JP2011061933A - Permanent magnet type rotary electric machine - Google Patents

Permanent magnet type rotary electric machine Download PDF

Info

Publication number
JP2011061933A
JP2011061933A JP2009207476A JP2009207476A JP2011061933A JP 2011061933 A JP2011061933 A JP 2011061933A JP 2009207476 A JP2009207476 A JP 2009207476A JP 2009207476 A JP2009207476 A JP 2009207476A JP 2011061933 A JP2011061933 A JP 2011061933A
Authority
JP
Japan
Prior art keywords
rotor
permanent magnet
voltage
current
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009207476A
Other languages
Japanese (ja)
Inventor
Kazuto Sakai
和人 堺
Kazuaki Yuki
和明 結城
Norio Takahashi
則雄 高橋
Yutaka Hashiba
豊 橋場
Hiroshi Mochikawa
宏 餅川
Kazuya Yasui
和也 安井
Masakatsu Shintomi
将克 新冨
Gooutteriritto
ゴーウッテリリット
Ryuta Hasegawa
隆太 長谷川
Sukeyasu Mochizuki
資康 望月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2009207476A priority Critical patent/JP2011061933A/en
Publication of JP2011061933A publication Critical patent/JP2011061933A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Permanent Magnet Type Synchronous Machine (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a permanent magnet type rotary electric machine that performs either inductor operation or synchronizer operation, and reduces power consumption by improving total efficiency. <P>SOLUTION: Each magnet magnetic pole 5 of the permanent magnet type rotary electric machine includes a stator having an armature coil provided in a stator core, and a rotor 1 having a rotor core 2 and a movable magnetic force magnet 3 and a fixed magnetic force magnet 4, 4 which are provided on the rotor core 2. Copper bars 7 are disposed near to the outer circumferential surface of the rotor core 2. When the rotor 1 is started, the amount of interlinkage flux of the permanent magnet is reduced, and a rotation magnetic field generated by a current applied to the coil of the stator and the rotor are asynchronously started by a torque generated by an induction current applied to the copper bars 7 of the rotor 1. After the activation, the amount of interlinkage flux of the permanent magnet is increased, and the rotation magnetic field generated by the current applied to the coil of the stator and the rotor are synchronously started by the torque generated by the permanent magnet and the current. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、2種類以上の永久磁石を使用し、そのうちの少なくとも1つの永久磁石の磁束量を不可逆的に変化させて、誘導機動作と同期機の動作のいずれかの動作を行うことを可能とした永久磁石式回転電機に関する。   In the present invention, two or more types of permanent magnets are used, and the amount of magnetic flux of at least one of the permanent magnets is irreversibly changed to perform either the induction machine operation or the synchronous machine operation. The present invention relates to a permanent magnet type rotating electrical machine.

回転子内に永久磁石を内蔵した永久磁石式回転電機では、永久磁石の鎖交磁束が常に一定の強さで発生しているので、永久磁石による誘導電圧は回転速度に比例して高くなる。そのため、低速から高速まで可変速運転する場合、高速回転では永久磁石による誘導電圧(逆起電圧)が極めて高くなる。永久磁石による誘導電圧がインバータの電子部品に印加されてその耐電圧以上になると、電子部品が絶縁破壊する。これを防止するため、永久磁石の磁束量が耐電圧以下になるように削減された設計を行うことが考えられるが、その場合には永久磁石式回転電機の低速域での出力及び効率が低下する。   In a permanent magnet type rotating electrical machine in which a permanent magnet is built in a rotor, the interlinkage magnetic flux of the permanent magnet is always generated with a constant strength, so that the induced voltage by the permanent magnet increases in proportion to the rotational speed. Therefore, when variable speed operation is performed from low speed to high speed, the induced voltage (back electromotive voltage) by the permanent magnet becomes extremely high at high speed rotation. When the induced voltage by the permanent magnet is applied to the electronic component of the inverter and exceeds its withstand voltage, the electronic component breaks down. In order to prevent this, it may be possible to design the permanent magnet so that the amount of magnetic flux of the permanent magnet is less than the withstand voltage, but in that case the output and efficiency in the low speed range of the permanent magnet type rotating electrical machine will be reduced. To do.

低速から高速まで定出力に近い可変速運転を行う場合、永久磁石の鎖交磁束は一定であるので、高速回転域では回転電機の電圧が電源電圧上限に達して出力に必要な電流が流れなくなる。その結果、高速回転域では出力が大幅に低下し、さらには高速回転までの広範囲で駆動できなくなる。   When performing variable speed operation close to constant output from low speed to high speed, the flux linkage of the permanent magnet is constant, so the rotating electrical machine voltage reaches the upper limit of the power supply voltage in the high-speed rotation range and the current required for output does not flow. . As a result, the output is greatly reduced in the high-speed rotation region, and further, it cannot be driven in a wide range up to the high-speed rotation.

そこで、非特許文献1に記載の技術では、可変速範囲を拡大するために、弱め磁束制御が適用されている。すなわち、電機子巻線のd軸の総鎖交磁束量はd軸電流による磁束と永久磁石による磁束とから成る。弱め磁束制御では、負のd軸電流による磁束を発生させ、この負のd軸電流による磁束で全鎖交磁束量を減少させる。この弱め磁束制御において、永久磁石は磁気特性(B−H特性)の動作点が可逆の範囲で変化する。このため、永久磁石は弱め磁束制御の減磁界により不可逆的に減磁しないように高保磁力のNdFeB磁石を使用する。   Therefore, in the technique described in Non-Patent Document 1, the flux-weakening control is applied to expand the variable speed range. That is, the total amount of interlinkage magnetic flux on the d-axis of the armature winding is composed of the magnetic flux due to the d-axis current and the magnetic flux due to the permanent magnet. In the flux weakening control, a magnetic flux is generated by a negative d-axis current, and the total flux linkage is reduced by the magnetic flux by the negative d-axis current. In the flux weakening control, the operating point of the magnetic characteristics (BH characteristics) of the permanent magnet changes within a reversible range. For this reason, the NdFeB magnet having a high coercive force is used as the permanent magnet so as not to be irreversibly demagnetized by the demagnetizing field of the weak magnetic flux control.

弱め磁束制御を使用した運転では、負のd軸電流による磁束で鎖交磁束が減少するので、鎖交磁束の減少分が電圧上限値に対する電圧の余裕分をつくる。そして、トルク成分となる電流を増加できるので高速域での出力が増加する。また、電圧余裕分だけ回転速度を上昇させることができ、可変速運転の範囲が拡大される。   In the operation using the flux weakening control, the linkage magnetic flux is reduced by the magnetic flux due to the negative d-axis current. Therefore, the decrease of the linkage flux creates a margin of voltage with respect to the voltage upper limit value. And since the electric current which becomes a torque component can be increased, the output in a high speed region increases. Further, the rotational speed can be increased by the voltage margin, and the range of variable speed operation is expanded.

しかしながら、出力には寄与しない負のd軸電流を常時流し続ける方法では、銅損が増加して効率は悪化する問題点がある。さらに、負のd軸電流による減磁界は高調波磁束を生じ、高調波磁束等で生じる電圧の増加は弱め磁束制御による電圧の低減を妨げる。これらより埋め込み型永久磁石式回転電機に弱め磁束制御を適用しても基底速度の3倍以上の可変速運転は困難である。さらに、前記高調波磁束により鉄損が増加し、中・高速域で大幅に効率が低下したり、高調波磁束による電磁力で振動を発生することもある。   However, in the method in which a negative d-axis current that does not contribute to the output is continuously supplied, there is a problem that the copper loss increases and the efficiency deteriorates. Further, the demagnetizing field due to the negative d-axis current generates a harmonic magnetic flux, and the increase in the voltage generated by the harmonic magnetic flux etc. weakens the voltage reduction by the magnetic flux control. Therefore, even if the flux-weakening control is applied to the embedded permanent magnet type rotating electric machine, it is difficult to operate at a variable speed that is three times or more the base speed. Furthermore, the iron loss increases due to the harmonic magnetic flux, and the efficiency may be significantly reduced in the middle and high speed ranges, or vibration may be generated by electromagnetic force due to the harmonic magnetic flux.

また、ハイブリッド自動車用駆動モータに埋め込み型永久磁石モータを適用した場合、エンジンのみで駆動される状態ではモータは連れ回される。中・高速回転ではモータの永久磁石による誘導電圧が上昇するので電源電圧以内に抑制するため、弱め磁束制御で負のd軸電流を流し続ける。この状態では、モータは損失のみを発生するので総合運転効率が悪化する。   Further, when an embedded permanent magnet motor is applied to a drive motor for a hybrid vehicle, the motor is rotated in a state where it is driven only by an engine. In medium and high speed rotations, the induced voltage by the permanent magnet of the motor rises, so to suppress it to within the power supply voltage, the negative d-axis current continues to flow in the flux weakening control. In this state, since the motor generates only a loss, the overall operation efficiency is deteriorated.

さらに、電車用駆動モータに埋め込み型永久磁石モータを適用した場合、電車は惰行運転する状態があり、前記と同様に永久磁石による誘導電圧を電源電圧以下にするため弱め磁束制御で負のd軸電流を流し続けることになる。その場合、モータは損失のみを発生するので、総合運転効率が悪化する。   Furthermore, when an embedded permanent magnet motor is applied to a train drive motor, the train is in a coasting state, and a negative d-axis is used in the magnetic flux weakening control to reduce the induced voltage by the permanent magnet to be equal to or lower than the power supply voltage as described above. The current will continue to flow. In that case, since the motor generates only a loss, the overall operation efficiency deteriorates.

このような問題点を解決する技術として、特許文献1や特許文献2のような全鎖交磁束量を調整する技術が提案されている。これらの技術では、回転子内に、固定子巻線のd軸電流で作る磁界により不可逆的に磁束密度が変化する程度の低保磁力の永久磁石(以下、可変磁力磁石という)と、可変磁力磁石の2倍以上の保磁力を有する高保磁力の永久磁石(以下、固定磁力磁石という)を配置する。そして、電源電圧の最大電圧以上となる高速回転域では、可変磁力磁石と固定磁力磁石による全鎖交磁束が減じるように、全鎖交磁束量を調整する。   As a technique for solving such a problem, a technique for adjusting the total flux linkage as in Patent Document 1 and Patent Document 2 has been proposed. In these techniques, a low coercivity permanent magnet (hereinafter referred to as a variable magnetic magnet) in which the magnetic flux density is irreversibly changed by a magnetic field generated by the d-axis current of the stator winding in the rotor, and a variable magnetic force. A high coercive force permanent magnet (hereinafter referred to as a fixed magnetic force magnet) having a coercive force twice or more that of the magnet is disposed. Then, in the high-speed rotation range that is equal to or higher than the maximum voltage of the power supply voltage, the total interlinkage magnetic flux amount is adjusted so that the total interlinkage magnetic flux by the variable magnetic magnet and the fixed magnetic magnet is reduced.

特開2006−280195号公報JP 2006-280195 A 特開2008−245368号公報JP 2008-245368 A

埋込磁石同期モータの設計と制御,武田洋次・他,オーム社Design and control of embedded magnet synchronous motor, Yoji Takeda et al., Ohm

しかしながら、特許文献1の発明では、回転子の全鎖交磁束量を調整した場合でも、回転子を固定子のコイルを流れる電流が生成する回転磁界に同期して回転させると誘導電圧が大きくなるという問題があった。また、ハイブリッド自動車や電気自動車ではバッテリーの電圧及び鉄道の架線電圧は変動の変動が大きく、電源電圧の電圧が低下することがある。そのため、電源電圧が不足して回転子の全鎖交磁束量をさらに弱め磁束電流を増加することになる。最悪の状態では電圧不足で回転できなくなるという問題点がある。   However, in the invention of Patent Document 1, even when the total flux linkage of the rotor is adjusted, the induced voltage increases when the rotor is rotated in synchronization with the rotating magnetic field generated by the current flowing through the stator coil. There was a problem. In hybrid vehicles and electric vehicles, the battery voltage and the railway overhead line voltage vary greatly, and the power supply voltage may decrease. For this reason, the power supply voltage is insufficient, and the total interlinkage magnetic flux of the rotor is further weakened to increase the magnetic flux current. In the worst state, there is a problem that the rotation is impossible due to insufficient voltage.

本発明は前記のような従来技術の問題点を解決するために提案されたものであって、可変磁力磁石と固定磁力磁石とを磁極に配置した永久磁石式回転電機において、誘導機動作と永久磁石同期機の動作のいずれかの動作を行うことを可能とし、これにより、軽負荷から高負荷、低速から高速回転まで効率の良くなる動作で運転可能とし、総合効率は向上して消費電力量を低減できる永久磁石式型回転電機を得ることを目的とする。   The present invention has been proposed in order to solve the above-described problems of the prior art. In a permanent magnet type rotating electrical machine in which a variable magnetic magnet and a fixed magnetic magnet are arranged as magnetic poles, induction machine operation and permanent It is possible to perform any of the operations of the magnet synchronous machine, which makes it possible to operate with efficient operation from light load to high load, low speed to high speed rotation, improving the overall efficiency and power consumption An object of the present invention is to obtain a permanent magnet type rotary electric machine capable of reducing the above.

前記の目的を達成するために、本発明の永久磁石式回転電機は、複数の永久磁石と表面付近に導電性部材とを設けた回転子と、コイルを設けた固定子からなり、前記固定子コイルの電流が作る磁界により少なくとも1個の永久磁石を磁化させることにより永久磁石の磁束量を不可逆的に変化させ、起動時には、前記永久磁石の鎖交磁束量を少なくして前記回転子の導電性部材の誘導電流で生じるトルクにより、固定子のコイルを流れる電流が生成する回転磁界と回転子とを非同期で始動し、始動後は、前記永久磁石の鎖交磁束量を増加させて永久磁石と電流によるトルクにより、固定子のコイルを流れる電流が生成する回転磁界と回転子とを同期して駆動することを特徴とする。   In order to achieve the above object, a permanent magnet type rotating electrical machine according to the present invention comprises a rotor provided with a plurality of permanent magnets and a conductive member near the surface, and a stator provided with a coil. At least one permanent magnet is magnetized by a magnetic field generated by a coil current, so that the amount of magnetic flux of the permanent magnet is irreversibly changed. The rotating magnetic field generated by the current flowing through the stator coil and the rotor are started asynchronously by the torque generated by the induced current of the magnetic member, and after starting, the amount of flux linkage of the permanent magnet is increased to increase the permanent magnet The rotating magnetic field generated by the current flowing through the stator coil and the rotor are driven in synchronism with the torque generated by the current.

以上のような構成を有する本発明によれば、回転子中の可変磁力磁石と固定磁力磁石の鎖交磁束を可変することにより、誘導機動作と永久磁石同期機の動作のいずれかの動作を行うことが可能となる。これにより、軽負荷から高負荷、低速から高速回転まで効率の良くなる動作で運転できるので、総合効率は向上して消費電力量を低減した永久磁石式回転電機を得ることができる。   According to the present invention having the above-described configuration, either the induction machine operation or the permanent magnet synchronous machine operation can be performed by changing the linkage flux between the variable magnetic magnet and the fixed magnetic magnet in the rotor. Can be done. Thereby, since it can drive | operate by the operation | movement which becomes efficient from light load to high load and low speed to high speed rotation, the permanent magnet type rotary electric machine which improved the total efficiency and reduced the power consumption can be obtained.

本発明の実施例1における回転子の断面図Sectional drawing of the rotor in Example 1 of this invention 本発明の実施例1における減磁時の状態を示す断面図Sectional drawing which shows the state at the time of demagnetization in Example 1 of this invention 本発明の実施例1における増磁時の状態を示す断面図Sectional drawing which shows the state at the time of the magnetization in Example 1 of this invention 本発明の実施例1における変磁力磁石と固定磁力磁石との鎖交磁束が最小の状態を示す図The figure which shows the state with the minimum flux linkage between the variable-magnetism magnet and the fixed-magnetism magnet in Example 1 of this invention. 本発明の実施例1における変磁力磁石と固定磁力磁石との鎖交磁束が増加時の状態を示す図The figure which shows the state at the time of the linkage magnetic flux of the variable magnetic force magnet and fixed magnetic force magnet in Example 1 of this invention increasing. 本発明の実施例2における変磁力磁石と固定磁力磁石との鎖交磁束を図5の状態からさらに増加した状態を示す図The figure which shows the state which further increased the interlinkage magnetic flux of the variable magnetic force magnet and fixed magnetic force magnet in Example 2 of this invention from the state of FIG. 本発明の永久磁石式回転電機の制御回路の一例を示すブロック図The block diagram which shows an example of the control circuit of the permanent-magnet-type rotary electric machine of this invention

以下、本発明に係る永久磁石式型回転電機の実施例について、図面を参照して説明する。本実施例の回転電機は8極の場合で説明しており、他の極数でも同様に適用できる。   Hereinafter, embodiments of a permanent magnet type rotating electrical machine according to the present invention will be described with reference to the drawings. The rotary electric machine of the present embodiment is described in the case of 8 poles, and can be similarly applied to other pole numbers.

[1−1.構成]
本発明の実施例については図1を用いて説明する。本発明の実施例の回転子1は、図1に示すように回転子鉄心2、保磁力と磁化方向の厚みの積が小となる永久磁石3(以下、可変磁力磁石という)、保磁力と磁化方向の厚みの積が大となる永久磁石4(以下、固定磁力磁石という)から構成する。
[1-1. Constitution]
An embodiment of the present invention will be described with reference to FIG. As shown in FIG. 1, the rotor 1 of the embodiment of the present invention includes a rotor core 2, a permanent magnet 3 (hereinafter referred to as a variable magnetic force magnet) having a small product of a coercive force and a thickness in the magnetization direction, a coercive force, A permanent magnet 4 (hereinafter referred to as a fixed magnetic magnet) having a large product of thickness in the magnetization direction is used.

本実施例では、可変磁力磁石3としてはフェライト磁石、固定磁力磁石4としてはNdFeB磁石を使用する。また、可変磁力磁石3としては、SmCo系磁石、CeCo系磁石、NdFeB系磁石の中でも保持力を低下させた磁石を使用することもできる。また、一例として、可変磁力磁石3の保磁力を280kA/m、固定磁力磁石4の保磁力は1000kA/mとするが、必ずしもこのような値に限定されるものではない。可変磁力磁石3はインバータが許容できる電流値のd軸電流によって不可逆的に磁化され、固定磁力磁石4はd軸電流によって不可逆的に磁化されないものであれば良い。   In this embodiment, a ferrite magnet is used as the variable magnetic magnet 3 and an NdFeB magnet is used as the fixed magnetic magnet 4. As the variable magnetic force magnet 3, a magnet having a reduced holding force among SmCo magnets, CeCo magnets, and NdFeB magnets may be used. Further, as an example, the coercive force of the variable magnetic magnet 3 is 280 kA / m and the coercive force of the fixed magnetic magnet 4 is 1000 kA / m. However, the values are not necessarily limited to these values. The variable magnetic magnet 3 is only required to be irreversibly magnetized by the d-axis current having a current value acceptable by the inverter, and the fixed magnetic magnet 4 is not irreversibly magnetized by the d-axis current.

回転子鉄心2は珪素鋼板を積層して構成し、前記の可変磁力磁石3及び固定磁力磁石4,4は回転子鉄心2内に埋め込む。回転子鉄心2の外周部には導電性部材7を設けており、本実施例では、穴を設けて銅バーを埋め込み、この銅バーの端部を銅のリングで短絡したものを使用している。本実施例の回転電機は8極であり、1つの磁石磁極5は、1つの可変磁力磁石3とこの両側に配置した2つ固定磁力磁石4,4とより構成する。可変磁力磁石3と固定磁力磁石4は磁気回路上では並列回路を構成するように回転子鉄心2に埋め込んで配置する。図1では、d軸中心部に可変磁力磁石3を配置し、その左右の両側に固定磁力磁石4を配置する。   The rotor core 2 is formed by laminating silicon steel plates, and the variable magnetic magnet 3 and the fixed magnetic magnets 4 and 4 are embedded in the rotor core 2. A conductive member 7 is provided on the outer periphery of the rotor core 2, and in this embodiment, a hole is provided and a copper bar is embedded, and the end of the copper bar is short-circuited with a copper ring. Yes. The rotating electric machine of this embodiment has eight poles, and one magnet magnetic pole 5 is composed of one variable magnetic magnet 3 and two fixed magnetic magnets 4 and 4 disposed on both sides thereof. The variable magnetic magnet 3 and the fixed magnetic magnet 4 are embedded in the rotor core 2 so as to form a parallel circuit on the magnetic circuit. In FIG. 1, the variable magnetic force magnet 3 is disposed at the center of the d-axis, and the fixed magnetic force magnets 4 are disposed on both the left and right sides thereof.

したがって、回転子1内でq軸方向の磁路となる部分には磁石や磁気障壁となる穴は配置されてなく鉄心となっているので、磁気抵抗が極めて小さくい部分がある。この部分が、負のd軸電流を流してリラクタンストルクを発生させた場合において、鉄の磁極部6となる。一方、d軸方向の永久磁石の磁極となる部分には前記可変磁力磁石3と固定磁力磁石4を配置し、磁気抵抗が大きくしている。これにより、回転子の周方向に磁気抵抗が異なる回転子が構成できる。   Therefore, in the portion that becomes the magnetic path in the q-axis direction in the rotor 1, the magnet and the hole that becomes the magnetic barrier are not arranged but the iron core, and therefore there is a portion where the magnetic resistance is extremely small. This portion becomes the iron magnetic pole portion 6 when a reluctance torque is generated by flowing a negative d-axis current. On the other hand, the variable magnetic force magnet 3 and the fixed magnetic force magnet 4 are arranged in the portion that becomes the magnetic pole of the permanent magnet in the d-axis direction, thereby increasing the magnetic resistance. Thereby, the rotor from which magnetic resistance differs in the circumferential direction of a rotor can be comprised.

また、図示していないが、回転子鉄心2の外周には、エアギャップを介して固定子を設ける。この固定子は、電機子鉄心と電機子巻線とを有する。この電機子巻線に流れる電流により、銅バー7に誘導電流が誘起される。また、この電機子巻線は、永久磁石式回転電機の外部に設けられた電源システムに接続される。電源システムでは、インバータを利用して、永久磁石式回転電機が駆動するのに必要な電力を供給する。   Although not shown, a stator is provided on the outer periphery of the rotor core 2 via an air gap. This stator has an armature core and an armature winding. An induced current is induced in the copper bar 7 by the current flowing through the armature winding. The armature winding is connected to a power supply system provided outside the permanent magnet type rotating electric machine. In the power supply system, an electric power necessary for driving the permanent magnet type rotating electric machine is supplied using an inverter.

[1−2.制御回路の構成]
図7は、実施例1の永久磁石式回転電機を電動機として回転駆動するための制御回路の一例を示すブロック図である。この制御回路は、基本的には、前記特許文献2に示す回路と同様な構成を有するものであることから、PWM制御部分に関する構成は省略してある。
[1-2. Configuration of control circuit]
FIG. 7 is a block diagram illustrating an example of a control circuit for rotationally driving the permanent magnet type rotating electric machine according to the first embodiment as an electric motor. Since this control circuit basically has the same configuration as the circuit shown in Patent Document 2, the configuration relating to the PWM control portion is omitted.

運転指令とトルク指令を受け付ける運転制御部120には、可変磁力磁石を使用した永久磁石式回転電機に共通の可変磁束制御部121及びPWM回路123に加え、本発明に特有の誘導−同期運転の切替制御部122が設けられている。   In addition to the variable magnetic flux control unit 121 and the PWM circuit 123 common to the permanent magnet type rotating electric machine using the variable magnetic force magnet, the operation control unit 120 that receives the operation command and the torque command includes the induction-synchronous operation unique to the present invention. A switching control unit 122 is provided.

一方、この運転制御部120により制御される本発明の永久磁石式回転電機101は、次のような構成を有している。電源である直流電源(例えば、バッテリー)102、直流電力を交流に変換するインバータ103と、電動機電力を検出するための交流電流する電流センサ104などの検出器である。これらの検出器は、すべて必要なものではなく、以下述べる各実施例に記載したように、1つあるいは複数の検出器を使用し、その検出情報に基づいて、前記運転制御部120が永久磁石式回転電機101を運転する。   On the other hand, the permanent magnet type rotating electrical machine 101 of the present invention controlled by the operation control unit 120 has the following configuration. A detector such as a DC power source (for example, a battery) 102 that is a power source, an inverter 103 that converts DC power into AC, and a current sensor 104 that generates AC current for detecting motor power. Not all of these detectors are necessary. As described in each embodiment described below, one or a plurality of detectors are used, and the operation control unit 120 uses the permanent magnet based on the detection information. The rotary electric machine 101 is operated.

検出器としては、例えば、次のようなものがある。
(1) 回転子1の回転速度を計測する速度センサ105
(2) 回転電機の駆動制御盤であるインバータの出力電流を計測する電流センサ104
(3) 電源システムの電源電圧(インバータの直流側電圧)を計測する電圧計107
(4) 永久磁石の磁極位置を検出する磁極位置センサ109
(5) 永久磁石の磁束により発生する固定子コイルに流れる誘起電圧を検出する検出器110
Examples of detectors include the following.
(1) Speed sensor 105 that measures the rotational speed of the rotor 1
(2) Current sensor 104 that measures the output current of the inverter that is the drive control panel of the rotating electrical machine
(3) Voltmeter 107 that measures the power supply voltage of the power supply system (DC side voltage of the inverter)
(4) Magnetic pole position sensor 109 for detecting the magnetic pole position of the permanent magnet
(5) Detector 110 for detecting the induced voltage flowing in the stator coil generated by the magnetic flux of the permanent magnet

[1−3.d軸電流による減磁及び増磁作用]
次に、前記のような構成を有する本実施例の永久磁石式回転電機における増磁時と減磁時の作用について説明する。なお、各図中に、電機子巻線によって発生した磁力の方向を矢印により示す。
[1-3. Demagnetization and magnetisation by d-axis current]
Next, the action at the time of magnetizing and demagnetizing in the permanent magnet type rotating electrical machine of the present embodiment having the above-described configuration will be described. In each figure, the direction of the magnetic force generated by the armature winding is indicated by an arrow.

図2は、永久磁石の全鎖交磁束を減少させる過程(減磁過程)を説明する図である。本実施例では、固定子の電機子巻線に通電時間が10ms程度の極短時間となるパルス的な電流を流して磁界を形成し、可変磁力磁石3に磁界Aを作用させる。永久磁石を磁化するための磁界Aを形成するパルス電流は、固定子の電機子巻線のd軸電流成分とする。   FIG. 2 is a diagram illustrating a process (demagnetization process) of reducing the total flux linkage of the permanent magnet. In the present embodiment, a magnetic field is formed by applying a pulse-like current having an energization time of about 10 ms to the armature winding of the stator to form a magnetic field, and the magnetic field A is applied to the variable magnetic force magnet 3. The pulse current that forms the magnetic field A for magnetizing the permanent magnet is the d-axis current component of the armature winding of the stator.

2種類の永久磁石の厚みはほぼ同等するとd軸電流による作用磁界による永久磁石の磁化状態変化は保磁力の大きさにより変る。永久磁石の磁化方向とは逆方向の磁界を発生する負のd軸電流を電機子巻線にパルス的に通電する。負のd軸電流によって変化した磁石内の磁界Aが−280kA/mになったとすると、可変磁力磁石3の保磁力が280kA/mなので可変磁力磁石3の磁力は不可逆的に大幅に低下する。   If the thicknesses of the two types of permanent magnets are substantially equal, the change in the magnetization state of the permanent magnet due to the applied magnetic field due to the d-axis current varies depending on the magnitude of the coercive force. A negative d-axis current that generates a magnetic field in a direction opposite to the magnetization direction of the permanent magnet is pulsed through the armature winding. If the magnetic field A in the magnet changed by the negative d-axis current becomes −280 kA / m, the coercive force of the variable magnetic magnet 3 is 280 kA / m, so that the magnetic force of the variable magnetic magnet 3 significantly decreases irreversibly.

一方、固定磁力磁石4の保磁力が1000kA/mなので磁力は不可逆的に低下しない。その結果、パルス的なd軸電流が0になると可変磁力磁石3のみが減磁した状態となり、全体の磁石による鎖交磁束量を減少することができる。さらに−280kA/mよりも大きな逆磁界をかけると可変磁力磁石3は逆方向に磁化して極性は反転する。この場合、可変磁力磁石3の磁束と固定磁力磁石4の磁束は打ち消しあうので永久磁石の全鎖交磁束は最小になる。   On the other hand, since the coercive force of the fixed magnetic magnet 4 is 1000 kA / m, the magnetic force does not decrease irreversibly. As a result, when the pulsed d-axis current becomes zero, only the variable magnetic force magnet 3 is demagnetized, and the amount of interlinkage magnetic flux by the entire magnet can be reduced. Further, when a reverse magnetic field greater than -280 kA / m is applied, the variable magnetic force magnet 3 is magnetized in the reverse direction and the polarity is reversed. In this case, since the magnetic flux of the variable magnetic magnet 3 and the magnetic flux of the fixed magnetic magnet 4 cancel each other, the total interlinkage magnetic flux of the permanent magnet is minimized.

つぎに、永久磁石の全鎖交磁束を増加させて最大に復元させる過程(増磁過程)を説明する。減磁完了の状態では、図3に示すように、可変磁力磁石3の極性は反転しており、反転した磁化とは逆方向(図2に示す初期の磁化方向)の磁界を発生する正のd軸電流を電機子巻線に通電する。反転した逆極性の可変磁力磁石3の磁力は前記磁界が増すに連れて減少し、0になる。さらに正のd軸電流による磁界を増加させると極性は反転して初期の極性の方向に磁化される。ほぼ完全な着磁に必要な磁界である350kA/mをかけると、可変磁力磁石3は着磁されてほぼ最大に磁力を発生する。   Next, a process of increasing the total interlinkage magnetic flux of the permanent magnet and restoring it to the maximum (magnetization process) will be described. In the demagnetization completed state, as shown in FIG. 3, the polarity of the variable magnetic force magnet 3 is reversed, and a positive magnetic field that generates a magnetic field in a direction opposite to the reversed magnetization (the initial magnetization direction shown in FIG. 2) is generated. A d-axis current is passed through the armature winding. The magnetic force of the reversed reversed polarity variable magnetic magnet 3 decreases as the magnetic field increases and becomes zero. When the magnetic field due to the positive d-axis current is further increased, the polarity is reversed and magnetized in the direction of the initial polarity. When 350 kA / m, which is a magnetic field necessary for almost complete magnetization, is applied, the variable magnetic force magnet 3 is magnetized and generates a magnetic force almost at its maximum.

この場合、減磁時と同様に、d軸電流は連続通電で増加させる必要はなく、目標の磁力にする電流を瞬間的なパルス電流を流せばよい。一方、固定磁力磁石4の保磁力が1000kA/mなので、d軸電流による磁界が作用しても固定磁力磁石4の磁力は不可逆的に変化しない。その結果、パルス的な正のd軸電流が0になると可変磁力磁石3のみが増磁した状態となり、全体の磁石による鎖交磁束量を増加することができる。これにより元の最大の鎖交磁束量に戻すことが可能となる。   In this case, as in the case of demagnetization, it is not necessary to increase the d-axis current by continuous energization, and an instantaneous pulse current may be used as the current to achieve the target magnetic force. On the other hand, since the coercive force of the fixed magnetic magnet 4 is 1000 kA / m, the magnetic force of the fixed magnetic magnet 4 does not change irreversibly even when a magnetic field due to the d-axis current acts. As a result, when the pulsed positive d-axis current becomes 0, only the variable magnetic force magnet 3 is magnetized, and the amount of flux linkage by the entire magnet can be increased. This makes it possible to return to the original maximum flux linkage.

以上のようにd軸電流による瞬時的な磁界を可変磁力磁石3と固定磁力磁石4に作用させることにより、可変磁力磁石3の磁力を不可逆的に変化させて、永久磁石の全鎖交磁束量を任意に変化させることが可能となる。   As described above, by applying an instantaneous magnetic field due to the d-axis current to the variable magnetic magnet 3 and the fixed magnetic magnet 4, the magnetic force of the variable magnetic magnet 3 is irreversibly changed, and the total interlinkage magnetic flux of the permanent magnet Can be arbitrarily changed.

[1−4.永久磁石式回転電機の作用](請求項1,2)
前記のような構成を有する本実施例の永久磁石式回転電機の作用について説明する。商用周波の電源で駆動する場合、図4に示すように、始動時には可変磁力磁石3を磁化して可変磁力磁石3と固定磁力磁石4との全鎖交磁束が最小に状態にする。負のd軸電流により逆磁界で可変磁力磁石3の磁力が逆方向に磁化し、全体の磁石による鎖交磁束が最小になった状態を示すものである。この場合、可変磁力磁石3と固定磁力磁石4,4との磁化方向が逆であるため、両方の永久磁石の磁束が減算され磁束が最小となる。このとき、極性を反転させる可変磁力磁石3の磁束を大きくすれば可変磁力磁石3と固定磁力磁石4,4による鎖交磁束を0にすることも可能である。
[1-4. Action of Permanent Magnet Type Rotating Electric Machine] (Claims 1 and 2)
The operation of the permanent magnet type rotating electric machine of the present embodiment having the above-described configuration will be described. When driving with a commercial frequency power source, as shown in FIG. 4, the variable magnetic force magnet 3 is magnetized at the time of start-up so that the total interlinkage magnetic flux between the variable magnetic force magnet 3 and the fixed magnetic force magnet 4 is minimized. This shows a state in which the magnetic force of the variable magnetic force magnet 3 is magnetized in the reverse direction by a reverse magnetic field due to the negative d-axis current, and the interlinkage magnetic flux by the entire magnet is minimized. In this case, since the magnetization directions of the variable magnetic magnet 3 and the fixed magnetic magnets 4 and 4 are opposite, the magnetic fluxes of both permanent magnets are subtracted to minimize the magnetic flux. At this time, if the magnetic flux of the variable magnetic magnet 3 whose polarity is reversed is increased, the interlinkage magnetic flux between the variable magnetic magnet 3 and the fixed magnetic magnets 4 and 4 can be reduced to zero.

この状態で電源電流を通電すると、固定子のコイルが形成する回転磁界が発生し、回転子の銅バー7のコイルに誘導電流が生じる。誘導機と同様な作用が生じて、銅バー7を流れる誘導電流と固定子のコイルに流れる励磁電流の磁界でトルクが発生して回転子1が起動する。   When a power supply current is applied in this state, a rotating magnetic field formed by the stator coil is generated, and an induced current is generated in the coil of the copper bar 7 of the rotor. An action similar to that of the induction machine occurs, and torque is generated by the magnetic field of the induction current flowing through the copper bar 7 and the excitation current flowing through the stator coil, and the rotor 1 is started.

回転子1が起動した後は、図5に示すように、d軸電流により可変磁力磁石3を増磁して可変磁力磁石3と固定磁力磁石4との全鎖交磁束が大きくなる状態にする。これにより、可変磁力磁石3と固定磁力磁石4による同期引き入れの力が大きくなり、回転子1がすべって回転している状態から同期回転に引き入れることができる。すなわち、回転子1は銅バー7にながれる誘導電流によるトルクで回転する状態から、可変磁力磁石3と固定磁力磁石4とによる鎖交磁束と、固定子のコイルを流れる電流が生成する回転磁界に同期して回転する状態に移行する。   After the rotor 1 is started, as shown in FIG. 5, the variable magnetic force magnet 3 is magnetized by the d-axis current so that the total interlinkage magnetic flux between the variable magnetic force magnet 3 and the fixed magnetic force magnet 4 is increased. . As a result, the force of synchronous pull-in by the variable magnetic magnet 3 and the fixed magnetic magnet 4 is increased, and the rotor 1 can be pulled into synchronous rotation from a state where it is rotating. That is, the rotor 1 changes from a state where the rotor 1 is rotated by the torque generated by the induced current flowing through the copper bar 7 to the rotating magnetic field generated by the linkage magnetic flux generated by the variable magnetic magnet 3 and the fixed magnetic magnet 4 and the current flowing through the stator coil. Transition to the state of rotating synchronously.

一方、回転子1が同期回転している場合に、永久磁石式回転電機の出力に対して大きなブレーキ力が必要な状態では、可変磁力磁石3と固定磁力磁石4との鎖交磁束量を小さくし、回転子1を非同期状態とする。これにより、回転子1の銅バー7に誘導電流が生じて誘導機としてトルクを発生する。この状態で回生動作にし、誘導電流で電力を回生する。   On the other hand, when the rotor 1 is rotating synchronously, the amount of flux linkage between the variable magnetic magnet 3 and the fixed magnetic magnet 4 is reduced in a state where a large braking force is required for the output of the permanent magnet type rotating electrical machine. Then, the rotor 1 is brought into an asynchronous state. As a result, an induction current is generated in the copper bar 7 of the rotor 1 to generate torque as an induction machine. In this state, regenerative operation is performed, and electric power is regenerated by the induced current.

[1−5.効果]
この実施例1の効果としては、回転子1中の可変磁力磁石3と固定磁力磁石4の鎖交磁束を可変することにより、誘導機動作と永久磁石同期機の動作のいずれかの動作を行うことが可能となる。したがって、軽負荷から高負荷、低速から高速回転まで効率の良くなる動作で運転できるので、総合効率は向上して消費電力量を低減できる。
[1-5. effect]
As an effect of the first embodiment, either the induction machine operation or the permanent magnet synchronous machine operation is performed by varying the flux linkage between the variable magnetic magnet 3 and the fixed magnetic magnet 4 in the rotor 1. It becomes possible. Therefore, since it can operate | move by the operation | movement which becomes efficient from light load to high load and low speed to high-speed rotation, total efficiency can improve and it can reduce power consumption.

(請求項3,4に対応)
本発明の実施例2としては、実施例1の構成に、回転子1の回転速度を計測する速度センサ105を追加したものである。本実施例の永久磁石式回転電機では、速度センサ105により回転電機の回転速度を検出し、回転電機の回転速度に応じて誘導運転と同期運転との切替を行う。実施例2の永久磁石式回転電機の回転子1の起動時は、前記実施例1と同様である。
(Corresponding to claims 3 and 4)
In the second embodiment of the present invention, a speed sensor 105 that measures the rotational speed of the rotor 1 is added to the configuration of the first embodiment. In the permanent magnet type rotating electrical machine of this embodiment, the rotational speed of the rotating electrical machine is detected by the speed sensor 105, and the induction operation and the synchronous operation are switched according to the rotational speed of the rotating electrical machine. The starting time of the rotor 1 of the permanent magnet type rotating electrical machine of the second embodiment is the same as that of the first embodiment.

本実施例の永久磁石式回転電機の作用について説明する。回転子1が起動した後、回転子1の回転速度が速くなり、回転子1の同期速度近傍に到達したことを速度センサ105が検出したら、可変磁力磁石3と固定磁力磁石4との全鎖交磁束を大きくして、同期引入れにより、回転子1がすべって回転している状態から同期回転に移行する。   The operation of the permanent magnet type rotating electrical machine of this embodiment will be described. After the rotor 1 is activated, the rotational speed of the rotor 1 increases, and when the speed sensor 105 detects that the rotor 1 has reached the vicinity of the synchronous speed, the entire chain of the variable magnetic magnet 3 and the fixed magnetic magnet 4 is detected. When the magnetic flux is increased and the synchronous pull-in is performed, the state in which the rotor 1 slips and rotates is shifted to the synchronous rotation.

さらに、回転子1が同期回転しながら高速回転する場合には、回転子1の速度に合わせてd軸電流により可変磁力磁石3を減磁して可変磁力磁石3と固定磁力磁石4との全鎖交磁束を小さくする。これにより、可変磁力磁石3と固定磁力磁石4による固定子コイルに誘導される誘導電圧を低下することができる。さらに、可変磁力磁石3と固定磁力磁石4との鎖交磁束を小さくすることにより、同期引き入れの力が小さくなり、同期回転からずれて回転子1の回転が遅くなり、非同期状態になる。この非同期状態になると回転子1の銅バー7と誘導電流が生じ、誘導機としてトルクを発生して駆動する。   Further, when the rotor 1 rotates at a high speed while rotating synchronously, the variable magnetic magnet 3 is demagnetized by the d-axis current in accordance with the speed of the rotor 1 so that all of the variable magnetic magnet 3 and the fixed magnetic magnet 4 Reduce the flux linkage. Thereby, the induced voltage induced | guided | derived to the stator coil by the variable magnetic force magnet 3 and the fixed magnetic force magnet 4 can be reduced. Further, by reducing the flux linkage between the variable magnetic magnet 3 and the fixed magnetic magnet 4, the force of synchronous pull-in is reduced, and the rotation of the rotor 1 is deviated from the synchronous rotation, resulting in an asynchronous state. In this asynchronous state, an induction current is generated with the copper bar 7 of the rotor 1, and the induction machine is driven by generating torque.

高速回転で回転子1が同期回転している場合に、永久磁石式回転電機の出力に対して大きなブレーキ力が必要な状態では、可変磁力磁石3と固定磁力磁石4との鎖交磁束量を小さくし、回転子1を非同期状態とする。これにより、回転子1の銅バー7に誘導電流が生じて誘導機としてトルク発生する。この状態で回生動作にし、誘導電流で電力を回生する。一方、インバータ上限電圧と回転電機の電圧差で磁石を磁化できる電圧を確保できる回転速度の場合は、可変磁力磁石3を磁化して磁石による鎖交磁束を大きくする。これにより磁石の鎖交磁束と電流でトルクが発生し、同期機として電力を回生する。   When the rotor 1 is rotating synchronously at high speed, the amount of flux linkage between the variable magnetic magnet 3 and the fixed magnetic magnet 4 is set in a state where a large braking force is required for the output of the permanent magnet type rotating electrical machine. The rotor 1 is made smaller and the rotor 1 is set in an asynchronous state. Thereby, an induction current is generated in the copper bar 7 of the rotor 1 and torque is generated as an induction machine. In this state, regenerative operation is performed, and electric power is regenerated by the induced current. On the other hand, in the case of a rotation speed at which a voltage that can magnetize the magnet is ensured by the voltage difference between the inverter upper limit voltage and the rotating electrical machine, the variable magnetic force magnet 3 is magnetized to increase the linkage flux by the magnet. As a result, torque is generated by the interlinkage magnetic flux and current of the magnet, and power is regenerated as a synchronous machine.

このような実施例2では、回転子1の速度を基準として、誘導機動作と同期機動作を切り換えることができる。このため、回転子1が低速回転から高速回転まで効率良く運転できるので、総合効率は向上して消費電力量を低減できる。   In the second embodiment, the induction machine operation and the synchronous machine operation can be switched based on the speed of the rotor 1. For this reason, since the rotor 1 can be efficiently operated from a low speed to a high speed, the overall efficiency can be improved and the power consumption can be reduced.

(請求項5に対応)
本発明の実施例3は、実施例1の構成に回転電機の発生電圧を計測する電圧計106を追加したものである。本実施例の永久磁石式回転電機では、回転電機の誘導発生電圧を検出するか、または、検出した電流とモータ定数から誘導電圧を推定して、回転電機の発生電圧が電源システムの電源電圧の近傍になると、同期運転と非同期(誘導)運転を切り換える。実施例3の永久磁石式回転電機の回転子1の起動時は、実施例1と同様である。
(Corresponding to claim 5)
The third embodiment of the present invention is obtained by adding a voltmeter 106 for measuring the voltage generated by the rotating electrical machine to the configuration of the first embodiment. In the permanent magnet type rotating electric machine of the present embodiment, the induction generated voltage of the rotating electric machine is detected or the induced voltage is estimated from the detected current and the motor constant, and the generated voltage of the rotating electric machine is equal to the power supply voltage of the power supply system. When in the vicinity, the operation is switched between synchronous operation and asynchronous (induction) operation. The starting time of the rotor 1 of the permanent magnet type rotating electrical machine of the third embodiment is the same as that of the first embodiment.

本実施例の永久磁石式回転電機の作用について説明する。回転子1が同期回転している状態で、回転子1の回転速度が速くなり永久磁石による誘導電圧が電源電圧上限の近傍になった場合、可変磁力磁石3を磁化して可変磁力磁石3と固定磁力磁石4による鎖交磁束を小さくする。これにより、同期引き入れの力が小さくなり、回転子1が同期回転からずれ非同期状態になる。非同期状態になると回転子1の銅バーコイルに誘導電流が生じて誘導機としてトルクを発生して駆動する。一方、電源電圧の変動を含めて回転電機の電圧と電源電圧上限に差がある運転状況では、可変磁力磁石3を磁化して可変磁力磁石3と固定磁力磁石4による鎖交磁束を大きくし、同期回転で永久磁石と電流によりトルクを発生する。   The operation of the permanent magnet type rotating electrical machine of this embodiment will be described. In the state where the rotor 1 is rotating synchronously, when the rotational speed of the rotor 1 is increased and the induced voltage by the permanent magnet is close to the upper limit of the power supply voltage, the variable magnetic magnet 3 is magnetized to The flux linkage by the fixed magnetic magnet 4 is reduced. As a result, the force of synchronous pull-in is reduced, and the rotor 1 is out of synchronous rotation and becomes asynchronous. In an asynchronous state, an induction current is generated in the copper bar coil of the rotor 1 to generate torque and drive as an induction machine. On the other hand, in an operating situation where there is a difference between the voltage of the rotating electrical machine and the upper limit of the power supply voltage, including fluctuations in the power supply voltage, the variable magnetic force magnet 3 is magnetized to increase the flux linkage between the variable magnetic force magnet 3 and the fixed magnetic force magnet 4. Torque is generated by a permanent magnet and current in synchronous rotation.

このような実施例3では、電源電圧に余裕がある運転状態では、回転子1を同期回転させ高トルクの磁石回転電機として運転し、回転電機の発生電圧が電源電圧制限にかかると、励磁電流成分を可変して回転電機の電圧を調整、低減できる誘導機として運転することができる。これにより、永久磁石式回転電機の総合効率を高くすることができると共に、消費電力量を低減することができる。   In the third embodiment, when the power supply voltage is in an operating state, the rotor 1 is synchronously rotated to operate as a high-torque magnet rotating electric machine. When the generated voltage of the rotating electric machine is limited to the power supply voltage, the excitation current It can be operated as an induction machine capable of adjusting and reducing the voltage of the rotating electrical machine by changing the components. As a result, the overall efficiency of the permanent magnet type rotating electrical machine can be increased and the power consumption can be reduced.

(請求項6,7,8に対応)
本発明の実施例4は、実施例1の構成に電源システムの電源電圧を計測するとつながるインバータの直流側の電圧を測定する。この直流電圧は電源電圧とともに変動するので、この直流電圧の変動に応じて回転子1の運転状況を変化させるものである。
(Corresponding to claims 6, 7, and 8)
The fourth embodiment of the present invention measures the DC side voltage of the inverter connected to the configuration of the first embodiment when the power supply voltage of the power supply system is measured. Since the DC voltage varies with the power supply voltage, the operating condition of the rotor 1 is changed in accordance with the variation of the DC voltage.

本実施例の永久磁石式回転電機の作用について説明する。永久磁石式回転電機の電源システムの電源のインバータが、回転電機が必要とする電圧を発生できる状態では、可変磁力磁石3を磁化して可変磁力磁石3と固定磁力磁石4による鎖交磁束を大きくし、同期回転で永久磁石と電流によりトルクを発生する同期運転を行う。一方、永久磁石式回転電機の電源システムの電源に電圧変動があり、電源システムのインバータの最大出力電圧が回転電機の電圧以下になる場合は、回転子1を同期回転させることができなくなる。そこで、回転子1を同期回転させるのではなく、回転子1を非同期回転させる。これにより、回転子1の銅バーコイルに誘導電流が生じ、誘導機としてトルクを発生する。これにより電源電圧が低下しても、回転電機は運転することができる。   The operation of the permanent magnet type rotating electrical machine of this embodiment will be described. When the inverter of the power supply system of the permanent magnet type rotating electrical machine can generate the voltage required by the rotating electrical machine, the variable magnetic force magnet 3 is magnetized to increase the interlinkage magnetic flux between the variable magnetic force magnet 3 and the fixed magnetic force magnet 4. Then, synchronous operation is performed in which torque is generated by a permanent magnet and current in synchronous rotation. On the other hand, when there is a voltage fluctuation in the power supply of the power supply system of the permanent magnet type rotating electrical machine, and the maximum output voltage of the inverter of the power supply system is equal to or lower than the voltage of the rotating electrical machine, the rotor 1 cannot be rotated synchronously. Therefore, instead of rotating the rotor 1 synchronously, the rotor 1 is rotated asynchronously. As a result, an induction current is generated in the copper bar coil of the rotor 1, and torque is generated as an induction machine. Thus, the rotating electrical machine can be operated even when the power supply voltage is lowered.

このような実施例4では、電源システムの電源に電圧変動があり、電源システムのインバータの最大出力電圧が回転電機の電圧以下になる場合でも、回転子1を非同期回転させ誘導機として運転することができる。   In Example 4 as described above, even when there is a voltage fluctuation in the power supply of the power supply system and the maximum output voltage of the inverter of the power supply system is less than or equal to the voltage of the rotating electrical machine, the rotor 1 is asynchronously rotated and operated as an induction machine. Can do.

例えば、ハイブリッド自動車や電気自動車の動力として本実施例の永久磁石式回転電機を使用した場合に、自動車に搭載したバッテリー電圧が基準電圧以下に低下した状態では、回転子を非同期回転で回転させ、前記バッテリー電圧が基準電圧以上の状態では、回転子を同期回転させる。これにより、バッテリー電圧が大きく変動しても、回転電機は運転することができる。   For example, when the permanent magnet type rotating electrical machine of this embodiment is used as the power of a hybrid vehicle or an electric vehicle, in a state where the battery voltage mounted on the vehicle is lowered below the reference voltage, the rotor is rotated asynchronously, When the battery voltage is equal to or higher than the reference voltage, the rotor is rotated synchronously. Thereby, even if the battery voltage fluctuates greatly, the rotating electrical machine can be operated.

同様に、鉄道車両の動力として本実施例の永久磁石式回転電機を使用した場合に、電源として架線に流れる電圧を使用し、架線電圧が基準電圧以下に低下した状態では、回転子を非同期回転で回転させ、架線電圧が基準電圧以上の状態では、回転子を同期回転させる。これにより、架線の電圧が大きく変動しても、回転電機を安定して運転することができる。   Similarly, when the permanent magnet type rotating electrical machine of this embodiment is used as power for the railway vehicle, the voltage that flows through the overhead wire is used as the power source, and the rotor rotates asynchronously when the overhead wire voltage falls below the reference voltage. When the overhead wire voltage is higher than the reference voltage, the rotor is rotated synchronously. Thereby, even if the voltage of an overhead wire is fluctuate | varied largely, a rotary electric machine can be drive | operated stably.

(請求項9に対応)
本発明の実施例5は、実施例1の構成に永久磁石式回転電機の出力やトルクを推定する電流センサ104を追加したものである。本実施例の永久磁石式回転電機では、出力計108が検出した永久磁石式回転電機の出力の状態に応じて回転子1を同期状態に変化させる。実施例5の永久磁石式回転電機の回転子1の起動時は、前記実施例1と同様である。
(Corresponding to claim 9)
The fifth embodiment of the present invention is obtained by adding a current sensor 104 that estimates the output and torque of a permanent magnet type rotating electrical machine to the configuration of the first embodiment. In the permanent magnet type rotating electrical machine of the present embodiment, the rotor 1 is changed to a synchronized state according to the output state of the permanent magnet type rotating electrical machine detected by the output meter 108. The starting time of the rotor 1 of the permanent magnet type rotating electrical machine of the fifth embodiment is the same as that of the first embodiment.

本実施例の永久磁石式回転電機では、軽負荷で運転する状態では、可変磁力磁石3を磁化して永久磁石による鎖交磁束を小さくし、回転子1を非同期回転させる。これにより、回転子1の銅バーコイルに誘導電流が生じ、誘導機としてトルクを発生して運転する。一方、高負荷時では、可変磁力磁石3を磁化して永久磁石による鎖交磁束を大きくし、回転子1を同期回転させる。これにより、回転子1の永久磁石と固定子の電流によりトルクを発生して運転する。   In the permanent magnet type rotating electrical machine of the present embodiment, in a state of operating with a light load, the variable magnetic force magnet 3 is magnetized to reduce the linkage flux by the permanent magnet, and the rotor 1 is rotated asynchronously. As a result, an induction current is generated in the copper bar coil of the rotor 1, and the induction machine is operated by generating torque. On the other hand, when the load is high, the variable magnetic force magnet 3 is magnetized to increase the flux linkage by the permanent magnet, and the rotor 1 is rotated synchronously. Thus, the torque is generated by the current of the permanent magnet and the stator of the rotor 1 to operate.

このような実施例5では、軽負荷時で効率が良くなる誘導機としての動作、高負荷時でも効率が良くなる永久磁石同期機としての動作を、運転状況に応じて行えるので、総合効率が高くなり、消費電力量を低減できる。   In Example 5 as described above, the operation as an induction machine that improves the efficiency at light load and the operation as the permanent magnet synchronous machine that improves the efficiency even at high load can be performed according to the driving situation, so that the overall efficiency is improved. It becomes higher and power consumption can be reduced.

(請求項10に対応)
本発明の実施例6は、実施例2の構成に回転子1の永久磁石の磁極位置を検出する磁極位置センサ109を追加したものである。本実施例の永久磁石式回転電機では、回転子1の同期状態の切り替えを固定子のコイルを流れる電流が生成する回転磁界と回転子1の永久磁石の磁極位置とにより行うものである。
(Corresponding to claim 10)
The sixth embodiment of the present invention is obtained by adding a magnetic pole position sensor 109 that detects the magnetic pole position of the permanent magnet of the rotor 1 to the configuration of the second embodiment. In the permanent magnet type rotating electrical machine according to the present embodiment, the synchronous state of the rotor 1 is switched by the rotating magnetic field generated by the current flowing through the stator coil and the magnetic pole position of the permanent magnet of the rotor 1.

本実施例の永久磁石式回転電機では、回転子1が起動した後、回転子1の同期速度近傍に到達したら、回転子1がすべって回転している状態から永久磁石による鎖交磁束を大きくして同期回転に引き入れる。このとき、電流ベクトルが同期機として最大トルクを発生できる電流位相角近傍になる瞬間を前記磁極位置センサ109により検出し、その信号に基づいて、可変磁力磁石3を磁化して永久磁石による鎖交磁束を大にして、回転子1を同期回転させる。   In the permanent magnet type rotating electrical machine of the present embodiment, when the rotor 1 starts and then reaches the vicinity of the synchronous speed of the rotor 1, the linkage flux by the permanent magnet is increased from the state in which the rotor 1 is slipping and rotating. Then pull it into synchronous rotation. At this time, the magnetic pole position sensor 109 detects the moment when the current vector is close to the current phase angle at which the maximum torque can be generated as a synchronous machine, and based on this signal, the variable magnetic force magnet 3 is magnetized and linked by a permanent magnet. The rotor 1 is rotated synchronously by increasing the magnetic flux.

このような実施例6では、回転子1を非同期回転から同期回転に効率よく切り換えることができるので、総合効率が高くなり、消費電力量を低減できる。   In the sixth embodiment, since the rotor 1 can be efficiently switched from asynchronous rotation to synchronous rotation, the overall efficiency is increased and the power consumption can be reduced.

(請求項11に対応)
本発明の実施例7は、実施例6の構成を有する複数の永久磁石式回転電機に対して、1台のインバータで電力を供給する場合の実施例である。
(Corresponding to claim 11)
The seventh embodiment of the present invention is an embodiment in the case where power is supplied by a single inverter to a plurality of permanent magnet type rotating electrical machines having the configuration of the sixth embodiment.

本実施例のそれぞれの永久磁石式回転電機では、回転子1が起動した後、回転子1の同期速度近傍に到達したら、回転子1がすべって回転している状態から永久磁石による鎖交磁束を大きくして同期回転に引き入れる。しかしながら、複数の永久磁石式回転電機を使用する場合、回転中の回転子1の磁極磁位置と電流ベクトルの位相差は異なっている状態が多い。すなわち、電気的には各回転電機において磁石で生じる誘起電圧と電流の位相差が異なって回転している。そこで、前記の電流ベクトルが永久磁石同期機として最大トルクを発生できる電流位相角近傍になった回転電機から順に可変磁力磁石3を磁化して永久磁石による鎖交磁束を大にして同期回転で駆動する。   In each permanent magnet type rotating electrical machine of the present embodiment, when the rotor 1 is started and then reaches the vicinity of the synchronous speed of the rotor 1, the interlinkage magnetic flux generated by the permanent magnet from the state in which the rotor 1 slips and rotates. Increase to bring it into synchronous rotation. However, when using a plurality of permanent magnet rotating electrical machines, the phase difference between the magnetic pole magnetic position of the rotating rotor 1 and the current vector is often different. In other words, each rotating electrical machine rotates with a different phase difference between the induced voltage and current generated in the magnet. Therefore, the variable magnetic magnet 3 is magnetized in order from the rotating electrical machine whose current vector is in the vicinity of the current phase angle capable of generating the maximum torque as a permanent magnet synchronous machine, and the linkage flux by the permanent magnet is increased to drive by synchronous rotation. To do.

このような実施例7では、それぞれの永久磁石式回転電機において、回転子1を非同期回転から同期回転に効率よく切り換えることができるので、総合効率が高くなり、消費電力量を低減できる。これにより、鉄道車両の動力として複数の永久磁石式回転電機に1台のインバータで電力を供給した場合でも、回転子1を非同期回転から同期回転にスムースに移行することができる。   In the seventh embodiment, since the rotor 1 can be efficiently switched from asynchronous rotation to synchronous rotation in each permanent magnet type rotating electrical machine, the overall efficiency is increased and the power consumption can be reduced. Thereby, even when electric power is supplied to a plurality of permanent magnet type rotating electrical machines as power for the railway vehicle with one inverter, the rotor 1 can be smoothly shifted from asynchronous rotation to synchronous rotation.

(請求項12に対応)
本発明の実施例8は、実施例1の構成に回転子1の永久磁石の磁束により発生する固定子コイルに流れる誘起電圧を検出する検出器110を追加したものである。または、指令電圧、モータ定数、検出した電流と回転速度から誘起電圧をインバータの制御上で算出して処理してもよい。本実施例の永久磁石式回転電機では、前記検出器110による固定子コイルに流れる誘起電圧の検出結果を元に、回転子1の同期状態の切り替えを行うものである。
(Corresponding to claim 12)
In the eighth embodiment of the present invention, the detector 110 for detecting the induced voltage flowing in the stator coil generated by the magnetic flux of the permanent magnet of the rotor 1 is added to the configuration of the first embodiment. Alternatively, the induced voltage may be calculated on the control of the inverter from the command voltage, the motor constant, the detected current and the rotation speed, and processed. In the permanent magnet type rotating electrical machine of the present embodiment, the synchronous state of the rotor 1 is switched based on the detection result of the induced voltage flowing in the stator coil by the detector 110.

本実施例の永久磁石式回転電機の作用について説明する。始動後に回転速度が上昇すると永久磁石の磁束で生じる誘起電圧はノイズに対して十分大きな大きさになる。この誘起電圧を前記検出器110により検出し、回転子の磁極位置と回転速度の検出信号としてインバータの制御回路に取り込む。この信号を基に磁極位置を検出し、電流ベクトルが同期機として最大トルクを発生できる電流位相角近傍になる瞬間に、可変磁力磁石3を磁化して永久磁石による鎖交磁束を大にして、回転子を同期回転させる。   The operation of the permanent magnet type rotating electrical machine of this embodiment will be described. When the rotational speed increases after startup, the induced voltage generated by the magnetic flux of the permanent magnet becomes sufficiently large against noise. The induced voltage is detected by the detector 110 and is taken into the inverter control circuit as a detection signal of the magnetic pole position and the rotation speed of the rotor. The magnetic pole position is detected on the basis of this signal, and at the moment when the current vector is close to the current phase angle at which the maximum torque can be generated as a synchronous machine, the variable magnetic force magnet 3 is magnetized to increase the linkage flux by the permanent magnet, Synchronously rotate the rotor.

このような実施例8では、磁極位置センサと速度センサがなくても永久磁石式回転電機を始動し、同期後は誘起電圧を制御信号として出力制御して運転できる。   In the eighth embodiment, the permanent magnet type rotating electrical machine is started without the magnetic pole position sensor and the speed sensor, and after synchronization, the induced voltage can be output and controlled as a control signal.

[他の実施例]
本発明は、前記の各実施例に限定されるものではなく、つぎのような他の実施例も包含する。
[Other embodiments]
The present invention is not limited to the above-described embodiments, and includes other embodiments as follows.

(請求項13に対応)
(a)前記各実施例の回転電機において、回転電機の外部回路にコンデンサを設けてもよい。これにより、必要に応じてコンデンサに蓄えた電荷を固定子コイルに流して、前記コンデンサによる電流が作る磁界により可変磁力磁石3を磁化させることができる。
(Corresponding to claim 13)
(A) In the rotating electrical machine of each of the embodiments, a capacitor may be provided in an external circuit of the rotating electrical machine. Thereby, the electric charge stored in the capacitor can be passed through the stator coil as necessary, and the variable magnetic force magnet 3 can be magnetized by the magnetic field generated by the current generated by the capacitor.

(請求項14に対応)
(b)前記各実施例の回転電機において、電気的な短絡事故による過電流や異常な磁石の温度上昇が生じて固定磁力磁石4が不可逆減磁することがある。その場合、可変磁力磁石3を磁化して永久磁石による鎖交磁束を減少させて非同期回転で回転子の導体の誘導電流により出力を発生させることができる。これにより、固定磁力磁石4が不可逆減磁して発生出力が不十分な状態生じた場合でも誘導機動作で十分な出力を発生できる。
(Corresponding to claim 14)
(B) In the rotating electric machine of each of the above embodiments, an overcurrent due to an electrical short circuit accident or an abnormal temperature rise of the magnet may occur, and the fixed magnetic magnet 4 may be irreversibly demagnetized. In that case, the variable magnetic force magnet 3 can be magnetized to reduce the interlinkage magnetic flux by the permanent magnet, and an output can be generated by the induced current of the rotor conductor by asynchronous rotation. Thereby, even when the fixed magnetic force magnet 4 is irreversibly demagnetized and the generated output is insufficient, a sufficient output can be generated by the induction machine operation.

(請求項15に対応)
(c)前記各実施例の回転電機において、回転電機の外部に設けられたインバータが故障した場合には、インバータを電気的に切り離して、発電機とモータを電気的に直結してもよい。これにより、発電機の電気出力をモータに直接入力することができる。これにより、同期起動は困難が困難な場合でも、非同期回転で回転子の導体の誘導電流によりトルクを発生して起動し、運転することができる。
(Corresponding to claim 15)
(C) In the rotating electrical machine of each of the above embodiments, when the inverter provided outside the rotating electrical machine fails, the inverter may be electrically disconnected and the generator and the motor may be directly electrically connected. Thereby, the electric output of a generator can be directly input into a motor. As a result, even if it is difficult to start synchronously, it is possible to start and operate by generating torque by the induced current of the rotor conductor in asynchronous rotation.

1 … 回転子
2 … 回転子鉄心
3 … 可変磁力磁石
4 … 固定磁力磁石
5 … 磁石磁極
7 … 銅バー
101… 永久磁石式回転電機
102… 直流電源
103… インバータ
104… 電流センサ
105… 速度センサ
106… 電圧計
107… 電圧計
108… 出力計
109… 磁極位置センサ
110… 誘起電圧検出器
120… 運転制御部
121… 可変磁束制御部
122… 誘導−同期切替制御部
123… PWM回路
DESCRIPTION OF SYMBOLS 1 ... Rotor 2 ... Rotor core 3 ... Variable magnetic force magnet 4 ... Fixed magnetic force magnet 5 ... Magnet magnetic pole 7 ... Copper bar 101 ... Permanent magnet type rotating electrical machine 102 ... DC power supply 103 ... Inverter 104 ... Current sensor 105 ... Speed sensor 106 ... Voltmeter 107 ... Voltmeter 108 ... Output meter 109 ... Magnetic pole position sensor 110 ... Induced voltage detector 120 ... Operation controller 121 ... Variable magnetic flux controller 122 ... Induction-synchronization switching controller 123 ... PWM circuit

Claims (15)

複数の永久磁石から成る磁石磁極を設けた回転子と、コイルを設けた固定子を備え、前記固定子コイルの電流が作る磁界により前記磁極中の少なくとも1個の永久磁石を磁化させることにより永久磁石の磁束量を不可逆的に変化させる永久磁石式回転電機において、
前記回転子の表面付近に導電性部材を設け、
起動時には、前記永久磁石の鎖交磁束量を少なくして前記回転子の導電性部材の誘導電流で生じるトルクにより、固定子のコイルを流れる電流が生成する回転磁界と回転子とを非同期で始動し、
始動後は、前記永久磁石の鎖交磁束量を増加させて永久磁石と電流によるトルクにより、固定子のコイルを流れる電流が生成する回転磁界と回転子とを同期して駆動することを特徴とする永久磁石式回転電機。
A rotor provided with a magnetic pole composed of a plurality of permanent magnets and a stator provided with a coil are provided, and at least one permanent magnet in the magnetic pole is magnetized by a magnetic field generated by the current of the stator coil. In the permanent magnet type rotating electrical machine that irreversibly changes the magnetic flux amount of the magnet,
A conductive member is provided near the surface of the rotor,
During startup, the rotating magnetic field generated by the current flowing through the stator coil and the rotor are started asynchronously by the torque generated by the induced current of the conductive member of the rotor by reducing the amount of flux linkage of the permanent magnet And
After starting, the amount of interlinkage magnetic flux of the permanent magnet is increased, and the rotating magnetic field generated by the current flowing through the stator coil and the rotor are driven synchronously by the torque of the permanent magnet and current. Permanent magnet type rotating electric machine.
前記回転子の回生時には、前記回転子を非同期回転とすることにより、前記導電性部材に流れる誘導電流により生じる出力で回生させることを特徴とする請求項1に記載の永久磁石式回転電機。   2. The permanent magnet type rotating electric machine according to claim 1, wherein, at the time of regeneration of the rotor, the rotor is rotated asynchronously to regenerate with an output generated by an induced current flowing through the conductive member. 前記回転子に回転速度を計測する速度センサを備え、
回転子の回転速度が低速から中速回転時には、回転子は固定子のコイルを流れる電流が生成する回転磁界に同期して回転し、
回転子の回転速度が高速回転時には、回転子は固定子のコイルを流れる電流が生成する回転磁界と非同期で誘導機として駆動することを特徴とする請求項1または請求項2に記載の永久磁石式回転電機。
A speed sensor for measuring the rotational speed of the rotor;
When the rotation speed of the rotor is low to medium, the rotor rotates in synchronization with the rotating magnetic field generated by the current flowing through the stator coil,
3. The permanent magnet according to claim 1, wherein the rotor is driven as an induction machine asynchronously with a rotating magnetic field generated by a current flowing through a stator coil when the rotor rotates at a high speed. 4. Rotary electric machine.
前記回転子の回生時において、
前記回転子の回転速度が高速回転時には、回転子を非同期回転で前記回転子の導体の誘導電流により生じる出力で回生させ、
前記回転子の回転速度が中速から低速回転域までの範囲では同期回転で永久磁石を磁化させて永久磁石の鎖交磁束量を増加させて永久磁石と電流により生じる出力で回生を行うことを特徴とする請求項3に記載の永久磁石式回転電機。
During regeneration of the rotor,
When the rotational speed of the rotor is high-speed rotation, the rotor is regenerated with an output generated by an induced current of the rotor conductor in asynchronous rotation,
When the rotation speed of the rotor is in the range from the medium speed to the low speed rotation range, the permanent magnet is magnetized by synchronous rotation to increase the amount of flux linkage of the permanent magnet, and regeneration is performed with the output generated by the permanent magnet and current. The permanent magnet type rotating electric machine according to claim 3, wherein
前記回転子が回転することにより発生する発生電圧を計測する電圧計を備え、
前記発生電圧が電源電圧の電圧制限上限の近傍になると、固定子のコイルを流れる電流が生成する回転磁界と回転子は非同期で回転し、
前記発生電圧が電源電圧の電圧制限と差のある状態では、固定子のコイルを流れる電流が生成する回転磁界と回転子は同期で回転して駆動することを特徴とする請求項1または請求項2に記載の永久磁石式回転電機。
A voltmeter for measuring a generated voltage generated by the rotation of the rotor;
When the generated voltage is near the upper limit of the power supply voltage limit, the rotating magnetic field generated by the current flowing through the stator coil and the rotor rotate asynchronously,
2. The rotating magnetic field generated by the current flowing through the stator coil and the rotor are driven to rotate synchronously when the generated voltage is different from the voltage limit of the power supply voltage. 2. The permanent magnet type rotating electrical machine according to 2.
永久磁石式回転電機の電源電圧を計測する電圧計を備え、
前記電源電圧の電源電圧が、固定子のコイルを流れる電流が生成する回転磁界と回転子とを同期に回転するのに必要な電圧以下に低下した場合は、
固定子のコイルを流れる電流が生成する回転磁界と回転子は非同期で回転することを特徴とする請求項1または請求項2に記載の永久磁石式回転電機。
Equipped with a voltmeter to measure the power supply voltage of the permanent magnet rotating electrical machine,
When the power supply voltage of the power supply voltage drops below the voltage necessary for synchronously rotating the rotating magnetic field generated by the current flowing through the stator coil and the rotor,
3. The permanent magnet type rotating electrical machine according to claim 1, wherein the rotating magnetic field generated by the current flowing through the stator coil and the rotor rotate asynchronously.
前記電源としてバッテリーを使用し、
前記バッテリー電圧が基準電圧値以下に低下した状態では、前記回転子を非同期回転で回転させ、
前記バッテリー電圧が基準電圧値を超える状態では、前記回転子を同期回転させることを特徴とする請求項6に記載の永久磁石式回転電機。
Using a battery as the power source,
In a state where the battery voltage has dropped below a reference voltage value, the rotor is rotated asynchronously,
The permanent magnet rotating electric machine according to claim 6, wherein the rotor is rotated synchronously in a state where the battery voltage exceeds a reference voltage value.
前記電源として架線に流れる電圧を使用し、
前記架線電圧が基準電圧以下に低下した状態では、前記回転子を非同期回転で回転させ、
前記架線電圧が基準電圧を超える状態では、前記回転子を同期回転させることを特徴とする請求項6に記載の永久磁石式回転電機。
Using the voltage flowing in the overhead line as the power source,
In a state where the overhead line voltage is lowered below a reference voltage, the rotor is rotated by asynchronous rotation,
The permanent magnet type rotating electrical machine according to claim 6, wherein the rotor is synchronously rotated in a state where the overhead wire voltage exceeds a reference voltage.
前記回転子にかかる負荷を推定する電流センサを備え、
前記回転子に高負荷で運転する状態では、固定子のコイルを流れる電流が生成する回転磁界と回転子は非同期で回転し、
回転子が軽負荷で運転する状態では、固定子のコイルを流れる電流が生成する回転磁界と回転子は同期で回転して駆動することを特徴とする請求項1または請求項2に記載の永久磁石式回転電機。
A current sensor for estimating a load applied to the rotor;
In a state where the rotor is operated at a high load, the rotating magnetic field generated by the current flowing through the stator coil and the rotor rotate asynchronously,
3. The permanent magnet according to claim 1, wherein when the rotor is operated at a light load, the rotating magnetic field generated by the current flowing through the stator coil and the rotor are driven to rotate synchronously. 4. Magnet rotating electric machine.
前記回転子に回転速度を計測する速度センサと、
前記回転子の永久磁石の磁極位置を検出する磁極位置センサを備え、
回転子の回転速度が低い場合は、固定子のコイルを流れる電流が生成する回転磁界と回転子は非同期で回転し、
回転子が同期速度近傍に達すると、電流ベクトルが同期機として最大トルクを発生できる電流位相角近傍になる瞬間に、固定子のコイルを流れる電流が生成する回転磁界と回転子は同期で回転して駆動することを特徴とする請求項1または請求項2に記載の永久磁石式回転電機。
A speed sensor for measuring the rotational speed of the rotor;
A magnetic pole position sensor for detecting the magnetic pole position of the permanent magnet of the rotor;
When the rotation speed of the rotor is low, the rotating magnetic field generated by the current flowing through the stator coil and the rotor rotate asynchronously,
When the rotor reaches near the synchronous speed, the rotating magnetic field generated by the current flowing through the stator coil and the rotor rotate synchronously at the moment when the current vector is close to the current phase angle where the maximum torque can be generated as a synchronous machine. The permanent magnet type rotating electrical machine according to claim 1 or 2, wherein the permanent magnet type rotating electrical machine is driven.
複数の永久磁石式回転電機に電源として1台のインバータで電圧を供給する場合に、
それぞれの永久磁石式回転電機の回転子は、
回転速度が低い場合は、固定子のコイルを流れる電流が生成する回転磁界と回転子は非同期で回転し、
それぞれの回転子が同期速度近傍に達すると、電流ベクトルが同期機として最大トルクを発生できる電流位相角近傍になる瞬間に、固定子のコイルを流れる電流が生成する回転磁界と回転子は同期で回転して駆動することを特徴とする請求項10に記載の永久磁石式回転電機。
When supplying voltage to a plurality of permanent magnet rotating electrical machines using a single inverter as a power source,
The rotor of each permanent magnet type rotating electrical machine is
When the rotation speed is low, the rotating magnetic field generated by the current flowing through the stator coil and the rotor rotate asynchronously,
When each rotor reaches near the synchronous speed, the rotating magnetic field generated by the current flowing through the stator coil and the rotor are synchronized at the moment when the current vector is close to the current phase angle at which the maximum torque can be generated as a synchronous machine. The permanent magnet rotating electric machine according to claim 10, wherein the permanent magnet rotating electric machine is rotated and driven.
固定子コイルに流れる回転子の磁束による誘起電圧を検出するセンサ、または誘起電圧推定制御を備え、
前記信号を基に磁極位置を検出して、
回転子の磁束による誘起電圧が低い場合には、固定子のコイルを流れる電流が生成する回転磁界と回転子は非同期で回転し、
回転子の磁束による誘起電圧が大きくなると、誘起電圧の信号を基に磁極位置を検出し、回転子の電流ベクトルが同期機として最大トルクを発生できる電流位相角近傍になる瞬間に、固定子のコイルを流れる電流が生成する回転磁界と回転子は同期で回転して駆動することを特徴とする請求項1または請求項2に記載の永久磁石式回転電機。
A sensor that detects the induced voltage due to the magnetic flux of the rotor flowing in the stator coil, or an induced voltage estimation control,
Detecting the magnetic pole position based on the signal,
When the induced voltage due to the magnetic flux of the rotor is low, the rotating magnetic field generated by the current flowing through the stator coil and the rotor rotate asynchronously,
When the induced voltage due to the magnetic flux of the rotor increases, the magnetic pole position is detected based on the signal of the induced voltage, and at the moment when the rotor current vector is close to the current phase angle at which maximum torque can be generated as a synchronous machine, 3. The permanent magnet type rotating electrical machine according to claim 1, wherein the rotating magnetic field generated by the current flowing through the coil and the rotor are driven to rotate synchronously.
回転電機の外部回路にコンデンサを設け、必要に応じてコンデンサに蓄えた電荷を固定子コイルに流して、前記コンデンサによる電流が作る磁界により可変磁力磁石を磁化させることを特徴とする請求項1〜12のいずれか1項に記載の永久磁石式回転電機。   A capacitor is provided in an external circuit of the rotating electrical machine, and the electric charge stored in the capacitor is passed through the stator coil as necessary, and the variable magnetic force magnet is magnetized by the magnetic field generated by the current generated by the capacitor. The permanent magnet type rotating electrical machine according to any one of 12. 不可逆変化をさせない永久磁石まで不可逆減磁した場合、不可逆減磁させる永久磁石を磁化により磁束を減少させて非同期回転で回転子の導体の誘導電流により出力を発生させることを特徴とする請求項1〜13のいずれか1項に記載の永久磁石式回転電機。   2. When permanent magnets that do not undergo irreversible changes are irreversibly demagnetized, the permanent magnets that are irreversibly demagnetized are reduced in magnetic flux by magnetization, and an output is generated by an induced current of a rotor conductor by asynchronous rotation. The permanent magnet type rotating electrical machine according to any one of ˜13. 外部に電力を供給する電源とインバータを備え、
このインバータが故障した場合には、インバータを電気的に切り離して、電源を回転電機に電気的に直結し、
この電源の電力により、固定子のコイルを流れる電流が生成する回転磁界と回転子は非同期で、回転子の導体の誘導電流によりトルクを発生して回転子を駆動することを特徴とする請求項1〜14のいずれか1項に記載の永久磁石式回転電機。
It has a power supply and inverter to supply power to the outside,
If this inverter fails, disconnect the inverter electrically and connect the power supply directly to the rotating electrical machine.
The rotating magnetic field generated by the current flowing through the stator coil and the rotor are asynchronous with the power of the power source, and the rotor is driven by generating torque by the induced current of the rotor conductor. The permanent magnet type rotating electrical machine according to any one of 1 to 14.
JP2009207476A 2009-09-08 2009-09-08 Permanent magnet type rotary electric machine Pending JP2011061933A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009207476A JP2011061933A (en) 2009-09-08 2009-09-08 Permanent magnet type rotary electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009207476A JP2011061933A (en) 2009-09-08 2009-09-08 Permanent magnet type rotary electric machine

Publications (1)

Publication Number Publication Date
JP2011061933A true JP2011061933A (en) 2011-03-24

Family

ID=43948905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009207476A Pending JP2011061933A (en) 2009-09-08 2009-09-08 Permanent magnet type rotary electric machine

Country Status (1)

Country Link
JP (1) JP2011061933A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013073141A1 (en) * 2011-11-16 2013-05-23 パナソニック株式会社 Axial blower and electric appliance equipped with same
WO2013158881A1 (en) * 2012-04-20 2013-10-24 Louis Finkle Hybrid induction motor with self aligning permanent magnet inner rotor
JP2014043818A (en) * 2012-08-28 2014-03-13 Panasonic Corp Axial blower and electric apparatus with the same mounted
US9419504B2 (en) 2012-04-20 2016-08-16 Louis J. Finkle Hybrid induction motor with self aligning permanent magnet inner rotor
US9923440B2 (en) 2014-01-09 2018-03-20 Motor Generator Technology, Inc. Hybrid electric motor with self aligning permanent magnet and squirrel cage rotors
US9923439B2 (en) 2014-01-09 2018-03-20 Motor Generator Technology, Inc. Hybrid electric motor with self aligning permanent magnet and squirrel cage rotors
US10476363B2 (en) 2014-01-09 2019-11-12 Louis J. Finkle Hybrid electric motor with self aligning permanent magnet and squirrel cage dual rotors magnetically coupled with permeant magnets and bars at synchronous speed
US10998802B2 (en) 2017-02-21 2021-05-04 Louis J. Finkle Hybrid induction motor with self aligning hybrid induction/permanent magnet rotor
CN116727978A (en) * 2023-07-20 2023-09-12 唐山恒大人防设备有限公司 Deformation-inhibiting civil air defense door frame edge welding equipment

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013073141A1 (en) * 2011-11-16 2013-05-23 パナソニック株式会社 Axial blower and electric appliance equipped with same
WO2013158881A1 (en) * 2012-04-20 2013-10-24 Louis Finkle Hybrid induction motor with self aligning permanent magnet inner rotor
JP2015515254A (en) * 2012-04-20 2015-05-21 フィンクル ルイFINKLE, Louie Hybrid induction motor with self-adjustable permanent magnet type inner rotor
US9419504B2 (en) 2012-04-20 2016-08-16 Louis J. Finkle Hybrid induction motor with self aligning permanent magnet inner rotor
US9484794B2 (en) 2012-04-20 2016-11-01 Louis J. Finkle Hybrid induction motor with self aligning permanent magnet inner rotor
JP2014043818A (en) * 2012-08-28 2014-03-13 Panasonic Corp Axial blower and electric apparatus with the same mounted
US9923440B2 (en) 2014-01-09 2018-03-20 Motor Generator Technology, Inc. Hybrid electric motor with self aligning permanent magnet and squirrel cage rotors
US9923439B2 (en) 2014-01-09 2018-03-20 Motor Generator Technology, Inc. Hybrid electric motor with self aligning permanent magnet and squirrel cage rotors
US10476363B2 (en) 2014-01-09 2019-11-12 Louis J. Finkle Hybrid electric motor with self aligning permanent magnet and squirrel cage dual rotors magnetically coupled with permeant magnets and bars at synchronous speed
US10998802B2 (en) 2017-02-21 2021-05-04 Louis J. Finkle Hybrid induction motor with self aligning hybrid induction/permanent magnet rotor
CN116727978A (en) * 2023-07-20 2023-09-12 唐山恒大人防设备有限公司 Deformation-inhibiting civil air defense door frame edge welding equipment
CN116727978B (en) * 2023-07-20 2023-10-31 唐山恒大人防设备有限公司 Deformation-inhibiting civil air defense door frame edge welding equipment

Similar Documents

Publication Publication Date Title
JP5134846B2 (en) Permanent magnet motor drive system
JP2011061933A (en) Permanent magnet type rotary electric machine
JP5161612B2 (en) Permanent magnet type rotating electrical machine, method for assembling permanent magnet type rotating electrical machine, and method for disassembling permanent magnet type rotating electrical machine
JP4936820B2 (en) Variable magnetic flux drive system
US9748806B2 (en) Permanent magnet rotating electrical machine and a motor vehicle using same
US8269390B2 (en) Permanent-magnet-type rotating electrical machine and permanent magnet motor drive system
JP5812476B2 (en) Permanent magnet rotating electric machine and its operating method
Masisi et al. Control strategy of a variable flux machine using AlNiCo permanent magnets
JP5100169B2 (en) Permanent magnet type rotating electric machine and permanent magnet motor drive system
WO2011046070A1 (en) Variable-flux dynamo-electric system
EP2299558A1 (en) Permanent magnet type rotating electric machine
JP5085206B2 (en) Variable magnetic flux drive system
WO2008013167A1 (en) Variable magnetic flux motor drive system
Hemmati et al. Field weakening of a surface mounted permanent magnet motor by winding switching
Sakai et al. Principle of hybrid variable-magnetic-force motors
JP5299029B2 (en) Permanent magnet type motor
CN104467333A (en) Rotor excitation multi-phase reluctance motor and control method thereof
Li et al. Design and analysis of magnet proportioning for dual-memory machines
JP2015159691A (en) Permanent magnet rotary electric machine and control apparatus of the same
Yang et al. Novel switched-flux hybrid permanent magnet memory machines for EV/HEV applications
JP5492178B2 (en) Variable magnetic flux drive system
JP2011172323A (en) Permanent magnet type rotary electric machine
JP5390314B2 (en) Permanent magnet rotating electric machine
JP2019135907A (en) Permanent magnet rotary electric machine system
Choudhury et al. Advanced drive for low cost permanent magnet synchronous machines used for HEV-a review