JP2011062587A - Method for manufacturing fine particle composite - Google Patents

Method for manufacturing fine particle composite Download PDF

Info

Publication number
JP2011062587A
JP2011062587A JP2009212877A JP2009212877A JP2011062587A JP 2011062587 A JP2011062587 A JP 2011062587A JP 2009212877 A JP2009212877 A JP 2009212877A JP 2009212877 A JP2009212877 A JP 2009212877A JP 2011062587 A JP2011062587 A JP 2011062587A
Authority
JP
Japan
Prior art keywords
fine particles
fine particle
carbon
solid fine
composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009212877A
Other languages
Japanese (ja)
Inventor
Hiroshi Inumaru
啓 犬丸
Hiroyuki Kubota
雄之 窪田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hiroshima University NUC
Original Assignee
Hiroshima University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hiroshima University NUC filed Critical Hiroshima University NUC
Priority to JP2009212877A priority Critical patent/JP2011062587A/en
Priority to PCT/JP2010/065729 priority patent/WO2011034023A1/en
Publication of JP2011062587A publication Critical patent/JP2011062587A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/084Decomposition of carbon-containing compounds into carbon
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B37/00Compounds having molecular sieve properties but not having base-exchange properties
    • C01B37/02Crystalline silica-polymorphs, e.g. silicalites dealuminated aluminosilicate zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/32Reaction with silicon compounds, e.g. TEOS, siliconfluoride

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Catalysts (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a fine particle composite capable of manufacturing the fine particle composite having the almost same decomposition capacity as the decomposition speed of an organic substance such as an alcohol or an aldehyde due to titanium dioxide alone in a case that titanium dioxide is used as solid fine particles. <P>SOLUTION: The method for manufacturing the fine particle composite includes a process for coating the solid fine particles with carbon to obtain carbon coated solid fine particles, a process for adding a component capable of forming a porous material into a synthetic medium containing the carbon coated solid fine particles to mix the same with the synthetic medium to thereby compound the carbon coated solid fine particles with the component capable of forming the porous material to obtain a fine particle-containing composite precursor (a) and a process for baking the fine particle-containing composite precursor (a) to eliminate the carbon to obtain the fine particle composite containing the solid fine particles and the porous material. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、微粒子複合体の製造方法に関する。   The present invention relates to a method for producing a fine particle composite.

固体微粒子は、そのサイズ、高い表面積を利用して工業的に様々な局面で用いられる。特に、直径がマイクロメートル以下の固体微粒子は、重量あたりの表面積が大きいため、光触媒等の触媒として様々な応用がなされている。   Solid fine particles are industrially used in various aspects by utilizing their size and high surface area. In particular, solid fine particles having a diameter of micrometer or less have a large surface area per weight, and thus have various applications as a catalyst such as a photocatalyst.

有機分子や無機分子の変換や分解を行う触媒への固体微粒子の応用では、金属、金属酸化物、金属窒化物を問わず、触媒活性を有する物質を固体微粒子として利用することにより、触媒活性が増大することが知られている。   In the application of solid particulates to catalysts that convert or decompose organic or inorganic molecules, catalytic activity is improved by using catalytically active substances as solid particulates, regardless of whether they are metals, metal oxides, or metal nitrides. It is known to increase.

光触媒においても、活性物質を固体微粒子化することにより性能の向上が図られている。しかし、固体微粒子は一般にその粒子径が小さくなるほど不安定化し、単独では十分な熱安定性が得られないことが多い。すなわち、加熱により固体微粒子の結晶相の変化・粒子成長・固体微粒子間の融合・表面積の低下などさまざまな現象が起こり、その性能を低下させる。   Also in the photocatalyst, the performance is improved by making the active substance into solid fine particles. However, solid fine particles generally become unstable as the particle size decreases, and sufficient thermal stability cannot often be obtained alone. That is, various phenomena such as changes in the crystal phase of solid fine particles, particle growth, fusion between solid fine particles, and reduction in surface area occur due to heating, and the performance is deteriorated.

これらを防ぐために、メソポーラスシリカやゼオライト等、高表面積の多孔体担体上に二酸化チタン等の固体微粒子を分散担持することが行なわれており、多孔体に固体微粒子を担持させる方法として、例えば、特許文献1、2に開示された方法がある。   In order to prevent these, solid fine particles such as titanium dioxide are dispersed and supported on a porous carrier having a high surface area such as mesoporous silica and zeolite. As a method for supporting solid fine particles on a porous material, for example, a patent There are methods disclosed in Documents 1 and 2.

特許文献1では、固体微粒子を、多孔体が生成する前の合成媒体中に分散させ、その後合成媒体中で多孔体を生成させることにより微粒子複合体を得る方法が開示されている。   Patent Document 1 discloses a method of obtaining a fine particle composite by dispersing solid fine particles in a synthetic medium before the porous body is formed, and then generating the porous body in the synthetic medium.

また、特許文献2では、所謂ドライゲルコンバージョン法を用い、結晶性多孔体と固体微粒子との微粒子複合体を得る方法が開示されている。   Patent Document 2 discloses a method of obtaining a fine particle composite of a crystalline porous material and solid fine particles using a so-called dry gel conversion method.

特開2005−314208号公報JP-A-2005-314208 特開2009−155178号公報JP 2009-155178 A

特許文献1及び特許文献2の製造方法によって、固体微粒子として二酸化チタンを用いて得られた微粒子複合体では、アルコールやアルデヒド等の有機物質を除去する触媒として用いた場合、二酸化チタン単体による有機物質の分解速度に比べて劣っており、触媒活性の観点から未だ改善の余地があった。   In the fine particle composite obtained by using titanium dioxide as solid fine particles by the production methods of Patent Document 1 and Patent Document 2, when used as a catalyst for removing organic substances such as alcohol and aldehyde, the organic substance by titanium dioxide alone Compared to the decomposition rate, there was still room for improvement from the viewpoint of catalytic activity.

本発明は、上記事項に鑑みてなされたものであり、その目的とするところは、固体微粒子として二酸化チタンを用いた場合、二酸化チタン単体によるアルコールやアルデヒド等の有機物質の分解速度とほぼ同様の分解能を備える微粒子複合体を製造することができる微粒子複合体の製造方法を提供することにある。   The present invention has been made in view of the above matters, and the object of the present invention is that when titanium dioxide is used as the solid fine particles, the decomposition rate of organic substances such as alcohol and aldehyde by the titanium dioxide alone is almost the same. An object of the present invention is to provide a method for producing a fine particle composite capable of producing a fine particle composite having a resolution.

本発明の第1の観点に係る微粒子複合体の製造方法は、
固体微粒子を炭素で被覆して炭素被覆固体微粒子を得る工程と、
前記炭素被覆固体微粒子を含む合成媒体中に多孔体を生成可能な成分を添加し、混合することにより、前記炭素被覆固体微粒子と前記多孔体を生成可能な成分とを複合化させて微粒子含有複合前駆体(a)を得る工程と、
前記微粒子含有複合前駆体(a)を焼成し、前記炭素を消失させて、前記固体微粒子と多孔体とを含有する微粒子複合体を得る工程と、
を含むことを特徴とする。
The method for producing a fine particle composite according to the first aspect of the present invention comprises:
Coating the solid fine particles with carbon to obtain carbon-coated solid fine particles;
A component capable of generating a porous body is added to and mixed with a synthetic medium containing the carbon-coated solid fine particles, and the carbon-coated solid fine particles and the component capable of generating the porous body are combined to form a composite containing fine particles. Obtaining a precursor (a);
Firing the fine particle-containing composite precursor (a), eliminating the carbon, and obtaining a fine particle composite containing the solid fine particles and a porous body;
It is characterized by including.

本発明の第2の観点に係る微粒子複合体の製造方法は、
固体微粒子を炭素で被覆して炭素被覆固体微粒子を得る工程と、
前記炭素被覆固体微粒子を含む合成媒体中に多孔体を生成可能な成分を添加し、混合することにより、前記炭素被覆固体微粒子と前記多孔体を生成可能な成分とを複合化させて微粒子含有複合前駆体(a)を得る工程と、
前記微粒子含有複合前駆体(a)を加熱水蒸気雰囲気中もしくは液体の水存在下で加熱熟成させて微粒子含有複合前駆体(b)を得る工程と、
前記微粒子含有複合前駆体(b)を焼成し、前記炭素を消失させて、前記固体微粒子と結晶性多孔体とを含有する微粒子複合体を得る工程と、
を含むことを特徴とする。
The method for producing a fine particle composite according to the second aspect of the present invention comprises:
Coating the solid fine particles with carbon to obtain carbon-coated solid fine particles;
A component capable of generating a porous body is added to and mixed with a synthetic medium containing the carbon-coated solid fine particles, and the carbon-coated solid fine particles and the component capable of generating the porous body are combined to form a composite containing fine particles. Obtaining a precursor (a);
A step of heating and aging the fine particle-containing composite precursor (a) in a heated steam atmosphere or in the presence of liquid water to obtain a fine particle-containing composite precursor (b);
Firing the fine particle-containing composite precursor (b) to eliminate the carbon to obtain a fine particle composite containing the solid fine particles and a crystalline porous body;
It is characterized by including.

また、前記固体微粒子に有機物を吸着させ、前記有機物を炭化させて前記炭素被覆固体微粒子を得ることが好ましい。   Moreover, it is preferable that the organic fine particles are adsorbed on the solid fine particles, and the organic matters are carbonized to obtain the carbon-coated solid fine particles.

また、前記有機物を非酸素雰囲気下で加熱して炭化させてもよい。   The organic material may be carbonized by heating in a non-oxygen atmosphere.

また、脱水剤を用いて前記有機物を炭化させてもよい。   Further, the organic substance may be carbonized using a dehydrating agent.

また、前記固体微粒子として酸化チタンを用いることが好ましい。   Moreover, it is preferable to use titanium oxide as the solid fine particles.

また、前記多孔体を生成可能な成分として、テトラ炭化水素オキシシラン、シリカ、シリカアルミナ、シリカゲル、水ガラス、及び、フュームドシリカからなる群から選択される少なくとも一種を用いることが好ましい。   Moreover, it is preferable to use at least one selected from the group consisting of tetrahydrocarbonoxysilane, silica, silica alumina, silica gel, water glass, and fumed silica as the component capable of generating the porous body.

本発明の第1の観点に係る微粒子複合体の製造方法では、二酸化チタン等の固体微粒子表面を炭素で被覆し、この炭素被覆固体微粒子を用いて微粒子含有複合前駆体(a)を形成し、微粒子含有複合前駆体(a)を焼成して被覆した炭素を消失させることで、固体微粒子と多孔体を含有する微粒子複合体を形成している。また、本発明の第2の観点に係る微粒子複合体の製造方法では、上記微粒子含有複合前駆体(a)を用い、所謂ドライゲルコンバージョン法により微粒子含有複合前駆体(b)を得て、これを焼成して被覆した炭素を消失させることで、固体微粒子と結晶性多孔体を含有する微粒子複合体を形成している。このようにして得られた微粒子複合体では、多孔体に吸着された有害物質等の二酸化チタンへの移動速度が高く、吸着された有害物質等が速やかに固体微粒子に運ばれて分解される。このように、本発明に係る微粒子複合体の製造方法では、二酸化チタン単体による有害物の分解速度とほぼ同様の分解能を備え、触媒活性の高い微粒子複合体を得られる利点がある。   In the method for producing a fine particle composite according to the first aspect of the present invention, a solid fine particle surface such as titanium dioxide is coated with carbon, and the fine particle-containing composite precursor (a) is formed using the carbon-coated solid fine particle. The fine particle-containing composite precursor (a) is baked to eliminate the coated carbon, thereby forming a fine particle composite containing solid fine particles and a porous material. In the method for producing a fine particle composite according to the second aspect of the present invention, the fine particle-containing composite precursor (b) is obtained by the so-called dry gel conversion method using the fine particle-containing composite precursor (a). By burning the carbon and disappearing the coated carbon, a fine particle composite containing solid fine particles and a crystalline porous material is formed. In the fine particle composite obtained in this way, the moving speed of harmful substances adsorbed on the porous body to titanium dioxide is high, and the adsorbed harmful substances are quickly carried to the solid fine particles and decomposed. As described above, the method for producing a fine particle composite according to the present invention has an advantage that a fine particle composite having a high catalytic activity can be obtained with almost the same resolution as the decomposition rate of harmful substances by titanium dioxide alone.

実施の形態1に係る微粒子複合体の製造方法の工程図である。FIG. 3 is a process diagram of the method for producing a fine particle composite according to Embodiment 1. 実施の形態2に係る微粒子複合体の製造方法の工程図である。6 is a process diagram of a method for producing a fine particle composite according to Embodiment 2. FIG. ドライゲルコンバージョン法を行うための装置の概念図である。It is a conceptual diagram of the apparatus for performing the dry gel conversion method. 実施例1の2−プロパノールの分解実験において、(A)は2−プロパノールの濃度変化、(B)はアセトンの濃度変化、(C)は二酸化炭素の濃度変化を示すグラフである。In the decomposition experiment of 2-propanol of Example 1, (A) is a concentration change of 2-propanol, (B) is a concentration change of acetone, and (C) is a graph showing a concentration change of carbon dioxide. 実施例2の2−プロパノールの分解実験において、(A)は2−プロパノールの濃度変化、(B)はアセトンの濃度変化、(C)は二酸化炭素の濃度変化を示すグラフである。In the decomposition experiment of 2-propanol of Example 2, (A) is a concentration change of 2-propanol, (B) is a concentration change of acetone, (C) is a graph which shows a concentration change of carbon dioxide.

(実施の形態1)
実施の形態1に係る微粒子複合体の製造方法は、図1の工程図に示すように、炭素被覆固体微粒子を得る工程と、微粒子含有複合前駆体(a)を得る工程と、微粒子複合体を得る工程と、から構成される。以下、各工程について詳細に説明する。
(Embodiment 1)
As shown in the process diagram of FIG. 1, the method for producing a fine particle composite according to Embodiment 1 includes a step of obtaining carbon-coated solid fine particles, a step of obtaining fine particle-containing composite precursor (a), and a fine particle composite. And obtaining a process. Hereinafter, each step will be described in detail.

(炭素被覆固体微粒子を得る工程)
まず、炭素被覆固体微粒子を得る工程について説明する。固体微粒子の表面に炭素を被覆することができれば、特に限定されることはないが、例えば、固体微粒子の表面に炭素を被覆する方法として、以下の方法が挙げられる。
(Step of obtaining carbon-coated solid fine particles)
First, a process for obtaining carbon-coated solid fine particles will be described. The method is not particularly limited as long as the surface of the solid fine particles can be coated with carbon. Examples of the method of coating the surface of the solid fine particles with carbon include the following methods.

有機物を固体微粒子表面に吸着させた後、有機物を炭素に変換することにより、固体微粒子表面に炭素を被覆することができる。   After the organic substance is adsorbed on the surface of the solid fine particles, the organic substance is converted to carbon, whereby the surface of the solid fine particles can be coated with carbon.

有機物として、アルカン、アルケン、アルコール、エステル、エーテルなどの含酸素化合物の他、ピリジン、アニリン、アミンなどの含窒素化合物も用いることができる。また、ベンゼン環、ピリジン環、ナフタレン環などを含む芳香族化合物に窒素、酸素が結合している有機物を用いてもよい。   In addition to oxygen-containing compounds such as alkanes, alkenes, alcohols, esters, and ethers, nitrogen-containing compounds such as pyridine, aniline, and amine can also be used as the organic substance. Alternatively, an organic substance in which nitrogen or oxygen is bonded to an aromatic compound including a benzene ring, a pyridine ring, a naphthalene ring, or the like may be used.

有機物は分子の状態で固体微粒子表面に吸着させてもよく、固体微粒子表面にて重合反応を生じさせ、高分子として被覆させてもよい。固体微粒子存在下で、有機物モノマーを重合させることにより、有機物の高分子を固体微粒子に被覆させることができる。   The organic substance may be adsorbed on the surface of the solid fine particles in a molecular state, or may be polymerized on the surface of the solid fine particles and coated as a polymer. By polymerizing the organic monomer in the presence of the solid fine particles, the organic polymer can be coated on the solid fine particles.

また、有機物の高分子を溶媒に分散或いは溶解させた溶液に固体微粒子を含浸することにより、固体微粒子表面に有機物の高分子を被覆してもよい。用いる溶媒は有機溶媒でも水性溶媒でもよく、有機物に応じて適宜変更すればよい。たとえば、水溶性の高分子として、エーテル結合やエステル結合をもつ高分子や、ポリビニルアルコールのように水酸基をもつ高分子を用いた場合、水性溶媒を用いればよい。高分子としては、上述した有機物を重合させたものを用いればよい。   Alternatively, the surface of the solid fine particles may be coated with a solid fine particle by impregnating a solution obtained by dispersing or dissolving the organic polymer in a solvent. The solvent to be used may be an organic solvent or an aqueous solvent, and may be appropriately changed according to the organic substance. For example, when a polymer having an ether bond or an ester bond or a polymer having a hydroxyl group such as polyvinyl alcohol is used as the water-soluble polymer, an aqueous solvent may be used. As the polymer, a polymer obtained by polymerizing the organic material described above may be used.

固体微粒子表面に吸着させた有機物を炭素に変換する方法としては、酸素の非存在下、例えば、窒素ガスや不活性ガス気流中、或いは真空中にて加熱することにより、あらゆる有機物を炭化することができる。これにより、固体微粒子表面を炭素で被覆した炭素被覆固体微粒子を得ることができる。   As a method for converting the organic substance adsorbed on the surface of the solid fine particles into carbon, any organic substance is carbonized by heating in the absence of oxygen, for example, in a nitrogen gas or inert gas stream or in a vacuum. Can do. Thereby, carbon-coated solid fine particles in which the solid fine particle surface is coated with carbon can be obtained.

また、加熱もしくは非加熱で、吸着させた有機物を種々の薬品と化学反応させて炭化させてもよい。例えば、ショ糖のような糖質等の有機物を固体微粒子表面に吸着させた場合、常温で濃硫酸等の脱水剤と有機物とを反応させることで、加熱することなく容易に炭化させることができる。   Alternatively, the adsorbed organic substance may be carbonized by chemical reaction with various chemicals by heating or non-heating. For example, when an organic substance such as saccharide such as sucrose is adsorbed on the surface of the solid fine particles, it can be easily carbonized without heating by reacting the organic substance with a dehydrating agent such as concentrated sulfuric acid at room temperature. .

固体微粒子としては、マグネシア、アルミナ、シリカ、リン酸アルミニウム、ホウ素、炭素、窒化シリコン、窒化アルミニウムなど無機の酸化物、塩化物、窒化物、ホウ化物、炭化物、硫化物などのほか、ポリエチレンなどの樹脂の粒子など、有機物を用いることも可能であるが、特に光触媒機能を有する微粒子であることが好ましい。   Solid fine particles include magnesia, alumina, silica, aluminum phosphate, boron, carbon, silicon nitride, aluminum nitride and other inorganic oxides, chlorides, nitrides, borides, carbides, sulfides, polyethylene, etc. Although organic substances such as resin particles can be used, fine particles having a photocatalytic function are particularly preferable.

光触媒機能を有する微粒子(以下、光触媒微粒子)としては、半導体としての特性を有し光触媒特性を持つとされるものであれば、あらゆるものが使用可能である。なかでも、金属硫化物や金属酸化物が好ましく、チタニア、ジルコニア、酸化ニオブ、酸化タングステン等の金属酸化物が最も好ましい。具体的なものとしては、TiO,SrTiO,WO,Fe,Bi,MoS,CdS,CdSe,GaP,GaAs,MoSe,CdTe,Nb,Ta,NbとTaの複合酸化物の他、HPW1240やHPMo1240などのヘテロポリ酸及びそれらの塩などを挙げることができる。なかでも、光触媒活性が高いことが知られているTiO(二酸化チタン)が好ましい。なお、光触媒微粒子としては、凝集していない細かい粒子状のもの(例えば独デグサ社製のP−25)を用いることが好ましい。 Any fine particles having a photocatalytic function (hereinafter referred to as photocatalyst fine particles) may be used as long as they have characteristics as a semiconductor and have photocatalytic characteristics. Of these, metal sulfides and metal oxides are preferable, and metal oxides such as titania, zirconia, niobium oxide, and tungsten oxide are most preferable. Specific examples include TiO 2 , SrTiO 3 , WO 3 , Fe 2 O 3 , Bi 2 O 3 , MoS 2 , CdS, CdSe, GaP, GaAs, MoSe 2 , CdTe, Nb 2 O 5 , Ta 2 O. 5 , heteropolyacids such as H 3 PW 12 O 40 and H 3 PMo 12 O 40, and salts thereof, in addition to complex oxides of N, Nb and Ta. Of these, TiO 2 (titanium dioxide), which is known to have high photocatalytic activity, is preferable. As the photocatalyst fine particles, it is preferable to use fine particles that are not aggregated (for example, P-25 manufactured by Degussa, Germany).

固体微粒子としては、平均粒径が2nm以上50000nm以下の細孔を形成するものであることが好ましい。下限としては、5nm以上がより好ましく、10nm以上がさらに好ましい。上限としては、50000nm以下がより好ましく、1000nm以下がさらに好ましい。固体微粒子の平均粒径が上記範囲より小さいと、固体微粒子の結晶性が悪く、光触媒活性が低くなる。また、平均粒径が上記範囲より大きいと固体微粒子の表面積が小さくなるため、触媒活性が低くなるためである。   The solid fine particles preferably form pores having an average particle diameter of 2 nm or more and 50000 nm or less. As a minimum, 5 nm or more is more preferable, and 10 nm or more is further more preferable. As an upper limit, 50000 nm or less is more preferable, and 1000 nm or less is further more preferable. When the average particle size of the solid fine particles is smaller than the above range, the crystallinity of the solid fine particles is poor and the photocatalytic activity is lowered. In addition, if the average particle size is larger than the above range, the surface area of the solid fine particles becomes small, so that the catalytic activity becomes low.

(微粒子含有複合前駆体(a)を得る工程)
続いて、微粒子含有複合前駆体(a)を得る工程について説明する。
(Step of obtaining fine particle-containing composite precursor (a))
Then, the process of obtaining a fine particle containing composite precursor (a) is demonstrated.

上述のようにして得られた炭素被覆固体微粒子を含む合成媒体中に多孔体を生成可能な成分を添加し、混合する。これにより、炭素被覆固体微粒子と多孔体を生成可能な成分とを複合化させて微粒子含有複合前駆体(a)を得ることができる。   A component capable of forming a porous material is added to and mixed in the synthesis medium containing the carbon-coated solid fine particles obtained as described above. As a result, the fine particles-containing composite precursor (a) can be obtained by combining the carbon-coated solid fine particles and the component capable of generating a porous material.

合成媒体としては、水性媒体であることが好ましい。水性媒体として、例えば、pHを調整する目的で水にアンモニア、水酸化ナトリウム等が添加された媒体が挙げられる。合成媒体のpHは、9〜12、若しくは1〜5であることが好ましい。pHが前記範囲内であるとシリカが容易に析出する。   The synthesis medium is preferably an aqueous medium. Examples of the aqueous medium include a medium in which ammonia, sodium hydroxide, or the like is added to water for the purpose of adjusting pH. The pH of the synthesis medium is preferably 9-12, or 1-5. Silica easily precipitates when the pH is within the above range.

多孔体を生成可能な成分として、多孔体を形成するものであれば特に限られるものではないが、珪素化合物を用いることが好ましい。珪素化合物としては、テトラ炭化水素オキシシラン、シリカ、シリカアルミナ、シリカゲル、水ガラスおよびフュームドシリカからなる群から選択される少なくとも1種の珪素化合物であることが好ましい。具体的には、テトラアルコキシシラン、テトラハロゲン化シランが挙げられる。これに他の金属のアルコキシドや塩化物を加えてもよい。中でもテトラエトキシシランが好ましい。これらの珪素化合物はシリカを容易に生成するためである。   The component capable of forming the porous body is not particularly limited as long as it forms a porous body, but a silicon compound is preferably used. The silicon compound is preferably at least one silicon compound selected from the group consisting of tetrahydrocarbon oxysilane, silica, silica alumina, silica gel, water glass and fumed silica. Specific examples include tetraalkoxysilane and tetrahalogenated silane. Other metal alkoxides and chlorides may be added thereto. Of these, tetraethoxysilane is preferred. This is because these silicon compounds easily produce silica.

また、合成媒体中に界面活性剤を含有させておいてもよい。界面活性剤としては、ポリオキシエチレン・ポリオキシプロピレンブロックコポリマー、水酸化テトラアルキルアンモニウムおよびハロゲン化テトラアルキルアンモニウムからなる群から選択される少なくとも1種の界面活性剤を用いるとよい。   Further, a surfactant may be contained in the synthesis medium. As the surfactant, at least one surfactant selected from the group consisting of polyoxyethylene / polyoxypropylene block copolymer, tetraalkylammonium hydroxide and tetraalkylammonium halide may be used.

中でもテトラアルキルアンモニウムブロミド、テトラアルキルアンモニウムクロリド、ポリオキシエチレン・ポリオキシプロピレンブロックコポリマーがより好ましいが、メソポーラスシリカの合成に一般に用いられているものであれば好適に用いることができる。具体的には、セチルトリメチルアンモニウムブロミド、ドデシルトリメチルアンモニウムブロミド等が好ましい。これらの界面活性剤はメソ細孔を効率よく生成させるためである。   Among these, tetraalkylammonium bromide, tetraalkylammonium chloride, and polyoxyethylene / polyoxypropylene block copolymer are more preferable, but any of those generally used for the synthesis of mesoporous silica can be preferably used. Specifically, cetyltrimethylammonium bromide, dodecyltrimethylammonium bromide, and the like are preferable. This is because these surfactants efficiently generate mesopores.

炭素被覆固体微粒子を含む合成媒体を得る際に、合成媒体中に炭素被覆固体微粒子を添加し、超音波を照射して炭素被覆固体微粒子を合成媒体中に分散させることが好ましい。   When obtaining a synthetic medium containing carbon-coated solid fine particles, it is preferable to add the carbon-coated solid fine particles to the synthetic medium and irradiate ultrasonic waves to disperse the carbon-coated solid fine particles in the synthetic medium.

炭素被覆固体微粒子を含む合成媒体に多孔体を生成可能な成分を添加した後、混合する際の温度は、0〜90℃であることが好ましく、20〜50℃であることがより好ましい。また混合に要する時間は、通常0.5秒〜5時間、混合後に熟成させる時間は通常0〜10時間、好ましくは0.5〜3時間である。前記範囲内ではシリカが効率よく生成し熟成されるためである。   The temperature at the time of mixing after adding the component which can produce | generate a porous body to the synthetic | combination medium containing a carbon covering solid fine particle is preferably 0-90 degreeC, and it is more preferable that it is 20-50 degreeC. The time required for mixing is usually 0.5 seconds to 5 hours, and the aging time after mixing is usually 0 to 10 hours, preferably 0.5 to 3 hours. This is because silica is efficiently produced and aged within the above range.

反応終了後、合成媒体からろ過等で生成物を取り出し、イオン交換水等で洗浄し、乾燥させることで、微粒子含有複合前駆体(a)を得ることができる。   After completion of the reaction, the fine particle-containing composite precursor (a) can be obtained by removing the product from the synthesis medium by filtration or the like, washing with ion exchange water or the like, and drying.

(微粒子複合体を得る工程)
続いて、微粒子複合体を得る工程について説明する。上述のようにして得られた微粒子含有複合前駆体(a)を焼成することで、固体微粒子の表面を被覆している炭素を消失させて、微粒子複合体を得ることができる。
(Step of obtaining a fine particle composite)
Next, a process for obtaining a fine particle composite will be described. By firing the fine particle-containing composite precursor (a) obtained as described above, the carbon covering the surface of the solid fine particles can be eliminated, and a fine particle composite can be obtained.

焼成する際の温度は、400〜700℃であることが好ましく、450〜600℃であることがより好ましい。また、焼成時間は、通常1〜20時間であり、2〜8時間とすることがより好ましい。上記条件下で焼成を行うことで、固体微粒子の表面を被覆している炭素、及び、界面活性剤を消失させることができるとともに、多孔体の骨格をつくる化学結合を効率よく生成させることができる。   The temperature during firing is preferably 400 to 700 ° C, and more preferably 450 to 600 ° C. Moreover, baking time is 1 to 20 hours normally, and it is more preferable to set it as 2 to 8 hours. By calcination under the above conditions, carbon covering the surface of the solid fine particles and the surfactant can be eliminated, and chemical bonds that create the skeleton of the porous body can be efficiently generated. .

(実施の形態2)
続いて、実施の形態2に係る微粒子複合体の製造方法について説明する。実施の形態2に係る微粒子複合体の製造方法は、図2に示すように、炭素被覆固体微粒子を得る工程と、微粒子含有複合前駆体(a)を得る工程、微粒子含有複合前駆体(b)を得る工程と、微粒子複合体を得る工程と、から構成される。以下、各工程について詳細に説明する。
(Embodiment 2)
Subsequently, a method for producing the fine particle composite according to Embodiment 2 will be described. As shown in FIG. 2, the method for producing a fine particle composite according to Embodiment 2 includes a step of obtaining carbon-coated solid fine particles, a step of obtaining a fine particle-containing composite precursor (a), and a fine particle-containing composite precursor (b). And a step of obtaining a fine particle complex. Hereinafter, each step will be described in detail.

炭素被覆固体微粒子を得る工程、及び、微粒子含有複合前駆体(a)を得る工程については、前述した実施の形態1と同様であるため、説明を省略する。   Since the step of obtaining the carbon-coated solid fine particles and the step of obtaining the fine particle-containing composite precursor (a) are the same as those in the first embodiment, the description thereof is omitted.

(微粒子含有複合前駆体(b)を得る工程) (Step of obtaining fine particle-containing composite precursor (b))

微粒子含有複合前駆体(a)を加熱水蒸気雰囲気中もしくは液体の水存在下で、加熱熟成させることにより微粒子含有複合前駆体(b)を得ることができる。この工程は、所謂ドライゲルコンバージョン法で行うとよい。ドライゲルコンバージョン法とは、ゼオライト合成の原料混合物を乾燥することにより得たドライゲルを水蒸気等で処理することによりゼオライトを結晶化する方法である。   The fine particle-containing composite precursor (b) can be obtained by heat aging the fine particle-containing composite precursor (a) in a heated steam atmosphere or in the presence of liquid water. This step may be performed by a so-called dry gel conversion method. The dry gel conversion method is a method of crystallizing zeolite by treating a dry gel obtained by drying a raw material mixture for zeolite synthesis with water vapor or the like.

本工程を経て得られる微粒子複合体では、多孔体が結晶性多孔体として形成される。なお、ドライゲルコンバージョン法を行うための装置の概念図の一例を図3に示す。   In the fine particle composite obtained through this step, the porous body is formed as a crystalline porous body. An example of a conceptual diagram of an apparatus for performing the dry gel conversion method is shown in FIG.

本工程において、加熱熟成を行う際の温度は、100〜250℃であることが好ましく120〜200℃であることがより好ましい。また、加熱熟成を行う時間は、通常0〜1000時間であり、2〜200時間であることがより好ましい。   In this step, the temperature at which the heat aging is performed is preferably 100 to 250 ° C, and more preferably 120 to 200 ° C. Moreover, the time for performing heat aging is usually 0 to 1000 hours, and more preferably 2 to 200 hours.

また、加熱熟成を、多孔体の鋳型剤となる有機物の存在下で行うことが好ましい。鋳型剤となる有機物の存在下で加熱熟成を行うと多孔体が生成しやすくなる。   Moreover, it is preferable to carry out the heat aging in the presence of an organic substance that serves as a templating agent for the porous body. When heat aging is performed in the presence of an organic substance serving as a templating agent, a porous body is easily generated.

鋳型剤となる有機物として、水酸化テトラ炭化水素アンモニウムおよびハロゲン化テトラ炭化水素アンモニウムからなる群から選択される少なくとも1種の有機物を用いることが好ましく、テトラアルキルアンモニウムブロミドおよびテトラアルキルアンモニウムヒドロキシドからなる群から選択される少なくとも1種の有機物を用いることがより好ましい。具体的には、テトラプロピルアンモニウムブロミドおよびテトラプロピルアンモニウムヒドロキシドからなる群から選択される少なくとも1種の有機物を用いることが特に好ましい。   It is preferable to use at least one organic substance selected from the group consisting of tetrahydrochloric ammonium ammonium and halogenated tetrahydrocarbon ammonium as the templating agent, and comprises tetraalkylammonium bromide and tetraalkylammonium hydroxide. It is more preferable to use at least one organic substance selected from the group. Specifically, it is particularly preferable to use at least one organic material selected from the group consisting of tetrapropylammonium bromide and tetrapropylammonium hydroxide.

なお、本工程において、鋳型剤となる有機物を共存させる方法としては、例えば、微粒子含有複合前駆体(a)を、鋳型剤となる有機物を含む水溶液に添加し、超音波を照射することにより微粒子含有複合前駆体(a)を溶液中に分散させた後に、この溶液を蒸発乾固する方法が挙げられる。   In this step, as a method for allowing the organic material that serves as the templating agent to coexist, for example, the fine particle-containing composite precursor (a) is added to an aqueous solution containing the organic material that serves as the templating agent, and then irradiated with ultrasonic waves to form fine particles There is a method in which the composite precursor (a) is dispersed in a solution and then the solution is evaporated to dryness.

また、本工程の前に、微粒子含有複合前駆体(a)を得る工程で界面活性剤を用いた場合には、この界面活性剤を除去する工程を加えてもよい。例えば、用いた界面活性剤の抽出が可能な溶媒に、微粒子含有複合前駆体(a)を加えて攪拌することにより、界面活性剤を除去することができる。   Moreover, when a surfactant is used in the step of obtaining the fine particle-containing composite precursor (a), a step of removing this surfactant may be added before this step. For example, the surfactant can be removed by adding the fine particle-containing composite precursor (a) to a solvent capable of extracting the surfactant and stirring the mixture.

(微粒子複合体を得る工程)
上述のようにして得られた微粒子含有複合前駆体(b)を焼成することで、固体微粒子と結晶性多孔体とを含有する微粒子複合体を得ることができる。微粒子含有複合前駆体(b)を生成する際の焼成温度は、400〜700℃であることが好ましく、450〜600℃であることがより好ましい。また、焼成時間は0.5〜30時間であり、1〜10時間であることがより好ましい。上記条件で焼成を行うことにより、効率よく固体微粒子の表面に被覆した炭素、及び、鋳型剤となる有機物を除去できるうえ、結晶性多孔体の骨格をつくる化学結合を効率よく生成させることができる。
(Step of obtaining a fine particle composite)
By firing the fine particle-containing composite precursor (b) obtained as described above, a fine particle composite containing solid fine particles and a crystalline porous material can be obtained. The firing temperature for producing the fine particle-containing composite precursor (b) is preferably 400 to 700 ° C, more preferably 450 to 600 ° C. Moreover, baking time is 0.5 to 30 hours, and it is more preferable that it is 1 to 10 hours. By firing under the above conditions, the carbon coated on the surface of the solid fine particles and the organic substance serving as the templating agent can be removed efficiently, and chemical bonds that form the skeleton of the crystalline porous body can be efficiently generated. .

実施の形態1及び2で説明した微粒子複合体の製造方法では、良好な結晶性の固体微粒子、即ち触媒活性の高い固体微粒子をそのまま用いることができるので、触媒活性の高い微粒子複合体を形成することができる。   In the method for producing a fine particle composite described in the first and second embodiments, solid crystalline fine particles having good crystallinity, that is, solid fine particles having high catalytic activity can be used as they are, so that a fine particle composite having high catalytic activity is formed. be able to.

そして、得られた微粒子複合体は、各種触媒として用いることができ、微粒子複合体を単独で用いてもよく、金属酸化物等の担体等と共に用いてもよい。   The obtained fine particle composite can be used as various catalysts, and the fine particle composite may be used alone or in combination with a carrier such as a metal oxide.

微粒子複合体を含む触媒は、固体微粒子が金属化合物、より好ましくはTiOを含む場合には、光分解反応触媒として好適に用いることができる。このような微粒子複合体を含む触媒を用いる態様としては、例えば、アルコールやアルデヒドなどの有機物等の試料を含む気体に、触媒が接触し得る状態で保持する態様が挙げられる。多孔体が有機物等を吸着するとともに、固体微粒子が活性化する波長の光を触媒に照射することにより、固体微粒子が有機物質を速やかに変換、分解することになる。有機物質としては、具体的にはアセトアルデヒドや2−プロパノールが挙げられる。 The catalyst containing the fine particle composite can be suitably used as a photolysis reaction catalyst when the solid fine particles contain a metal compound, more preferably TiO 2 . As an aspect using the catalyst containing such a fine particle complex, for example, an aspect of holding the catalyst in a state in which the catalyst can come into contact with a gas containing a sample such as an organic substance such as alcohol or aldehyde can be cited. By irradiating the catalyst with light having a wavelength that activates the solid fine particles while the porous body adsorbs organic substances and the like, the solid fine particles quickly convert and decompose the organic substance. Specific examples of the organic substance include acetaldehyde and 2-propanol.

また、微粒子複合体を含む触媒は、固体微粒子として金属の微粒子を含有する場合には、水素還元反応触媒、脱硝反応触媒、脱一酸化炭素反応触媒等として好適に用いられる。微粒子複合体に含まれる固体微粒子としては、Pt,Pd,Ru,Rh,Ir,Ni,Cu,Zn,Co,Mo等の金属粒子やその酸化物、酸化チタン担持酸化バナジウム等の一般に触媒として用いられている粒子を用いることができるので、このような固体微粒子を用いて得られた微粒子複合体を含む触媒は、それぞれの固体微粒子に由来する触媒活性を有し、固体微粒子に応じた様々な反応触媒として用いることができる。   Further, the catalyst containing the fine particle composite is suitably used as a hydrogen reduction reaction catalyst, a denitration reaction catalyst, a decarbonization reaction catalyst, etc. when it contains metal fine particles as solid fine particles. The solid fine particles contained in the fine particle composite are generally used as catalysts such as metal particles such as Pt, Pd, Ru, Rh, Ir, Ni, Cu, Zn, Co, and Mo, oxides thereof, titanium oxide-supported vanadium oxide, and the like. Therefore, the catalyst including the fine particle composite obtained by using such solid fine particles has a catalytic activity derived from each solid fine particle, and has a variety of properties depending on the solid fine particles. It can be used as a reaction catalyst.

固体微粒子として二酸化チタンを用い、実施の形態1に係る微粒子複合体の製造方法で、微粒子複合体を製造し、2−プロパノールの分解実験を行った。   Using titanium dioxide as the solid fine particles, a fine particle composite was manufactured by the method for manufacturing a fine particle composite according to Embodiment 1, and a 2-propanol decomposition experiment was performed.

(微粒子複合体の製造)
TiO(製品名:P−25、Degussa(デグサ)製、粒子直径20〜30nm)(以下、P−25と記す)を2時間真空乾燥させた。
(Manufacture of fine particle composite)
TiO 2 (product name: P-25, manufactured by Degussa, particle diameter 20-30 nm) (hereinafter referred to as P-25) was vacuum dried for 2 hours.

1M塩酸水溶液(200mL)に界面活性剤ドデシル硫酸ナトリウム(4.61g)を溶解し、P−25(3.0g)およびアニリン(3.68g)を加えて攪拌した。この溶液に重合開始剤としてペルオキソ二硫酸アンモニウム(2.28g)を加えて2時間攪拌した。ポリアニリンの形成によって溶液の色は白から青、そして緑へと変化した。生成物を遠心分離によって回収し、エタノールで洗浄した後、70℃で乾燥させて粉末を得た。   Surfactant sodium dodecyl sulfate (4.61 g) was dissolved in 1 M aqueous hydrochloric acid solution (200 mL), and P-25 (3.0 g) and aniline (3.68 g) were added and stirred. To this solution, ammonium peroxodisulfate (2.28 g) was added as a polymerization initiator and stirred for 2 hours. Due to the formation of polyaniline, the color of the solution changed from white to blue to green. The product was collected by centrifugation, washed with ethanol, and dried at 70 ° C. to obtain a powder.

得られた粉末を窒素気流下450℃で12時間加熱し、P−25に吸着させたポリアニリンを炭化させ、黒色粉末の炭素被覆固体微粒子を得た。以下、得られた黒色粉末をCarbonP25と記す。   The obtained powder was heated at 450 ° C. for 12 hours under a nitrogen stream to carbonize the polyaniline adsorbed on P-25 to obtain carbon-coated solid fine particles of black powder. Hereinafter, the obtained black powder is referred to as Carbon P25.

界面活性剤ヘキサデシルトリメチルアンモニウムブロミド(0.86g)をイオン交換水(46g)に加温しながら溶解した後、28%アンモニア水を加えてpHを11.8に調整した。この溶液に炭素被覆したCarbonP25を1.54g加え、超音波を20分間かけて分散させた。   Surfactant hexadecyltrimethylammonium bromide (0.86 g) was dissolved in ion-exchanged water (46 g) with heating, and 28% aqueous ammonia was added to adjust the pH to 11.8. To this solution, 1.54 g of carbon-coated Carbon P25 was added, and ultrasonic waves were dispersed for 20 minutes.

この溶液を激しく攪拌しながら、テトラエトキシシラン(Si(OC)(3.38g)を一気に加えた。これにより、テトラエトキシシランの加水分解が起こり、界面活性剤のミセルの周りにシリカが形成された。 While this solution was vigorously stirred, tetraethoxysilane (Si (OC 2 H 5 ) 4 ) (3.38 g) was added all at once. As a result, hydrolysis of tetraethoxysilane occurred and silica was formed around the micelles of the surfactant.

この混合溶液を1時間攪拌した後、ろ過して生成物を回収し、イオン交換水で洗浄した後、70℃で乾燥させて、微粒子含有複合前駆体(a)を得た。   After stirring this mixed solution for 1 hour, the product was collected by filtration, washed with ion-exchanged water, and then dried at 70 ° C. to obtain a fine particle-containing composite precursor (a).

この微粒子含有複合前駆体(a)を450℃で6時間焼成し、界面活性剤及びP−25表面に被覆されている炭素を消失させ、白色粉末の微粒子複合体であるメソポーラスシリカ−TiO複合体を得た。以下、これをCarbonNCと記す。CarbonNCの表面積は424m−1であった。 This fine particle-containing composite precursor (a) is baked at 450 ° C. for 6 hours to eliminate the surfactant and the carbon coated on the surface of P-25, and the white powder fine particle composite is mesoporous silica-TiO 2 composite. Got the body. Hereinafter, this is referred to as CarbonNC. Carbon NC had a surface area of 424 m 2 g −1 .

また、参考例として、炭素被覆を行わなかった以外、上記同様に行って、白色粉末の微粒子複合体を得た。以下、この微粒子複合体をNCと記す。このNCの比表面積は、409m−1であった。 Further, as a reference example, a white powder microparticle composite was obtained in the same manner as above except that carbon coating was not performed. Hereinafter, this fine particle composite is referred to as NC. The specific surface area of this NC was 409 m 2 g −1 .

(2−プロパノールの分解実験)
上記で生成したCarbonNC、NC、及び、P−25単体を用いて、2−プロパノールの分解をそれぞれ行った。
(2-propanol decomposition experiment)
2-propanol was decomposed | disassembled using CarbonNC, NC produced | generated above, and P-25 single-piece | unit, respectively.

外部からの光を遮断する密閉容器中にCarbonNCと2−プロパノール(初期濃度568ppm)を導入した。CarbonNCは、含有するP−25の量が20mgになるように導入した。   Carbon NC and 2-propanol (initial concentration 568 ppm) were introduced into a sealed container that shields light from the outside. CarbonNC was introduced so that the amount of P-25 contained was 20 mg.

CarbonNCを導入して90分経過後、キセノンランプ(500W)で紫外線を照射した。   After 90 minutes from introduction of Carbon NC, ultraviolet rays were irradiated with a xenon lamp (500 W).

2−プロパノールは、アセトンを経て二酸化炭素に分解されるので、2−プロパノール、アセトン、及び二酸化炭素の各濃度の経時変化をガスクロマトグラフィーにて計測した。   Since 2-propanol is decomposed into carbon dioxide through acetone, the change with time of each concentration of 2-propanol, acetone, and carbon dioxide was measured by gas chromatography.

同様に、NC、及び、P−25単体についても、それぞれP−25の量が20mgになるように密閉容器中に導入し、2−プロパノールの分解を行い、2−プロパノール、アセトン、及び二酸化炭素の各濃度の経時変化を計測した。   Similarly, NC and P-25 alone are introduced into a sealed container so that the amount of P-25 is 20 mg, respectively, and 2-propanol is decomposed to give 2-propanol, acetone, and carbon dioxide. The time course of each concentration of was measured.

それぞれの濃度変化を図4に示す。図4(A)が2−プロパノールの濃度変化、図4(B)がアセトンの濃度変化、図4(C)が二酸化炭素の濃度変化である。   Each concentration change is shown in FIG. 4A shows the change in 2-propanol concentration, FIG. 4B shows the change in acetone concentration, and FIG. 4C shows the change in carbon dioxide concentration.

図4(A)を見ると、CarbonNCとNCは、多孔体であるメソポーラスシリカにより、ともに高い吸着能を示し、紫外線照射前における気相中の2−プロパノールをほとんど吸着していることがわかる。   FIG. 4A shows that Carbon NC and NC both have high adsorption ability due to porous mesoporous silica, and almost adsorb 2-propanol in the gas phase before ultraviolet irradiation.

また、図4(B)を見ると、反応中に生成するアセトンを外部に放出することなく、ほとんど吸着していることがわかる。   4B shows that acetone produced during the reaction is almost adsorbed without being released to the outside.

また、図4(C)を見ると、CarbonNCの二酸化炭素の生成速度は、P−25単体とほぼ同等の速度を示し、炭素被覆を行わずに製造したNCよりも高い活性を示していることがわかる。   Moreover, when FIG.4 (C) is seen, the production | generation speed | rate of carbon dioxide of CarbonNC shows the speed | rate substantially equivalent to P-25 single-piece | unit, and shows the activity higher than NC manufactured without carbon coating. I understand.

この結果から、炭素被覆の効果により、P−25とメソポーラスシリカとの密な複合化が実現し、吸着した有機分子のP−25表面への移動速度を高め、P−25単体と同様の触媒活性を示していると考えられる。   From this result, due to the effect of carbon coating, close complexation of P-25 and mesoporous silica was realized, the speed of movement of adsorbed organic molecules to the P-25 surface was increased, and the same catalyst as P-25 alone It is thought that it shows activity.

固体微粒子として二酸化チタンを用い、実施の形態2に係る微粒子複合体の製造方法で、微粒子複合体を製造し、2−プロパノールの分解実験を行った。   Using titanium dioxide as the solid fine particles, a fine particle composite was manufactured by the method of manufacturing a fine particle composite according to Embodiment 2, and a 2-propanol decomposition experiment was performed.

(微粒子複合体の製造)
まず、実施例1と同様にして微粒子含有複合前駆体(a)を得た。
(Manufacture of fine particle composite)
First, a fine particle-containing composite precursor (a) was obtained in the same manner as in Example 1.

エタノール39.2gに氷酢酸0.30gを加えて0.1M酢酸/エタノール溶液を調製し、ここに乾燥させた微粒子含有複合前駆体(a)を加えて80℃で2時間攪拌した。   Glacial acetic acid (0.30 g) was added to 39.2 g of ethanol to prepare a 0.1 M acetic acid / ethanol solution, and the dried fine particle-containing composite precursor (a) was added thereto, followed by stirring at 80 ° C. for 2 hours.

これを濾過してエタノールで洗浄した後、70℃で乾燥させた。この操作をもう一度繰り返し、界面活性剤ヘキサデシルトリメチルアンモニウムブロミドを取り除いた。   This was filtered, washed with ethanol, and dried at 70 ° C. This operation was repeated once more to remove the surfactant hexadecyltrimethylammonium bromide.

10mLのイオン交換水にテトラプロピルアンモニウムブロミド0.1gを溶かし、そこへ溶媒抽出によって界面活性剤を除去した微粒子含有複合前駆体(a)を0.5g加え超音波で20分間処理した。   0.1 g of tetrapropylammonium bromide was dissolved in 10 mL of ion-exchanged water, and 0.5 g of the fine particle-containing composite precursor (a) from which the surfactant was removed by solvent extraction was added thereto and treated with ultrasonic waves for 20 minutes.

この溶液を70℃で乾固して粉末を得た。この粉末を図3の装置の概念図に示したオートクレーブ6内のポリテトラフルオロエチレンカップ2の上に置き、ポリテトラフルオロエチレン製の内筒5の底にイオン交換水9.5mLとエチレンジアミン0.5mLを入れ、175℃で7日間熟成させた。その後、生成物を遠心分離によって回収し、イオン交換水で洗浄後、70℃で乾燥させた。   This solution was dried at 70 ° C. to obtain a powder. This powder is placed on the polytetrafluoroethylene cup 2 in the autoclave 6 shown in the conceptual diagram of the apparatus in FIG. 3, and 9.5 mL of ion-exchanged water and 0. 0 ethylenediamine are placed on the bottom of the polytetrafluoroethylene inner cylinder 5. 5 mL was added and aged at 175 ° C. for 7 days. Thereafter, the product was collected by centrifugation, washed with ion exchange water, and dried at 70 ° C.

これを450℃で6時間焼成して、P−25の表面に被覆されている炭素及び界面活性剤を消失させ、白色粉末の微粒子複合体であるシリカライト(ゼオライト)−TiO複合体を得た。以下、この白色粉末をDGC−CarbonNCと記す。DGC−CarbonNCの比表面積は184cm−1、そのミクロ孔容積は0.052cm−1であった。 This was calcined at 450 ° C. for 6 hours to eliminate the carbon and surfactant coated on the surface of P-25, and a silicalite (zeolite) -TiO 2 composite, which is a white powder microparticle composite, was obtained. It was. Hereinafter, this white powder is referred to as DGC-CarbonNC. The specific surface area of DGC-CarbonNC was 184 cm 2 g −1 and the micropore volume was 0.052 cm 3 g −1 .

また、参考例として、炭素被覆を行わなかった以外、上記同様に行い、白色粉末の微粒子複合体を得た。以下、この微粒子複合体をDGC−NCと記す。このDGC−NCの比表面積は51cm−1、ミクロ孔容積は0.009cm−1であった。 Further, as a reference example, a white powder microparticle composite was obtained in the same manner as above except that carbon coating was not performed. Hereinafter, this fine particle composite is referred to as DGC-NC. This DGC-NC had a specific surface area of 51 cm 2 g −1 and a micropore volume of 0.009 cm 3 g −1 .

(2−プロパノールの分解実験)
上記で生成したDGC−CarbonNC、DGC−NC、及び、P−25単体を用いて、それぞれ2−プロパノールの分解を行った。
(2-propanol decomposition experiment)
Using the DGC-CarbonNC, DGC-NC, and P-25 alone produced above, 2-propanol was decomposed, respectively.

外部からの光を遮断する密閉容器中に微粒子複合体と2−プロパノール(初期濃度568ppm)を導入した。DGC−CarbonNCは、含有するP−25の量がそれぞれ20mgになるように導入した。   The fine particle composite and 2-propanol (initial concentration 568 ppm) were introduced into a sealed container that shields light from the outside. DGC-CarbonNC was introduced so that the amount of P-25 contained was 20 mg each.

導入して90分経過後、キセノンランプ(500W)で紫外線を照射した。実施例1と同様、2−プロパノール、アセトン、及び二酸化炭素の各濃度の経時変化をガスクロマトグラフィーにて計測した。   After 90 minutes from the introduction, ultraviolet rays were irradiated with a xenon lamp (500 W). As in Example 1, changes with time in the concentrations of 2-propanol, acetone, and carbon dioxide were measured by gas chromatography.

同様に、DGC−NC、及び、P−25単体について、それぞれ含有するP−25の量が20mgになるように密閉容器中に導入し、2−プロパノールの分解を行い、2−プロパノール、アセトン、及び二酸化炭素の各濃度の経時変化を計測した。   Similarly, DGC-NC and P-25 alone are introduced into a sealed container so that the amount of P-25 contained is 20 mg, 2-propanol is decomposed, 2-propanol, acetone, And the change with time of each concentration of carbon dioxide was measured.

それぞれの濃度変化を図5に示す。図5(A)が2−プロパノールの濃度変化、図5(B)がアセトンの濃度変化、図5(C)が二酸化炭素の濃度変化である。   Each concentration change is shown in FIG. FIG. 5A shows the change in 2-propanol concentration, FIG. 5B shows the change in acetone concentration, and FIG. 5C shows the change in carbon dioxide concentration.

図5(A)を見ると、DGC−CarbonNCとDGC−NCは、結晶性多孔体であるシリカライトにより、ともに高い吸着能を示し、紫外線照射前における気相中の2−プロパノールをほとんど吸着していることがわかる。また、図5(B)を見ると、2−プロパノールの分解で生じるアセトンもほとんど吸着していることがわかる。   As shown in FIG. 5 (A), DGC-CarbonNC and DGC-NC both show high adsorbability due to silicalite, which is a crystalline porous material, and almost adsorb 2-propanol in the gas phase before UV irradiation. You can see that Moreover, when FIG.5 (B) is seen, it turns out that the acetone which arises by decomposition | disassembly of 2-propanol is also almost adsorb | sucked.

また、図5(C)を見ると、DGC−CarbonNCの二酸化炭素の生成速度は、P−25単体とほぼ同等の速度を示し、炭素被覆を行わなかったDGC−NCよりも高い活性を示していることがわかる。   5C, the carbon dioxide production rate of DGC-CarbonNC is almost the same as that of P-25 alone, indicating a higher activity than DGC-NC without carbon coating. I understand that.

この結果から、炭素被覆の効果により、P−25とシリカライトとの密な複合化が実現し、吸着した有機分子のP−25表面への移動速度を高め、P−25単体と同様の触媒活性を示していると考えられる。   From this result, due to the effect of carbon coating, close complexation of P-25 and silicalite was realized, and the moving speed of the adsorbed organic molecules to the P-25 surface was increased. It is thought that it shows activity.

上記の製造方法で得られた微粒子複合体は、有機物質等の分解速度が高いので、有害な有機物質を速やかに分解でき、水や空気から極低濃度の有害物質を除去することができる。この技術は、あらゆる分野での浄化、有害物質除去に利用することができる。とくに空気中の有害物質を空気から吸着除去し、光照射下で効率的に分解できる。   Since the fine particle composite obtained by the above production method has a high decomposition rate of organic substances and the like, harmful organic substances can be rapidly decomposed, and extremely low concentrations of harmful substances can be removed from water and air. This technology can be used for purification and removal of harmful substances in all fields. In particular, harmful substances in the air can be adsorbed and removed from the air and decomposed efficiently under light irradiation.

1 微粒子含有複合前駆体(a)
2 ポリテトラフルオロエチレンカップ
3 ステンレスメッシュ
4 イオン交換水,エチレンジアミン
5 内筒
6 オートクレーブ
1 Fine particle-containing composite precursor (a)
2 Polytetrafluoroethylene cup 3 Stainless mesh 4 Ion exchange water, ethylenediamine 5 Inner cylinder 6 Autoclave

Claims (7)

固体微粒子を炭素で被覆して炭素被覆固体微粒子を得る工程と、
前記炭素被覆固体微粒子を含む合成媒体中に多孔体を生成可能な成分を添加し、混合することにより、前記炭素被覆固体微粒子と前記多孔体を生成可能な成分とを複合化させて微粒子含有複合前駆体(a)を得る工程と、
前記微粒子含有複合前駆体(a)を焼成し、前記炭素を消失させて、前記固体微粒子と多孔体とを含有する微粒子複合体を得る工程と、
を含むことを特徴とする微粒子複合体の製造方法。
Coating the solid fine particles with carbon to obtain carbon-coated solid fine particles;
A component capable of generating a porous body is added to and mixed with a synthetic medium containing the carbon-coated solid fine particles, and the carbon-coated solid fine particles and the component capable of generating the porous body are combined to form a composite containing fine particles. Obtaining a precursor (a);
Firing the fine particle-containing composite precursor (a), eliminating the carbon, and obtaining a fine particle composite containing the solid fine particles and a porous body;
A process for producing a fine particle composite comprising:
固体微粒子を炭素で被覆して炭素被覆固体微粒子を得る工程と、
前記炭素被覆固体微粒子を含む合成媒体中に多孔体を生成可能な成分を添加し、混合することにより、前記炭素被覆固体微粒子と前記多孔体を生成可能な成分とを複合化させて微粒子含有複合前駆体(a)を得る工程と、
前記微粒子含有複合前駆体(a)を加熱水蒸気雰囲気中もしくは液体の水存在下で加熱熟成させて微粒子含有複合前駆体(b)を得る工程と、
前記微粒子含有複合前駆体(b)を焼成し、前記炭素を消失させて、前記固体微粒子と結晶性多孔体とを含有する微粒子複合体を得る工程と、
を含むことを特徴とする微粒子複合体の製造方法。
Coating the solid fine particles with carbon to obtain carbon-coated solid fine particles;
A component capable of generating a porous body is added to and mixed with a synthetic medium containing the carbon-coated solid fine particles, and the carbon-coated solid fine particles and the component capable of generating the porous body are combined to form a composite containing fine particles. Obtaining a precursor (a);
A step of heating and aging the fine particle-containing composite precursor (a) in a heated steam atmosphere or in the presence of liquid water to obtain a fine particle-containing composite precursor (b);
Firing the fine particle-containing composite precursor (b) to eliminate the carbon to obtain a fine particle composite containing the solid fine particles and a crystalline porous body;
A process for producing a fine particle composite comprising:
前記固体微粒子に有機物を吸着させ、前記有機物を炭化させて前記炭素被覆固体微粒子を得ることを特徴とする請求項1又は2に記載の微粒子複合体の製造方法。   The method for producing a fine particle composite according to claim 1 or 2, wherein an organic substance is adsorbed on the solid fine particles, and the organic substance is carbonized to obtain the carbon-coated solid fine particles. 前記有機物を非酸素雰囲気下で加熱して炭化させることを特徴とする請求項3に記載の微粒子複合体の製造方法。   The method for producing a fine particle composite according to claim 3, wherein the organic substance is heated and carbonized in a non-oxygen atmosphere. 脱水剤を用いて前記有機物を炭化させることを特徴とする請求項3に記載の微粒子複合体の製造方法。   4. The method for producing a fine particle composite according to claim 3, wherein the organic substance is carbonized using a dehydrating agent. 前記固体微粒子として酸化チタンを用いることを特徴とする請求項1又は2に記載の微粒子複合体の製造方法。   The method for producing a fine particle composite according to claim 1 or 2, wherein titanium oxide is used as the solid fine particles. 前記多孔体を生成可能な成分として、テトラ炭化水素オキシシラン、シリカ、シリカアルミナ、シリカゲル、水ガラス、及び、フュームドシリカからなる群から選択される少なくとも一種を用いることを特徴とする請求項1又は2に記載の微粒子複合体の製造方法。   The component capable of generating the porous body is at least one selected from the group consisting of tetrahydrocarbonoxysilane, silica, silica alumina, silica gel, water glass, and fumed silica. 3. A method for producing a fine particle composite according to 2.
JP2009212877A 2009-09-15 2009-09-15 Method for manufacturing fine particle composite Pending JP2011062587A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009212877A JP2011062587A (en) 2009-09-15 2009-09-15 Method for manufacturing fine particle composite
PCT/JP2010/065729 WO2011034023A1 (en) 2009-09-15 2010-09-13 Process for production of microparticulate complex

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009212877A JP2011062587A (en) 2009-09-15 2009-09-15 Method for manufacturing fine particle composite

Publications (1)

Publication Number Publication Date
JP2011062587A true JP2011062587A (en) 2011-03-31

Family

ID=43758627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009212877A Pending JP2011062587A (en) 2009-09-15 2009-09-15 Method for manufacturing fine particle composite

Country Status (2)

Country Link
JP (1) JP2011062587A (en)
WO (1) WO2011034023A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5987244B1 (en) * 2015-07-24 2016-09-07 学校法人神奈川大学 Method for recovering rhenium, method for selectively recovering rhenium from a solution containing rhenium and other metals, and method for increasing the content ratio of rhenium in a solution containing rhenium and other metals

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007063615A1 (en) * 2005-11-30 2007-06-07 Juridical Foundation Osaka Industrial Promotion Organization Catalyst encapsulated in hollow porous capsule and process for producing the same
JP4646077B2 (en) * 2007-02-23 2011-03-09 財団法人大阪産業振興機構 Nanoparticle catalyst embedded in porous carbon support and method for producing the same
JP2009131761A (en) * 2007-11-29 2009-06-18 Sumitomo Chemical Co Ltd Photocatalytic body
JP5544648B2 (en) * 2007-12-27 2014-07-09 国立大学法人広島大学 Fine particle composite body, method for producing the same, and catalyst containing the composite body
JP5499442B2 (en) * 2008-04-10 2014-05-21 株式会社豊田中央研究所 Metal oxide encapsulated mesoporous silica capsule

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5987244B1 (en) * 2015-07-24 2016-09-07 学校法人神奈川大学 Method for recovering rhenium, method for selectively recovering rhenium from a solution containing rhenium and other metals, and method for increasing the content ratio of rhenium in a solution containing rhenium and other metals
WO2017018364A1 (en) * 2015-07-24 2017-02-02 学校法人神奈川大学 Method for recovering rhenium, method for selectively recovering rhenium from solution including rhenium and other metals, and method for increasing content ratio of rhenium in solution including rhenium and other metals
EA032279B1 (en) * 2015-07-24 2019-05-31 Канагава Юниверсити Method for recovering rhenium, method for selectively recovering rhenium from a solution including rhenium and one or more other metals, and method for enriching rhenium in a solution including rhenium and one or more other metals
US10480048B2 (en) 2015-07-24 2019-11-19 Kanagawa University Method for recovering rhenium, method for selectively recovering rhenium from solution including rhenium and other metals, and method for increasing content ratio of rhenium in solution including rhenium and other metals

Also Published As

Publication number Publication date
WO2011034023A1 (en) 2011-03-24

Similar Documents

Publication Publication Date Title
JP5544648B2 (en) Fine particle composite body, method for producing the same, and catalyst containing the composite body
CN109759110A (en) A kind of N doping porous carbon loaded titanium dioxide photocatalyst and the preparation method and application thereof
JP3076844B1 (en) Mesoporous titanium oxide porous body and method for producing the same
CN108786779B (en) Graphite alkyne/porous titanium dioxide photocatalyst and preparation method and application thereof
CN113164867B (en) Application of fullerene and fullerene derivative composite material in degrading formaldehyde and indoor VOCs or inhibiting bacteria
CN103785371A (en) Porous carbon microsphere @TiO2 composite material and preparation method and application thereof
JP2009131760A (en) Photocatalytic body, its producing method and its use
JP2005270734A (en) Photocatalyst composite and organic substance converting method using the same
KR102018645B1 (en) Hydrogen peroxide decomposition catalysts and preparation method thereof, apparatus and method for decomposing hydrogen peroxide
CN113457727B (en) Alkali metal regulated hierarchical pore Au/ZSM-5 catalyst, and synthesis method and application thereof
KR101817837B1 (en) Titanium dioxide supported with carbon and nitrogen, preparation method thereof and photocatalyst using the same
KR101811017B1 (en) Manufacturing method of mesoporous titanium dioxide sphere/multi-walled carbon nanotubes composites for photocatalyst
WO2011034023A1 (en) Process for production of microparticulate complex
CN115155624B (en) Heterojunction composite material for removing aldehyde through visible light catalysis, preparation method of heterojunction composite material and method for degrading VOCs through visible light catalysis
Shankar et al. Synthesis and characterization of nano-titania photocatalyst loaded on Mo-MCM-41 support
KR101447206B1 (en) The manufacturing method of titanium dioxide nanotubes
CN109201089A (en) It is a kind of for light-catalysed europium, the preparation method of selenium codope titanium dioxide graphene oxide composite material
JP5298282B2 (en) Method for producing titanium oxide particles
KR100443260B1 (en) Preparation of high efficient photocatalyst for reduction of carbon dioxide to form fuels
CN109201088A (en) A kind of Eu3+, Se codope TiO2/ GO material and its application in photocatalysis
CN115487796B (en) Composite photocatalyst and preparation method and application thereof
CN115090304B (en) F-TiO 2-x Preparation method of Pt nano photocatalyst film and application of Pt nano photocatalyst film in air purification
TWI417133B (en) Methof for dealing with dichloromethane by using a mesoporous catalyst
KR101845659B1 (en) Photocatalyst having high photocatalytic activity in visible range and adsorption power and manufacturing method of the same
Tomovska et al. Current state of nanostructured TiO2-based catalysts: preparation methods