JP2011062029A - Generator - Google Patents

Generator Download PDF

Info

Publication number
JP2011062029A
JP2011062029A JP2009211156A JP2009211156A JP2011062029A JP 2011062029 A JP2011062029 A JP 2011062029A JP 2009211156 A JP2009211156 A JP 2009211156A JP 2009211156 A JP2009211156 A JP 2009211156A JP 2011062029 A JP2011062029 A JP 2011062029A
Authority
JP
Japan
Prior art keywords
pole
stator
rotor
generator
poles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009211156A
Other languages
Japanese (ja)
Inventor
Katsumi Mizukai
勝美 水貝
Takao Takasaki
隆雄 高崎
Tetsuo Tsukahara
哲夫 塚原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SUGAI SOGYO KK
Sugai Sogyo KK
Original Assignee
SUGAI SOGYO KK
Sugai Sogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SUGAI SOGYO KK, Sugai Sogyo KK filed Critical SUGAI SOGYO KK
Priority to JP2009211156A priority Critical patent/JP2011062029A/en
Publication of JP2011062029A publication Critical patent/JP2011062029A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Abstract

<P>PROBLEM TO BE SOLVED: To provide a generator that reduces cogging generated at power generation or the like. <P>SOLUTION: The generator 8 includes a rotor 1 and a stator 2. The generator 8 is formed by winding coils 2a to 2i on each pole of the stator 2 respectively, to rectify each output for each pole by rectifiers 3A to 3I, and configured to successively generate power for each phase and output DC power. Consequently, the phases generate power not simultaneously, magnetic resistance generated between the rotor 1 and the stator 2 at power generation is reduced, and cogging can be reduced, thus obtaining a stable voltage having small ripples (pulsations). <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、ロータとステータとを備えた発電機に関し、特に、発電時などに発生するコギングを低減する技術に関する。   The present invention relates to a generator including a rotor and a stator, and more particularly to a technique for reducing cogging that occurs during power generation.

近年、発電技術の分野では、自然エネルギの有効利用、低コスト化および環境保護の観点から、風車を利用して発電を行う風力発電機に期待が寄せられている。風力発電機には、そのロータの磁極に永久磁石を用いた、所謂、永久磁石式発電機が用いられることが多い(特許文献1〜3等参照)。
特開2004−353525号公報 特開2007−189770号公報 特開2004−285991号公報
In recent years, in the field of power generation technology, there is an expectation for a wind power generator that generates power using a windmill from the viewpoint of effective use of natural energy, cost reduction, and environmental protection. In many cases, a so-called permanent magnet type generator using a permanent magnet as a magnetic pole of the rotor is used for a wind power generator (see Patent Documents 1 to 3).
JP 2004-353525 A JP 2007-189770 A Japanese Patent Laid-Open No. 2004-28591

この永久磁石式発電機は、従来では、ステータのスロット内に配設されたコイル同士が結合されており、全ての相が同時に発電して、例えば、3相の交流を出力する構成であるため、発電時にロータとステータとの間で発生する磁気抵抗(永久磁石と鉄心の引っ張り合いよる抵抗)によりコギングが作用するため、回転ムラなどを生じ、リップル(脈動)の多い不安定な電圧しか得ることはできない。   Conventionally, this permanent magnet generator has a configuration in which coils arranged in a slot of a stator are coupled to each other, and all phases generate power at the same time to output, for example, three-phase alternating current. , Cogging acts due to the magnetic resistance generated between the rotor and the stator during power generation (resistance due to the tension between the permanent magnet and the iron core), resulting in rotation irregularities and the like, and only an unstable voltage with many ripples (pulsations) is obtained. It is not possible.

本発明は、上記のような課題を解決するためなされたものであり、ステータの鉄心が設けられた各極にコイルを極毎に独立させて巻回し、それぞれに整流回路を付加した構成により、直流を出力するようにし、発電時などのコギングを低減した発電機を提供することを目的とする。   The present invention has been made to solve the above-described problems, and has a structure in which a coil is independently wound around each pole provided with a stator iron core, and a rectifier circuit is added to each pole. An object of the present invention is to provide a generator that outputs direct current and reduces cogging during power generation.

上記した課題を解決するため、請求項1に係る発明の発電機は、永久磁石を周方向に複数極配設したロータと、該永久磁石に対向する鉄心を周方向に複数極配設し、かつ、コイルを有するステータと、を備えた発電装置において、前記コイルを、ステータの各極それぞれに個別に巻回し、各コイル出力を1極毎に整流してプラス極およびマイナス極とする複数の整流器を設けると共に、各コイルのプラス極同士およびマイナス極同士をそれぞれ並列に接続して、直流を出力する出力回路を設けたことを特徴とする。   In order to solve the above-described problem, the generator according to the first aspect of the present invention includes a rotor having a plurality of permanent magnets arranged in the circumferential direction and a plurality of iron cores facing the permanent magnets arranged in the circumferential direction. And a stator having a coil, wherein the coil is individually wound around each pole of the stator, and each coil output is rectified for each pole to be a plus pole and a minus pole. A rectifier is provided, and an output circuit for outputting direct current is provided by connecting the positive and negative poles of each coil in parallel.

請求項2に係る発明の発電機は、前記ステータを軸方向に多数積層して多層構造にしたことを特徴とする。   The generator of the invention according to claim 2 is characterized in that a large number of the stators are laminated in the axial direction to form a multilayer structure.

請求項3に係る発明の発電機は、前記ロータ側の極とステータ側の極の力関係がバランスするべく、両極の数量比を選定したことを特徴とする。   The generator of the invention according to claim 3 is characterized in that the quantity ratio of both poles is selected so that the force relationship between the poles on the rotor side and the poles on the stator side is balanced.

請求項4に係る発明の発電機は、前記ロータ側の極を8の整数倍に、前記ステータ側の極を9の整数倍に、それぞれ設定して、両極の力関係をバランスさせたことを特徴とする。   According to a fourth aspect of the present invention, the rotor-side pole is set to an integer multiple of 8, and the stator-side pole is set to an integer multiple of 9, so that the force relationship between both poles is balanced. Features.

請求項5に係る発明の発電機は、前記ロータが風力により回転駆動されて風力発電することを特徴とする。   The generator of the invention according to claim 5 is characterized in that the rotor is rotationally driven by wind power to generate wind power.

請求項1に係る発明の発電機によれば、コイルをステータの各極にそれぞれ個別に巻回し、各コイルの出力を1極毎に整流してプラス極およびマイナス極とすることにより、各相毎に順次発電して直流を出力するため、即ち、各相が同時に発電しないため、発電時にロータとステータとの間で発生する磁気抵抗が少なくなり、コギングを低減でき、リップル(脈動)の少ない安定した電圧を得ることができる。また、コイルをステータの各極にそれぞれ個別に巻回して、各コイルの出力を1極毎に整流してプラス極およびマイナス極としているため、ステータの極数を自由に変更することができ、ひいては、ロータ側の極とステータ側の極の数量比を自由に選定できる。   According to the generator of the first aspect of the present invention, the coils are individually wound around the respective poles of the stator, and the output of each coil is rectified for each one pole to be a plus pole and a minus pole, Since each phase generates power and outputs direct current, that is, each phase does not generate power at the same time, the magnetic resistance generated between the rotor and stator during power generation is reduced, cogging can be reduced, and ripple (pulsation) is reduced. A stable voltage can be obtained. In addition, since the coils are individually wound around each pole of the stator and the output of each coil is rectified for each pole to be a plus pole and a minus pole, the number of poles of the stator can be freely changed, As a result, the quantity ratio between the rotor-side pole and the stator-side pole can be freely selected.

請求項2に係る発明の発電機によれば、コイルをステータの各極にそれぞれ個別に巻回しているため、ステータを軸方向に多数積層にして多層構造にすることができ、これにより、発電機の容量を簡単に増加させることができる。   According to the generator of the invention according to claim 2, since the coils are individually wound around the respective poles of the stator, a large number of stators can be laminated in the axial direction to form a multilayer structure. The capacity of the machine can be increased easily.

請求項3に係る発明の発電機によれば、ロータ側の極とステータ側の極の数量比を選定できるため、ロータ側の極とステータ側の極の力関係をバランスさせることができ、これによって、無負荷回転時、即ち、空転時(起動時)のコギングを低減でき、例えば、微風下などにおける起動性を高め、発電の稼働率を向上できる。   According to the generator of the invention of claim 3, since the quantity ratio between the rotor side pole and the stator side pole can be selected, the force relationship between the rotor side pole and the stator side pole can be balanced. Thus, cogging during no-load rotation, that is, idling (starting up) can be reduced, and, for example, the startability in a leeward wind can be improved and the operating rate of power generation can be improved.

請求項4に係る発明の発電機によれば、ロータ側の極を8の整数倍(例えば、16、24等)に、ステータ側の極を9の整数倍(例えば、18、27等)に、それぞれ設定すれば、小さい容量から大きい容量までの発電機に対応して、ロータ側の極とステータ側の極の力関係をバランスさせることができる。   According to the generator of the fourth aspect of the invention, the rotor-side pole is an integer multiple of 8 (for example, 16, 24, etc.), and the stator-side pole is an integer multiple of 9 (for example, 18, 27, etc.). If each is set, it is possible to balance the force relationship between the rotor-side pole and the stator-side pole, corresponding to generators having a small capacity to a large capacity.

請求項5に係る発明の発電機によれば、発電機の発電時や空転時(起動時)などに発生するコギングの低減が図れ、回転がスムーズになり、また、起動性も向上できるため、風力を利用した風力発電機に有利となる。   According to the generator of the invention according to claim 5, cogging that occurs during power generation or idling (startup) of the generator can be reduced, the rotation becomes smooth, and the startability can be improved. This is advantageous for wind power generators using wind power.

以下、添付された図面を参照して本発明の実施の形態を詳述する。
図1〜図3は、本発明に係る発電装置の一実施形態として風力発電機を説明する図、図4は、この風力発電機を備えた風力発電装置の全体図を示している。
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
1 to 3 are diagrams for explaining a wind power generator as an embodiment of the power generator according to the present invention, and FIG. 4 is an overall view of the wind power generator provided with the wind power generator.

図4において、風力発電装置6は、ロータブレード7と、このロータブレード7の回転軸7Aに取り付けられた動力伝達装置8を介して駆動する風力発電機9と、これらのロータブレード7、動力伝達装置8および風力発電機9などを所定高さに保持するタワー10とを有している。   In FIG. 4, the wind power generator 6 includes a rotor blade 7, a wind power generator 9 that is driven via a power transmission device 8 attached to a rotating shaft 7 </ b> A of the rotor blade 7, and these rotor blades 7, power transmission. And a tower 10 that holds the device 8 and the wind power generator 9 at a predetermined height.

かかる風力発電装置6は、風を受けて回転するロータブレード7を使用して風の運動エネルギが動力に変換され、この動力で風力発電機9を駆動して電気エネルギに変換する。上記の風力発電機9は、図1に示すように、ロータ1とステータ2とを備えている。このロータ1は、その中心の回転軸1Aが上記の動力伝達装置8を介して風力によって回転駆動される。   The wind power generator 6 converts the kinetic energy of wind into motive power using a rotor blade 7 that rotates by receiving wind, and drives the wind generator 9 with this motive power to convert it into electrical energy. As shown in FIG. 1, the wind power generator 9 includes a rotor 1 and a stator 2. The rotor 1 is rotationally driven by wind power through the power transmission device 8 at the central rotating shaft 1A.

かかるロータ1は、円弧状の永久磁石A〜Hを円周方向に均等に8極を配置したものである。ステータ2は、リング状に形成されて、ロータ1周りに配設され、歯2A〜2Iを円周方向に均等に9極配置したものであり、ステータ2の内周部に位置する、各歯2A〜2Iの先端部分には、前記永久磁石A〜Hと対面する円弧状の鉄心a〜hが設けられている。   The rotor 1 is configured by arranging arcuate permanent magnets A to H with eight poles evenly in the circumferential direction. The stator 2 is formed in a ring shape and is arranged around the rotor 1. The teeth 2 </ b> A to 2 </ b> I are uniformly arranged in nine poles in the circumferential direction, and each tooth positioned on the inner peripheral portion of the stator 2. Arc-shaped iron cores a to h facing the permanent magnets A to H are provided at the tip portions of 2A to 2I.

そして、図2も示すように、ステータ2の各極の歯2A〜2Iには、それぞれに個別にコイル2a〜2iが巻回され、各コイル2a〜2iの出力を1極毎に整流してプラス極およびマイナス極とする複数の整流器3A〜3I、例えば、ブリッジ接続された4個のダイオード4a〜4dからなる整流器3A〜3Iが設けられている。この場合、ダイオード4aと4bの間を、各コイル2a〜2iの一方の端子に接続し、ダイオード4cと4dの間を、各コイル2a〜2iの他方の端子に接続し、ダイオード4bと4dの間を、プラス極とし、ダイオード4aと4cの間を、マイナス極とする。   As shown in FIG. 2, coils 2a to 2i are individually wound around the teeth 2A to 2I of the poles of the stator 2, and the outputs of the coils 2a to 2i are rectified for each pole. A plurality of rectifiers 3A to 3I having a positive pole and a negative pole, for example, rectifiers 3A to 3I including four diodes 4a to 4d connected in a bridge are provided. In this case, the diodes 4a and 4b are connected to one terminal of each of the coils 2a to 2i, the diodes 4c and 4d are connected to the other terminal of each of the coils 2a to 2i, and the diodes 4b and 4d are connected. The space between the diodes 4a and 4c is the negative pole.

従って、例えば、図2の整流器3Aに記した実線矢印は、入力交流が正の期間での電流、点線矢印は、入力交流が負の期間での電流を示しており、正の半周期では、ダイオード4cと4bが接続して電流が流れ、負の半周期では、ダイオード4aと4dが接続して電流が流れ、各コイル2a〜2iの出力が1極毎に整流される。   Therefore, for example, the solid arrow shown in the rectifier 3A in FIG. 2 indicates the current when the input AC is positive, and the dotted arrow indicates the current when the input AC is negative. In the positive half cycle, The diodes 4c and 4b are connected and current flows. In the negative half cycle, the diodes 4a and 4d are connected and current flows, and the outputs of the coils 2a to 2i are rectified for each pole.

図3は例えば、コイル2a、2b、2cの出力波形、即ち、サイン波形を示しており、時間軸に対して上と下の波形があった交流が、整流することにより、下の波形を上側に折り返した状態となる直流へと変換される。なお、この整流器3A〜3Iは他の整流回路の構成でも良い。そして、各コイル2a〜2iのプラス極同士およびマイナス極同士はそれぞれ並列に接続されており、直流を出力する出力回路5が設けられている。   FIG. 3 shows, for example, the output waveforms of the coils 2a, 2b, and 2c, that is, sine waveforms. The alternating current that had the upper and lower waveforms with respect to the time axis rectifies, and the lower waveform is folded upward. It is converted to direct current that will be in a state of failure. The rectifiers 3A to 3I may have other rectifier circuit configurations. And plus poles and minus poles of each coil 2a-2i are connected in parallel, respectively, and output circuit 5 which outputs direct current is provided.

以上の風力発電機9において、ロータ1が風力により回転すると、該ロータ1の永久磁石A〜Hがステータ2に対して回転し、これらの永久磁石A〜H、即ち、磁気(磁束)がステータ2の各コイル2a〜2iに対して回転移動するため、各コイル2a〜2iに順次電気(起電力)が発生し、出力回路5から図示しない外部の回路に直流の電流が供給される。   In the wind power generator 9 described above, when the rotor 1 is rotated by wind power, the permanent magnets A to H of the rotor 1 are rotated with respect to the stator 2, and these permanent magnets A to H, that is, magnetism (magnetic flux) is stator. Since each coil 2a to 2i rotates and moves, electricity (electromotive force) is sequentially generated in each coil 2a to 2i, and a direct current is supplied from the output circuit 5 to an external circuit (not shown).

かかる構成の風力発電機9によれば、コイル2a〜2iをステータ2の各極にそれぞれ個別に巻回し、各コイル2a〜2iの出力を1極毎に整流してプラス極およびマイナス極とすることにより、各相毎に順次発電して直流を出力するため、即ち、各相が同時に発電しないため、発電時にロータ1とステータ2との間で発生する磁気抵抗が少なくなり、コギングを低減でき、リップル(脈動)の少ない安定した電圧を得ることができる。   According to the wind power generator 9 having such a configuration, the coils 2a to 2i are individually wound around the respective poles of the stator 2, and the outputs of the respective coils 2a to 2i are rectified for each pole to be a plus pole and a minus pole. As a result, power is generated sequentially for each phase and direct current is output, that is, since each phase does not generate power simultaneously, the magnetic resistance generated between the rotor 1 and the stator 2 during power generation is reduced and cogging can be reduced. A stable voltage with little ripple (pulsation) can be obtained.

また、かかる構成では、コイル2a〜2iをステータ2の各極にそれぞれ個別に巻回して、各コイル2a〜2iの出力を1極毎に整流してプラス極およびマイナス極としているため、ステータ2の極数を自由に変更することができ、ひいては、ロータ1側の極とステータ2側の極の数量比を自由に選定できる。   Further, in such a configuration, the coils 2a to 2i are individually wound around the respective poles of the stator 2, and the outputs of the respective coils 2a to 2i are rectified for each pole to obtain a positive pole and a negative pole. The number of poles of the rotor 1 side and the stator 2 side can be freely selected.

ここで、本発明が対象とする永久磁石式の発電機は、ロータとステータとの間で発生する磁気抵抗(永久磁石と鉄心の引っ張り合いよる抵抗)により、無負荷回転時、即ち、空転時(起動時)にコギングが発生するため、このトルクを超える起動風速が必要とし、微風の風速条件のもとでは、容易に起動することができず、風力発電の稼働率が低くなる傾向にある。   Here, the permanent-magnet generator targeted by the present invention is at the time of no-load rotation, that is, idling due to the magnetic resistance generated between the rotor and the stator (resistance due to the pulling of the permanent magnet and the iron core). Since cogging occurs at the time of startup, a startup wind speed exceeding this torque is required, and it is not possible to start up easily under the wind speed conditions of light wind, and the operating rate of wind power generation tends to be low .

従って、本構成において、ロータ1側の極とステータ2側の極の数量比を自由に選定して、両極の力関係をバランスさせれば、空転時(起動時)のコギングを低減することができる。   Therefore, in this configuration, if the quantity ratio between the poles on the rotor 1 side and the poles on the stator 2 side is freely selected and the force relationship between the two poles is balanced, cogging during idling (starting) can be reduced. it can.

例えば、本実施形態にように、ロータ1側の極(永久磁石A〜H)を8個に、ステータ2側の極(鉄心a〜hおよびコイル2a〜2i)を9個に、それぞれ設定すると、図1に示す状態では、ステータ2の鉄心aに対し、ロータ1の永久磁石A、Bが半々のため、回転方向に力が発生しない。ステータ2の鉄心bとロータ1の永久磁石Bの影響で図の右回転の力が発生するが、その時、ステータ2の鉄心iとロータ1の永久磁石Aの影響で同図の左回転の力が発生する。   For example, as in this embodiment, when the poles on the rotor 1 side (permanent magnets A to H) are set to eight and the poles on the stator 2 side (iron cores a to h and coils 2 a to 2 i) are set to nine, respectively. In the state shown in FIG. 1, since the permanent magnets A and B of the rotor 1 are half of the iron core a of the stator 2, no force is generated in the rotational direction. The rightward rotation force of the figure is generated due to the influence of the iron core b of the stator 2 and the permanent magnet B of the rotor 1. At that time, the leftward rotation force of the figure is affected by the iron core i of the stator 2 and the permanent magnet A of the rotor 1. Will occur.

このとき、右回転の力と左回転の力とが同じため、打ち消し合い、回転力が発生しない。以下、順次、鉄心cと永久磁石D、鉄心hと永久磁石Hでバランスし、鉄心dと永久磁石D、鉄心gと永久磁石Gでバランスし、鉄心eと永久磁石E、鉄心fと永久磁石Fでバランスする。この場合、ロータ1が回転しても、ステータ2との力関係はバランスする。   At this time, since the right rotation force and the left rotation force are the same, they cancel each other and no rotation force is generated. In the following, the iron core c and the permanent magnet D, the iron core h and the permanent magnet H are balanced, the iron core d and the permanent magnet D, the iron core g and the permanent magnet G, and the iron core e and the permanent magnet E, and the iron core f and the permanent magnet. Balance with F. In this case, even if the rotor 1 rotates, the force relationship with the stator 2 is balanced.

このように、ロータ1側の極とステータ2側の極の力関係をバランスさせることで、無負荷回転時、即ち、空転時(起動時)のコギングを低減でき、微風下などにおける起動性を高めることができるため、発電の稼働率を向上できる。   In this way, by balancing the force relationship between the pole on the rotor 1 side and the pole on the stator 2 side, cogging during no-load rotation, that is, idling (starting) can be reduced, and startability in light winds and the like can be reduced. Since it can raise, the operation rate of electric power generation can be improved.

なお、ロータ1側の極を8の整数倍(例えば、16、24等)に、ステータ2側の極を9の整数倍(例えば、18、27等)に、それぞれ設定しても同様にバランスする。即ち、小さい容量から大きい容量までの発電機それぞれに対応して、ロータ1側の極とステータ2側の極の力関係をバランスさせることができる。   Even if the pole on the rotor 1 side is set to an integer multiple of 8 (for example, 16, 24, etc.) and the pole on the stator 2 side is set to an integer multiple of 9 (for example, 18, 27, etc.), the same balance is obtained. To do. That is, it is possible to balance the force relationship between the pole on the rotor 1 side and the pole on the stator 2 side, corresponding to each generator from a small capacity to a large capacity.

勿論、永久磁石、鉄心およびコイルの数は、実施形態のものに限らず任意であり、上記したように、例えば、ロータ側の極とステータ側の極の力関係をバランスさせるべく、両極の数量比を決定すれば良い。   Of course, the number of permanent magnets, iron cores and coils is not limited to that of the embodiment, and as described above, for example, the quantity of both poles is used to balance the force relationship between the rotor-side pole and the stator-side pole. What is necessary is just to determine a ratio.

更に、かかる構成によれば、コイル2a〜2iをステータ2の各極にそれぞれ個別に巻回しているため、ステータ2を軸方向に多数積層して積層構造にすることができ、このように積層構造にすれば、発電機の容量を簡単に増加させることができる。   Further, according to this configuration, since the coils 2a to 2i are individually wound around the respective poles of the stator 2, a large number of stators 2 can be laminated in the axial direction to form a laminated structure. With this structure, the capacity of the generator can be easily increased.

なお、本実施形態では、内周にロータ、外周にステータを配した発電機について説明したが、内周にステータ、外周にロータを配した発電機でも良い。また、本実施形態では、風力発電機について説明したが、風力に限らず、その他の気体や、水力などを利用した発電機に本発明を適用しても良い。   In addition, although this embodiment demonstrated the generator which arranged the rotor on the inner periphery and the stator on the outer periphery, the generator which arranged the stator on the inner periphery and the rotor on the outer periphery may be sufficient. Moreover, although this embodiment demonstrated the wind power generator, you may apply this invention to the generator using not only wind power but another gas, hydropower, etc.

発電機の発電時などに発生するコギングの低減が図れ、回転がスムーズになり、また、起動性も向上できるため、例えば、低容量の発電機、例えば、風力を利用した風力発電機に有利となる。   Cogging that occurs during power generation of the generator can be reduced, rotation can be smoothed, and startup can be improved, which is advantageous, for example, for low-capacity generators such as wind generators using wind power. Become.

本発明に係る発電装置の一実施形態として風力発電機を概略的に示す断面図Sectional drawing which shows schematically a wind power generator as one Embodiment of the electric power generating apparatus which concerns on this invention 同上の風力発電機におけるコイルを平面に展開した平面図Plan view of the coil in the wind power generator 同上の風力発電機におけるコイルの出力波形図Coil output waveform diagram for the wind turbine generator 図4は、同上の風力発電機を備えた風力発電装置の全体図である。FIG. 4 is an overall view of a wind turbine generator equipped with the wind turbine generator described above.

1 ロータ
2 ステータ
2A〜2I 歯
2a〜2i コイル
3A〜3I 整流器
5 出力回路
A〜H 永久磁石
a〜h 鉄心
9 風力発電機
DESCRIPTION OF SYMBOLS 1 Rotor 2 Stator 2A-2I Teeth 2a-2i Coil 3A-3I Rectifier 5 Output circuit A-H Permanent magnet ahh Core 9 Wind generator

Claims (5)

永久磁石を周方向に複数極配設したロータと、該永久磁石に対向する鉄心を周方向に複数極配設し、かつ、コイルを有するステータと、を備えた発電装置において、
前記コイルを、ステータの各極それぞれに個別に巻回し、各コイル出力を1極毎に整流してプラス極およびマイナス極とする複数の整流器を設けると共に、各コイルのプラス極同士およびマイナス極同士をそれぞれ並列に接続して、直流を出力する出力回路を設けたことを特徴とする発電機。
In a power generator comprising: a rotor having a plurality of permanent magnets arranged in the circumferential direction; and a stator having a coil having a plurality of iron cores arranged in the circumferential direction facing the permanent magnets.
The coils are individually wound around each pole of the stator, and a plurality of rectifiers are provided to rectify each coil output for each pole to be a plus pole and a minus pole, and between the plus and minus poles of each coil Are connected in parallel to each other, and an output circuit for outputting direct current is provided.
前記ステータを軸方向に多数積層して多層構造にしたことを特徴とする請求項1記載の発電機。   The generator according to claim 1, wherein a plurality of stators are laminated in the axial direction to form a multilayer structure. 前記ロータ側の極とステータ側の極の力関係がバランスするべく、両極の数量比を選定したことを特徴とする請求項1又は2記載の発電機。   The generator according to claim 1 or 2, wherein a quantity ratio of both poles is selected so that a force relationship between the poles on the rotor side and the poles on the stator side is balanced. 前記ロータ側の極を8の整数倍に、前記ステータ側の極を9の整数倍に、それぞれ設定して、両極の力関係をバランスさせたことを特徴とする請求項3記載の発電機。   4. The generator according to claim 3, wherein the rotor-side pole is set to an integer multiple of 8 and the stator-side pole is set to an integer multiple of 9, so that the force relationship between both poles is balanced. 前記ロータが風力により回転駆動されて風力発電することを特徴とする請求項1〜4のうちいずれか1つに記載の発電機。   The generator according to claim 1, wherein the rotor is rotationally driven by wind power to generate wind power.
JP2009211156A 2009-09-12 2009-09-12 Generator Pending JP2011062029A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009211156A JP2011062029A (en) 2009-09-12 2009-09-12 Generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009211156A JP2011062029A (en) 2009-09-12 2009-09-12 Generator

Publications (1)

Publication Number Publication Date
JP2011062029A true JP2011062029A (en) 2011-03-24

Family

ID=43948984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009211156A Pending JP2011062029A (en) 2009-09-12 2009-09-12 Generator

Country Status (1)

Country Link
JP (1) JP2011062029A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104067486A (en) * 2011-12-21 2014-09-24 乌本产权有限公司 Generator of a gearless wind turbine
CN106440360A (en) * 2015-08-05 2017-02-22 江苏金源锻造股份有限公司 Wind power generation heating system of crude oil storage tank

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104067486A (en) * 2011-12-21 2014-09-24 乌本产权有限公司 Generator of a gearless wind turbine
JP2015502735A (en) * 2011-12-21 2015-01-22 ヴォッベン プロパティーズ ゲーエムベーハーWobben Properties Gmbh Gearless wind turbine generator
KR101753950B1 (en) * 2011-12-21 2017-07-19 보벤 프로퍼티즈 게엠베하 Generator of a gearless wind turbine
CN104067486B (en) * 2011-12-21 2018-01-26 乌本产权有限公司 The generator of wind energy plant without speed changer
CN106440360A (en) * 2015-08-05 2017-02-22 江苏金源锻造股份有限公司 Wind power generation heating system of crude oil storage tank

Similar Documents

Publication Publication Date Title
JP6008473B2 (en) Generator and manufacturing method thereof
More et al. Analysis of flux-reversal machine based on fictitious electrical gear
Polinder et al. Comparison of direct-drive and geared generator concepts for wind turbines
US8461730B2 (en) Radial flux permanent magnet alternator with dielectric stator block
US20160049838A1 (en) Synchronous machine
JP2008005603A (en) Synchronous machine and power generating system using it as generator
JP2010011686A (en) Power generator and wind-power generation apparatus equipped with the same
JP2019502358A (en) Permanent magnet rotating device for minimizing cogging torque, permanent magnet generator and permanent magnet motor using the same
JP4544855B2 (en) Structure of permanent magnet generator for distributed power supply
US8829755B2 (en) Composite permanent magnet synchronous machine
JP2007288917A (en) Power generation device
Beik et al. High voltage generator for wind turbines
JP2011062029A (en) Generator
CN102025200B (en) Slotless breeze-driven generator set
WO2010146368A2 (en) An electrical machine
JP5795170B2 (en) Power generation system
JP2014045649A (en) Electrical machine and method for operating electrical machine
RU209317U1 (en) Polyphase generator
Dorrell et al. Analysis of design variations in brushless double-fed reluctance generators for wind turbine applications
JP3973535B2 (en) Power generator for distributed power supply
Zhang et al. Performance analysis of doubly excited brushless generator with outer rotor for wind power application
JP2017163796A (en) Dynamo-electric machine
JP5349258B2 (en) Power generator for distributed power supply
CN106451970B (en) Four electrical port brushless dual-feed motor of reluctance rotor bimorph transducer
JP2007110790A (en) Winding method for permanent magnet type generator for distributed power source