JP2011062697A - Method for removing halogen gas - Google Patents

Method for removing halogen gas Download PDF

Info

Publication number
JP2011062697A
JP2011062697A JP2010264083A JP2010264083A JP2011062697A JP 2011062697 A JP2011062697 A JP 2011062697A JP 2010264083 A JP2010264083 A JP 2010264083A JP 2010264083 A JP2010264083 A JP 2010264083A JP 2011062697 A JP2011062697 A JP 2011062697A
Authority
JP
Japan
Prior art keywords
halogen
average
sieve
based gas
granulated product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010264083A
Other languages
Japanese (ja)
Inventor
Yoshikatsu Kawabe
義勝 川辺
Hachiro Hirano
八朗 平野
Yoichi Mori
要一 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanwa Chemical Co Ltd
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Sanwa Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd, Sanwa Chemical Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2010264083A priority Critical patent/JP2011062697A/en
Publication of JP2011062697A publication Critical patent/JP2011062697A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for removing a halogen gas which suppresses ignition of an adsorbent, is high in throughput of the halogen gas, and reduces an odor of a used adsorbent and generation of solid wastes. <P>SOLUTION: Hydrogen carbonate having an average particle size of a primary particle of 10 to 500 μm is granulated, and the obtained granule containing the hydrogen carbonate (provided except sodium hydrogencarbonate) of 70 mass% or more is brought into contact with the halogen gas at temperatures of 50°C or higher and also at less than 80°C to remove it. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、ハロゲン単体又はハロゲン化合物からなるハロゲン系ガスの除去方法に関し、例えば、ハロゲン系ガスを含有するドライエッチング排ガス等からハロゲン系ガスを除去する方法に関する。   The present invention relates to a method for removing a halogen-based gas composed of a halogen simple substance or a halogen compound, for example, a method for removing a halogen-based gas from a dry etching exhaust gas containing a halogen-based gas.

従来より、ハロゲン単体又はハロゲン化合物からなるハロゲン系ガスを含有するドライエッチング排ガスやCVD(化学気相蒸着法)チャンバーの排ガス等の処理方法として、設備の小型化及び操作の簡便化のため、活性炭等の吸着剤を使用した乾式による処理方法等が採用されている。しかし、活性炭の吸着容量が小さいため処理時間が短いこと、ガス吸着時の吸着熱による発火、使用済み吸着剤の臭気及び固形廃棄物の発生等が問題であった。   Conventionally, as a method for treating dry etching exhaust gas containing halogen-based gas composed of a single halogen or a halogen compound or exhaust gas in a CVD (chemical vapor deposition) chamber, activated carbon has been used for downsizing equipment and simplifying operation. A dry processing method using an adsorbent such as the above is adopted. However, since the adsorption capacity of the activated carbon is small, the treatment time is short, ignition due to adsorption heat during gas adsorption, odor of used adsorbent, generation of solid waste, and the like.

本発明は、上記の問題に鑑み、吸着剤の発火を抑制し、ハロゲン系ガスの処理能力が高く、使用済み吸着剤の臭気及び固形廃棄物の発生を低減し、吸着剤入れ替え作業頻度の低い、ハロゲン系ガスの除去方法を提供する。   In view of the above problems, the present invention suppresses the ignition of the adsorbent, has a high halogen-based gas processing capacity, reduces the odor of the used adsorbent and the generation of solid waste, and has a low frequency of replacement of the adsorbent. A method for removing a halogen-based gas is provided.

本発明は、一次粒子の平均粒子径10〜500μmの炭酸水素塩の粉末を造粒し、炭酸水素塩(ただし炭酸水素ナトリウムを除く)を70質量%以上含有する得られた造粒物を、温度50℃以上かつ80℃未満において、ハロゲン単体又はハロゲン化合物からなるハロゲン系ガスに接触させてハロゲン系ガスを除去する、ハロゲン系ガスの除去方法を提供する。   The present invention granulates a hydrogen carbonate powder having an average primary particle diameter of 10 to 500 μm, and the resulting granulated product containing 70% by mass or more of a hydrogen carbonate (excluding sodium hydrogen carbonate), Provided is a halogen-based gas removal method in which a halogen-based gas is removed by contact with a halogen-based gas comprising a halogen alone or a halogen compound at a temperature of 50 ° C. or higher and lower than 80 ° C.

本発明により、ハロゲン単体又はハロゲン化合物を吸着することのできる除去剤として、使用時に粉化せず、除去能力が高く、臭気の発生が少ない造粒物が得られる。また、本発明の造粒物は、従来の活性炭を使用する充填塔等にそのまま適用できる。本発明では、ハロゲン系ガスの温度を50℃以上かつ80℃未満とすることにより、造粒物のハロゲン系ガスの除去能力を高めることができ、また、造粒物の効果も長く維持できる。   According to the present invention, as a remover capable of adsorbing a single halogen or a halogen compound, a granulated product that does not powder during use, has a high removal capability, and generates little odor is obtained. Further, the granulated product of the present invention can be applied as it is to a packed tower using conventional activated carbon. In the present invention, by setting the temperature of the halogen-based gas to 50 ° C. or more and less than 80 ° C., the halogen-based gas removal ability of the granulated product can be enhanced, and the effect of the granulated product can be maintained for a long time.

本発明において、炭酸水素塩としては、炭酸水素ナトリウム、炭酸水素カリウム等が使用できる。特に、大量かつ安価に入手できることから工業的に適していることや、吸湿性がなく、造粒物の製造や保存にあたって使用しやすいことから、炭酸水素ナトリウムが好ましい。一方、除去処理後の排ガス等へのナトリウムの混入を防ぎたい場合は炭酸水素カリウムが好ましい。   In the present invention, as the hydrogen carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate and the like can be used. In particular, sodium hydrogen carbonate is preferred because it is industrially suitable because it can be obtained in large quantities and at a low price, and it is not hygroscopic and can be easily used in the production and storage of a granulated product. On the other hand, potassium bicarbonate is preferable when it is desired to prevent sodium from being mixed into the exhaust gas after the removal treatment.

本発明において、炭酸水素塩の粉末は造粒物にする。造粒物は、炭酸水素塩を70質量%以上含有することが好ましい。造粒物中において、炭酸水素塩が70質量%未満であると、ハロゲン系ガス除去剤としてのガス処理容量が低下し、除去剤充填層の入れ替え頻度が高くなるので好ましくない。炭酸水素塩の含有量は、特に80質量%以上であることが好ましい。なお、造粒物中において、他に含まれる材料としては、炭酸水素塩以外の吸着剤、バインダー等が挙げられる。   In the present invention, the bicarbonate powder is granulated. The granulated product preferably contains 70 mass% or more of hydrogen carbonate. If the hydrogen carbonate is less than 70% by mass in the granulated product, the gas treatment capacity as the halogen-based gas removal agent is reduced, and the frequency of replacement of the removal agent packed bed is increased, which is not preferable. The content of the bicarbonate is particularly preferably 80% by mass or more. In addition, in the granulated material, examples of other materials include adsorbents other than bicarbonates, binders, and the like.

本発明において、炭酸水素塩の粉末は、一次粒子の平均粒子径が10〜500μmであるものを使用する。一次粒子の平均粒子径が10μm未満であると、流動性がよくなくハンドリング等の取扱いが難しくなるため好ましくなく、500μm超であると、技術的に造粒物の製造が困難であり、コスト的に高くなるため好ましくない。なお、一次粒子とは炭酸水素塩の単結晶であり、平均粒子径とは重量基準による平均粒子径である。   In the present invention, the hydrogen carbonate powder having a primary particle average particle size of 10 to 500 μm is used. If the average particle size of the primary particles is less than 10 μm, it is not preferable because the fluidity is poor and handling such as handling becomes difficult, and if it exceeds 500 μm, it is technically difficult to produce a granulated product, which is costly. It is not preferable because it becomes too high. The primary particles are single crystals of hydrogen carbonate, and the average particle size is the average particle size based on weight.

本発明において、炭酸水素塩の粉末の造粒物の平均粒子径は0.5〜20mmである。造粒物の平均粒子径が0.5〜20mmであることにより、ハロゲン系ガスの処理の際、従来から使用されている充填塔等を使用できる。造粒物の平均粒子径が0.5mm未満であると、ハロゲン系ガス又はそれを含有する被処理ガスが充填層等を通過する際の圧力損失が高くなり、平均粒子径が20mmを超えると、被処理ガスと造粒物との接触面積が低下し、排ガスの除去性能を低下させる。造粒物の平均粒子径としては、特に0.5〜10mmが好ましい。   In the present invention, the average particle size of the granulated product of the bicarbonate powder is 0.5 to 20 mm. When the granulated product has an average particle size of 0.5 to 20 mm, a conventionally used packed tower or the like can be used in the treatment of the halogen-based gas. When the average particle size of the granulated product is less than 0.5 mm, the pressure loss when the halogen-based gas or the gas to be treated containing it passes through the packed bed or the like becomes high, and the average particle size exceeds 20 mm. The contact area between the gas to be treated and the granulated product is reduced, and the exhaust gas removal performance is reduced. The average particle size of the granulated product is particularly preferably 0.5 to 10 mm.

本発明では造粒物の平均粒子径は、以下の方法により測定する。造粒物の粒子径に対応した範囲の目開きの篩を重ねあわせ、最下部に底皿を設置し、上から造粒物を注ぎ、振とう機で振とうさせた後、それぞれの標準篩上残渣の質量を測定し、各目開き値に対する篩上残渣質量の累計を折れ線グラフに表し、篩上残渣質量の累計が50%の時の粒子径を平均粒子径とする。上下篩の目開きの差は、造粒物の粒子径にもよるが、0.5mmのピッチを使用することが好ましい。   In the present invention, the average particle size of the granulated product is measured by the following method. Overlay sieves in the range corresponding to the particle size of the granulated product, place a bottom pan at the bottom, pour the granulated product from the top, shake it with a shaker, and then use each standard sieve. The mass of the upper residue is measured, and the total mass of the residue on the sieve with respect to each opening value is represented by a line graph. The particle diameter when the total mass of the residue on the sieve is 50% is defined as the average particle diameter. Although the difference between the openings of the upper and lower sieves depends on the particle diameter of the granulated product, it is preferable to use a pitch of 0.5 mm.

本発明において、造粒物は、圧縮成形法、押出成形法、転動式造粒法、撹拌式造粒法等の様々な方法によって得ることができる。ここで、圧縮成形法は、工程が簡略なため工業的に簡便であり、バインダーを使用しなくても造粒物を得ることができること、また、硬度が高く壊れにくい、ガス処理容量の大きな造粒物を得ることができることから、特に好ましい。   In the present invention, the granulated product can be obtained by various methods such as a compression molding method, an extrusion molding method, a rolling granulation method, and a stirring granulation method. Here, the compression molding method is industrially simple because the process is simple, and it is possible to obtain a granulated product without using a binder, and it is hard to break and has a large gas processing capacity. Since a granular material can be obtained, it is especially preferable.

造粒物を得る方法として、例えば、圧縮成形機を使用し、乾式で成形した後、粗粉砕し、篩分ける方法が挙げられる。また、水溶性のバインダーを使用して湿式の圧縮成形機で成形し、その後乾燥させる方法も挙げられる。   As a method for obtaining the granulated product, for example, a method of using a compression molding machine, dry molding, coarse pulverization, and sieving may be mentioned. Moreover, the method of shape | molding with a wet compression molding machine using a water-soluble binder, and making it dry after that is also mentioned.

本発明において、炭酸水素塩の粉末の造粒物は、ハロゲン系ガスを処理するために、充填層に充填されて使用される場合、強度が低いと、粉化して充填層を通過する際の圧力損失が上昇することがある。このため造粒物の強度は高くする。   In the present invention, when a granulated product of a bicarbonate powder is used in a packed bed to treat a halogen-based gas, if the strength is low, it is pulverized and passes through the packed bed. Pressure loss may increase. For this reason, the strength of the granulated product is increased.

本発明における造粒物の強度評価方法として、硬度が挙げられる。ここで、硬度とは、造粒物粒子の1個を上方より垂直に荷重をかけて圧縮して破壊するに必要な力のことである。   Hardness is mentioned as a strength evaluation method of the granulated product in the present invention. Here, the hardness is a force required to compress and destroy one of the granulated particles by applying a load vertically from above.

本発明での硬度の評価法は、平均粒子径に応じて造粒物粒子を分級し、粒子径を揃えた粒子群について行う。例えば、平均粒子径1.5mm以上2.0mm未満の造粒物については、平均目開き1.5mmの篩と目開き2.0mmの篩を使用して篩分け、1.5mm篩上かつ2.0mm篩下の粒子を20個採取し、各粒子の硬度を測定してその平均値を粒子強度の評価基準として採用する。   The evaluation method of hardness in the present invention is performed on a particle group in which the granulated particles are classified according to the average particle diameter and the particle diameters are uniform. For example, a granulated product having an average particle diameter of 1.5 mm or more and less than 2.0 mm is sieved using a sieve having an average opening of 1.5 mm and a sieve having an opening of 2.0 mm, Collect 20 particles under 0.0 mm sieve, measure the hardness of each particle, and adopt the average value as an evaluation standard of particle strength.

本発明の炭酸水素塩の粉末の造粒物の硬度としては、平均粒子径0.5mm以上1.0mm未満の造粒物の場合は粒子径0.5mm以上1.0mm未満の造粒物の平均硬度が1N以上であり、平均粒子径1.0mm以上1.5mm未満の造粒物の場合は粒子径1.0mm以上1.5mm未満の造粒物の平均硬度が4N以上であり、平均粒子径1.5mm以上2.0mm未満の造粒物の場合は粒子径1.5mm以上2.0mm未満の造粒物の平均硬度が10N以上であり、平均粒子径2.0mm以上20mm以下の造粒物の場合は粒子径2.0mm以上20mm以下の造粒物の平均硬度が30N以上、であることが好ましい。   As the hardness of the granulated product of the bicarbonate powder of the present invention, in the case of a granulated product having an average particle size of 0.5 mm or more and less than 1.0 mm, the granulated product having a particle size of 0.5 mm or more and less than 1.0 mm is used. In the case of a granulated product having an average hardness of 1N or more and an average particle size of 1.0 mm or more and less than 1.5 mm, the average hardness of the granulated product having a particle size of 1.0 mm or more and less than 1.5 mm is 4N or more, and the average In the case of a granulated product having a particle size of 1.5 mm or more and less than 2.0 mm, the average hardness of the granulated product having a particle size of 1.5 mm or more and less than 2.0 mm is 10 N or more, and the average particle size is 2.0 mm or more and 20 mm or less. In the case of a granulated product, the average hardness of the granulated product having a particle diameter of 2.0 mm or more and 20 mm or less is preferably 30 N or more.

本発明では、ハロゲン単体又はハロゲン化合物からなるハロゲン系ガスを除去する。例えば、ハロゲン系ガスを含有するドライエッチング排ガス等を処理して、該排ガス中のハロゲン系ガスを除去する。ハロゲンとしては、フッ素、塩素、臭素等が挙げられる。具体的なハロゲン単体又はハロゲン化合物としてはBCl、CCl、Cl、SiCl、HCl、COCl、F、SiF、HF、COF、NF、WF、ClF及びHBrから選ばれる一種又は二種以上が挙げられる。この他に、Iが挙げられる。 In the present invention, a halogen-based gas composed of a single halogen or a halogen compound is removed. For example, a dry etching exhaust gas containing a halogen gas is treated to remove the halogen gas in the exhaust gas. Examples of halogen include fluorine, chlorine, bromine and the like. Specific halogens or halogen compounds are selected from BCl 3 , CCl 4 , Cl 2 , SiCl 4 , HCl, COCl 2 , F 2 , SiF 4 , HF, COF 2 , NF 3 , WF 6 , ClF 3 and HBr. 1 type or 2 types or more mentioned. In addition to this it includes I 2.

本発明において、ハロゲン単体又はハロゲン化合物からなるハロゲン系ガスの温度を40℃以上かつ80℃未満とすることにより造粒物の反応性を高め、効率的に除去処理でき、造粒物の効果も長く持続する。ハロゲン系ガスは直接、温度40℃以上かつ80℃未満にしてもよく、また、造粒物を充填する充填塔等を40℃以上かつ80℃未満に設定してもよい。ハロゲン系ガスの温度が40℃未満であると、反応速度が低下するので好ましくない。また、80℃超であると、充填塔等の設備を高価な耐熱材料又は構造とする必要があり、また、取扱い作業が困難になる等のため好ましくない。ハロゲン系ガスの温度は50℃以上かつ70℃未満が特に好ましい。   In the present invention, the reactivity of the granulated product is enhanced by setting the temperature of the halogen-based gas composed of a single halogen or a halogen compound to 40 ° C. or more and less than 80 ° C., and can be efficiently removed, and the effect of the granulated product is also achieved. Long lasting. The halogen-based gas may be directly set to a temperature of 40 ° C. or higher and lower than 80 ° C., and a packed tower or the like packed with the granulated product may be set to 40 ° C. or higher and lower than 80 ° C. If the temperature of the halogen-based gas is less than 40 ° C., the reaction rate decreases, which is not preferable. Further, if it exceeds 80 ° C., it is necessary to make the equipment such as a packed tower as an expensive heat-resistant material or structure, and it is not preferable because handling work becomes difficult. The temperature of the halogen-based gas is particularly preferably 50 ° C. or higher and lower than 70 ° C.

本発明において、炭酸水素塩は、ハロゲン単体又はハロゲン化合物と反応し、水溶性の塩を生成する。炭酸水素塩自身も水溶性であるために、排ガス中のハロゲン系ガスの除去に使用した後の造粒物を水に溶解できる。また、後述のように、例えば、炭酸水素塩と活性炭を併用した場合、固形廃棄物を減少できる。   In the present invention, the bicarbonate reacts with a halogen alone or a halogen compound to produce a water-soluble salt. Since the bicarbonate itself is water-soluble, the granulated product after being used for removing the halogen-based gas in the exhaust gas can be dissolved in water. Moreover, as will be described later, for example, when hydrogen carbonate and activated carbon are used in combination, solid waste can be reduced.

炭酸水素塩は、ハロゲン単体又はハロゲン化合物と反応して水溶性の塩を生成するため、活性炭吸着の場合のようにハロゲン単体又はハロゲン化合物が脱離して、臭気を発生することがないため、充填層等の入れ替え作業が容易にできる。また、炭酸水素塩自身に消火性があるため発火の危険性がない。   Since hydrogen carbonate reacts with halogen alone or with a halogen compound to produce a water-soluble salt, the halogen alone or halogen compound is not eliminated and no odor is generated as in the case of activated carbon adsorption. Replacing layers can be done easily. In addition, there is no risk of ignition because the hydrogen carbonate itself is extinguisher.

本発明において、前記造粒物を活性炭とともに充填塔等の容器に充填してハロゲン系ガスと接触させて、ハロゲン系ガスを除去するのも好ましい。この方法により、活性炭を単独使用した場合と比較して、ハロゲン単体又はハロゲン化合物の除去量を増加できるのみでなく、活性炭からの臭気の発生も低減できる。具体的には、炭酸水素塩と活性炭を層状に充填塔等の容器に配置する等して使用する。   In the present invention, it is also preferable to remove the halogen-based gas by filling the granulated product together with activated carbon into a container such as a packed tower and contacting with the halogen-based gas. By this method, compared to the case where activated carbon is used alone, not only the amount of halogen alone or halogen compound removed can be increased, but also the generation of odor from activated carbon can be reduced. Specifically, the hydrogen carbonate and the activated carbon are used by arranging them in a layer in a container such as a packed tower.

以下の各例において、硬度及び平均粒子径の測定は下記の方法により行った。   In each of the following examples, the hardness and average particle diameter were measured by the following methods.

硬度は、藤原製作所製の木屋式デジタル硬度計KHT−20型を使用して測定した。また、硬度は粒子の大きさにより異なるため篩分けして粒子径を揃えた。   The hardness was measured using a Kiya type digital hardness meter KHT-20 manufactured by Fujiwara Seisakusho. Further, since the hardness varies depending on the size of the particles, the particle diameters were made by sieving.

平均粒子径は、以下の方法により測定した。粉末試料100gを、標準篩(内径:200mm、金網ステンレス製)でそれぞれ目開き5.60mm、4.75mm、4.00mm、2.80mm、2.00mm、1.00mmのものを重ねあわせ、最下部に底皿を設置した上に注ぎ、飯田製作所社製ロータップシェーカー式振とう機(周波数60Hz、290回転/分、打数165回/分)で10分間振とうさせた後、それぞれの標準篩上残渣の質量を測定し、各目開き値に対する通過質量の累計をグラフに表し、通過質量の累計が50%の時の粒子径を平均粒子径とした。   The average particle size was measured by the following method. 100 g of powder sample was overlapped with a standard sieve (inner diameter: 200 mm, made of wire mesh stainless steel) with mesh openings of 5.60 mm, 4.75 mm, 4.00 mm, 2.80 mm, 2.00 mm and 1.00 mm, respectively. After pouring on the bottom plate installed at the bottom and shaking for 10 minutes with Iida Seisakusho's low-tap shaker type shaker (frequency 60 Hz, 290 rpm / min, 165 strokes / min), each standard sieve The mass of the upper residue was measured, and the cumulative amount of passing mass for each opening value was shown in a graph. The particle size when the cumulative amount of passing mass was 50% was defined as the average particle size.

[例1]一次粒子の平均粒子径が91μmの食品添加物用炭酸水素ナトリウムの粉末(旭硝子社製)300kgをロールプレス式圧縮成形機(ターボ工業社製、商品名:ローラーコンパクターWP型、ロール外径230mm、ロール長80mm)を使用して線圧36.8kN/cmで圧縮成形し、フレーク状の炭酸水素ナトリウムの粉末の成形体を得た。得られたフレーク状の成形体をフレークブレーカーで粗砕し、ロータリー式整粒機のメッシュを4.75mmに設定して全通させた後、回転篩機(ターボ工業社製、商品名:ターボスクリーナーTS型)を使用して、粒子径4.0mm以上の粒子と粒子径1.0mm以下の粒子を除去し、平均粒子径が2.3mmの炭酸水素ナトリウムの粉末の造粒物を得た。   [Example 1] 300 kg of powdered sodium bicarbonate powder for food additives (produced by Asahi Glass Co., Ltd.) having an average primary particle size of 91 μm is roll-pressed compression molding machine (trade name: Roller Compactor WP, roll Compressive molding was performed at a linear pressure of 36.8 kN / cm using an outer diameter of 230 mm and a roll length of 80 mm to obtain a flaky sodium bicarbonate powder compact. The obtained flaky shaped product was roughly crushed with a flake breaker, and the mesh of the rotary granulator was set to 4.75 mm and allowed to pass through all. Screener TS type) is used to remove particles with a particle size of 4.0 mm or more and particles with a particle size of 1.0 mm or less to obtain a granulated product of sodium bicarbonate powder having an average particle size of 2.3 mm. It was.

また、前述の硬度測定法によって、造粒物の粒子強度を測定した。すなわち得られた平均粒子径2.3mmの造粒物を0.5mm、1.0mm、1.5mm、2.0mm、2.5mmの目開きの篩で篩分け、各粒度の硬度を20個測定し平均値を求めたところ、0.5mm以上1.0mm未満の粒子の平均硬度が4N、1.0mm以上1.5mm未満が12N、1.5mm以上2.0mm未満が23N、2.0mm以上が63Nであった。   Further, the particle strength of the granulated product was measured by the above-described hardness measurement method. That is, the obtained granulated product having an average particle diameter of 2.3 mm is sieved with a sieve having an opening of 0.5 mm, 1.0 mm, 1.5 mm, 2.0 mm, and 2.5 mm, and the hardness of each particle size is 20 pieces. When the average value was determined by measurement, the average hardness of particles of 0.5 mm or more and less than 1.0 mm was 4N, 1.0 mm or more and less than 1.5 mm was 12N, 1.5 mm or more and less than 2.0 mm was 23N, 2.0 mm The above was 63N.

次に、底面が通気性焼結板で内径300mm、長さ1300mmのフッ素樹脂ライニング付きステンレス鋼製の充填容器に、充填物として前記造粒物を30kg充填した。被処理ガスとして、標準状態での組成比がBCl:20体積%、Cl:60体積%、アルゴン:20体積%のガスを流量200cm/分、温度60℃に加熱し、常圧下で、上記充填容器の底部から注入した。充填容器の上部から流出したガスを分析したところ、BClは検出されず、Cl濃度は0.1体積ppm以下であった。 Next, 30 kg of the granulated product was filled as a filling material in a filling vessel made of stainless steel with a fluororesin lining having a bottom surface of a breathable sintered plate and an inner diameter of 300 mm and a length of 1300 mm. As a gas to be treated, a gas having a composition ratio in a standard state of BCl 3 : 20% by volume, Cl 2 : 60% by volume, and argon: 20% by volume is heated to a flow rate of 200 cm 3 / min and a temperature of 60 ° C. And injected from the bottom of the filling container. When the gas flowing out from the upper part of the filling container was analyzed, BCl 3 was not detected and the Cl 2 concentration was 0.1 volume ppm or less.

処理開始から361時間経過後に流出ガス中のCl濃度が0.1体積ppmを超えて上昇し始めた。充填物を取り出したところ、造粒物粒子の粉化や臭気の発生はなかった。また、この充填物を水に溶解したところすべて溶解し、固形廃棄物の発生はなかった。 After 361 hours from the start of the treatment, the Cl 2 concentration in the effluent gas began to rise exceeding 0.1 ppm by volume. When the filler was taken out, the granulated particles were not pulverized and no odor was generated. Moreover, when this filler was dissolved in water, it was completely dissolved, and no solid waste was generated.

[例2(比較例)]被処理ガスの温度を25℃に変えた以外は、例1と同様にして試験を行った。例1と同様にして、流出ガスを分析したところ、BClは検出されず、Cl濃度は0.1体積ppm以下であった。 [Example 2 (Comparative Example)] The test was performed in the same manner as in Example 1 except that the temperature of the gas to be treated was changed to 25 ° C. When the effluent gas was analyzed in the same manner as in Example 1, BCl 3 was not detected, and the Cl 2 concentration was 0.1 ppm by volume or less.

処理開始から309時間経過後に流出ガス中のCl濃度が0.1体積ppmを超えて上昇し始めた。充填物を取り出したところ、造粒物粒子の粉化や臭気の発生はなかった。また、この充填物の内、造粒物を水に溶解したところすべて溶解した。例1と比べ、炭酸水素ナトリウムの反応効率の悪くなったことから炭酸水素ナトリウムの有効時間が短かった。 After 309 hours from the start of the treatment, the Cl 2 concentration in the effluent gas began to rise above 0.1 ppm by volume. When the filler was taken out, the granulated particles were not pulverized and no odor was generated. Moreover, when the granulated material was dissolved in water, all of the filler was dissolved. Compared with Example 1, the effective time of sodium hydrogen carbonate was short because the reaction efficiency of sodium hydrogen carbonate was deteriorated.

[例3(比較例)]充填する炭酸水素ナトリウム30kgを活性炭30kgに変えた以外は、例1と同様にして試験を行った。例1と同様にして、流出ガスを分析したところ、BClは検出されず、Cl濃度は0.1体積ppm以下であった。 [Example 3 (Comparative Example)] A test was performed in the same manner as in Example 1 except that 30 kg of sodium bicarbonate to be filled was changed to 30 kg of activated carbon. When the effluent gas was analyzed in the same manner as in Example 1, BCl 3 was not detected, and the Cl 2 concentration was 0.1 ppm by volume or less.

処理開始から187時間経過後に流出ガス中のCl濃度が0.1体積ppmを超えて上昇し始めた。充填物を取り出したところ、活性炭粒子の粉化はなかったが、塩素臭気の発生が認められた。 After 187 hours from the start of the treatment, the Cl 2 concentration in the effluent gas began to rise above 0.1 ppm by volume. When the filler was taken out, activated carbon particles were not pulverized, but generation of chlorine odor was observed.

[例4]ガスを直接60℃に加熱せずに、充填容器そのものを電熱ヒータにより温度70℃とした以外は、例1と同様にして試験を行った。例1と同様にして、流出ガスを分析したところ、BClは検出されず、Cl濃度は0.1体積ppm以下であった。 [Example 4] A test was conducted in the same manner as in Example 1 except that the gas was not directly heated to 60 ° C, but the filling container itself was heated to 70 ° C by an electric heater. When the effluent gas was analyzed in the same manner as in Example 1, BCl 3 was not detected, and the Cl 2 concentration was 0.1 ppm by volume or less.

処理開始から362時間経過後に流出ガス中のCl濃度が0.1体積ppmを超えて上昇し始めた。充填物を取り出したところ、造粒物粒子の粉化や臭気の発生はなかった。また、この充填物の内、造粒物を水に溶解したところすべて溶解した。 After 362 hours from the start of the treatment, the Cl 2 concentration in the effluent gas began to rise exceeding 0.1 ppm by volume. When the filler was taken out, the granulated particles were not pulverized and no odor was generated. Moreover, when the granulated material was dissolved in water, all of the filler was dissolved.

[例5]炭酸水素ナトリウムの充填される充填容器内を2.7kPaに減圧した以外は、例1と同様にして試験を行った。例1と同様にして、流出ガスを分析したところ、BClは検出されず、Cl濃度は0.1体積ppm以下であった。 [Example 5] A test was conducted in the same manner as in Example 1 except that the inside of the filling container filled with sodium hydrogen carbonate was depressurized to 2.7 kPa. When the effluent gas was analyzed in the same manner as in Example 1, BCl 3 was not detected, and the Cl 2 concentration was 0.1 ppm by volume or less.

処理開始から355時間経過後に流出ガス中のCl濃度が0.1体積ppmを超えて上昇し始めた。充填物を取り出したところ、造粒物粒子の粉化や臭気の発生はなかった。また、この充填物の内、造粒物を水に溶解したところすべて溶解した。 After 355 hours from the start of the treatment, the Cl 2 concentration in the effluent gas began to rise exceeding 0.1 ppm by volume. When the filler was taken out, the granulated particles were not pulverized and no odor was generated. Moreover, when the granulated material was dissolved in water, all of the filler was dissolved.

[例6]例1と同様にして得た炭酸水素ナトリウムの粉末の造粒物20kgと活性炭10kgとを、同じ充填容器に充填した。被処理ガスとして、標準状態での組成比がBCl:20体積%、CCl:0.6体積%、Cl:41.1体積%、SiCl:0.6体積%、HCl:4.8体積%、COCl:0.6体積%、F:2.7体積%、SiF:0.6体積%、HF:4.8体積%、COF:0.6体積%、NF:0.8体積%、WF:0.6体積%、ClF:0.6体積%、HBr:4.8体積%、アルゴン:20.0体積%のガスを使用した以外は、例1と同様にして被処理ガスの温度を60℃として試験を行った。例1と同様にして、流出ガスを分析したところ、Cl濃度は0.1体積ppm以下で、その他アルゴン以外のBCl、CCl、SiCl、HCl、COCl、F、SiF、HF、COF、NF、WF、ClF、HBr等は検出されなかった。 [Example 6] 20 kg of a granulated product of sodium hydrogencarbonate obtained in the same manner as in Example 1 and 10 kg of activated carbon were charged in the same filled container. As the gas to be treated, the composition ratio in the standard state is BCl 3 : 20% by volume, CCl 4 : 0.6% by volume, Cl 2 : 41.1% by volume, SiCl 4 : 0.6% by volume, HCl: 4. 8% by volume, COCl 2 : 0.6% by volume, F 2 : 2.7% by volume, SiF 4 : 0.6% by volume, HF: 4.8% by volume, COF 2 : 0.6% by volume, NF 3 Example 1 except that 0.8% by volume, WF 6 : 0.6% by volume, ClF 3 : 0.6% by volume, HBr: 4.8% by volume, and argon: 20.0% by volume were used. In the same manner as above, the test was performed with the temperature of the gas to be treated set at 60 ° C. When the effluent gas was analyzed in the same manner as in Example 1, the Cl 2 concentration was 0.1 ppm by volume or less, and other than BCl 3 , CCl 4 , SiCl 4 , HCl, COCl 2 , F 2 , SiF 4 , HF, COF 2, NF 3, WF 6, ClF 3, HBr and the like were not detected.

処理開始から301時間経過後に流出ガス中のCl濃度が0.1体積ppmを超えて上昇し始めた。充填物を取り出したところ、造粒物粒子の粉化や臭気の発生はなかった。また、この充填物の内、造粒物を水に溶解したところ90質量%以上溶解した。 After 301 hours from the start of the treatment, the Cl 2 concentration in the effluent gas began to rise exceeding 0.1 ppm by volume. When the filler was taken out, the granulated particles were not pulverized and no odor was generated. Moreover, when this granulated material was melt | dissolved in water among the fillers, 90 mass% or more melt | dissolved.

[例7(比較例)]被処理ガスの温度を25℃に変えた以外は、例6同様に試験した。例6と同様にして、流出ガスを分析したところ、Cl濃度は.1体積ppm以下で、その他アルゴン以外のBCl、CCl、SiCl、HCl、COCl、F、SiF、HF、COF、NF、WF、ClF、HBr等は検出されなかった。 Example 7 (Comparative Example) The test was conducted in the same manner as in Example 6 except that the temperature of the gas to be treated was changed to 25 ° C. When the effluent gas was analyzed in the same manner as in Example 6, the Cl 2 concentration was. Other than BCl 3 , CCl 4 , SiCl 4 , HCl, COCl 2 , F 2 , SiF 4 , HF, COF 2 , NF 3 , WF 6 , ClF 3 , HBr, etc. other than argon are not detected. It was.

処理開始から268時間経過後に流出ガス中のCl濃度が0.1体積ppmを超えて上昇し始めた。充填物を取り出したところ、造粒物粒子の粉化や臭気の発生はなかった。また、この充填物の内、造粒物を水に溶解したところ90質量%以上溶解した。例6と比べ、炭酸水素ナトリウムの反応効率の悪くなったことから炭酸水素ナトリウムの有効時間が短かった。 After 268 hours from the start of the treatment, the Cl 2 concentration in the effluent gas began to rise exceeding 0.1 ppm by volume. When the filler was taken out, the granulated particles were not pulverized and no odor was generated. Moreover, when this granulated material was melt | dissolved in water among the fillers, 90 mass% or more melt | dissolved. Compared with Example 6, the effective time of sodium hydrogen carbonate was short because the reaction efficiency of sodium hydrogen carbonate was poor.

[例8(比較例)]炭酸水素ナトリウムを活性炭とした以外は、例6同様に試験した。例6と同様にして、流出ガスを分析したところ、Cl濃度は0.1体積ppm以下で、その他アルゴン以外のBCl、CCl、SiCl、HCl、COCl、F、SiF、HF、COF、NF、WF、ClF、HBr等は検出されなかった。 [Example 8 (Comparative Example)] Test was conducted in the same manner as in Example 6 except that sodium hydrogen carbonate was used as activated carbon. When the effluent gas was analyzed in the same manner as in Example 6, the Cl 2 concentration was 0.1 ppm by volume or less, and other than BCl 3 , CCl 4 , SiCl 4 , HCl, COCl 2 , F 2 , SiF 4 , HF, COF 2, NF 3, WF 6, ClF 3, HBr and the like were not detected.

処理開始から184時間経過後に流出ガス中のCl濃度が0.1体積ppmを超えて上昇し始めた。充填物を取り出したところ、活性炭粒子の粉化はなかったが、塩素臭気の発生が認められた。 After 184 hours from the start of the treatment, the Cl 2 concentration in the effluent gas began to rise exceeding 0.1 ppm by volume. When the filler was taken out, activated carbon particles were not pulverized, but generation of chlorine odor was observed.

[例9]一次粒子の平均粒子径が56μmの食品添加物用炭酸水素ナトリウムの粉末(旭硝子社製)25kgをニーダー(商品名:バッチニーダーKDHJ−100型、不二パウダル社製)に入れ、ここにバインダーとして食品添加物用カルボキシルメチルセルロース(商品名:F−20、ニチリン化学工業社製)2重量%水溶液3.75kgをスプレーで噴霧した。これを堅型ディスク・ダイロール式ディスク・ペレッタ(商品名:ディスク・ペレッタF−40型、不二パウダル社製)を使用して造粒した。得られた造粒物を球形整粒機(商品名:マルメライザーQ−400型、不二パウダル社製)により球形に整粒し、球状造粒物を得た。次に、この造粒物を二酸化炭素ガス雰囲気中で温度60℃で12時間静置乾燥した。   [Example 9] 25 kg of sodium hydrogen carbonate powder for food additives (manufactured by Asahi Glass Co., Ltd.) having an average primary particle size of 56 μm is placed in a kneader (trade name: batch kneader KDHJ-100, manufactured by Fuji Powder Co., Ltd.) As a binder, 3.75 kg of a 2% by weight aqueous solution of carboxymethylcellulose for food additives (trade name: F-20, manufactured by Nichirin Chemical Industry Co., Ltd.) was sprayed as a binder. This was granulated using a solid disk die roll type disk pelleter (trade name: disk pelleter F-40, manufactured by Fuji Powder Corporation). The obtained granulated product was granulated into a spherical shape by a spherical granulator (trade name: Malmerizer Q-400, manufactured by Fuji Powder Co., Ltd.) to obtain a spherical granulated product. Next, this granulated material was allowed to stand and dry at a temperature of 60 ° C. for 12 hours in a carbon dioxide gas atmosphere.

得られた造粒物を5.6mmの目開きの篩で篩分け、その篩下を、さらに、2.8mmの目開きの篩で篩分け、平均粒子径4.4mmの球状造粒物を12kg得た。以上の操作を3回行い、球状造粒物を30kg得た。   The obtained granulated product is sieved with a sieve having an opening of 5.6 mm, and the sieve is further sieved with a sieve of an opening of 2.8 mm to obtain a spherical granulated product having an average particle diameter of 4.4 mm. 12 kg was obtained. The above operation was performed 3 times to obtain 30 kg of spherical granules.

例1と同じ硬度測定法により、造粒物の硬度を20個測定し平均値を求めたところ、粒度2.0mm以上の粒子の平均硬度が56Nであった。   When 20 hardnesses of the granulated product were measured by the same hardness measurement method as in Example 1 and the average value was obtained, the average hardness of particles having a particle size of 2.0 mm or more was 56N.

充填物を粒度2.0mm以上の球状造粒物30kgに変えた以外は、例1と同様にして試験を行った。   The test was performed in the same manner as in Example 1 except that the filler was changed to 30 kg of spherical granulated material having a particle size of 2.0 mm or more.

充填容器の上部から流出したガスを分析したところ、BClは検出されず、Cl濃度は0.1体積ppm以下であった。 When the gas flowing out from the upper part of the filling container was analyzed, BCl 3 was not detected and the Cl 2 concentration was 0.1 volume ppm or less.

処理開始から359時間経過後に流出ガス中のCl濃度が0.1体積ppmを超えて上昇し始めた。充填物を取り出したところ、造粒物粒子の粉化や臭気の発生はなかった。また、この充填物を水に溶解したところすべて溶解し、固形廃棄物の発生はなかった。 After 359 hours from the start of the treatment, the Cl 2 concentration in the effluent gas began to rise exceeding 0.1 ppm by volume. When the filler was taken out, the granulated particles were not pulverized and no odor was generated. Moreover, when this filler was dissolved in water, it was completely dissolved, and no solid waste was generated.

Claims (5)

一次粒子の平均粒子径10〜500μmの炭酸水素塩の粉末を造粒し、炭酸水素塩(ただし炭酸水素ナトリウムを除く)を70質量%以上含有する得られた造粒物を、温度50℃以上かつ80℃未満において、ハロゲン単体又はハロゲン化合物からなるハロゲン系ガスに接触させてハロゲン系ガスを除去する、ハロゲン系ガスの除去方法。   A powder of hydrogen carbonate having an average primary particle diameter of 10 to 500 μm is granulated, and the resulting granulated product containing 70 mass% or more of hydrogen carbonate (excluding sodium hydrogen carbonate) is heated to 50 ° C. or higher. In addition, a halogen-based gas removing method of removing a halogen-based gas by bringing it into contact with a halogen-based gas comprising a halogen alone or a halogen compound at less than 80 ° C. 前記造粒物が平均粒子径0.5〜20mmであって、下記で規定される平均硬度を有する請求項1に記載のハロゲン系ガスの除去方法。
平均粒子径0.5mm以上1.0mm未満の造粒物の場合は、平均目開き0.5mmの篩と目開き1.0mmの篩を使用して篩分け、0.5mm篩上かつ1.0mm篩下の粒子を20個採取し、各粒子の硬度を測定し求めた平均硬度が1N以上であり、
平均粒子径1.0mm以上1.5mm未満の造粒物の場合は、平均目開き1.0mmの篩と目開き1.5mmの篩を使用して篩分け、1.0mm篩上かつ1.5mm篩下の粒子を20個採取し、各粒子の硬度を測定し求めた平均硬度が4N以上であり、
平均粒子径1.5mm以上2.0mm未満の造粒物の場合は、平均目開き1.5mmの篩と目開き2.0mmの篩を使用して篩分け、1.5mm篩上かつ2.0mm篩下の粒子を20個採取し、各粒子の硬度を測定し求めた平均硬度が10N以上であり、
平均粒子径2.0mm以上20mm以下の造粒物の場合は、平均目開き2.0mmの篩と目開き20mmの篩を使用して篩分け、2.0mm篩上かつ20mm篩下の粒子を20個採取し、各粒子の硬度を測定し求めた平均硬度が30N以上である。
The method for removing a halogen-based gas according to claim 1, wherein the granulated product has an average particle diameter of 0.5 to 20 mm and has an average hardness defined below.
In the case of a granulated product having an average particle diameter of 0.5 mm or more and less than 1.0 mm, sieving is performed using a sieve having an average aperture of 0.5 mm and a sieve having an aperture of 1.0 mm, The average hardness obtained by collecting 20 particles under 0 mm sieve and measuring the hardness of each particle is 1N or more,
In the case of a granulated product having an average particle diameter of 1.0 mm or more and less than 1.5 mm, sieving is performed using a sieve having an average aperture of 1.0 mm and a sieve having an aperture of 1.5 mm. The average hardness obtained by collecting 20 particles under 5 mm sieve and measuring the hardness of each particle is 4N or more,
In the case of a granulated product having an average particle diameter of 1.5 mm or more and less than 2.0 mm, sieving is performed using a sieve having an average opening of 1.5 mm and a sieve having an opening of 2.0 mm. The average hardness obtained by collecting 20 particles under 0 mm sieve and measuring the hardness of each particle is 10 N or more,
In the case of a granulated product having an average particle size of 2.0 mm or more and 20 mm or less, a sieve having an average mesh size of 2.0 mm and a sieve having a mesh size of 20 mm is used for sieving. The average hardness obtained by collecting 20 particles and measuring the hardness of each particle is 30 N or more.
前記炭酸水素塩が炭酸水素カリウムである請求項1又は2に記載のハロゲン系ガスの除去方法。   The method for removing a halogen-based gas according to claim 1 or 2, wherein the hydrogen carbonate is potassium hydrogen carbonate. 前記ハロゲン系ガスが、BCl、CCl、Cl、SiCl、HCl、COCl、F、SiF、HF、COF、NF、WF、ClF及びHBrからなる群より選ばれる一種以上であり、前記ハロゲン系ガスの温度が50℃以上かつ80℃未満である請求項1〜3のいずれかに記載のハロゲン系ガスの除去方法。 The halogen-based gas is selected from the group consisting of BCl 3 , CCl 4 , Cl 2 , SiCl 4 , HCl, COCl 2 , F 2 , SiF 4 , HF, COF 2 , NF 3 , WF 6 , ClF 3 and HBr. The method for removing a halogen-based gas according to any one of claims 1 to 3, wherein the halogen-based gas temperature is 50 ° C or higher and lower than 80 ° C. 前記造粒物を活性炭とともに容器に充填して前記ハロゲン系ガスと接触させてハロゲン系ガスを除去する請求項1〜4のいずれかに記載のハロゲン系ガスの除去方法。   The method for removing a halogen-based gas according to any one of claims 1 to 4, wherein the granulated product is filled in a container together with activated carbon and brought into contact with the halogen-based gas to remove the halogen-based gas.
JP2010264083A 2010-11-26 2010-11-26 Method for removing halogen gas Pending JP2011062697A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010264083A JP2011062697A (en) 2010-11-26 2010-11-26 Method for removing halogen gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010264083A JP2011062697A (en) 2010-11-26 2010-11-26 Method for removing halogen gas

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2001124231A Division JP5008801B2 (en) 2000-11-10 2001-04-23 Halogen gas removal method

Publications (1)

Publication Number Publication Date
JP2011062697A true JP2011062697A (en) 2011-03-31

Family

ID=43949527

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010264083A Pending JP2011062697A (en) 2010-11-26 2010-11-26 Method for removing halogen gas

Country Status (1)

Country Link
JP (1) JP2011062697A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6161619A (en) * 1984-09-04 1986-03-29 Asahi Glass Co Ltd Treatment of waste gas
JPH05237324A (en) * 1991-12-11 1993-09-17 Japan Pionics Co Ltd Method for purifying harmful gas
JP2000246059A (en) * 1998-12-28 2000-09-12 Showa Denko Kk Reactive agent for decomposing hardly decomposable organochlorine compound and method for decomposing it
JP2000254438A (en) * 1999-03-12 2000-09-19 Showa Denko Kk Treatment, treating agent and treating device for halogen fluoride-containing waste gas
JP2002143640A (en) * 2000-11-10 2002-05-21 Sanwa Chemical Kk Method for removing halogen-containing gas
JP2002316018A (en) * 2001-04-23 2002-10-29 Sanwa Chemical Kk Method for removing halogen gas

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6161619A (en) * 1984-09-04 1986-03-29 Asahi Glass Co Ltd Treatment of waste gas
JPH05237324A (en) * 1991-12-11 1993-09-17 Japan Pionics Co Ltd Method for purifying harmful gas
JP2000246059A (en) * 1998-12-28 2000-09-12 Showa Denko Kk Reactive agent for decomposing hardly decomposable organochlorine compound and method for decomposing it
JP2000254438A (en) * 1999-03-12 2000-09-19 Showa Denko Kk Treatment, treating agent and treating device for halogen fluoride-containing waste gas
JP2002143640A (en) * 2000-11-10 2002-05-21 Sanwa Chemical Kk Method for removing halogen-containing gas
JP2002316018A (en) * 2001-04-23 2002-10-29 Sanwa Chemical Kk Method for removing halogen gas

Similar Documents

Publication Publication Date Title
JP4111137B2 (en) Halogen gas removal method
JP4952250B2 (en) Halogen gas removal method and halogen gas removal agent
US7976808B2 (en) Method for removing halogen series gas and agent for removing halogen series gas
TW201829049A (en) Agent for removing halogen gas, method for producing same, method for removing halogen gas with use of same, and system for removing halogen gas
JP5008801B2 (en) Halogen gas removal method
US6685901B2 (en) Method for removing a halogen series gas
JP5217819B2 (en) Halogen gas removal agent and halogen gas removal method
JP2011062697A (en) Method for removing halogen gas
JP4755364B2 (en) How to remove halogens and halides
JP2001017831A (en) Treating agent for halogen gas
JP4620897B2 (en) Halogen gas removal method
JP4711550B2 (en) How to remove halogen gas
JP2002143640A (en) Method for removing halogen-containing gas
JP3695845B2 (en) Water purification material
JP2005177576A (en) Agent for detoxifying halogen-based gas and acidic gas
JP4633604B2 (en) Adsorbent production method, adsorbent, adsorbent granule, and adsorbent granule production method
JP2004033922A (en) Sulfate ion adsorbing molded body and method for producing the same
JP2003275534A (en) Method for removing phenols
JP2009256181A (en) Method of recycling quick lime and lime granulated material

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120717

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121113