JP2011064373A - Ice-making device for refrigerator-freezer - Google Patents

Ice-making device for refrigerator-freezer Download PDF

Info

Publication number
JP2011064373A
JP2011064373A JP2009214052A JP2009214052A JP2011064373A JP 2011064373 A JP2011064373 A JP 2011064373A JP 2009214052 A JP2009214052 A JP 2009214052A JP 2009214052 A JP2009214052 A JP 2009214052A JP 2011064373 A JP2011064373 A JP 2011064373A
Authority
JP
Japan
Prior art keywords
ice
heater
ice making
temperature
refrigerator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009214052A
Other languages
Japanese (ja)
Other versions
JP4680311B2 (en
Inventor
Komao Morishita
高麗雄 森下
Yutaka Yagi
裕 八木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2009214052A priority Critical patent/JP4680311B2/en
Priority to MYPI2012001134A priority patent/MY153321A/en
Priority to PCT/JP2010/056296 priority patent/WO2011033804A1/en
Priority to CN201080041190.1A priority patent/CN102549359B/en
Publication of JP2011064373A publication Critical patent/JP2011064373A/en
Application granted granted Critical
Publication of JP4680311B2 publication Critical patent/JP4680311B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C1/00Producing ice
    • F25C1/04Producing ice by using stationary moulds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C1/00Producing ice
    • F25C1/18Producing ice of a particular transparency or translucency, e.g. by injecting air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C5/00Working or handling ice
    • F25C5/02Apparatus for disintegrating, removing or harvesting ice
    • F25C5/04Apparatus for disintegrating, removing or harvesting ice without the use of saws
    • F25C5/06Apparatus for disintegrating, removing or harvesting ice without the use of saws by deforming bodies with which the ice is in contact, e.g. using inflatable members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C5/00Working or handling ice
    • F25C5/02Apparatus for disintegrating, removing or harvesting ice
    • F25C5/04Apparatus for disintegrating, removing or harvesting ice without the use of saws
    • F25C5/08Apparatus for disintegrating, removing or harvesting ice without the use of saws by heating bodies in contact with the ice
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/31Low ambient temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • F25B2600/0251Compressor control by controlling speed with on-off operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/11Fan speed control
    • F25B2600/112Fan speed control of evaporator fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C2305/00Special arrangements or features for working or handling ice
    • F25C2305/022Harvesting ice including rotating or tilting or pivoting of a mould or tray
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C2400/00Auxiliary features or devices for producing, working or handling ice
    • F25C2400/10Refrigerator units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C2600/00Control issues
    • F25C2600/02Timing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C2600/00Control issues
    • F25C2600/04Control means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C2700/00Sensing or detecting of parameters; Sensors therefor
    • F25C2700/02Level of ice
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C2700/00Sensing or detecting of parameters; Sensors therefor
    • F25C2700/12Temperature of ice trays
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2317/00Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass
    • F25D2317/06Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation
    • F25D2317/061Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation through special compartments
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2323/00General constructional features not provided for in other groups of this subclass
    • F25D2323/02Details of doors or covers not otherwise covered
    • F25D2323/021French doors

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new mechanism capable of producing transparent ice in an ice-making device for a refrigerator-freezer. <P>SOLUTION: The ice-making device 10 is installed in an ice-making chamber 4 of the refrigerator-freezer 1. The ice-making device 10 includes: a chill tray 20 making ice by cold air blown into the ice-making chamber 4; a thermistor 25 for measuring a temperature in the chill tray 20; a heater 31 for heating the chill tray 20 from the lower side; and a control part 50 performing the operation control of a refrigerating cycle and the current-carrying control of the heater 31 by using the measured temperature by the thermistor 25 as a criterion. The control part 50 executes: a freezing preparation step of carrying current to the heater 31 for "preheating" until the measured temperature by the thermistor 25 is lowered to zero or lower after water supply to the chill tray 20; an ice melting step of carrying a current to the heater 31 for "rapid heating" for a certain time after the measured temperature by the thermistor 25 is lowered to zero or lower; and a freezing progress step of carrying a current to the heater 31 for "normal heating" until the measured temperature by the thermistor 25 is lowered to a predetermined temperature. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は冷凍冷蔵庫の製氷装置に関する。   The present invention relates to an ice making device for a refrigerator-freezer.

冷凍冷蔵庫は、冷凍用の冷気を利用して製氷を行う製氷装置を備えているのが一般的である。冷凍冷蔵庫に配設される製氷装置の例を特許文献1−7に見ることができる。   A refrigerator-freezer generally includes an ice making device that makes ice using cold air for freezing. Examples of the ice making device disposed in the freezer can be seen in Patent Documents 1-7.

冷凍冷蔵庫の製氷装置で製造される氷は、通常、透明度が低い。そこで、氷の透明度を高める工夫が、これまでにもなされてきた。特許文献1−7に記載された製氷装置もそのような工夫を含んでいる。   Ice produced by an ice making device of a refrigerator is usually low in transparency. Thus, efforts have been made to increase the transparency of ice. The ice making device described in Patent Documents 1-7 includes such a device.

特許文献1、2に記載された製氷装置では、製氷皿の上方にヒータを設け、製氷皿の上部を下部より高い温度状態として、製氷皿の内部下部から上方へ順次氷が生成されるようにしている。これにより、氷の生成過程で水中の空気が上方から抜けやすくなり、空気が含まれない透明氷が製造される。特許文献3に記載された製氷装置も、製氷皿の上方にヒータを設けた構造である。   In the ice making devices described in Patent Documents 1 and 2, a heater is provided above the ice tray, and the temperature of the upper portion of the ice tray is higher than that of the lower portion so that ice is generated sequentially from the lower portion inside the ice tray. ing. This makes it easier for air in the water to escape from above during the ice formation process, and transparent ice that does not contain air is produced. The ice making device described in Patent Document 3 also has a structure in which a heater is provided above the ice making tray.

特許文献4−7に記載された製氷装置では、透明氷部と白濁氷部が連結状態で生成されるようにし、離氷する際に透明氷部と白濁氷部を切断して、白濁氷部は製氷皿に残し、透明氷部のみ取り出されるようにしている。   In the ice making device described in Patent Literature 4-7, the transparent ice part and the cloudy ice part are generated in a connected state, and when the ice is removed, the transparent ice part and the cloudy ice part are cut, Is left in an ice tray, so that only clear ice is removed.

特開平4−260768号公報JP-A-4-260768 特開平5−196331号公報JP-A-5-196331 特開平1−203869号公報JP-A-1-203869 特開2007−232336号公報JP 2007-232336 A 特開2007−232336号公報JP 2007-232336 A 特開2008−151504号公報JP 2008-151504 A 特開2008−157619号公報JP 2008-157619 A

本発明は、冷凍冷蔵庫の製氷装置において、透明氷を生成する新たな仕組みを提供することを目的とする。   An object of this invention is to provide the new mechanism which produces | generates transparent ice in the ice making apparatus of a refrigerator-freezer.

上記目的を達成するために本発明は、製氷室に配置され、当該製氷室内に吹き込まれる冷気により製氷を行う製氷皿と、前記製氷皿内の温度を測定するサーミスタと、前記製氷皿を下から加熱するヒータと、前記サーミスタによる測定温度を判断材料として冷凍サイクルの運転制御と前記ヒータの通電制御を行う制御部とを備えた冷凍冷蔵庫の製氷装置において、前記制御部は、前記製氷皿への給水後、前記ヒータに通電して凍結の進行を制御すると共に、前記ヒータへの通電初期に、氷融解ステップを遂行することを特徴としている。   In order to achieve the above object, the present invention provides an ice tray that is placed in an ice making chamber and performs ice making with cold air blown into the ice making chamber, a thermistor that measures the temperature in the ice tray, and the ice tray from below. In the ice making device of the refrigerator-freezer comprising a heater to be heated and a control unit for performing operation control of the refrigeration cycle and energization control of the heater using the temperature measured by the thermistor as a judgment material, the control unit supplies the ice tray After supplying water, the heater is energized to control the progress of freezing, and an ice melting step is performed at the initial energization of the heater.

製氷皿を下からヒータで加熱しつつ凍結させることにより、製氷皿の内面に接する部位からでなく、製氷皿の内面から離れた部位から透明氷が成長する。凍結完了時には、外周部から空気が抜けていくため、気泡跡が残り表面に凹凸が出来るが、外周表面の凹凸部は速やかに液体に溶けてしまい、速やかに液体を冷却して透明氷の部分のみが後に残る。これにより、液体中に透明氷が浮かぶという景観を使用者に提供することが可能になる。   By freezing the ice tray while being heated with a heater from below, transparent ice grows not from a portion in contact with the inner surface of the ice tray, but from a portion away from the inner surface of the ice tray. When freezing is complete, air escapes from the outer periphery, leaving bubbles and irregularities on the surface, but the irregularities on the outer peripheral surface quickly melt into the liquid, quickly cooling the liquid and clear ice. Only remains after. This makes it possible to provide the user with a landscape where transparent ice floats in the liquid.

製氷時、製氷皿の内面に既存の氷が付着していると、透明氷を得る妨げとなるが、既存の氷を一旦融解してから透明氷の生成に移ることとしたので、透明氷の部分を大きくすることができる。   During ice making, if existing ice is attached to the inner surface of the ice tray, it will hinder obtaining transparent ice, but since the existing ice is once melted, it will be shifted to the production of transparent ice. The part can be enlarged.

また本発明は、上記構成の冷凍冷蔵庫の製氷装置において、前記制御部は前記ヒータを、「通常加熱」と、「通常加熱」に比べ発熱量が小さい「予熱」と、「通常加熱」に比べ発熱量が大きい「急加熱」の3段階に通電制御するものであり、前記製氷皿への給水後、前記サーミスタの測定温度が氷点下に降下するまで、前記ヒータに「予熱」の通電を行う凍結準備ステップと、前記サーミスタの測定温度が氷点下に降下した後、前記ヒータに一定時間だけ「急加熱」の通電を行う氷融解ステップと、前記サーミスタの測定温度が所定温度に降下するまで、前記ヒータに「通常加熱」の通電を行う凍結進行ステップと、を遂行することを特徴としている。   Also, the present invention provides the ice making device for a refrigerator-freezer configured as described above, wherein the controller is configured to compare the heater with “normal heating”, “preheating”, which generates less heat than “normal heating”, and “normal heating”. Energization control is performed in three stages of “rapid heating” with a large calorific value. After supplying water to the ice tray, the heater is energized with “preheating” until the measured temperature of the thermistor drops below the freezing point. A preparation step, an ice melting step in which the heater is energized with "rapid heating" for a predetermined time after the measured temperature of the thermistor drops below freezing point, and the heater until the measured temperature of the thermistor drops to a predetermined temperature. And a freezing progress step in which energization of “normal heating” is performed.

この構成によると、ヒータによる加熱にめりはりをつけて、透明氷を確実に生成することができる。   According to this configuration, it is possible to reliably generate transparent ice by applying a beam to the heating by the heater.

また本発明は、上記構成の冷凍冷蔵庫の製氷装置において、前記制御部は、前記凍結準備ステップにおいて、前記冷凍サイクル中の圧縮機が停止期間に入ったときは、前記ヒータへの通電を中止することを特徴としている。   Further, the present invention is the ice making device for a refrigerator with the above-described configuration, wherein the control unit stops energizing the heater when the compressor in the refrigeration cycle enters a stop period in the freezing preparation step. It is characterized by that.

凍結準備ステップでヒータに求められるのは、急激な温度低下にブレーキをかけることである。圧縮機運転中はヒータに通電することで前記目的が達せられるが、圧縮機停止期間は自ずと温度低下にブレーキがかかり、ヒータ通電の必要性が薄らぐので、ヒータへの通電を中止する。これにより、電力を無駄に消費しなくて済む。   What is required of the heater in the freezing preparation step is to brake a sudden temperature drop. While the compressor is in operation, the above-mentioned purpose can be achieved by energizing the heater. However, during the compressor stop period, the temperature drop is naturally braked and the necessity of energizing the heater is reduced, so the energization of the heater is stopped. Thereby, it is not necessary to waste power consumption.

また本発明は、上記構成の冷凍冷蔵庫の製氷装置において、前記制御部は、前記凍結準備ステップにおいて、前記サーミスタの測定温度が所定値以上のときは、前記ヒータへの通電を中止することを特徴としている。   Further, the present invention is the ice making device for a refrigerator with the above configuration, wherein the control unit stops energization of the heater when the measured temperature of the thermistor is a predetermined value or more in the freezing preparation step. It is said.

製氷皿に給水される水の水温が高いときにまでヒータに通電していると、製氷時間が長くなってしまう。この構成によると、サーミスタの測定温度が、例えば1℃以上のときはヒータへの通電を中止することとすれば、水が製氷皿に接触する箇所から凍結が発生するおそれのない時にまでヒータに通電して電力を無駄に消費することが避けられる。   If the heater is energized until the temperature of the water supplied to the ice tray is high, the ice making time will be long. According to this configuration, when the temperature of the thermistor is, for example, 1 ° C. or higher, if the power supply to the heater is stopped, the heater can be used until there is no risk of freezing from the point where water contacts the ice tray. It is possible to avoid wasting power by energizing.

また本発明は、上記構成の冷凍冷蔵庫の製氷装置において、前記制御部は、前記氷融解ステップにおいては、前記冷凍サイクル中の圧縮機が運転中か停止中かにかかわらず前記ヒータに「急加熱」の通電を行うことを特徴としている。   Further, the present invention provides the ice making device for the refrigerator-freezer having the above-described configuration, wherein, in the ice melting step, the controller performs “rapid heating” on the heater regardless of whether the compressor in the refrigeration cycle is operating or stopped. "Is conducted.

この構成によると、氷の融解を一気に進めることができる。   According to this structure, the melting of ice can be advanced at a stretch.

また本発明は、上記構成の冷凍冷蔵庫の製氷装置において、前記制御部は、前記凍結進行ステップにおいて、前記冷凍サイクル中の圧縮機が停止期間に入ったときは、前記ヒータへの通電を中止し、圧縮機運転再開後、一定時間だけ前記ヒータに「急加熱」の通電を行うことを特徴としている。   Further, the present invention provides the ice making device for a refrigerator with the above-described configuration, wherein the control unit stops energizing the heater when the compressor in the refrigeration cycle enters a stop period in the freezing progression step. Then, after restarting the compressor operation, the heater is energized for “rapid heating” for a certain period of time.

圧縮機停止時にはヒータへの通電による温度制御の必要性が薄らぐので、この時は通電を中止し、電力の無駄な消費を避ける。但し、ヒータへの通電を中止したことにより、圧縮機運転再開時、製氷セルの内面に凍結が発生している可能性があるので、圧縮機運転再開後、一定時間だけヒータに「急加熱」の通電を行い、製氷皿の内面に凍結が発生していたらそれを融解する。これにより、ヒータへの通電が断続するにもかかわらず、透明氷の生成を連続的に行うことができる。   Since the necessity of temperature control by energizing the heater is reduced when the compressor is stopped, the energization is stopped at this time to avoid wasteful power consumption. However, since the inside of the ice making cell may be frozen when the compressor operation is resumed due to the stop of energization of the heater, the heater is `` rapidly heated '' for a certain time after the compressor operation is resumed. If there is freezing on the inner surface of the ice tray, thaw it. Thereby, although energization to a heater is intermittent, generation of transparent ice can be performed continuously.

また本発明は、上記構成の冷凍冷蔵庫の製氷装置において、前記制御部は、前記凍結進行ステップで前記サーミスタの測定温度が所定温度に降下した後、前記ヒータへの通電を停止し、一定時間経過後、離氷装置に離氷動作を行わせることを特徴としている。   Further, the present invention is the ice making device of the refrigerator-freezer configured as described above, wherein the control unit stops energizing the heater after the measured temperature of the thermistor has dropped to a predetermined temperature in the freezing progress step, and a certain time has elapsed. Then, it is characterized by having the ice removal device perform the ice removal operation.

この構成によると、透明氷の生成が確実なものとなってから離氷を行わせ、透明氷を消費可能な状態に置くことができる。   According to this configuration, the ice can be removed after the generation of transparent ice is ensured, and the transparent ice can be consumed.

また本発明は、上記構成の冷凍冷蔵庫の製氷装置において、前記制御部は、前記凍結進行ステップで前記サーミスタの測定温度が所定温度に降下した後、前記ヒータへの通電電流を徐々に減少させて通電停止に至らしめ、一定時間経過後、離氷装置に離氷動作を行わせることを特徴としている。   In the ice making device for a refrigerator / freezer having the above-described configuration, the control unit may gradually decrease the energization current to the heater after the measured temperature of the thermistor drops to a predetermined temperature in the freezing advance step. It is characterized in that the de-icing operation is performed by the de-icing device after the energization is stopped and a certain time has elapsed.

製氷皿の各製氷セルの温度は、必ずしも全てがサーミスタの測定温度に一致している訳ではない。サーミスタの測定温度が所定温度に降下したとしても、一部の製氷セルはそこまで温度が降下しておらず、未凍結の水が残っていることもある。サーミスタの測定温度が所定温度に降下したのを契機に一挙にヒータへの通電を停止するのでなく、通電電流を徐々に減少させて通電停止に至らしめる処理を行うことにより、水が未凍結で残るのを防ぐことができる。   The temperature of each ice making cell in the ice tray is not necessarily the same as the temperature measured by the thermistor. Even if the measured temperature of the thermistor drops to a predetermined temperature, some ice-making cells have not dropped so far, and unfrozen water may remain. Rather than stopping the energization of the heater at once when the measured temperature of the thermistor drops to the predetermined temperature, the water is not frozen by performing a process of gradually decreasing the energization current to stop the energization. It can be prevented from remaining.

また本発明は、上記構成の冷凍冷蔵庫の製氷装置において、前記制御部は、前記製氷室の室内温度または当該製氷室に吹き込まれる冷気温度が所定値以上であるときは前記ヒータへの通電電流を低レベルとすることを特徴としている。   Further, the present invention is the ice making device for a refrigerator with the above-described configuration, wherein the control unit generates an energization current to the heater when the indoor temperature of the ice making chamber or the cold air temperature blown into the ice making chamber is equal to or higher than a predetermined value. It is characterized by a low level.

この構成によると、凍結の進行を制御するのに必要な熱量分だけヒータに通電することにより、製氷工程を最適化することができる。   According to this configuration, the ice making process can be optimized by energizing the heater by the amount of heat necessary to control the progress of freezing.

また本発明は、上記構成の冷凍冷蔵庫の製氷装置において、前記制御部は、外気温が低いときに冷蔵室温度が比較的高めに設定されているときは、前記冷凍サイクル中の圧縮機の回転数と、前記製氷室に冷気を送り込む送風機の回転数を低下させることを特徴としている。   Further, the present invention provides the ice making device for a refrigerator-freezer configured as described above, wherein the control unit rotates the compressor during the refrigeration cycle when the cold room temperature is set to be relatively high when the outside air temperature is low. And the number of rotations of the blower that sends cold air to the ice making chamber is reduced.

外気温が低いときに冷蔵室温度が比較的高めに設定されていると、通常は圧縮機の運転時間が短くなり、製氷皿に冷気が当たる時間が短くなって、製氷時間が伸びる。このような場合、圧縮機の回転数と送風機の回転数をいずれも低下させることにより、圧縮機の運転時間が伸び、製氷時間を短縮することができる。   If the temperature of the refrigerator compartment is set to be relatively high when the outside air temperature is low, the operation time of the compressor is usually shortened, the time for the cold air to hit the ice tray is shortened, and the ice making time is prolonged. In such a case, by reducing both the rotation speed of the compressor and the rotation speed of the blower, the operation time of the compressor can be extended and the ice making time can be shortened.

本発明によると、製氷皿を下からヒータで加熱しつつ凍結させることにより、外周部から抜けた気泡の跡で表面には凹凸が生じているが、大部分を占める芯の部分は透明な氷を得ることができる。また、電力の無駄を防ぎ、製氷工程を最適化しつつ、均質な透明氷を得ることができる。   According to the present invention, the ice tray is frozen while being heated with a heater from the bottom, and the surface is uneven due to the traces of bubbles that have escaped from the outer periphery, but the core portion that occupies the majority is transparent ice. Can be obtained. In addition, it is possible to obtain homogeneous transparent ice while preventing waste of electric power and optimizing the ice making process.

製氷装置を備える冷凍冷蔵庫の正面図である。It is a front view of a refrigerator-freezer provided with an ice making device. 製氷装置を示す冷凍冷蔵庫の部分垂直断面図である。It is a partial vertical sectional view of a refrigerator-freezer showing an ice making device. 図2と直角の方向に断面した、製氷装置の垂直断面図である。FIG. 3 is a vertical sectional view of the ice making device, taken in a direction perpendicular to FIG. 2. 上下反転状態の製氷皿と、それに組み合わせられるサーミスタの斜視図である。It is a perspective view of the ice tray in the upside down state and the thermistor combined therewith. 上下反転状態の製氷皿と、それに組み合わせられるヒータ及びカバーの斜視図である。It is a perspective view of the ice tray in the upside down state and the heater and cover combined therewith. 上下反転状態の製氷皿にヒータのカバーを取りつけた状態の斜視図である。It is a perspective view of the state which attached the cover of the heater to the ice tray in the upside down state. 冷凍冷蔵庫の制御ブロック図である。It is a control block diagram of a refrigerator-freezer. 製氷装置の動作を示すフローチャートである。It is a flowchart which shows operation | movement of an ice making apparatus. 製氷装置の異なる動作を示すフローチャートである。It is a flowchart which shows different operation | movement of an ice making apparatus.

図1に示す冷凍冷蔵庫1は、最上段が両開きの扉3L、3Rを備えた冷蔵室2、その次の段が扉5を備えた製氷室4と扉7を備えた冷凍室6、その次の段が引き出し式の冷凍室8、最下段が引き出し式の野菜室9という構成になっている。圧縮機と熱交換器を含む図示しない冷凍サイクルが冷気を生成し、その冷気がダクトを通じて各室に分配され、各室において必要とされる冷蔵温度または冷凍温度が得られる仕組みである。この仕組みは周知なので詳細には説明しない。   A refrigerator-freezer 1 shown in FIG. 1 includes a refrigerator compartment 2 having doors 3L and 3R with double doors at the top, an ice making chamber 4 with doors 5 and a freezer compartment 6 with doors 7 at the next stage, and the next. The stage is a drawer-type freezer compartment 8 and the bottom stage is a drawer-type vegetable compartment 9. A refrigeration cycle (not shown) including a compressor and a heat exchanger generates cold air, and the cold air is distributed to each room through a duct so that a refrigeration temperature or a freezing temperature required in each room is obtained. This mechanism is well known and will not be described in detail.

製氷室4の天井部には、図2及び図3に示す製氷装置10が設置される。以下その構造を、図4から図6までの図も参照しつつ説明する。   An ice making device 10 shown in FIGS. 2 and 3 is installed on the ceiling of the ice making chamber 4. Hereinafter, the structure will be described with reference to FIGS.

図2は冷凍冷蔵庫1の左側面方向から見た製氷装置10の断面図である。製氷室4の奥の壁に、製氷室4に冷気を吹き込むためのダクト11が形成されている。ダクト11の上端から前方に、製氷皿ケーシング12が延び出す。製氷皿ケーシング12は、製氷皿で製造した氷を落とすため、下面が開口している。ダクト11には、製氷皿ケーシング12の内部に向けて、冷気吐出口13が形成されている。   FIG. 2 is a cross-sectional view of the ice making device 10 as viewed from the left side of the refrigerator-freezer 1. A duct 11 for blowing cold air into the ice making chamber 4 is formed on the wall behind the ice making chamber 4. An ice tray casing 12 extends forward from the upper end of the duct 11. The ice tray casing 12 has an open bottom surface for dropping ice produced by the ice tray. A cold air discharge port 13 is formed in the duct 11 toward the inside of the ice tray casing 12.

製氷皿ケーシング12の内部には、冷気吐出口13から吹き出した冷気を受ける位置に、製氷皿20が配置されている。製氷皿20は低温でも弾性を失わない合成樹脂により成型される。また、給水した水の中の気泡が製氷皿20の内面に付着すると、透明氷を得るのが難しくなる。そこで、ポリプロピレンにシリコーンを配合したものを成型材料としたり、成型後の製氷皿20をフッ素樹脂でコーティングしたりするなど、気泡が付着しにくくなる処置を施すことが望ましい。   Inside the ice tray casing 12, an ice tray 20 is disposed at a position to receive the cold air blown from the cold air outlet 13. The ice tray 20 is formed of a synthetic resin that does not lose its elasticity even at low temperatures. Further, when bubbles in the supplied water adhere to the inner surface of the ice tray 20, it becomes difficult to obtain transparent ice. Therefore, it is desirable to take measures that make it difficult for bubbles to adhere, such as using polypropylene blended with silicone as a molding material or coating the molded ice tray 20 with a fluororesin.

製氷皿20の表面に発生する静電気により吸引された微粒子も透明氷の生成の妨げとなる。そのため、静電気が発生しにくい材料、例えばシリコーン配合樹脂や帯電防止剤を練り込んだ樹脂で製氷皿20を成型したり、成型後の製氷皿20に帯電防止剤を塗布したりするなどの対策を施すことが望ましい。   Fine particles attracted by static electricity generated on the surface of the ice tray 20 also hinder the generation of transparent ice. Therefore, measures such as molding the ice tray 20 with a material that does not easily generate static electricity, for example, a resin compounded with silicone or an antistatic agent, or applying an antistatic agent to the ice tray 20 after molding. It is desirable to apply.

製氷皿20は断面台形の氷を製造する製氷セル21を計8個備える。8個の製氷セル21は2列4行の形に並び、そのため製氷皿20は平面形状が細長いものになっている。このように細長い製氷皿20を、その長手方向を冷凍冷蔵庫1の奥行方向に一致させる形で配置する。   The ice tray 20 includes a total of eight ice making cells 21 for producing ice having a trapezoidal cross section. The eight ice making cells 21 are arranged in two columns and four rows, and therefore the ice tray 20 has an elongated planar shape. Thus, the elongate ice tray 20 is arrange | positioned in the form which makes the longitudinal direction correspond with the depth direction of the refrigerator-freezer 1.

製氷皿20の長手方向の一方の端には支持軸22が形設され、他方の端にはソケット部23が形設されている。支持軸22は製氷皿ケーシング12に回転自在に支持される。ソケット部23は製氷皿ケーシング12の内部に設けた離氷装置24(図3参照)の軸に結合し、離氷装置24により支持される。支持軸22とソケット部23は共通の水平軸線上に配置されている。離氷装置24はモータと減速装置を備え、製氷皿20に、前記水平軸線を回転軸とする一定角度範囲の回転を与える。   A support shaft 22 is formed at one end in the longitudinal direction of the ice tray 20, and a socket portion 23 is formed at the other end. The support shaft 22 is rotatably supported by the ice tray casing 12. The socket portion 23 is coupled to a shaft of an ice removing device 24 (see FIG. 3) provided inside the ice tray casing 12 and is supported by the ice removing device 24. The support shaft 22 and the socket portion 23 are disposed on a common horizontal axis. The ice removing device 24 includes a motor and a speed reducer, and gives the ice tray 20 rotation within a certain angle range with the horizontal axis as the rotation axis.

製氷皿20の下面には、2列に並んだ製氷セル21の間の位置に、サーミスタ25が配置される。サーミスタ25は製氷セル21の壁を隔てて製氷セル21の内部の温度を測定する。   A thermistor 25 is disposed on the lower surface of the ice tray 20 at a position between the ice making cells 21 arranged in two rows. The thermistor 25 measures the temperature inside the ice making cell 21 across the wall of the ice making cell 21.

サーミスタ25を固定するのはサーミスタカバー26である。サーミスタカバー26の四隅からは、製氷皿20の長手方向に直角な方向にピン27が突き出している。製氷皿20の下面からは、サーミスタ25を取り囲む形で計4個の脚部28が突出する。脚部28の先端にはピン27を通す水平貫通穴29が形成されている。サーミスタ25の上にサーミスタ保護シーラ30を重ね、その上にサーミスタカバー26を重ね、ピン27を脚部28の水平貫通穴29に係合させることにより、サーミスタ25は固定される。   The thermistor 25 is fixed by a thermistor cover 26. Pins 27 protrude from the four corners of the thermistor cover 26 in a direction perpendicular to the longitudinal direction of the ice tray 20. A total of four legs 28 project from the lower surface of the ice tray 20 so as to surround the thermistor 25. A horizontal through hole 29 through which the pin 27 passes is formed at the tip of the leg portion 28. The thermistor 25 is fixed by overlapping the thermistor protection sealer 30 on the thermistor 25, overlapping the thermistor cover 26 thereon, and engaging the pins 27 with the horizontal through holes 29 of the legs 28.

製氷皿20の下面には、サーミスタ25に加えて、図5に示すヒータ31が配置される。ヒータ31は発熱線をシリコーン樹脂で被覆したものであり、製氷皿20のねじりに追随できるよう、全体が柔軟に仕上げられている。各製氷セル21の、上下反転状態における頂点部分には、ヒータ31を受け入れる平行リブ32が形成されている。   In addition to the thermistor 25, a heater 31 shown in FIG. 5 is disposed on the lower surface of the ice tray 20. The heater 31 is a heating wire covered with a silicone resin, and the entire heater 31 is flexibly finished so that it can follow the twisting of the ice tray 20. Parallel ribs 32 that receive the heaters 31 are formed at the apex portions of each ice making cell 21 in the upside down state.

平行リブ32は2個のリブを所定間隔で平行に配置したものであり、ヒータ31をすきまばめの形で受け入れられるようにリブ間の間隔が設定されている。リブ間の間隔をこのように設定するのは、製氷皿20がねじられたとき、ヒータ31がある程度自由に動き得るようにするためである。   The parallel ribs 32 are two ribs arranged in parallel at a predetermined interval, and the interval between the ribs is set so that the heater 31 can be received in the form of a clearance fit. The interval between the ribs is set in this way so that the heater 31 can move freely to some extent when the ice tray 20 is twisted.

ヒータ31は、製氷皿20の長手方向中心線の左右に対称形状を描くように引き回されている。実施形態では、全体形状がほぼU字形となっている。Uの字の開放端となる箇所に1対の給電線33が接続される。   The heater 31 is routed so as to draw a symmetrical shape to the left and right of the longitudinal center line of the ice tray 20. In the embodiment, the overall shape is substantially U-shaped. A pair of feed lines 33 is connected to a location that is an open end of the U-shape.

ヒータ31は設計発熱量が小さいので、極く細い発熱線をガラス繊維の芯に巻き付けた構造であり、巻き付きが締まる方向にねじられたりすると発熱線が切れやすい。そのため、前述のようにヒータ31がある程度自由に動き得るようにする他、ヒータ31の全体的な引き回しの形状も、発熱線に極力無理な力がかからないような形状とされる。   Since the heater 31 has a small design heat generation amount, the heater 31 has a structure in which an extremely thin heating wire is wound around the core of the glass fiber, and if the winding is twisted in a tightening direction, the heating wire is easily cut. Therefore, in addition to allowing the heater 31 to move freely to some extent as described above, the overall routing shape of the heater 31 is also set so that an excessive force is not applied to the heating wire as much as possible.

ヒータ31を平行リブ32に入れ、製氷皿20の下面に密着させた上で、製氷皿20の下面をカバー34で覆う。カバー34は、製氷皿20の下面部分に冷気が侵入するのを防ぎ、各製氷セル21間の温度分布を均一化すると共に、ヒータ31を平行リブ32の中に押しとどめる役割を担うものである。   The heater 31 is placed in the parallel ribs 32 and brought into close contact with the lower surface of the ice tray 20, and the lower surface of the ice tray 20 is covered with a cover 34. The cover 34 prevents cold air from entering the lower surface portion of the ice tray 20, uniformizes the temperature distribution between the ice making cells 21, and holds the heater 31 in the parallel ribs 32. .

カバー34は長方形のトレイ形状であり、一端には支持軸22を通すリング35が形成されている。カバー34は、リング35を支持軸22に嵌合させた上で、2本のビス36と、1個のバネ37により製氷皿20に取り付けられる。カバー34の取り付けは、製氷皿20の動きを束縛するような堅固なものではなく、離氷時の製氷皿20のねじりを邪魔することのない、柔軟なものとなっている。カバー34自体も、製氷皿20と同様、低温でも弾性を失わない合成樹脂により成型することが望ましい。   The cover 34 has a rectangular tray shape, and a ring 35 through which the support shaft 22 passes is formed at one end. The cover 34 is attached to the ice tray 20 with two screws 36 and one spring 37 after the ring 35 is fitted to the support shaft 22. The attachment of the cover 34 is not so hard as to restrain the movement of the ice tray 20 and is flexible so as not to disturb the twisting of the ice tray 20 at the time of deicing. As with the ice tray 20, the cover 34 itself is desirably molded from a synthetic resin that does not lose its elasticity even at low temperatures.

カバー34には、長手方向中心線の両端近くに2個の貫通穴38が形成されている。また、貫通穴38よりもカバー中央に寄った箇所には、長手方向中心線を挟んで対称的に、2個の貫通穴39が形成されている。貫通穴38は円形であって、製氷皿20の下面に形成された断面円形のボス40を通す。貫通穴39は矩形であって、製氷皿20の下面に形成されたバネ取付リブ41を通す。   Two through holes 38 are formed in the cover 34 near both ends of the longitudinal center line. Further, two through holes 39 are formed symmetrically with respect to the center line in the longitudinal direction at a position closer to the center of the cover than the through hole 38. The through hole 38 is circular and passes through a boss 40 having a circular cross section formed on the lower surface of the ice tray 20. The through hole 39 is rectangular, and allows the spring mounting rib 41 formed on the lower surface of the ice tray 20 to pass therethrough.

貫通穴38から露出するボス40にビス36をねじ込んで固定すると、カバー34は、ビス36を抜け止め用ストッパとする形で、ボス40の軸線に沿い移動可能に保持される。すなわちビス36は、カバー34を締め付けることなく、カバー34が製氷皿20から分離することを阻止する。   When the screw 36 is screwed and fixed to the boss 40 exposed from the through hole 38, the cover 34 is held so as to be movable along the axis of the boss 40 in the form of using the screw 36 as a stopper for retaining. That is, the screw 36 prevents the cover 34 from being separated from the ice tray 20 without tightening the cover 34.

カバー34をビス36で抜け止めすると、図6に示すように、カバー34の貫通穴39からバネ取付リブ41が突き出す。バネ取付リブ41の先端に形成された水平貫通穴42に、バネ37の両端の取付フック43を係合させる。バネ37は、長手方向中央部に取付フック43があり、長手方向の両端部にヘアピン部44が存在するという形に、バネ鋼の線材を屈曲成形したものである。   When the cover 34 is secured with screws 36, the spring mounting rib 41 protrudes from the through hole 39 of the cover 34 as shown in FIG. The attachment hooks 43 at both ends of the spring 37 are engaged with the horizontal through hole 42 formed at the tip of the spring attachment rib 41. The spring 37 is formed by bending a spring steel wire into a shape in which there is a mounting hook 43 at the center in the longitudinal direction and hairpin portions 44 are present at both ends in the longitudinal direction.

ヘアピン部44は、図6において斜め下方に、言い換えれば製氷皿20の方向に延びている。このため、取付フック43をバネ取付リブ41の水平貫通穴42に係合させると、ヘアピン部44がカバー34を圧迫する。カバー34は図3に示す通りヒータ31に押し付けられ、平行リブ32から抜け出さないようにヒータ31を一定荷重で保持する。これにより、ヒータ31が製氷セル21に密着し、熱を効率よく製氷セル21に伝えられるようになる。   The hairpin portion 44 extends obliquely downward in FIG. 6, in other words, in the direction of the ice tray 20. For this reason, when the attachment hook 43 is engaged with the horizontal through hole 42 of the spring attachment rib 41, the hairpin portion 44 presses the cover 34. As shown in FIG. 3, the cover 34 is pressed against the heater 31 and holds the heater 31 with a constant load so as not to come out of the parallel rib 32. As a result, the heater 31 comes into close contact with the ice making cell 21 and heat can be efficiently transferred to the ice making cell 21.

製氷皿20の長手方向両縁には、下向きに延びる風防板45が一体成型されている。風防板45は、製氷皿20に上方から吹き付けられる冷気が下方に回り込むのを阻止する。このため、製氷皿20の下面に冷気が侵入してヒータ31による加熱の効果が損なわれることが防がれ、冷気は製氷皿20の上面に集中することになる。   A windshield 45 extending downward is integrally formed at both longitudinal edges of the ice tray 20. The windshield plate 45 prevents cold air blown from above on the ice tray 20 from flowing downward. For this reason, it is prevented that the cold air enters the lower surface of the ice tray 20 and the effect of heating by the heater 31 is impaired, and the cold air is concentrated on the upper surface of the ice tray 20.

風防板45には、製氷セル21同士の間の境界に一致する箇所に、ノッチ46が形成されている。実施形態の場合、ノッチ46は1枚の風防板45に2個存在する。もしノッチ46が設けられていないとすると、製氷皿20がねじられたとき、風防板45の応力が1箇所に集中し、その箇所の樹脂材料が早い段階で白化し、亀裂の発生へと進む。ノッチ46を形成することにより、応力を分散し、白化や亀裂の発生をくい止めることができる。   A notch 46 is formed in the windshield 45 at a location that coincides with the boundary between the ice making cells 21. In the case of the embodiment, there are two notches 46 in one windshield 45. If the notch 46 is not provided, when the ice tray 20 is twisted, the stress of the windshield 45 is concentrated at one location, and the resin material at that location is whitened at an early stage and proceeds to the generation of cracks. . By forming the notches 46, the stress can be dispersed and the occurrence of whitening and cracks can be prevented.

図3に示す通り、風防板45とカバー34の間には、離氷のため製氷皿20がねじられても相互接触を生じないだけの隙間47が設けられている。   As shown in FIG. 3, a gap 47 is provided between the windshield plate 45 and the cover 34 so as not to cause mutual contact even if the ice tray 20 is twisted for ice removal.

製氷皿20の支持軸22の側の端には、片側の側面に突起48が形成されている。突起48は離氷時に製氷皿20にねじりを生じさせるためのものである。   At the end of the ice tray 20 on the support shaft 22 side, a protrusion 48 is formed on one side surface. The protrusion 48 is for twisting the ice tray 20 when the ice is removed.

冷凍サイクルの運転制御とヒータ31への通電制御を含む、冷凍冷蔵庫1の全体制御を司るのは、図7に示す制御部50である。制御部50には、離氷装置24及びヒータ31の他、冷凍サイクルの一環をなす圧縮機51、庫内各部に冷気を送る送風機52、製氷装置10に給水する給水装置53、温度センサ54、及び製氷室4に配置される氷量センサ55などが接続されている。温度センサ54は各部に配置されたサーミスタ等の測温素子を包含する概念であり、サーミスタ25もその中に含まれる。   It is the control unit 50 shown in FIG. 7 that performs overall control of the refrigerator-freezer 1 including operation control of the refrigeration cycle and energization control to the heater 31. The control unit 50 includes a deicing device 24 and a heater 31, a compressor 51 that forms part of the refrigeration cycle, a blower 52 that sends cold air to each part in the refrigerator, a water supply device 53 that supplies water to the ice making device 10, a temperature sensor 54, And the ice quantity sensor 55 etc. which are arrange | positioned at the ice making chamber 4 are connected. The temperature sensor 54 is a concept including a temperature measuring element such as a thermistor disposed in each part, and the thermistor 25 is also included therein.

制御部50はヒータ31への通電を次の3段階に制御する。すなわち「通常加熱」と、「通常加熱」に比べ発熱量が小さい「予熱」と、「通常加熱」に比べ発熱量が大きい「急加熱」である。例えば、「通常加熱」の消費電力は5〜6W、「予熱」の消費電力は2W、「急加熱」の消費電力は7〜8Wに設定して、発熱量に差をつけることができる。   The controller 50 controls energization of the heater 31 in the following three stages. That is, “normal heating”, “preheating” with a smaller calorific value than “normal heating”, and “rapid heating” with a larger calorific value than “normal heating”. For example, the power consumption of “normal heating” can be set to 5 to 6 W, the power consumption of “preheating” can be set to 2 W, and the power consumption of “rapid heating” can be set to 7 to 8 W to make a difference in the heat generation amount.

続いて、図8のフローチャートを参照しつつ製氷装置10の動作を説明する。離氷動作を終え、製氷皿20が上向き状態に戻ったところからフローがスタートするものとする。   Next, the operation of the ice making device 10 will be described with reference to the flowchart of FIG. It is assumed that the flow starts when the ice removing operation is finished and the ice tray 20 returns to the upward state.

ステップ#101では制御部50が給水装置54を動作させ、製氷皿20への給水を行わせる。   In step # 101, the control unit 50 operates the water supply device 54 to supply water to the ice tray 20.

製氷室4の温度は冷凍温度(マイナス18℃に設定されている)の近傍なので、給水が行われると製氷皿20の温度が上昇する。サーミスタ25はステップ#102でこの温度上昇を検知する。   Since the temperature of the ice making chamber 4 is close to the freezing temperature (set to minus 18 ° C.), the temperature of the ice tray 20 increases when water is supplied. The thermistor 25 detects this temperature rise in step # 102.

水は給水されるやいなや冷却されるので、サーミスタ25が測定する温度は、一旦上昇した後、低下し始める。ここからステップ#103に入る。   Since the water is cooled as soon as it is supplied, the temperature measured by the thermistor 25 once rises and then begins to fall. From here, step # 103 is entered.

ステップ#103は凍結準備ステップである。制御部50はヒータ31に「予熱」の通電を行い、水温を所定レートで低下させる。   Step # 103 is a freezing preparation step. The control unit 50 energizes the heater 31 with “preheating” to lower the water temperature at a predetermined rate.

以後のステップでもヒータ31による加熱が行われる。製氷皿20を下からヒータ31で加熱しつつ凍結させることにより、製氷皿20の内面に接する部位からでなく、製氷皿20の内面から離れた部位から透明氷を成長させることができるので、透明度の高い氷を成長させやすい。   In the subsequent steps, heating by the heater 31 is performed. By freezing the ice tray 20 while being heated by the heater 31 from below, transparent ice can be grown not from the portion in contact with the inner surface of the ice tray 20 but from the portion away from the inner surface of the ice tray 20. Easy to grow high ice.

ステップ#103の途中で圧縮機51が停止期間に入ったときは、温度低下に自ずとブレーキがかかる。制御部50はヒータ31への通電を中止し、無駄な電力消費を避ける。   When the compressor 51 enters the stop period in the middle of step # 103, the brake is naturally applied to the temperature drop. The controller 50 stops energizing the heater 31 and avoids unnecessary power consumption.

制御部50はまた、サーミスタ25の測定温度が所定値以上のとき、例えば1℃以上のときはヒータ31への通電を中止する。これにより、水が製氷皿20に接触する箇所から凍結が発生するおそれのない時にまでヒータ31に通電して電力を無駄に消費することが避けられる。   The control unit 50 also stops energization of the heater 31 when the measured temperature of the thermistor 25 is equal to or higher than a predetermined value, for example, 1 ° C. or higher. Thus, it is possible to avoid wasting power by energizing the heater 31 until there is no risk of freezing from the point where water contacts the ice tray 20.

ステップ#104では、サーミスタ25の測定する温度が氷点下まで降下したかどうかを制御部50がチェックする。氷点下まで降下したらステップ#105に進む。   In Step # 104, the control unit 50 checks whether or not the temperature measured by the thermistor 25 has dropped below freezing point. When the temperature falls below the freezing point, the process proceeds to step # 105.

ステップ#105は氷融解ステップである。制御部50はヒータ31に一定時間だけ「急加熱」の通電を行い、製氷皿20を加熱する。サーミスタ25の測定誤差により、ステップ#104からステップ#105に移行するのが遅れ、製氷セル21の内面に氷が付着しているようなことがあったとしても、その氷はこの段階で融解する。そのため、均質な透明氷を得る妨げとなる残留氷を生じることなくステップ#106に移行することができる。   Step # 105 is an ice melting step. The controller 50 energizes the heater 31 for “rapid heating” for a predetermined time to heat the ice tray 20. Even if the measurement error of the thermistor 25 delays the transition from step # 104 to step # 105 and ice is attached to the inner surface of the ice making cell 21, the ice melts at this stage. . Therefore, it is possible to proceed to step # 106 without generating residual ice that hinders obtaining homogeneous transparent ice.

制御部50は、ステップ#105では圧縮機51が運転中か停止中かにかかわらずヒータ31に「急加熱」の通電を行う。これにより、氷の融解を一気に進めることができる。   In step # 105, the controller 50 energizes the heater 31 for “rapid heating” regardless of whether the compressor 51 is operating or stopped. Thereby, melting of ice can be advanced at a stretch.

ステップ#106は凍結進行ステップである。制御部50は、サーミスタ25の測定温度が所定温度に降下するまで、ヒータ31に「通常加熱」の通電を行う。   Step # 106 is a freezing progress step. The controller 50 energizes the heater 31 for “normal heating” until the temperature measured by the thermistor 25 drops to a predetermined temperature.

制御部50は、ステップ#106の途中で圧縮機51が停止期間に入ったときは、ヒータ31への通電を中止し、電力の無駄な消費を避ける。但し、ヒータ31への通電を中止したことにより、圧縮機51の運転を再開した時、製氷皿20の内面に凍結が発生している可能性がある。そこで、圧縮機51の運転を再開した後、一定時間だけヒータ31に「急加熱」の通電を行い、製氷皿20の内面に凍結が発生していたらそれを融解する。これにより、ヒータ31への通電が断続するにもかかわらず、透明氷の生成を連続的に行うことができる。   When the compressor 51 enters a stop period in the middle of step # 106, the controller 50 stops energization of the heater 31 and avoids wasted power consumption. However, there is a possibility that freezing has occurred on the inner surface of the ice tray 20 when the operation of the compressor 51 is resumed by stopping energization of the heater 31. Therefore, after restarting the operation of the compressor 51, the heater 31 is energized for "rapid heating" for a certain period of time, and if freezing occurs on the inner surface of the ice tray 20, it is melted. Thereby, although energization to heater 31 is intermittent, generation of transparent ice can be performed continuously.

ステップ#107では、サーミスタ25の測定する温度が所定温度まで降下したかどうかを制御部50がチェックする。所定温度、例えばマイナス9℃まで降下したら製氷は完了したと判断し、ステップ#108に進む。   In step # 107, the controller 50 checks whether the temperature measured by the thermistor 25 has dropped to a predetermined temperature. When the temperature falls to a predetermined temperature, for example, minus 9 ° C., it is determined that ice making is completed, and the process proceeds to step # 108.

制御部50は、ステップ#108でヒータ31への通電を停止する。一定時間が経過したら、透明氷の生成が確実になったと判断し、ステップ#109に進む。   The controller 50 stops energization of the heater 31 at step # 108. When the predetermined time has elapsed, it is determined that the generation of transparent ice has been ensured, and the process proceeds to step # 109.

ステップ#109では、制御部50は離氷装置24に製氷皿20の反転動作を行わせる。離氷装置24が支持軸22まわりに製氷皿20を回転させて行くと、上下反転が完了する少し手前の段階で、突起48が製氷皿ケーシング12に形成された図示しないストッパに当たる。離氷装置24はこれ以後も所定角度だけ製氷皿20を回転させ続けるので、製氷皿20はねじられて変形する。前述の通り、風防板45とカバー34の間には、製氷皿20がねじられても相互接触を生じないだけの隙間47が設けられているので、カバー34の縁と風防板45がこすれ合ってきしみ音を立てたり、摩耗させ合ったりすることはない。   In step # 109, the control unit 50 causes the ice removing device 24 to perform the reversing operation of the ice tray 20. When the ice making device 24 rotates the ice tray 20 around the support shaft 22, the protrusion 48 hits a stopper (not shown) formed on the ice tray casing 12 just before the upside down is completed. Since the ice removing device 24 continues to rotate the ice tray 20 by a predetermined angle thereafter, the ice tray 20 is twisted and deformed. As described above, a gap 47 is provided between the windshield plate 45 and the cover 34 so as not to cause mutual contact even when the ice tray 20 is twisted, so that the edge of the cover 34 and the windshield 45 are rubbed together. No squeaks or wears out.

製氷皿20がねじられると、製氷セル21の中の氷は押し出され、製氷室4内に置かれた図示しない氷容器に落下する。離氷後、離氷装置24は製氷皿20を逆方向に回転させ、製氷皿20を元の向きに戻す。これにより、1サイクルの製氷作業が終了する。氷容器内の氷量がまだ十分でないことを氷量センサ55が告げていれば、引き続き次サイクルの製氷作業が開始される。氷容器内に氷が十分存在することを氷量センサ55が告げていれば、製氷装置10は休止期間に入る。   When the ice tray 20 is twisted, the ice in the ice making cell 21 is pushed out and falls into an ice container (not shown) placed in the ice making chamber 4. After the deicing, the deicing device 24 rotates the ice making tray 20 in the reverse direction to return the ice making tray 20 to its original orientation. Thus, one cycle of ice making work is completed. If the ice amount sensor 55 tells that the ice amount in the ice container is not yet sufficient, the ice making operation of the next cycle is started. If the ice amount sensor 55 informs that there is sufficient ice in the ice container, the ice making device 10 enters a rest period.

製氷装置10を、図9のフローチャートのように動作させることもできる。図9のフローチャートにおいて、ステップ#108´以外のステップは図8のフローチャートと同じである。ステップ#108´では、サーミスタ25の測定温度が所定温度に降下した後、制御部50が直ちにヒータ31への通電を停止するのでなく、ヒータ31への通電電流を徐々に減少させて通電停止に至らしめる。   The ice making device 10 can be operated as shown in the flowchart of FIG. In the flowchart of FIG. 9, steps other than step # 108 ′ are the same as those in the flowchart of FIG. In step # 108 ', after the measured temperature of the thermistor 25 drops to a predetermined temperature, the controller 50 does not immediately stop energizing the heater 31, but gradually reduces the energizing current to the heater 31 to stop energizing. To reach.

各製氷セル21の温度は、必ずしも全てがサーミスタ25の測定温度に一致している訳ではない。サーミスタ25の測定温度が所定温度に降下したとしても、一部の製氷セル21はそこまで温度が降下しておらず、未凍結の水が残っていることもある。サーミスタ25の測定温度が所定温度に降下したのを契機に一挙にヒータ31への通電を停止するのでなく、通電電流を徐々に減少させて通電停止に至らしめる処理を行うことにより、水が未凍結で残るのを防ぐことができる。   The temperature of each ice making cell 21 does not necessarily coincide with the measured temperature of the thermistor 25. Even if the measured temperature of the thermistor 25 falls to a predetermined temperature, the temperature of some ice making cells 21 has not dropped so far, and unfrozen water may remain. Rather than stopping the energization of the heater 31 at once when the measured temperature of the thermistor 25 has dropped to a predetermined temperature, water is not discharged by performing a process of gradually decreasing the energization current to stop the energization. It can be prevented from remaining by freezing.

制御部50は、以下のようにも動作する。   The control unit 50 also operates as follows.

制御部50は、製氷室4の室内温度または製氷室4に吹き込まれる冷気温度が所定値以上であるときはヒータ31への通電電流を低レベルとする。一例として、デフォルトの設定温度をマイナス18℃とし、温度がマイナス18℃よりも高ければヒータ31への通電電流を低レベルとする。温度がマイナス18℃以下であればヒータ31への通電電流を通常レベルとする。   When the indoor temperature of the ice making chamber 4 or the cold air temperature blown into the ice making chamber 4 is equal to or higher than a predetermined value, the control unit 50 sets the energization current to the heater 31 to a low level. As an example, the default set temperature is set to minus 18 ° C., and if the temperature is higher than minus 18 ° C., the energization current to the heater 31 is set to a low level. If the temperature is minus 18 ° C. or lower, the energization current to the heater 31 is set to the normal level.

このように、凍結の進行を制御するのに必要な熱量分だけヒータ31に通電することにより、製氷工程を最適化することができる。   Thus, the ice making process can be optimized by energizing the heater 31 by the amount of heat necessary to control the progress of freezing.

制御部50は、外気温が低いときに冷蔵室温度が比較的高めに設定されているときは、圧縮機51の回転数と、送風機52の回転数を低下させる。   The controller 50 reduces the rotational speed of the compressor 51 and the rotational speed of the blower 52 when the temperature of the refrigerator compartment is set to be relatively high when the outside air temperature is low.

外気温が低いときに冷蔵室温度が比較的高めに設定されていると、通常は圧縮機51の運転時間が短くなり、製氷皿20に冷気が当たる時間が短くなって、製氷時間が伸びる。圧縮機51の回転数と送風機52の回転数をいずれも低下させることにより、圧縮機51の運転時間が伸び、製氷時間を短縮することができる。   If the temperature of the refrigerator compartment is set to be relatively high when the outside air temperature is low, the operation time of the compressor 51 is usually shortened, the time during which the cold air hits the ice tray 20 is shortened, and the ice making time is prolonged. By reducing both the rotation speed of the compressor 51 and the rotation speed of the blower 52, the operation time of the compressor 51 can be extended and the ice making time can be shortened.

以上、本発明の実施形態につき説明したが、本発明の範囲はこれに限定されるものではなく、発明の主旨を逸脱しない範囲で種々の変更を加えて実施することができる。   Although the embodiments of the present invention have been described above, the scope of the present invention is not limited to these embodiments, and various modifications can be made without departing from the spirit of the invention.

本発明は冷凍冷蔵庫の製氷装置に広く利用可能である。   The present invention is widely applicable to ice making apparatuses for refrigerators and refrigerators.

1 冷凍冷蔵庫
4 製氷室
10 製氷装置
11 ダクト
13 冷気吐出口
20 製氷皿
21 製氷セル
24 離氷装置
25 サーミスタ
31 ヒータ
34 カバー
45 風防板
50 制御部
51 圧縮機
52 送風機
53 給水装置
DESCRIPTION OF SYMBOLS 1 Refrigeration refrigerator 4 Ice making room 10 Ice making apparatus 11 Duct 13 Cold air discharge port 20 Ice tray 21 Ice making cell 24 Deicing device 25 Thermistor 31 Heater 34 Cover 45 Windshield 50 Control part 51 Compressor 52 Blower 53 Water supply device

上記目的を達成するために本発明は、製氷室に配置され、当該製氷室内に吹き込まれる冷気により製氷を行う製氷皿と、前記製氷皿内の温度を測定するサーミスタと、前記製氷皿を下から加熱するヒータと、前記サーミスタによる測定温度を判断材料として冷凍サイクルの運転制御と前記ヒータの通電制御を行う制御部とを備えた冷凍冷蔵庫の製氷装置において、前記制御部は、前記製氷皿への給水後、前記ヒータに通電して凍結の進行を制御すると共に、前記制御部は所定の複数の異なる発熱量に通電制御するヒータ制御をし、前記ヒータへの通電初期に、前記ヒータ制御の内でヒータの発熱量が高発熱量である氷融解ステップを遂行することを特徴としている。 In order to achieve the above object, the present invention provides an ice tray that is placed in an ice making chamber and performs ice making with cold air blown into the ice making chamber, a thermistor that measures the temperature in the ice tray, and the ice tray from below. In the ice making device of the refrigerator-freezer comprising a heater to be heated and a control unit for performing operation control of the refrigeration cycle and energization control of the heater using the temperature measured by the thermistor as a judgment material, the control unit supplies the ice tray After supplying water, the heater is energized to control the progress of freezing, and the control unit performs heater control for energizing control to a predetermined plurality of different heat generation amounts, and in the initial stage of energizing the heater, And the ice melting step in which the heating value of the heater is a high heating value is performed.

製氷時、製氷皿の内面に既存の氷が付着していると、透明氷を得る妨げとなるが、ヒータへの通電初期に、ヒータ制御の内でヒータの発熱量が高発熱量である氷融解ステップを遂行して、既存の氷を一旦融解してから透明氷の生成に移ることとしたので、透明氷の部分を大きくすることができる。 During ice making, if existing ice adheres to the inner surface of the ice tray, it may interfere with obtaining transparent ice, but in the initial stage of energizing the heater, the amount of heat generated by the heater within the heater control is high. Since the melting step is performed and the existing ice is once melted and then transferred to generation of transparent ice, the transparent ice portion can be enlarged.

本発明によると、製氷皿を下からヒータで加熱しつつ凍結させることにより、外周部から抜けた気泡の跡で表面には凹凸が生じているが、大部分を占める芯の部分は透明な氷を得ることができる。そしてヒータへの通電初期に、ヒータ制御の内でヒータの発熱量が高発熱量である氷融解ステップを遂行して、既存の氷を一旦融解してから透明氷の生成に移ることとしたので、透明氷の部分を大きくすることができる。また、電力の無駄を防ぎ、製氷工程を最適化しつつ、均質な透明氷を得ることができる。 According to the present invention, the ice tray is frozen while being heated with a heater from the bottom, and the surface is uneven due to the traces of bubbles that have escaped from the outer periphery, but the core portion that occupies the majority is transparent ice. Can be obtained. And at the initial stage of energizing the heater, we decided to carry out the ice melting step where the heating value of the heater is high in the heater control, and once the existing ice was melted, we moved to the generation of transparent ice. The transparent ice part can be enlarged. In addition, it is possible to obtain homogeneous transparent ice while preventing waste of power and optimizing the ice making process.

上記目的を達成するために本発明は、製氷室に配置され、当該製氷室内に吹き込まれる冷気により製氷を行う製氷皿と、前記製氷皿内の温度を測定するサーミスタと、前記製氷皿を下から加熱するヒータと、前記サーミスタによる測定温度を判断材料として冷凍サイクルの運転制御と前記ヒータの通電制御を行う制御部とを備えた冷凍冷蔵庫の製氷装置において、前記制御部は、前記製氷皿への給水後、前記ヒータに通電して凍結の進行を制御すると共に、前記制御部は、前記ヒータへの通電を、「通常加熱」と、「通常加熱」に比べ発熱量が小さい「予熱」と、「通常加熱」に比べ発熱量が大きい「急加熱」の3段階に制御するものであり、前記ヒータへの通電初期に、「急加熱」で氷融解ステップを遂行することを特徴としている。 In order to achieve the above object, the present invention provides an ice tray that is placed in an ice making chamber and performs ice making with cold air blown into the ice making chamber, a thermistor that measures the temperature in the ice tray, and the ice tray from below. In the ice making device of the refrigerator-freezer comprising a heater to be heated and a control unit for performing operation control of the refrigeration cycle and energization control of the heater using the temperature measured by the thermistor as a judgment material, the control unit supplies the ice tray After supplying water, the heater is energized to control the progress of freezing, and the control unit energizes the heater with “normal heating” and “preheating” with a smaller calorific value than “normal heating”. Control is made in three stages of “rapid heating”, which generates a larger amount of heat than “normal heating”, and the ice melting step is performed by “rapid heating” in the initial stage of energizing the heater.

製氷時、製氷皿の内面に既存の氷が付着していると、透明氷を得る妨げとなるが、制御部はヒータへの通電を「通常加熱」と、「通常加熱」に比べ発熱量が小さい「予熱」と、「通常加熱」に比べ発熱量が大きい「急加熱」の3段階に制御するものであり、ヒータへの通電初期に、「急加熱」で氷融解ステップを遂行して、既存の氷を一旦融解してから透明氷の生成に移ることとしたので、透明氷の部分を大きくすることができる。 At ice, the existing ice on the inner surface of the ice tray is attached, becomes a hindrance to give a clear ice, control unit and the "normal heating" the power supply to the heater, the calorific value compared to the "normal heating" It is controlled in three stages: small “preheating” and “rapid heating”, which generates a large amount of heat compared to “normal heating” . In the initial stage of energizing the heater, the ice melting step is performed by “rapid heating” . Since the existing ice is once melted and then transferred to the production of transparent ice, the transparent ice portion can be enlarged.

本発明によると、製氷皿を下からヒータで加熱しつつ凍結させることにより、外周部から抜けた気泡の跡で表面には凹凸が生じているが、大部分を占める芯の部分は透明な氷を得ることができる。そしてヒータへの通電初期に、「急加熱」で氷融解ステップを遂行して、既存の氷を一旦融解してから透明氷の生成に移ることとしたので、透明氷の部分を大きくすることができる。また、電力の無駄を防ぎ、製氷工程を最適化しつつ、均質な透明氷を得ることができる。 According to the present invention, the ice tray is frozen while being heated with a heater from the bottom, and the surface is uneven due to the traces of bubbles that have escaped from the outer periphery, but the core portion that occupies the majority is transparent ice. Can be obtained. In the initial stage of energizing the heater, the ice melting step was performed by “rapid heating”, and the existing ice was once melted and then moved to the generation of transparent ice. it can. In addition, it is possible to obtain homogeneous transparent ice while preventing waste of electric power and optimizing the ice making process.

Claims (10)

製氷室に配置され、当該製氷室内に吹き込まれる冷気により製氷を行う製氷皿と、前記製氷皿内の温度を測定するサーミスタと、前記製氷皿を下から加熱するヒータと、前記サーミスタによる測定温度を判断材料として冷凍サイクルの運転制御と前記ヒータの通電制御を行う制御部とを備えた冷凍冷蔵庫の製氷装置において、
前記制御部は、前記製氷皿への給水後、前記ヒータに通電して凍結の進行を制御すると共に、前記ヒータへの通電初期に、氷融解ステップを遂行することを特徴とする冷凍冷蔵庫の製氷装置。
An ice making tray that is placed in an ice making chamber and performs ice making by cold air blown into the ice making chamber, a thermistor that measures the temperature in the ice making tray, a heater that heats the ice making tray from below, and a temperature measured by the thermistor In an ice making device for a refrigerator with a control unit that performs operation control of the refrigeration cycle and energization control of the heater as a determination material,
The controller is configured to control the progress of freezing by supplying power to the heater after supplying water to the ice tray, and performing an ice melting step at the initial stage of supplying power to the heater. apparatus.
前記制御部は前記ヒータを、「通常加熱」と、「通常加熱」に比べ発熱量が小さい「予熱」と、「通常加熱」に比べ発熱量が大きい「急加熱」の3段階に通電制御するものであり、前記製氷皿への給水後、次のステップを遂行することを特徴とする請求項1に記載の冷凍冷蔵庫の製氷装置:
前記サーミスタの測定温度が氷点下に降下するまで、前記ヒータに「予熱」の通電を行う凍結準備ステップと、
前記サーミスタの測定温度が氷点下に降下した後、前記ヒータに一定時間だけ「急加熱」の通電を行う氷融解ステップと、
前記サーミスタの測定温度が所定温度に降下するまで、前記ヒータに「通常加熱」の通電を行う凍結進行ステップ。
The control unit controls the energization of the heater in three stages: “normal heating”, “preheating” that generates less heat than “normal heating”, and “rapid heating” that generates more heat than “normal heating”. The ice making apparatus for a refrigerator-freezer according to claim 1, wherein after the water is supplied to the ice tray, the following steps are performed:
Freezing preparation step of energizing the heater with "preheating" until the measured temperature of the thermistor drops below freezing point;
An ice melting step in which the heater is energized for "rapid heating" for a certain period of time after the measured temperature of the thermistor drops below freezing;
A freezing progress step of energizing the heater with “normal heating” until the measured temperature of the thermistor drops to a predetermined temperature.
前記制御部は、前記凍結準備ステップにおいて、前記冷凍サイクル中の圧縮機が停止期間に入ったときは、前記ヒータへの通電を中止することを特徴とする請求項2に記載の冷凍冷蔵庫の製氷装置。   3. The ice making of a refrigerator-freezer according to claim 2, wherein the controller stops energization of the heater when the compressor in the refrigeration cycle enters a stop period in the freezing preparation step. apparatus. 前記制御部は、前記凍結準備ステップにおいて、前記サーミスタの測定温度が所定値以上のときは、前記ヒータへの通電を中止することを特徴とする請求項2に記載の冷凍冷蔵庫の製氷装置。   The ice making device for a refrigerator / freezer according to claim 2, wherein, in the freezing preparation step, when the measured temperature of the thermistor is equal to or higher than a predetermined value, the controller stops energizing the heater. 前記制御部は、前記氷融解ステップにおいては、前記冷凍サイクル中の圧縮機が運転中か停止中かにかかわらず前記ヒータに「急加熱」の通電を行うことを特徴とする請求項2から4のいずれか1項に記載の冷凍冷蔵庫の製氷装置。   The said control part performs electricity supply of "rapid heating" to the said heater irrespective of whether the compressor in the said refrigerating cycle is operating or stopping in the said ice melting step. The ice-making apparatus of the refrigerator-freezer of any one of these. 前記制御部は、前記凍結進行ステップにおいて、前記冷凍サイクル中の圧縮機が停止期間に入ったときは、前記ヒータへの通電を中止し、圧縮機運転再開後、一定時間だけ前記ヒータに「急加熱」の通電を行うことを特徴とする請求項2から5のいずれか1項に記載の冷凍冷蔵庫の製氷装置。   In the freezing progress step, when the compressor in the refrigeration cycle enters a stop period, the control unit stops energizing the heater, and after the compressor operation is resumed, The ice making device for a refrigerator-freezer according to any one of claims 2 to 5, wherein energization of "heating" is performed. 前記制御部は、前記凍結進行ステップで前記サーミスタの測定温度が所定温度に降下した後、前記ヒータへの通電を停止し、一定時間経過後、離氷装置に離氷動作を行わせることを特徴とする請求項2から6のいずれか1項に記載の冷凍冷蔵庫の製氷装置。   The control unit stops energization of the heater after the measured temperature of the thermistor drops to a predetermined temperature in the freezing progress step, and causes the deicing device to perform the deicing operation after a predetermined time has elapsed. The ice making device for a refrigerator-freezer according to any one of claims 2 to 6. 前記制御部は、前記凍結進行ステップで前記サーミスタの測定温度が所定温度に降下した後、前記ヒータへの通電電流を徐々に減少させて通電停止に至らしめ、一定時間経過後、離氷装置に離氷動作を行わせることを特徴とする請求項2から6のいずれか1項に記載の冷凍冷蔵庫の製氷装置。   The controller, after the temperature measured by the thermistor drops to a predetermined temperature in the freezing progress step, gradually reduces the energization current to the heater to stop energization. The ice making device for a refrigerator-freezer according to any one of claims 2 to 6, wherein an ice removing operation is performed. 前記制御部は、前記製氷室の室内温度または当該製氷室に吹き込まれる冷気温度が所定値以上であるときは前記ヒータへの通電電流を低レベルとすることを特徴とする請求項1から8のいずれか1項に記載の冷凍冷蔵庫の製氷装置。   9. The control unit according to claim 1, wherein when the indoor temperature of the ice making chamber or the cold air temperature blown into the ice making chamber is equal to or higher than a predetermined value, the control unit sets the energization current to the heater to a low level. The ice making device of the refrigerator-freezer of any one of Claims. 前記制御部は、外気温が低いときに冷蔵室温度が比較的高めに設定されているときは、前記冷凍サイクル中の圧縮機の回転数と、前記製氷室に冷気を送り込む送風機の回転数を低下させることを特徴とする請求項1から9のいずれか1項に記載の冷凍冷蔵庫の製氷装置。   When the temperature of the refrigerator compartment is set to be relatively high when the outside air temperature is low, the control unit sets the number of rotations of the compressor in the refrigeration cycle and the number of rotations of the blower that sends cold air to the ice making chamber. The ice making device for a refrigerator-freezer according to any one of claims 1 to 9, wherein the ice making device is lowered.
JP2009214052A 2009-09-16 2009-09-16 Refrigeration refrigerator ice making equipment Expired - Fee Related JP4680311B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2009214052A JP4680311B2 (en) 2009-09-16 2009-09-16 Refrigeration refrigerator ice making equipment
MYPI2012001134A MY153321A (en) 2009-09-16 2010-04-07 Refrigerator/freezer ice maker
PCT/JP2010/056296 WO2011033804A1 (en) 2009-09-16 2010-04-07 Refrigerator/freezer ice maker
CN201080041190.1A CN102549359B (en) 2009-09-16 2010-04-07 Refrigerator/freezer ice maker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009214052A JP4680311B2 (en) 2009-09-16 2009-09-16 Refrigeration refrigerator ice making equipment

Publications (2)

Publication Number Publication Date
JP2011064373A true JP2011064373A (en) 2011-03-31
JP4680311B2 JP4680311B2 (en) 2011-05-11

Family

ID=43758417

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009214052A Expired - Fee Related JP4680311B2 (en) 2009-09-16 2009-09-16 Refrigeration refrigerator ice making equipment

Country Status (4)

Country Link
JP (1) JP4680311B2 (en)
CN (1) CN102549359B (en)
MY (1) MY153321A (en)
WO (1) WO2011033804A1 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013032871A (en) * 2011-08-01 2013-02-14 Sharp Corp Ice making device and method for controlling the same
KR20140059938A (en) * 2012-11-09 2014-05-19 삼성전자주식회사 Refrigerator
US20170138659A1 (en) * 2015-11-12 2017-05-18 Samsung Electronics Co., Ltd Refrigerator
CN112789471A (en) * 2018-10-02 2021-05-11 Lg电子株式会社 Refrigerator and control method thereof
US11835281B2 (en) 2018-10-02 2023-12-05 Lg Electronics Inc. Ice maker and refrigerator including same
US11835282B2 (en) 2018-10-02 2023-12-05 Lg Electronics Inc. Refrigerator
US11835283B2 (en) 2018-10-02 2023-12-05 Lg Electronics Inc. Refrigerator and control method therefor
US11841180B2 (en) 2018-10-02 2023-12-12 Lg Electronics Inc. Refrigerator
US11846460B2 (en) 2018-10-02 2023-12-19 Lg Electronics Inc. Refrigerator
US11859888B2 (en) 2018-10-02 2024-01-02 Lg Electronics Inc. Refrigerator and control method therefor
US11874044B2 (en) 2018-10-02 2024-01-16 Lg Electronics Inc. Ice maker and refrigerator comprising same
US11874049B2 (en) 2018-10-02 2024-01-16 Lg Electronics Inc. Refrigerator
US11874043B2 (en) 2018-10-02 2024-01-16 Lg Electronics Inc. Refrigerator
US11879679B2 (en) 2018-10-02 2024-01-23 Lg Electronics Inc. Refrigerator and control method therefor
US11892221B2 (en) 2018-10-02 2024-02-06 Lg Electronics Inc. Refrigerator
US11892220B2 (en) 2018-10-02 2024-02-06 Lg Electronics Inc. Refrigerator and method for controlling same
US11898785B2 (en) 2018-10-02 2024-02-13 Lg Electronics Inc. Refrigerator
US11906230B2 (en) 2018-10-02 2024-02-20 Lg Electronics Inc. Refrigerator
US11920846B2 (en) 2018-10-02 2024-03-05 Lg Electronics Inc. Refrigerator
US11971204B2 (en) 2018-10-02 2024-04-30 Lg Electronics Inc. Refrigerator

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5242740B2 (en) * 2011-06-08 2013-07-24 シャープ株式会社 Ice making device and refrigerator-freezer provided with the same
CN103216984A (en) * 2013-03-22 2013-07-24 卫广溢 Ice cube preparation device for ice sculpture
KR20170052235A (en) * 2015-11-04 2017-05-12 삼성전자주식회사 Ice maker and refrigerator having the same
KR101952299B1 (en) * 2015-11-18 2019-02-26 삼성전자주식회사 System and Method for producing clear ice
CN106369911B (en) * 2016-11-30 2019-03-29 海信容声(广东)冰箱有限公司 A kind of control method of refrigerator and its water receiver anti-freeze
KR20180080021A (en) * 2017-01-03 2018-07-11 삼성전자주식회사 Ice maker, refrigerator having the same and method for ice making
KR102468615B1 (en) 2018-01-16 2022-11-21 삼성전자주식회사 Ice making device
CN116972571A (en) * 2018-10-02 2023-10-31 Lg电子株式会社 Refrigerator and control method thereof
WO2020071744A1 (en) * 2018-10-02 2020-04-09 엘지전자 주식회사 Refrigerator and method for controlling same
CN112771337B (en) * 2018-10-02 2023-07-04 Lg电子株式会社 Refrigerator with a refrigerator body
WO2020100105A1 (en) * 2018-11-15 2020-05-22 Smartfreez Lda Device and method for freezing a biological solution
KR20200058011A (en) 2018-11-19 2020-05-27 엘지전자 주식회사 Ice maker and refrigerator
KR20220092975A (en) * 2019-11-13 2022-07-04 일렉트로룩스 홈 프로덕츠 인코퍼레이티드 Direct cooling ice machine
US11326822B2 (en) * 2020-07-22 2022-05-10 Haier Us Appliance Solutions, Inc. Ice making system for creating clear ice and associated method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05203299A (en) * 1992-01-23 1993-08-10 Matsushita Refrig Co Ltd Automatic ice making device
JPH09324974A (en) * 1996-06-06 1997-12-16 Matsushita Refrig Co Ltd Freezing refrigerator

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01181051A (en) * 1988-01-12 1989-07-19 Matsushita Refrig Co Ltd Ice-making device for refrigerating chamber and the like
JPH04313664A (en) * 1991-01-22 1992-11-05 Matsushita Refrig Co Ltd Icemaker
JPH064561U (en) * 1992-06-23 1994-01-21 松下冷機株式会社 Automatic ice machine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05203299A (en) * 1992-01-23 1993-08-10 Matsushita Refrig Co Ltd Automatic ice making device
JPH09324974A (en) * 1996-06-06 1997-12-16 Matsushita Refrig Co Ltd Freezing refrigerator

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013032871A (en) * 2011-08-01 2013-02-14 Sharp Corp Ice making device and method for controlling the same
KR20140059938A (en) * 2012-11-09 2014-05-19 삼성전자주식회사 Refrigerator
EP2730865A3 (en) * 2012-11-09 2016-06-15 Samsung Electronics Co., Ltd Refrigerator
US9625200B2 (en) 2012-11-09 2017-04-18 Samsung Electronics Co., Ltd. Refrigerator with icemaker and icemaker protection
KR102417751B1 (en) 2015-11-12 2022-07-07 삼성전자주식회사 Refrigerator
US20170138659A1 (en) * 2015-11-12 2017-05-18 Samsung Electronics Co., Ltd Refrigerator
KR20170055790A (en) * 2015-11-12 2017-05-22 삼성전자주식회사 Refrigerator
US11841180B2 (en) 2018-10-02 2023-12-12 Lg Electronics Inc. Refrigerator
US11874049B2 (en) 2018-10-02 2024-01-16 Lg Electronics Inc. Refrigerator
US11835281B2 (en) 2018-10-02 2023-12-05 Lg Electronics Inc. Ice maker and refrigerator including same
US11835282B2 (en) 2018-10-02 2023-12-05 Lg Electronics Inc. Refrigerator
US11835283B2 (en) 2018-10-02 2023-12-05 Lg Electronics Inc. Refrigerator and control method therefor
CN112789471A (en) * 2018-10-02 2021-05-11 Lg电子株式会社 Refrigerator and control method thereof
US11846460B2 (en) 2018-10-02 2023-12-19 Lg Electronics Inc. Refrigerator
US11859888B2 (en) 2018-10-02 2024-01-02 Lg Electronics Inc. Refrigerator and control method therefor
US11874044B2 (en) 2018-10-02 2024-01-16 Lg Electronics Inc. Ice maker and refrigerator comprising same
CN112789471B (en) * 2018-10-02 2023-08-25 Lg电子株式会社 Refrigerator and control method thereof
US11874043B2 (en) 2018-10-02 2024-01-16 Lg Electronics Inc. Refrigerator
US11879679B2 (en) 2018-10-02 2024-01-23 Lg Electronics Inc. Refrigerator and control method therefor
US11892221B2 (en) 2018-10-02 2024-02-06 Lg Electronics Inc. Refrigerator
US11892220B2 (en) 2018-10-02 2024-02-06 Lg Electronics Inc. Refrigerator and method for controlling same
US11898785B2 (en) 2018-10-02 2024-02-13 Lg Electronics Inc. Refrigerator
US11906230B2 (en) 2018-10-02 2024-02-20 Lg Electronics Inc. Refrigerator
US11920846B2 (en) 2018-10-02 2024-03-05 Lg Electronics Inc. Refrigerator
US11971204B2 (en) 2018-10-02 2024-04-30 Lg Electronics Inc. Refrigerator

Also Published As

Publication number Publication date
CN102549359A (en) 2012-07-04
WO2011033804A1 (en) 2011-03-24
MY153321A (en) 2015-01-29
CN102549359B (en) 2014-04-16
JP4680311B2 (en) 2011-05-11

Similar Documents

Publication Publication Date Title
JP4680311B2 (en) Refrigeration refrigerator ice making equipment
JP2011064371A (en) Ice-making device for refrigerator-freezer
WO2012124075A1 (en) Ice-making device for refrigerator/freezer
JP5746584B2 (en) Ice making apparatus and control method thereof
JP5242740B2 (en) Ice making device and refrigerator-freezer provided with the same
JP2011064374A (en) Ice-making device for refrigerator-freezer
JP2013204882A (en) Ice making device, refrigerator with the ice making device, and method of controlling the ice making device
WO2008053975A1 (en) Automatic ice making machine and operation method therefor
CN204421234U (en) The off-premises station of air conditioner
KR101754339B1 (en) Ice manufacturing apparatus and method for refrigerator
CN106403442A (en) Refrigerator and defrosting method thereof
EP1798502A2 (en) Control method of refrigerator
KR20150145705A (en) Ice maker and refrigerator with the same
KR20160148194A (en) Ice manufacturing apparatus and method for refrigerator
JP5618357B2 (en) Refrigeration refrigerator ice making equipment
JP2017161086A (en) Ice plant, refrigerator, and ice-making method
KR102339583B1 (en) Ice maker and refrigerator including the same
DK2757335T3 (en) Refrigerator with defrost and control method
JP5984781B2 (en) Air conditioner outdoor unit
JP2011064372A (en) Ice-making device for refrigerator-freezer
KR20140006488A (en) Evaporator for ice making
KR20130095974A (en) Refrigerant pipe for icemachine having heater
JP2013204883A (en) Ice-making device and refrigerator with the same
JP5984783B2 (en) Air conditioner outdoor unit
KR20160020101A (en) Ice-maker and refrigerator including the same

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees