SG <b> 2 that permeates the membrane 10 b is discharged from the second discharge flow path 7. Thereby, since the sample gas SG is discharged as a permeated gas SG2 by a predetermined amount of the main component (for example, hydrogen), the concentrated concentrated sample gas containing a large amount of detection target gas (for example, argon) that does not pass through the membrane 10b. (Analysis gas) SG1 is discharged from the first discharge flow path 5b.

図1の通り、第2排出流路7は、透過ガスSG2を一定速度で吸引する吸引ポンプ4と、濃縮率に応じて吸引速度を可変するニードルバルブNV2とを備える。また、第1排出流路5bは、濃縮サンプルガスSG1の濃縮量を調整するニードルバルブNV1と、大気平衡を保つ大気平衡バルブST2とを備える。   As shown in FIG. 1, the second discharge channel 7 includes a suction pump 4 that sucks the permeate gas SG2 at a constant speed, and a needle valve NV2 that varies the suction speed according to the concentration rate. The first discharge channel 5b includes a needle valve NV1 that adjusts the concentration amount of the concentrated sample gas SG1, and an atmospheric balance valve ST2 that maintains atmospheric equilibrium.

また、図1の通り、測定前には、ストップバルブST3を制御して、濃縮器1に接続された流路6を通じてパージガスPGを流し、不要な空気成分等が残存している前ガスを取り除くためにパージする。   Further, as shown in FIG. 1, before the measurement, the stop valve ST3 is controlled, and the purge gas PG is caused to flow through the flow path 6 connected to the concentrator 1 so as to remove the previous gas in which unnecessary air components remain. Purge for.

そして、例えば、主成分ガス10.0L/minに対して濃縮サンプルガスを100ml/minにした場合、主成分ガス(透過ガスSG2)は第2排出流路7から9.9L/minで排出され、濃縮サンプルガス(分析ガスSG1)は第1排出流路5bから100ml/minで排出される。ここで濃縮サンプルガス中には検出対象ガスが透過せずに残留するので、約100倍の濃縮率で濃縮されることになる。なお、濃縮率は、サンプルガスSGの成分や検出器3の性能等に応じて、最も精度良く測定できる濃度にトライアルによって決定することができる。   For example, when the concentrated sample gas is 100 ml / min with respect to 10.0 L / min of the main component gas, the main component gas (permeate gas SG2) is discharged from the second discharge channel 7 at 9.9 L / min. The concentrated sample gas (analysis gas SG1) is discharged from the first discharge channel 5b at 100 ml / min. Here, since the detection target gas remains in the concentrated sample gas without passing through, it is concentrated at a concentration rate of about 100 times. The concentration rate can be determined by trial to a concentration that can be measured with the highest accuracy according to the components of the sample gas SG, the performance of the detector 3, and the like.

ガスクロマトグラフ装置は、サンプリングバルブSV及び計量管SLを備える。非測定時は、サンプリングバルブSVの流路は実線の状態になる。濃縮サンプルガスSG1は、第1排出流路5bから導入され、計量管SLを経てフローメータFMを通じて流路5eから廃棄される。キャリアガスCGは、流路5cを通じて制御弁PR及び圧力計PMを経て、サンプリングバルブSVから流路5dを通じて分離カラム2に送られる。   The gas chromatograph apparatus includes a sampling valve SV and a measuring tube SL. At the time of non-measurement, the flow path of the sampling valve SV is in a solid line state. The concentrated sample gas SG1 is introduced from the first discharge channel 5b, and is discarded from the channel 5e through the flow meter FM via the measuring tube SL. The carrier gas CG is sent to the separation column 2 from the sampling valve SV through the flow path 5d through the control valve PR and the pressure gauge PM through the flow path 5c.

測定時(サンプルガス導入時)は、サンプリングバルブSVの流路は破線の状態になる。キャリアガスCGは、サンプリングバルブSV及び計量管SLを経て分離カラム2に流れる。計量管SLにより採取された一定量の濃縮サンプルガスSG1は、キャリアガスCGによって分離カラム2に送り込まれ、分離カラム2で分離した成分が検出器3により測定される。   At the time of measurement (when the sample gas is introduced), the flow path of the sampling valve SV is in a broken line state. The carrier gas CG flows to the separation column 2 through the sampling valve SV and the measuring pipe SL. A certain amount of concentrated sample gas SG1 collected by the measuring tube SL is sent to the separation column 2 by the carrier gas CG, and the components separated by the separation column 2 are measured by the detector 3.

[第2実施形態]
次に、図4の通り、ガスクロマトグラフ装置の第2実施形態について説明する。第2実施形態は、連続的に濃縮サンプルガスSG1を測定できるよう構成されている。即ち、濃縮器1から排出された濃縮サンプルガスSG1は、第1排出流路5bを通じて、サンプリングバルブSV等を介することなく、検出器3に送り込まれ測定される。これにより、濃縮サンプルガスSG1は、断片的な測定ではなく、連続的に測定を行うことが可能である。なお、第2実施形態では、連続的に測定するために、分離カラム2の代わりに流量制御用のキャピラリーチューブ(抵抗管)2’を備える。
[Second Embodiment]
Next, a second embodiment of the gas chromatograph apparatus will be described as shown in FIG. The second embodiment is configured to continuously measure the concentrated sample gas SG1. That is, the concentrated sample gas SG1 discharged from the concentrator 1 is sent to the detector 3 and measured through the first discharge channel 5b without passing through the sampling valve SV or the like. As a result, the concentrated sample gas SG1 can be measured continuously rather than in pieces. In the second embodiment, a capillary tube (resistance tube) 2 ′ for flow rate control is provided in place of the separation column 2 for continuous measurement.

上記各実施形態では、第1排出流路5bから排出されるガスを測定したが、第2排出流路7から排出されるガスを測定することもできる。即ち、サンプルガスSGが、アルゴン、窒素等を主成分としており、水素が検出対象ガスであるとき、第2排出流路7から排出される透過ガス(水素ガス)SG2が検出対象ガスとなるので、透過ガスSG2を測定する。   In each said embodiment, although the gas discharged | emitted from the 1st discharge flow path 5b was measured, the gas discharged | emitted from the 2nd discharge flow path 7 can also be measured. That is, when the sample gas SG is mainly composed of argon, nitrogen or the like and hydrogen is the detection target gas, the permeated gas (hydrogen gas) SG2 discharged from the second discharge flow path 7 becomes the detection target gas. The permeate gas SG2 is measured.

このように、第1排出路5b又は第2排出路7から排出されるサンプルガスは、分子の大きさによって、主成分ガスが低分子の場合(例えば水素)は第1排出路5bから濃縮サンプルガス(例えばアルゴン、窒素)が排出され、主成分ガスが高分子の場合(例えばアルゴン、窒素)は第2排出路7から濃縮サンプルガス(例えば水素)が排出される。測定流路を選択することによって、簡単にいずれかの濃縮サンプルガスを分析器に導入できる。   Thus, the sample gas discharged from the first discharge path 5b or the second discharge path 7 is a concentrated sample from the first discharge path 5b when the main component gas is a low molecule (for example, hydrogen) depending on the size of the molecule. When the gas (for example, argon or nitrogen) is discharged and the main component gas is a polymer (for example, argon or nitrogen), the concentrated sample gas (for example, hydrogen) is discharged from the second discharge path 7. By selecting the measurement channel, any concentrated sample gas can be easily introduced into the analyzer.

また、被濃縮サンプルガスは1成分に限らず複数成分であっても、分離フィルタを介する非透過作用によって、濃縮サンプルガスを濃縮することができる。   Further, even if the sample gas to be concentrated is not limited to a single component but a plurality of components, the concentrated sample gas can be concentrated by the non-permeating action through the separation filter.

図5は、図1のガスクロマトグラフ装置によって得られたクロマトグラムの一例を示す。このデータでは、主成分は水素、低濃度測定成分としてAr、N、CH、COが各々約20ppm含まれているサンプルガスについて測定した。濃縮率約20倍で濃縮して測定した結果、Arの測定値は約395ppmとなり、濃縮率に一致した(他成分も同様)。従って、ガスクロマトグラフの検出感度は一般的に1ppm程度であるのに対し、検出下限値以下、例えば0.1ppm以下の濃度であっても流量比率を20〜100倍に変えることによって簡単に濃縮率を上げ、測定可能な濃度範囲として測定することができる。濃縮率はサンプルガスの成分や検出器の性能等に応じて、また消費ガス流量を考慮した上、最も精度良く測定できる濃度にトライアルによって決定することができる。 FIG. 5 shows an example of a chromatogram obtained by the gas chromatograph apparatus of FIG. In this data, measurement was performed on a sample gas containing hydrogen as a main component and approximately 20 ppm of Ar, N 2 , CH 4 , and CO as low concentration measurement components. As a result of measurement after concentration at a concentration rate of about 20 times, the measured value of Ar was about 395 ppm, which coincided with the concentration rate (the same applies to other components). Therefore, while the detection sensitivity of a gas chromatograph is generally about 1 ppm, even if the concentration is below the lower limit of detection, for example, 0.1 ppm or less, the concentration rate can be easily changed by changing the flow rate ratio to 20 to 100 times. Can be measured as a measurable concentration range. The concentration rate can be determined by trial according to the component of the sample gas, the performance of the detector, etc., and in consideration of the consumption gas flow rate, to a concentration that can be measured with the highest accuracy.

1 濃縮器
2 分離カラム
2’ キャピラリーチューブ
3 検出器
1a 収納管の一端
1b 収納管の他端
1c 収納管の外周面
10 非多孔膜中空糸
11 収容管
12 分離フィルタ
SG サンプルガス
DESCRIPTION OF SYMBOLS 1 Concentrator 2 Separation column 2 'Capillary tube 3 Detector 1a One end 1b of a storage tube The other end 1c of a storage tube The outer peripheral surface 10 of a storage tube Non-porous membrane hollow fiber 11 Storage tube 12 Separation filter SG Sample gas

Claims (6)

サンプルガスを濃縮器で濃縮して測定を行うガス分析装置において、前記濃縮器は、非多孔膜中空糸を多数本束ねた分離フィルタを備えており、前記サンプルガスを前記分離フィルタに通過させて濃縮サンプルガスとすることを特徴とするガス分析装置。   In a gas analyzer that performs measurement by concentrating a sample gas with a concentrator, the concentrator includes a separation filter in which a number of non-porous membrane hollow fibers are bundled, and the sample gas is passed through the separation filter. A gas analyzer characterized by being a concentrated sample gas. 前記分離フィルタは収容管に収容されており、前記分離フィルタの長手方向が前記収容管の長手方向に向けて配置され、前記収容管は、その長手方向の一端に前記サンプルガスを供給するための供給流路と、その長手方向の他端に前記サンプルガスを排出する第1排出流路と、その外周面に前記サンプルガスを排出する第2排出流路とを備え、前記第1排出流路又は前記第2排出流路から排出された前記濃縮サンプルガスを測定することを特徴とする請求項1に記載のガス分析装置。   The separation filter is housed in a housing tube, the longitudinal direction of the separation filter is arranged in the longitudinal direction of the housing tube, and the housing tube is used for supplying the sample gas to one end in the longitudinal direction. A first discharge channel that discharges the sample gas to the other end in the longitudinal direction; and a second discharge channel that discharges the sample gas to the outer peripheral surface of the supply channel. Alternatively, the gas analyzer according to claim 1, wherein the concentrated sample gas discharged from the second discharge channel is measured. 前記濃縮サンプルガスは連続的に分析器に導入されて連続測定されることを特徴とする請求項2に記載のガス分析装置。   The gas analyzer according to claim 2, wherein the concentrated sample gas is continuously introduced into an analyzer and continuously measured. サンプルガスを濃縮器で濃縮して測定を行うガス分析方法において、非多孔膜中空糸を多数本束ねた分離フィルタを備えた濃縮器を準備し、前記サンプルガスを前記分離フィルタに通過させて濃縮サンプルガスとすることを特徴とするガス分析方法。   In a gas analysis method for measuring by concentrating a sample gas with a concentrator, a concentrator equipped with a separation filter in which a large number of non-porous membrane hollow fibers are bundled is prepared, and the sample gas is passed through the separation filter for concentration. A gas analysis method characterized by using a sample gas. 前記分離フィルタを収容管に収容し、前記分離フィルタの長手方向が前記収容管の長手方向に向けて配置され、前記収容管は、その長手方向の一端に前記サンプルガスを供給するための供給流路と、その長手方向の他端に前記サンプルガスを排出する第1排出流路と、その外周面に前記サンプルガスを排出する第2排出流路とを備え、前記第1排出流路又は前記第2排出流路から排出された前記濃縮サンプルガスを測定することを特徴とする請求項4に記載のガス分析方法。   The separation filter is housed in a housing tube, the longitudinal direction of the separation filter is arranged in the longitudinal direction of the housing tube, and the housing tube is a supply flow for supplying the sample gas to one end in the longitudinal direction. A first discharge flow path for discharging the sample gas at the other end in the longitudinal direction, and a second discharge flow path for discharging the sample gas on the outer peripheral surface thereof, the first discharge flow path or the The gas analysis method according to claim 4, wherein the concentrated sample gas discharged from the second discharge channel is measured. 前記濃縮サンプルガスを連続的に分析器に導入して連続測定することを特徴とする請求項5に記載のガス分析方法。   The gas analysis method according to claim 5, wherein the concentrated sample gas is continuously introduced into an analyzer and continuously measured.
JP2009214083A 2009-09-16 2009-09-16 Gas analyzer with continuous concentration method Active JP5102816B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009214083A JP5102816B2 (en) 2009-09-16 2009-09-16 Gas analyzer with continuous concentration method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009214083A JP5102816B2 (en) 2009-09-16 2009-09-16 Gas analyzer with continuous concentration method

Publications (2)

Publication Number Publication Date
JP2011064527A true JP2011064527A (en) 2011-03-31
JP5102816B2 JP5102816B2 (en) 2012-12-19

Family

ID=43950946

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009214083A Active JP5102816B2 (en) 2009-09-16 2009-09-16 Gas analyzer with continuous concentration method

Country Status (1)

Country Link
JP (1) JP5102816B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017015625A (en) * 2015-07-03 2017-01-19 国立大学法人鳥取大学 Adsorption device and analyzer
WO2023063300A1 (en) * 2021-10-13 2023-04-20 オルガノ株式会社 Method and device for measuring concentration of trace gas component in water

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6154222A (en) * 1984-08-13 1986-03-18 モンサント コンパニー Composite separation membrane
JPS6456305A (en) * 1987-08-26 1989-03-03 Daikin Ind Ltd Nitrogen generator
JPH01281126A (en) * 1988-05-02 1989-11-13 Daikin Ind Ltd Membrane-type gas separation device
JPH03109904A (en) * 1989-09-26 1991-05-09 Dainippon Ink & Chem Inc Permeable gasifying membrane module and degassing method
JP2001124748A (en) * 1999-10-27 2001-05-11 Mitsubishi Electric Corp Method and apparatus for high-speed analysis of chlorobenzene
JP2002214216A (en) * 2001-01-12 2002-07-31 Mitsubishi Electric Corp High-speed analyzing instrument for monochlorobenzene and high-speed analyzing method using the same
JP2004243051A (en) * 2003-02-12 2004-09-02 Fukuhara Co Ltd Apparatus for generating oxygen-enriched air with fragrance

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6154222A (en) * 1984-08-13 1986-03-18 モンサント コンパニー Composite separation membrane
JPS6456305A (en) * 1987-08-26 1989-03-03 Daikin Ind Ltd Nitrogen generator
JPH01281126A (en) * 1988-05-02 1989-11-13 Daikin Ind Ltd Membrane-type gas separation device
JPH03109904A (en) * 1989-09-26 1991-05-09 Dainippon Ink & Chem Inc Permeable gasifying membrane module and degassing method
JP2001124748A (en) * 1999-10-27 2001-05-11 Mitsubishi Electric Corp Method and apparatus for high-speed analysis of chlorobenzene
JP2002214216A (en) * 2001-01-12 2002-07-31 Mitsubishi Electric Corp High-speed analyzing instrument for monochlorobenzene and high-speed analyzing method using the same
JP2004243051A (en) * 2003-02-12 2004-09-02 Fukuhara Co Ltd Apparatus for generating oxygen-enriched air with fragrance

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017015625A (en) * 2015-07-03 2017-01-19 国立大学法人鳥取大学 Adsorption device and analyzer
WO2023063300A1 (en) * 2021-10-13 2023-04-20 オルガノ株式会社 Method and device for measuring concentration of trace gas component in water

Also Published As

Publication number Publication date
JP5102816B2 (en) 2012-12-19

Similar Documents

Publication Publication Date Title
RU2364862C2 (en) Gas chromatograph
CN103380362B (en) Analyte is introduced in chemical analyzer
EP2833117B1 (en) Sampling and detection device for volatile organic compound in water
US8302458B2 (en) Portable analytical system for detecting organic chemicals in water
JP2019514021A (en) Multiple capillary column preconcentration system for increasing the sensitivity of gas chromatography (GC) and gas chromatography mass spectrometry (GCMS)
US20080163674A1 (en) Sensor with an analyte modulator
KR20070006807A (en) Methods and systems for characterizing a sorbent tube
JP2010112761A5 (en)
JP3725441B2 (en) Method for analyzing impurities in a gas stream
JP5102816B2 (en) Gas analyzer with continuous concentration method
Uchytil et al. Influence of capillary condensation effects on mass transport through porous membranes
US20090111191A1 (en) Gas analyzer cassette system
US10228355B2 (en) Volatile eluent preparation
JP2009128177A (en) Gas analyzer and fuel cell
WO2007091654A1 (en) Liquid chromatograph
JP2005249691A (en) Gas chromatograph unit and exhaust gas analytical method
JP2006275844A (en) Method and instrument for measuring atmospheric gas
Petrusová et al. Comparison of hexane vapour permeation in two different polymeric membranes via an innovative in-line FID detection method
JP7212337B2 (en) Measuring method and measuring device by gas sensor
US20210116430A1 (en) Chemical agent detector with 30 second cycle
US6368559B1 (en) Device for analyzing organic compounds particularly in aqueous and gaseous samples
CN116929983A (en) Gas adsorption instrument
RU34748U1 (en) Equivalent gas chromatography detector
Liu PREPARATION AND INTRODUCTION TECHNIQUES

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110428

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120704

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120912

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120928

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151005

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5102816

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250