JP2011064435A - Method of producing powder - Google Patents

Method of producing powder Download PDF

Info

Publication number
JP2011064435A
JP2011064435A JP2009217511A JP2009217511A JP2011064435A JP 2011064435 A JP2011064435 A JP 2011064435A JP 2009217511 A JP2009217511 A JP 2009217511A JP 2009217511 A JP2009217511 A JP 2009217511A JP 2011064435 A JP2011064435 A JP 2011064435A
Authority
JP
Japan
Prior art keywords
powder
heating tube
particles
solvent
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009217511A
Other languages
Japanese (ja)
Inventor
Jiro Iriguchi
治郎 入口
Yasuhiro Yamamoto
泰裕 山本
Shuji Shimizu
修二 清水
Yuji Ono
勇二 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP2009217511A priority Critical patent/JP2011064435A/en
Publication of JP2011064435A publication Critical patent/JP2011064435A/en
Pending legal-status Critical Current

Links

Landscapes

  • Glanulating (AREA)
  • Drying Of Solid Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce an Fe content in obtained powder when material slurry comprising particulates dispersed in a solvent is dried by using a vacuum dryer. <P>SOLUTION: In this method, the material slurry in which the particulates are dispersed in the solvent is dried to produce powder by using the vacuum dryer in which one end of a heating tube heated externally and maintained in a decompressed state is connected to a supply part of the material slurry and the other end is connected to a powder collecting chamber maintained in the decompressed state. The heating tube comprises straight tubes and elbows which are alternately connected. At least the inner surface layer of the heating tube is formed of SUS 316, and the average particle diameter of the powder is 1 &mu;m or larger. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、微粒子が溶媒中に分散されたスラリーを乾燥して、二次凝集のない状態の粉体を製造する方法に関し、詳細には、Fe含量の少ない粉体を製造する方法に関するものである。   The present invention relates to a method for producing a powder having no secondary aggregation by drying a slurry in which fine particles are dispersed in a solvent, and more particularly to a method for producing a powder having a low Fe content. is there.

真空乾燥装置が古くから知られている。例えば、特許文献1には、長管状加熱器と真空蒸発室および受器との組合せ構造からなる真空濃縮乾燥装置が開示されている。この装置では、固形分を含んだ液体を長管状加熱器内部を移送させながら加熱しつつ、真空蒸発室へ導入し、断熱膨張によって瞬間的に液体を気化させ、固形分と分離するため、固形分に熱変質を与えないように構成されている。   Vacuum drying apparatuses have been known for a long time. For example, Patent Document 1 discloses a vacuum concentration drying apparatus having a combined structure of a long tubular heater, a vacuum evaporation chamber, and a receiver. In this device, the liquid containing solids is heated while being transferred inside the long tubular heater, and is introduced into the vacuum evaporation chamber. The liquid is instantaneously vaporized by adiabatic expansion and separated from the solids. It is configured not to heat the minute.

同様に、特許文献2には、長管状加熱管の口径と長さの比が1:100以上とする微粉化乾燥方法が開示されている。また、特許文献3には、同様の装置を用いて、粒子の乾燥と同時に表面処理を行う粒子の表面処理方法が記載されている。   Similarly, Patent Document 2 discloses a pulverization drying method in which the ratio of the diameter and length of the long tubular heating tube is 1: 100 or more. Patent Document 3 describes a particle surface treatment method in which a surface treatment is performed simultaneously with particle drying using a similar apparatus.

本出願人も、上記と同様の装置を用いた微粒子粉体の製造方法を提案している(特許文献4)。   The present applicant has also proposed a method for producing fine particle powder using an apparatus similar to the above (Patent Document 4).

一方、液晶表示素子に代表される表示ディスプレイ分野においては、スペーサ材料や光学フィルムに添加するために使用される添加剤(光拡散剤、アンチブロッキング剤等)等に無機微粒子や有機微粒子を適用するに当たり、異物を含まない高純度の微粒子粉体が要求されている。また、スペーサ、光拡散フィルムや防眩フィルム等の光学フィルム用添加剤においては、着色のない透明な微粒子、あるいは白色度の高い微粒子に対する要求レベルが高まっている。   On the other hand, in the display display field represented by liquid crystal display elements, inorganic fine particles and organic fine particles are applied to additives (light diffusing agents, antiblocking agents, etc.) used for adding to spacer materials and optical films. Therefore, a high-purity fine particle powder that does not contain foreign substances is required. In addition, in optical film additives such as spacers, light diffusion films and antiglare films, the required level for transparent fine particles without coloring or fine particles with high whiteness is increasing.

特公昭52−38272号公報Japanese Patent Publication No.52-38272 特公昭55−38588号公報Japanese Patent Publication No.55-38588 特公昭58−35736号公報Japanese Patent Publication No. 58-35736 特開平3−288538号公報JP-A-3-288538

本願発明者等は、真空乾燥装置を用いて乾燥した粉体にわずかな着色が認められることに気付き、着色の原因について検討した結果、乾燥工程で粉体に混入した金属成分、特に鉄(Fe)によるものであることを突き止めた。しかも、平均粒子径が1μm以上の無機微粒子や比較的硬度の高い有機樹脂微粒子において、Feの混入の問題が起こり易いことも見出した。スペーサや光学フィルム等の液晶表示素子用部材としては、シリカ等の無機微粒子や、有機系架橋重合体粒子、あるいは有機無機複合粒子が用いられているが、特に半導体分野や液晶表示素子用部材においては、不純物を10ppm以下に低減する必要があり、従来の真空乾燥装置を用いた粉体を適用することができなくなりつつある。   The inventors of the present application have noticed that slight coloring is observed in the powder dried using the vacuum drying apparatus, and as a result of examining the cause of the coloring, the metal component mixed in the powder in the drying process, particularly iron (Fe ). In addition, the present inventors have also found that the problem of Fe contamination is likely to occur in inorganic fine particles having an average particle diameter of 1 μm or more and organic resin fine particles having a relatively high hardness. As liquid crystal display element members such as spacers and optical films, inorganic fine particles such as silica, organic cross-linked polymer particles, or organic-inorganic composite particles are used, particularly in the semiconductor field and liquid crystal display element members. However, it is necessary to reduce impurities to 10 ppm or less, and it is becoming impossible to apply a powder using a conventional vacuum drying apparatus.

そこで、本発明では、純度や無色性に対する要求の高まる産業分野への適用を踏まえ、粉体の着色やその原因となる粉体中のFe含量の低減を図ることを課題として掲げた。   Therefore, in the present invention, based on the application to the industrial field where demands for purity and colorlessness are increasing, it has been set as an object to reduce the coloring of the powder and the Fe content in the powder that causes the powder.

本発明者等は、上記課題を解決すべく真空乾燥装置の構成を検討し、着色の原因となるFeの混入を抑制することに成功した。   The inventors of the present invention have studied the configuration of a vacuum drying apparatus to solve the above-mentioned problems and succeeded in suppressing the mixing of Fe that causes coloring.

上記課題を解決し得た本発明の粉体の製造方法は、外部加熱され、減圧に保持された加熱管の一端が原料スラリーの供給部に接続され、他端が減圧に保持された粉体捕集室に接続されている真空乾燥装置を用いて、溶媒中に微粒子が分散された原料スラリーを乾燥して粉体を製造する方法であって、前記加熱管が、交互に連結する直管とエルボとで構成されていて、該加熱管の少なくとも内面表面層がSUS316製であり、前記粉体の平均粒子径が1μm以上であるところに特徴を有している。   The method for producing the powder of the present invention that has solved the above problem is a powder in which one end of a heating tube that is externally heated and held at a reduced pressure is connected to a raw material slurry supply unit, and the other end is held at a reduced pressure. A method for producing a powder by drying a raw slurry in which fine particles are dispersed in a solvent using a vacuum drying apparatus connected to a collection chamber, wherein the heating pipes are alternately connected to a straight pipe And at least the inner surface layer of the heating tube is made of SUS316, and the powder has an average particle diameter of 1 μm or more.

本発明の製造方法では、真空乾燥装置を用いても、Fe含量の少ない粉体を製造することができるようになった。   In the production method of the present invention, a powder having a low Fe content can be produced even using a vacuum drying apparatus.

本発明の粉体の製造方法では、外部加熱される加熱管の一端が原料スラリーの供給部に接続され、他端が減圧に保持された粉体捕集室に接続されている真空乾燥装置を用いる。原料スラリーが減圧に保持された加熱管内部を移送されている間に加熱され、スラリーの溶媒の一部または全部が揮散すると共に、減圧に保持された粉体捕集室に粉体が捕集され、溶媒が残存している場合は、さらに乾燥処理される。   In the method for producing a powder of the present invention, a vacuum drying apparatus in which one end of a heating tube to be externally heated is connected to a raw material slurry supply unit and the other end is connected to a powder collecting chamber held under reduced pressure. Use. The raw slurry is heated while it is transported through the heating tube held at a reduced pressure, and part or all of the solvent of the slurry is volatilized, and the powder is collected in a powder collecting chamber held at a reduced pressure. If the solvent remains, it is further dried.

本発明で用いる真空乾燥装置においては、加熱管は、交互に連結する直管とエルボで構成されており、少なくとも、加熱管の内面表面層はSUS316で構成する。加熱管は、通常ステンレス鋼製であるので、この加熱管がFe源であると考えられるが、SUS304に比べて、SUS316を用いた加熱管はFe混入量を低減させ得ることが見出されたため、本発明では、少なくとも粉体が接触する加熱管の内面表面層をSUS316で構成する。また、粉体捕集室等の真空乾燥装置を構成する他部材においても、粉体が接触する内面はSUS316製とすることが好ましい。   In the vacuum drying apparatus used in the present invention, the heating tube is composed of alternately connected straight tubes and elbows, and at least the inner surface layer of the heating tube is composed of SUS316. Since the heating tube is usually made of stainless steel, it is considered that this heating tube is an Fe source, but it was found that the heating tube using SUS316 can reduce the amount of Fe contamination compared to SUS304. In the present invention, at least the inner surface layer of the heating tube in contact with the powder is made of SUS316. Moreover, also in other members which comprise vacuum drying apparatuses, such as a powder collection chamber, it is preferable that the inner surface which powder contacts is made from SUS316.

加熱管の少なくとも内面表面層がSUS316で構成されているとは、加熱管全体がSUS316製のものはもとより、加熱管の内面表面層のみがSUS316であり、他の外周側がSUS316以外の異種合金である積層接合構造の加熱管も含む意味である。異種合金としては、SUS304が好ましい。   That at least the inner surface layer of the heating tube is made of SUS316 means that the entire heating tube is made of SUS316, only the inner surface layer of the heating tube is SUS316, and the other outer peripheral side is made of a different alloy other than SUS316. It is also meant to include heating tubes with a certain laminated connection structure. As the dissimilar alloy, SUS304 is preferable.

加熱管を構成する直管は、2〜10本が好ましく、2〜4本がより好ましい。エルボの使用本数は、直管の本数がn本の場合、n−1本とすることが好ましい。加熱管を直管のみから構成すると、加熱管を加熱するための外部加熱手段も長くしなければならないが、直管とエルボとを交互に連結して蛇行状の加熱管にすることで、真空乾燥装置をコンパクトにすることができる。なお、エルボの端部は直管状に延長されていてもよい。   The number of straight pipes constituting the heating pipe is preferably 2 to 10, more preferably 2 to 4. The number of elbows used is preferably n-1 when the number of straight pipes is n. If the heating tube is composed only of a straight tube, the external heating means for heating the heating tube must also be lengthened, but by connecting the straight tube and the elbow alternately to form a serpentine heating tube, a vacuum can be obtained. The drying device can be made compact. The end of the elbow may be extended in a straight tube shape.

加熱管の内径(mm)に対する加熱管の長さ(mm)の比率(長さ/内径)は1200倍以下に抑えることが好ましい。加熱管の内径に対してその長さが1200倍を超えると、粉体のFe含量が多くなる傾向にあるためである。長さ/内径は、400倍以下がより好ましく、300倍以下がさらに好ましく、250倍以下が特に好ましい。長さ/内径の下限は特に限定されないが、加熱効率からは100倍以上とすることが好ましい。具体的には、例えば、口径8mmの加熱管を用いる場合には、加熱管の全長を800mm以上、9600mm以下とするのが好ましい。なお、エルボの長さは、外周側の内壁の長さを採用する。   The ratio (length / inner diameter) of the length (mm) of the heating tube to the inner diameter (mm) of the heating tube is preferably suppressed to 1200 times or less. This is because if the length exceeds 1200 times the inner diameter of the heating tube, the Fe content of the powder tends to increase. The length / inner diameter is more preferably 400 times or less, further preferably 300 times or less, and particularly preferably 250 times or less. The lower limit of the length / inner diameter is not particularly limited, but is preferably 100 times or more from the viewpoint of heating efficiency. Specifically, for example, when using a heating tube with a diameter of 8 mm, it is preferable that the total length of the heating tube is 800 mm or more and 9600 mm or less. Note that the length of the inner wall on the outer peripheral side is adopted as the length of the elbow.

加熱管を構成する直管1本の長さは特に限定されないが、400〜1500mmが好ましく、600〜1200mmがより好ましい。400mmより短いと、加熱管内での溶媒蒸発が不充分となり、静止状態での乾燥(捕集室内での乾燥)に対する有利な点である凝集防止効果が不充分となるおそれがある。一方、1500mmを超えて長くなると、直管内で微粒子同士の凝集が進行した場合、粒子間凝集力が高まるため、エルボ部分での衝突による解砕力では、一次粒子まで解砕することができなくなるおそれがある。   Although the length of one straight pipe which comprises a heating pipe is not specifically limited, 400-1500 mm is preferable and 600-1200 mm is more preferable. If it is shorter than 400 mm, solvent evaporation in the heating tube becomes insufficient, and there is a possibility that the anti-aggregation effect, which is an advantage for drying in a stationary state (drying in the collection chamber), will be insufficient. On the other hand, when the length exceeds 1500 mm, when the aggregation of the fine particles proceeds in the straight pipe, the cohesion force between the particles is increased, so that the primary particles may not be crushed by the crushing force due to the collision at the elbow portion. is there.

加熱管を構成する直管を10本以下にすると共に、エルボを9個以内にすると、加熱管全体の長さが短くなり、粉体が加熱管内壁やエルボ部に衝突する確率が減るため、粉体のFe含量をより一層少なくすることができ、本発明の好ましい実施態様である。加熱管は、3本以下の直管と2個以下のエルボとで構成することがより好ましく、2本の直管と1個のエルボで構成することが最も好ましい。   When the number of straight pipes constituting the heating tube is 10 or less and the number of elbows is 9 or less, the overall length of the heating tube is shortened, and the probability that the powder collides with the inner wall of the heating tube or the elbow part decreases. The Fe content of the powder can be further reduced, which is a preferred embodiment of the present invention. The heating tube is more preferably composed of three or less straight tubes and two or less elbows, and most preferably composed of two straight tubes and one elbow.

加熱管における直管とエルボとの連結は、ねじ穴を設けたフランジを直管とエルボとに設け、フランジ同士をボルトとナットで固定する方法、直管とエルボの端部にねじ穴を設け、ジョイントおよびナットで固定する方法、直管およびエルボの端部にカプラー式ジョイントを設けて連結固定する方法等が挙げられる。   The straight pipe and the elbow in the heating pipe are connected to the straight pipe and elbow with a flange with a threaded hole, and the flanges are fixed with bolts and nuts. , A method of fixing with a joint and a nut, a method of connecting and fixing a coupler type joint at the end of a straight pipe and an elbow, and the like.

本発明の製造方法では、原料スラリーは、供給部から加熱管に供給される。供給速度は、1〜50L/hrの範囲とすることが好ましく、10〜30L/hrがより好ましい。供給速度が1L/hrより小さいと、乾燥工程が非効率的であり、50L/hrを超えると、粒子が加熱管内壁に衝突する際の衝撃が大きくなるため、本発明を採用してもFe含量の低減効果が不充分となるおそれがある。原料スラリーの供給は、例えばポンプ等の公知の手段を用いて行えばよい。   In the production method of the present invention, the raw slurry is supplied from the supply unit to the heating tube. The supply rate is preferably in the range of 1 to 50 L / hr, more preferably 10 to 30 L / hr. If the supply rate is less than 1 L / hr, the drying process is inefficient, and if it exceeds 50 L / hr, the impact when the particles collide with the inner wall of the heating tube increases. There is a risk that the effect of reducing the content is insufficient. The supply of the raw material slurry may be performed using a known means such as a pump.

加熱管は、例えば、内部に加熱蒸気や熱媒を通すことのできるジャケット等の外部加熱手段で、150〜200℃程度に加熱されることが好ましい。加熱媒体としては過熱水蒸気が好ましい。なお、加熱温度は、原料スラリーの溶媒の沸点に応じて適宜変更すればよい。   The heating tube is preferably heated to about 150 to 200 ° C. by an external heating means such as a jacket through which heating steam or a heat medium can pass. As the heating medium, superheated steam is preferred. In addition, what is necessary is just to change heating temperature suitably according to the boiling point of the solvent of raw material slurry.

加熱管内部および粉体捕集室内部の圧力(減圧度)は、6kPa〜27kPa(ゲージ圧)程度が好ましい。減圧にすることで、常圧での沸点が高い溶媒も低温で蒸発するため、乾燥が効率的に進行する。粉体捕集室には、例えばバッグフィルターの粉体回収手段を内蔵しておき、溶媒が蒸発して生成した気体と、目的物である粉体とを分離することが好ましい。粉体捕集室の温度は特に限定されないが、残存溶媒を除くために上記加熱管の場合と同様に外部加熱手段によって150〜200℃程度に加熱されていることが好ましい。   The pressure (degree of reduced pressure) inside the heating tube and inside the powder collection chamber is preferably about 6 kPa to 27 kPa (gauge pressure). By reducing the pressure, the solvent having a high boiling point at normal pressure also evaporates at a low temperature, so that drying proceeds efficiently. For example, it is preferable to incorporate a bag filter powder collecting means in the powder collecting chamber to separate the gas generated by evaporation of the solvent from the target powder. The temperature of the powder collection chamber is not particularly limited, but is preferably heated to about 150 to 200 ° C. by an external heating means in the same manner as in the case of the heating tube in order to remove the residual solvent.

粉体の原料となるスラリー中の微粒子は、平均粒子径が1μm以上であれば、その種類は特に限定されない。本発明では、真空乾燥装置を用いて乾燥状態の一次粒子(粉体)を得ることを前提としているので、スラリー中の微粒子の粒子径と粉体の粒子径に実質的な差はない。ここで、平均粒子径1μm以上の微粒子(粉体)に限定するのは、平均粒子径1μm未満の微粒子の場合は、SUS304製の加熱管を用いても、Fe含量が5ppm以下とごく微量だからである。これは、平均粒子径の小さい微粒子(粉体)は、加熱管内部に衝突する際のエネルギーが小さいため、Feを削り取る量が極めて少ないことが要因であると考えられる。   The fine particles in the slurry as the raw material of the powder are not particularly limited as long as the average particle diameter is 1 μm or more. In the present invention, it is assumed that primary particles (powder) in a dry state are obtained using a vacuum drying apparatus, so there is no substantial difference between the particle size of the fine particles in the slurry and the particle size of the powder. Here, the fine particles (powder) having an average particle diameter of 1 μm or more are limited to fine particles having an average particle diameter of less than 1 μm because the Fe content is very small as 5 ppm or less even when a heating tube made of SUS304 is used. It is. This is probably because fine particles (powder) with a small average particle diameter have a small energy when colliding with the inside of the heating tube, and therefore the amount of scraping off Fe is extremely small.

上述のとおり、粒子(粉体)と加熱管との接触がFe混入の要因であることを考慮すれば、本発明によるFe含量低減のための方法が有効なのは、柔らかい粒子よりも硬い粒子である。従って、アルミナ、チタニア、ジルコニア、酸化亜鉛、酸化セリウム等の金属酸化物;金属窒化物;金属硫化物;金属炭化物;金属硫酸塩、金属炭酸塩等の金属塩;等の無機粒子が好ましく、白色度を高めるという点では、チタニア、酸化亜鉛、シリカ、硫酸バリウム等の白色顔料がより好ましい。中でも、金属酸化物微粒子、特に、金属アルコキシドを加水分解縮合して得られる金属酸化物微粒子、特に非晶質シリカは、粒度分布が小さく粒径が揃っているので、本発明の真空乾燥法を適用することにより、単分散性に優れる粒子が得られる点でさらに好ましい。   As described above, considering that the contact between the particles (powder) and the heating tube is a factor of Fe contamination, the method for reducing the Fe content according to the present invention is effective for particles harder than soft particles. . Accordingly, inorganic particles such as metal oxides such as alumina, titania, zirconia, zinc oxide and cerium oxide; metal nitrides; metal sulfides; metal carbides; metal salts such as metal sulfates and metal carbonates; In terms of increasing the degree, white pigments such as titania, zinc oxide, silica, and barium sulfate are more preferable. Among them, metal oxide fine particles, particularly metal oxide fine particles obtained by hydrolytic condensation of metal alkoxide, particularly amorphous silica, have a small particle size distribution and a uniform particle size. Application is more preferable in that particles having excellent monodispersibility can be obtained.

また、有機架橋重合体粒子等も硬い粒子であり、好適に用いられる。有機架橋重合体粒子とは、例えば、ビニル系多官能モノマーを単官能モノマー(ビニル系多官能モノマーと単官能モノマーを併せてビニル系モノマーともいう)と共重合させたビニル系架橋重合体粒子等が挙げられる。このようなビニル系架橋重合体粒子は、乳化重合、懸濁重合、シード重合法等で製造することができ、重合後は、いずれも水性媒体を分散媒とする分散体(水分散体ともいう)が製造されるので、この水分散体をそのまま原料スラリーとして用いることができる。上記の中でも、シード重合は粒度分布を小さくすることができるため好ましい。なお、粒子の組成は、GC−MS等で確認することができる。   Organic crosslinked polymer particles and the like are also hard particles and are preferably used. Organic cross-linked polymer particles include, for example, vinyl cross-linked polymer particles obtained by copolymerizing a vinyl polyfunctional monomer with a monofunctional monomer (a vinyl polyfunctional monomer and a monofunctional monomer are also referred to as vinyl monomers). Is mentioned. Such vinyl-based crosslinked polymer particles can be produced by emulsion polymerization, suspension polymerization, seed polymerization method, etc., and after polymerization, any dispersion using an aqueous medium as a dispersion medium (also called an aqueous dispersion). This aqueous dispersion can be used as a raw material slurry as it is. Among these, seed polymerization is preferable because the particle size distribution can be reduced. The composition of the particles can be confirmed by GC-MS or the like.

さらに、有機無機複合粒子等も硬い粒子であり、好適に用いられる。有機無機複合粒子は、ビニル系重合体に由来する有機質部分と、無機質部分とを含んでなる粒子である。有機無機複合粒子の態様としては、シリカ、アルミナ、チタニア等の金属酸化物、金属窒化物、金属硫化物、金属炭化物等の無機微粒子が、ビニル重合体粒子の中に分散含有されている複合粒子;メチルトリメトキシシラン、フェニルトリメトキシシラン等の3官能アルコキシシランを加水分解縮合して得られるポリシルセスキオキサン粒子;ビニルトリメトキシシラン、メタクリロキシプロピルトリメトキシシラン等の重合性不飽和基を有するアルコキシシランを加水分解縮合して得られる重合性ポリシロキサン粒子の重合性不飽和基をラジカル重合して得られる粒子や、この重合性ポリシロキサン粒子にビニル系モノマーを吸収させ、次いでラジカル共重合して得られる粒子等のように、ポリシロキサン骨格とビニル重合体骨格とを含む複合粒子等が挙げられる。このポリシロキサン骨格とビニル重合体骨格とを含む複合粒子は、粒子の硬度を、ポリシロキサン骨格とビニル重合体骨格の含有比率や、用いるビニルモノマーの種類を変えることで制御でき、かつ、粒度分布の小さい粒子が得られやすい点で、本発明の製造方法に好ましく適用することができる。   Furthermore, organic-inorganic composite particles are also hard particles and are preferably used. The organic / inorganic composite particles are particles comprising an organic part derived from a vinyl polymer and an inorganic part. As an aspect of the organic-inorganic composite particles, composite particles in which inorganic fine particles such as metal oxides such as silica, alumina and titania, metal nitrides, metal sulfides, metal carbides are dispersed and contained in vinyl polymer particles Polysilsesquioxane particles obtained by hydrolytic condensation of trifunctional alkoxysilanes such as methyltrimethoxysilane and phenyltrimethoxysilane; polymerizable unsaturated groups such as vinyltrimethoxysilane and methacryloxypropyltrimethoxysilane Particles obtained by radical polymerization of polymerizable unsaturated groups of the polymerizable polysiloxane particles obtained by hydrolytic condensation of the alkoxysilanes possessed, and the polymerizable polysiloxane particles absorb vinyl monomers, and then radical copolymerization Including particles such as polysiloxane skeleton and vinyl polymer skeleton Etc. If particles, and the like. This composite particle containing a polysiloxane skeleton and a vinyl polymer skeleton can control the hardness of the particle by changing the content ratio of the polysiloxane skeleton and the vinyl polymer skeleton and the type of vinyl monomer used, and the particle size distribution Can be preferably applied to the production method of the present invention in that small particles can be easily obtained.

また、有機重合体粒子表面が、金属層や金属酸化物等のセラミック層等の無機質素材で被覆された無機質被覆有機粒子も、本発明の効果が高く、好適に用いられる。無機質被覆有機粒子は、例えば、無電解めっき、置換めっき等のめっきによる被覆;無機質の微粉を単独、または、バインダーに混ぜ合わせて得られるペーストを用いた被覆;真空蒸着、イオンプレーティング、イオンスパッタリング等の物理的蒸着による被覆;等の被覆方法により、前記有機重合体粒子(好ましくは、ビニル系架橋重合体粒子等)に無機質素材を被覆した粒子が挙げられる。これらの金属層等を形成する方法の中でも、無電解めっき法は大掛かりな装置を必要とせず、容易に金属層等を形成できる。   Also, inorganic coated organic particles having the surface of the organic polymer particles coated with an inorganic material such as a ceramic layer such as a metal layer or a metal oxide are highly effective and can be suitably used. Inorganic coated organic particles, for example, coating by plating such as electroless plating, displacement plating, etc .; coating using a paste obtained by mixing inorganic fine powder alone or in a binder; vacuum deposition, ion plating, ion sputtering The organic polymer particles (preferably vinyl-based crosslinked polymer particles and the like) are coated with an inorganic material by a coating method such as physical vapor deposition. Among these methods for forming a metal layer and the like, the electroless plating method does not require a large-scale apparatus and can easily form the metal layer and the like.

上述のとおり、本発明の採用によってFe含量が低減する効果の高い粒子は、平均粒子径が1μm以上の粒子である。平均粒子径の上限は20μmが好ましく、10μmがより好ましい。なお、上述の平均粒子径は、例えば、走査型電子顕微鏡(SEM)で任意の粒子100個の直径を測定し、その個数基準の平均粒子径を採用することができる。   As described above, particles having a high effect of reducing the Fe content by employing the present invention are particles having an average particle diameter of 1 μm or more. The upper limit of the average particle diameter is preferably 20 μm and more preferably 10 μm. In addition, the above-mentioned average particle diameter can measure the diameter of 100 arbitrary particles, for example with a scanning electron microscope (SEM), and can employ | adopt the average particle diameter of the number reference | standard.

上記各種粒子の中でも、本発明の効果が高く、液晶表示素子用部材や光学フィルム用添加剤として工業的価値が高い観点から、金属酸化物微粒子、有機無機複合粒子、ビニル系架橋重合体粒子が好ましい。金属酸化物微粒子の中では、高純度(Fe含量の低い)金属酸化物微粒子が得られやすいことから、金属アルコキシドを加水分解して得られる金属酸化物微粒子が好ましく、材質的にはシリカ微粒子が好ましい。シリカ微粒子の中では、非晶質シリカ微粒子が好ましく、特にシリコンアルコキシドの加水分解縮合反応により得られる平均粒子径が1〜5μmの非晶質シリカ微粒子が好ましい。   Among the above various particles, the metal oxide fine particles, organic-inorganic composite particles, and vinyl-based crosslinked polymer particles are highly effective from the viewpoint of high industrial value as liquid crystal display element members and optical film additives. preferable. Among metal oxide fine particles, metal oxide fine particles obtained by hydrolyzing metal alkoxide are preferable because high purity (low Fe content) metal oxide fine particles can be easily obtained. preferable. Among the silica fine particles, amorphous silica fine particles are preferable, and amorphous silica fine particles having an average particle diameter of 1 to 5 μm obtained by hydrolysis condensation reaction of silicon alkoxide are particularly preferable.

また、有機無機複合粒子の中では、ポリシルセスキオキサン粒子や、上記したポリシロキサン骨格とビニル重合体骨格とを含む複合粒子が好ましい。有機無機複合粒子の好ましい平均粒子径は1〜20μmである。   Of the organic / inorganic composite particles, polysilsesquioxane particles and composite particles containing the polysiloxane skeleton and the vinyl polymer skeleton are preferred. A preferable average particle size of the organic-inorganic composite particles is 1 to 20 μm.

ビニル系架橋重合体粒子の中では、(メタ)アクリル系モノマーの(共)重合体、スチレン系モノマーの(共)重合体、(メタ)アクリル系モノマーとスチレン系モノマーとの共重合体が好ましい。また、架橋させるためのビニル系多官能モノマーは、ビニル系モノマー総量100質量%のうち、5質量%以上用いることが好ましく、10質量%以上用いることがより好ましい。ビニル系架橋重合体粒子の好ましい平均粒子径は1〜50μmであり、1〜20μmがより好ましい。   Among vinyl-based crosslinked polymer particles, (co) polymers of (meth) acrylic monomers, (co) polymers of styrene monomers, and copolymers of (meth) acrylic monomers and styrene monomers are preferred. . The vinyl polyfunctional monomer for crosslinking is preferably used in an amount of 5% by mass or more, more preferably 10% by mass or more, out of 100% by mass of the total amount of vinyl monomers. A preferable average particle diameter of the vinyl-based crosslinked polymer particles is 1 to 50 μm, and more preferably 1 to 20 μm.

粉体の原料となるスラリーに用いられる溶媒は、特に限定されない。水を含んでもよいが、水分含有率の低い有機溶媒であることが好ましい。有機溶媒としては親水性のものが好ましく、例えば、メタノール、エタノール、イソプロパノール、n−ブタノール、イソブタノール、sec−ブタノール、t−ブタノール、ペンタノール、エチレングリコール、プロピレングリコール、1,4−ブタンジオール等のアルコール類;アセトン、メチルエチルケトン等のケトン類;酢酸エチル等のエステル類が挙げられ、これらを単独で、または2種以上混合して用いることができる。乾燥過程で溶媒を速やかに除去するためには、有機溶媒の比率が多い方が好ましい。具体的には、溶媒のトータル量を100質量%としたときに、水以外の有機溶媒の量が50質量%以上であることが好ましく、80質量%以上がより好ましい。また、有機溶媒としては沸点が低いものが好ましく、具体的には常圧での沸点が120℃以下の有機溶媒が好ましく、特に好ましいものは、炭素数1〜4の脂肪族鎖状アルコールである。乾燥工程で二次凝集の原因となりやすい水を効率的に留去するために、n−ブタノール等の水と共沸する有機溶媒を共存させることも好ましい実施形態である。溶媒を効率的に除去するためには、スラリーの固形分濃度は0.1〜50質量%程度が好ましい。より好ましくは5〜30質量%である。   The solvent used for the slurry as a raw material for the powder is not particularly limited. Although it may contain water, it is preferably an organic solvent having a low water content. The organic solvent is preferably hydrophilic, for example, methanol, ethanol, isopropanol, n-butanol, isobutanol, sec-butanol, t-butanol, pentanol, ethylene glycol, propylene glycol, 1,4-butanediol, etc. Alcohols; ketones such as acetone and methyl ethyl ketone; and esters such as ethyl acetate. These may be used alone or in admixture of two or more. In order to quickly remove the solvent during the drying process, it is preferable that the ratio of the organic solvent is large. Specifically, when the total amount of the solvent is 100% by mass, the amount of the organic solvent other than water is preferably 50% by mass or more, and more preferably 80% by mass or more. The organic solvent preferably has a low boiling point, specifically, an organic solvent having a boiling point of 120 ° C. or less at normal pressure is preferable, and particularly preferable is an aliphatic chain alcohol having 1 to 4 carbon atoms. . In order to efficiently distill off water that is likely to cause secondary aggregation in the drying step, it is also a preferred embodiment that an organic solvent azeotropic with water such as n-butanol coexists. In order to efficiently remove the solvent, the solid content concentration of the slurry is preferably about 0.1 to 50% by mass. More preferably, it is 5-30 mass%.

以下実施例によって本発明をさらに詳述するが、下記実施例は本発明を制限するものではなく、本発明の趣旨を逸脱しない範囲で変更実施することは全て本発明に包含される。   The present invention will be described in further detail with reference to the following examples. However, the following examples are not intended to limit the present invention, and all modifications and implementations without departing from the spirit of the present invention are included in the present invention.

[Fe含量の測定方法]
高周波プラズマ発光分光分析装置(ICP−AES SPS3500;セイコーインスツル社製)を用いて、高周波プラズマ発光分光分析法(ICP法)にて測定した。具体的には、粉体試料(5g)を、フッ酸と硝酸の混合液に添加混合し、この混合液にさらに、硝酸と過酸化水素水を順次添加して総量を50mlとしたものを測定試料液として測定に供した。
[Method for measuring Fe content]
Using a high frequency plasma emission spectroscopic analyzer (ICP-AES SPS3500; manufactured by Seiko Instruments Inc.), the measurement was performed by high frequency plasma emission spectroscopic analysis (ICP method). Specifically, a powder sample (5 g) was added to and mixed with a mixed solution of hydrofluoric acid and nitric acid, and nitric acid and hydrogen peroxide solution were further added to this mixed solution to make a total volume of 50 ml. It used for the measurement as a sample liquid.

比較例
内径8mm、長さ800mmの直管2本を、長さ(外周側内壁部の長さ)160mmの180゜エルボ1個で連結し、加熱管とした。この加熱管はSUS304製である。アンモニアを触媒としてテトラメトキシシランを含水メタノール中で加水分解縮合して得られた反応液を加熱濃縮し、平均粒子径1.5μmの非晶質シリカ微粒子20質量%、水10質量%、メタノール70質量%からなる原料スラリーを得た。この原料スラリーを真空乾燥装置の供給部から供給速度20L/hrで加熱管へと供給した。加熱管内部の温度が175℃になるように、外部加熱手段で過熱水蒸気により加熱した。捕集室温度は150℃とした。なお、加熱管内部および捕集室内部は、50Torr(6.6kPa)の減圧下とした。
Comparative Example Two straight pipes having an inner diameter of 8 mm and a length of 800 mm were connected by a 180 ° elbow having a length (length of the inner wall on the outer peripheral side) of 160 mm to form a heating pipe. This heating tube is made of SUS304. A reaction liquid obtained by hydrolytic condensation of tetramethoxysilane in water-containing methanol using ammonia as a catalyst was heated and concentrated, and 20% by mass of amorphous silica fine particles having an average particle size of 1.5 μm, 10% by mass of water, and 70% of methanol. A raw material slurry consisting of mass% was obtained. This raw material slurry was supplied to the heating tube at a supply rate of 20 L / hr from the supply unit of the vacuum dryer. It heated with the superheated steam with the external heating means so that the temperature inside a heating tube might be 175 degreeC. The collection chamber temperature was 150 ° C. The inside of the heating tube and the inside of the collection chamber were under a reduced pressure of 50 Torr (6.6 kPa).

乾燥後、得られたシリカの粉体のFe含量を上記した方法で測定したところ、14ppm(質量基準)であった。粉体のFe含量は、半導体分野や液晶表示素子用部材への適用を考慮すると、まだ低減する必要がある。   After drying, the Fe content of the obtained silica powder was measured by the method described above and found to be 14 ppm (mass basis). The Fe content of the powder still needs to be reduced in consideration of application to the semiconductor field and liquid crystal display element members.

実施例
SUS316製の加熱管を用いた以外は比較例と同様にして、平均粒子径1.5μmの非晶質シリカ粒子を含む原料スラリーの乾燥実験を行った。得られた粉体のFe含量は10ppmとなった。比較例に比べ、Fe含量が約2/3に低減したことがわかる。
Example A drying experiment of a raw material slurry containing amorphous silica particles having an average particle diameter of 1.5 μm was conducted in the same manner as in the comparative example except that a heating tube made of SUS316 was used. The obtained powder had an Fe content of 10 ppm. It can be seen that the Fe content was reduced to about 2/3 compared to the comparative example.

参考例
非晶質シリカ粒子の平均粒子径を0.5μmにしたこと以外は、比較例と同様にして、乾燥実験を行った。粉体のFe含量は3ppmであった。
Reference Example A drying experiment was conducted in the same manner as in the comparative example, except that the average particle diameter of the amorphous silica particles was 0.5 μm. The Fe content of the powder was 3 ppm.

加熱管がSUS316で構成された本発明の真空乾燥装置を用いて、原料スラリーを乾燥して粉体を製造することで、二次凝集のない、かつ、Fe含量の非常に少ない粉体を得ることができた。従って、本発明で得られる粉体は、半導体分野や液晶表示装置等に適用することができる。   Using the vacuum drying apparatus of the present invention in which the heating tube is made of SUS316, the raw slurry is dried to produce a powder, thereby obtaining a powder having no secondary aggregation and a very low Fe content. I was able to. Therefore, the powder obtained by the present invention can be applied to the semiconductor field, liquid crystal display devices and the like.

Claims (1)

外部加熱され、減圧に保持された加熱管の一端が原料スラリーの供給部に接続され、他端が減圧に保持された粉体捕集室に接続されている真空乾燥装置を用いて、溶媒中に微粒子が分散された原料スラリーを乾燥して粉体を製造する方法であって、前記加熱管が、交互に連結する直管とエルボとで構成されていて、該加熱管の少なくとも内面表面層がSUS316製であり、前記粉体の平均粒子径が1μm以上であることを特徴とする粉体の製造方法。   One end of a heating tube that is externally heated and held at a reduced pressure is connected to the raw slurry supply unit, and the other end is connected to a powder collection chamber that is held at a reduced pressure. A method for producing a powder by drying a raw material slurry in which fine particles are dispersed, wherein the heating tube is composed of alternately connected straight tubes and elbows, and at least an inner surface layer of the heating tube. Is made of SUS316, and the powder has an average particle diameter of 1 μm or more.
JP2009217511A 2009-09-18 2009-09-18 Method of producing powder Pending JP2011064435A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009217511A JP2011064435A (en) 2009-09-18 2009-09-18 Method of producing powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009217511A JP2011064435A (en) 2009-09-18 2009-09-18 Method of producing powder

Publications (1)

Publication Number Publication Date
JP2011064435A true JP2011064435A (en) 2011-03-31

Family

ID=43950873

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009217511A Pending JP2011064435A (en) 2009-09-18 2009-09-18 Method of producing powder

Country Status (1)

Country Link
JP (1) JP2011064435A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03288538A (en) * 1989-04-07 1991-12-18 Nippon Shokubai Co Ltd Production of inorganic fine particle powder
JPH0416232A (en) * 1990-05-10 1992-01-21 Fujitsu Ltd Device for grading and drying powdery green sheet material
JP2005007293A (en) * 2003-06-19 2005-01-13 Okawara Mfg Co Ltd Apparatus for manufacturing fine particle supercritically

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03288538A (en) * 1989-04-07 1991-12-18 Nippon Shokubai Co Ltd Production of inorganic fine particle powder
JPH0416232A (en) * 1990-05-10 1992-01-21 Fujitsu Ltd Device for grading and drying powdery green sheet material
JP2005007293A (en) * 2003-06-19 2005-01-13 Okawara Mfg Co Ltd Apparatus for manufacturing fine particle supercritically

Similar Documents

Publication Publication Date Title
Yang et al. Ni‐based plasmonic/magnetic nanostructures as efficient light absorbers for steam generation
EP2896645B1 (en) Method for manufacturing polyacrylic acid (polyacrylate)-based water-absorbent agent, and water-absorbent agent
TW458811B (en) Plasma enhanced chemical deposition for high and/or low index of refraction polymers
Zheng et al. The synthesis and characterization of a xanthan gum-acrylamide-trimethylolpropane triglycidyl ether hydrogel
Donia et al. Uptake studies of copper (II) on glycidyl methacrylate chelating resin containing Fe2O3 particles
TW201038475A (en) Reduction of graphene oxide to graphene in high boiling point solvents
Wang et al. Hollow mesoporous silica with a hierarchical shell from in situ synergistic soft–hard double templates
WO2019052272A1 (en) Composite material and preparation method therefor and use thereof
JP5884730B2 (en) Reverse osmosis membrane scale inhibitor and scale prevention method
JP5730194B2 (en) Method for producing water-absorbing polymer particles
JP2013519623A (en) Diamond particles and method for obtaining diamond particles from aggregated structures
BR112012023789A2 (en) process to remove residual monomers of water-absorbing polymer particles
JP2011062672A (en) Method for manufacturing powder
JP5809389B2 (en) Powder manufacturing method
JP5798290B2 (en) Powder manufacturing method
JP2011064435A (en) Method of producing powder
Akgün et al. Perspectives of Aerosol‐Photopolymerization: Nanostructured Polymeric Particles
Zhang et al. Evaporation characteristics of viscous droplets on stainless steel superhydrophobic surface
JP2016108497A (en) Functional film
JP2781208B2 (en) Manufacturing method of water absorbent resin
Yasuda et al. Polymerization of organic compounds in an electrodeless glow discharge. vii. a fluid mechanic aspect of plasma and its effect on the polymer deposition rate
Tsubota et al. Partial Delignification as Pretreatment for Nanoporous Carbon Material from Biomass
Rapeia et al. Preparation and characterization of hydrazine-modified poly (acrylonitrile-co-acrylic acid)
Byeon et al. Aerosol fabrication of thermosensitive nanogels and in situ hybridization with iron nanoparticles
JP2004339170A (en) (meth)acrylic acid alkali metal salt and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20110511

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130129

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130702