JP2011061480A - Optical communication system, and optical communication method - Google Patents

Optical communication system, and optical communication method Download PDF

Info

Publication number
JP2011061480A
JP2011061480A JP2009208703A JP2009208703A JP2011061480A JP 2011061480 A JP2011061480 A JP 2011061480A JP 2009208703 A JP2009208703 A JP 2009208703A JP 2009208703 A JP2009208703 A JP 2009208703A JP 2011061480 A JP2011061480 A JP 2011061480A
Authority
JP
Japan
Prior art keywords
optical
bandwidth
allocated
time
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009208703A
Other languages
Japanese (ja)
Other versions
JP5290917B2 (en
Inventor
Manabu Yoshino
學 吉野
Kazutaka Hara
一貴 原
Hirotaka Nakamura
浩崇 中村
Shunji Kimura
俊二 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2009208703A priority Critical patent/JP5290917B2/en
Publication of JP2011061480A publication Critical patent/JP2011061480A/en
Application granted granted Critical
Publication of JP5290917B2 publication Critical patent/JP5290917B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Small-Scale Networks (AREA)
  • Optical Communication System (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical communication system for distributing a plurality of users into a plurality of groups, storing the users, and extending a total band, while securing fairness in assigned bands, and to provide an optical communication method. <P>SOLUTION: In the optical communication system, a time domain and a plurality of wavelength areas are shared between a plurality of ONU-A to C (11-1-A to C) and an OLT (21-1), so as to exchange signal light by using a passive light branching circuit. The OLT (21-1) monitors the wavelength and time assigned to the optical transmitters A to C (10-1-A to C) of the ONU-A to C (11-1-A to C), calculates the average values of the assignment bands by each one of the optical transmitters A to C (10-1-A to C), calculates the ratio of the average values among the optical transmitters A to C (10-1-A to C), and determines the wavelength and time to be assigned to the optical transmitters of ONU-A to C (11-1-A to C), so as to allow the ratio of the average values to be within a predetermined fixed range. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、複数の光送信機を複数のグループに振り分けて収容する光通信システム、特に波長分割多重技術又は芯線多重技術を用いた光通信システム及び光通信方法に関する。   The present invention relates to an optical communication system that accommodates a plurality of optical transmitters in a plurality of groups, and more particularly to an optical communication system and an optical communication method using a wavelength division multiplexing technique or a core line multiplexing technique.

経済的な高速アクセスネットワークを実現するための光ネットワークとしてPON(Passive Optical Network)が知られている。高速アクセスネットワークで従来用いられている安価なSiGe−BiCMOSプロセスを利用して強度変調−直接検波方式で時分割多重(TDM:Time Division Multiplexing)技術をPONに適用することを想定すると、電子デバイスの制約によりその帯域は10Gbpsが上限と考えられている。   PON (Passive Optical Network) is known as an optical network for realizing an economical high-speed access network. Assuming that time division multiplexing (TDM) technology is applied to PON using an intensity modulation-direct detection method using an inexpensive SiGe-BiCMOS process conventionally used in high-speed access networks, Due to restrictions, the upper limit of the bandwidth is considered to be 10 Gbps.

そこで、更なる高速化を図るため、ユーザ毎の信号を多重するために波長分割多重(WDM:Wavelength Division Multiplexing)や芯線多重を適用することも考えられている。しかし、WDMを適用すると、ユーザ毎に異なる波長を用いるため、光加入者側装置であるONU(Optical Network Unit)の数に応じた波長の割当と波長制御が必要となり、さらには、局側装置であるOLT(Optical Line Terminal)には光加入者側装置ONUの数に応じた光送受信機も必要となる。これらは既存の光加入者側装置ONUや局側装置OLTの更改を要する。また、芯線多重を適用すると、芯線とそれに応じた数だけ光送受信機が必要となり、いずれもコスト上昇を避けられない。   Therefore, in order to further increase the speed, it has been considered to apply wavelength division multiplexing (WDM) or core multiplexing to multiplex signals for each user. However, since different wavelengths are used for each user when WDM is applied, wavelength allocation and wavelength control according to the number of ONUs (Optical Network Units) that are optical subscriber-side devices are required. An optical transmitter / receiver corresponding to the number of optical subscriber side devices ONU is also required for OLT (Optical Line Terminal). These require renewal of the existing optical subscriber side device ONU and the station side device OLT. Further, when the core wire multiplexing is applied, the core wires and the number of optical transmitters / receivers corresponding to the core wires are necessary, and any increase in cost cannot be avoided.

この課題に対しては、光加入者側装置ONU全体に割り当てうる総帯域を拡張する総帯域拡張方式として、光加入者側装置ONUを複数のグループにグルーピングし、グループ間でWDMとグループ内でTDMを適用するWDM/TDM−PON方式(例えば、非特許文献1を参照。)がある。これは、波長を複数の光加入者側装置ONUで共用することで、総帯域拡張に伴うコスト上昇を最小限に抑えている。また、冗長構成のための予備芯線を現用芯線としても利用する方式(例えば、非特許文献2を参照。)がある。これは、予備芯線を活用することで総帯域拡張に伴うコスト上昇を最小限に抑えている。   To solve this problem, as a total bandwidth expansion method for expanding the total bandwidth that can be allocated to the entire optical subscriber unit ONU, the optical subscriber unit ONUs are grouped into a plurality of groups, and the WDM and the groups are inter-grouped. There is a WDM / TDM-PON system (see, for example, Non-Patent Document 1) that applies TDM. This is because the wavelength is shared by a plurality of optical subscriber unit ONUs, thereby minimizing the cost increase associated with the total bandwidth expansion. In addition, there is a method of using a spare core wire for a redundant configuration as an active core wire (see, for example, Non-Patent Document 2). This minimizes the cost increase associated with the expansion of the total bandwidth by utilizing the spare core wire.

「総帯域拡張型WDM/TDM−PONと動的波長帯域割当の一提案」、吉野學、原一貴、中村浩崇、木村俊二、吉本直人、雲崎清美(日本電信電話株式会社、アクセスサービスシステム研究所)、2009年電子情報通信学会総合大会、通信講演論文集2、426ページ"A proposal for total bandwidth expansion WDM / TDM-PON and dynamic wavelength band allocation", Manabu Yoshino, Kazutaka Hara, Hirotaka Nakamura, Shunji Kimura, Naoto Yoshimoto, Kiyomi Kumozaki (Nippon Telegraph and Telephone Corporation, Access Service) System Research Laboratories), 2009 IEICE General Conference, Communication Lectures 2, 426 pages.

「ATM−PONのプロテクション方式及び動的帯域割当との連携動作の検討」、吉田俊和、向井宏明、岩崎充佳、浅芝慶弘、一番ケ瀬広、横谷哲也、2001年5月CS方式研究会電子情報通信学会技術研究報告vol.101(53),CS2001−21,pp.25−30"Examination of ATM-PON protection method and cooperative operation with dynamic bandwidth allocation", Toshikazu Yoshida, Hiroaki Mukai, Mitsuka Iwasaki, Yoshihiro Asashiba, Hiroshi Ichibanse, Tetsuya Yokoya, May 2001 CS System Study Group Electronic Information IEICE Technical Report vol. 101 (53), CS2001-21, pp. 25-30

しかし、ONUを複数波長又は芯線に振り分けて収容する場合、収容され方により、ONUに割り当てられる帯域(割当帯域)に不公平が発生するという課題がある。特に、フラグメント化による割当帯域の無効割当の軽減、切り替えの軽減、省エネルギーのための複数送受信機の一部休眠状態を実現するために、各ONUが一つの波長又は芯線にほぼ固定的に収容される際に甚だしくなる。   However, when the ONUs are distributed and accommodated in a plurality of wavelengths or core wires, there is a problem that unfairness occurs in a band (allocated band) allocated to the ONU depending on how the ONUs are accommodated. In particular, each ONU is almost fixedly accommodated in one wavelength or core line in order to reduce invalid allocation of allocated bandwidth by fragmentation, reduce switching, and partially sleep state of multiple transceivers for energy saving. It becomes awkward when it is.

例えば、ユーザを収容する複数のグループがあり、一方のグループは振られたユーザ数が少ないか、通信帯域を要求するユーザが少数しかいない場合、当該グループに割り振られたユーザは概ね契約上の最大帯域を利用することができる。他方のグループは、振られたユーザ数が多いか、通信帯域を要求するユーザが多い場合、当該グループに割り振られたユーザは概ね契約上の最大帯域を利用することができない。   For example, if there are multiple groups that accommodate users, and one group has a small number of assigned users or only a few users requesting communication bandwidth, the users assigned to that group are generally the largest in the contract. Bandwidth can be used. When the other group has a large number of assigned users or a large number of users requesting a communication band, the user allocated to the group cannot generally use the contracted maximum band.

図6に、従来のONUへの割り当て方法の一例を示す。複数波長又は芯線が2であり、収容すべきONUが3の場合を想定する。この場合、一方の波長又は芯線に1つのONU(ONU−C)、他方の波長又は芯線に2つのONU(ONU−A,B)を収容することとなる。波長又は芯線毎の総割当帯域が等しい場合、1波長に1つのONUのみで収容されたグループ1のONU(ONU−C)への割当帯域は、1波長に2つのONUで収容されたグループ2のONU(ONU−A,B)への割当帯域が倍となり公平性が実現できていない。このように、割り振られたグループによって、利用可能な帯域が異なり不公平となる。   FIG. 6 shows an example of a conventional assignment method to ONUs. Assume that the number of wavelengths or core wires is 2, and the number of ONUs to be accommodated is 3. In this case, one ONU (ONU-C) is accommodated in one wavelength or core wire, and two ONUs (ONU-A, B) are accommodated in the other wavelength or core wire. When the total allocated bandwidth for each wavelength or core is equal, the allocated bandwidth to the ONU (ONU-C) of group 1 accommodated by only one ONU per wavelength is the group 2 accommodated by two ONUs per wavelength. The bandwidth allocated to ONUs (ONU-A, B) is doubled and fairness cannot be realized. In this way, the available bandwidth differs depending on the allocated group, which is unfair.

また、一部のユーザのみが割当帯域の増大を希望し、追加のコストを支払うことで波長数を増加するサービスを提供する際、追加コストを支払っていないユーザに対しても、割当帯域増加の効用がある又は追加コストを支払っているユーザ間の割当帯域が異なる恐れがあり、サービス提供上の公平性が担保できない。例えば、複数波長又は芯線が2であり、収容すべきユーザ数が32の場合を想定する。ここで、割当帯域は非輻輳時には、割増ユーザも通常ユーザも最大帯域まで割当が可能で、輻輳時に帯域要求のある割増ユーザと通常ユーザの割当帯域比が2:1となるのが公平とする。   In addition, when providing services that increase the number of wavelengths by paying additional costs when only some users wish to increase the allocated bandwidth, users who have not paid the additional cost will also be able to increase the allocated bandwidth. There is a possibility that allocated bandwidths between users who have utility or pay additional costs may differ, and fairness in providing services cannot be ensured. For example, it is assumed that the number of wavelengths or core wires is 2 and the number of users to be accommodated is 32. Here, when the bandwidth is not congested, both the extra user and the normal user can be allocated up to the maximum bandwidth, and it is fair that the ratio between the extra user who requires the bandwidth and the normal user is 2: 1 when the bandwidth is congested. .

この時、例えば、割増ユーザ間の公平性を担保しようとして当初割増ユーザは全て増設側に移行する場合、追加コストを支払っていないユーザの割当帯域が増大し不公平となる。全ユーザが最大帯域を要求している場合、(割増ユーザ数、割増ユーザの帯域、従来ユーザの割当帯域)の形で示すと次のようになる。(0、0、1/32)、(1、1、1/31)、(2、1/2、1/30)、(3、1/3、1/29)、…、(16、1/16、1/16)、…。   At this time, for example, when all of the initial premium users are shifted to the expansion side in an attempt to ensure fairness among the premium users, the allocated bandwidth of the user who has not paid the additional cost increases and becomes unfair. When all users are requesting the maximum bandwidth, it is as follows in the form of (number of extra users, extra user bandwidth, conventional user allocated bandwidth). (0, 0, 1/32), (1, 1, 1/31), (2, 1/2, 1/30), (3, 1/3, 1/29), ..., (16, 1 / 16, 1/16), ...

即ち、割増ユーザが16ユーザとなった時点で、従来ユーザも残存者利益により、割増ユーザと同じ帯域割当となり、追加コストを支払ったユーザに対して不公平となる。また、非輻輳時は最大帯域がでるとは言え、割増ユーザが少ない初期は高々倍の割当の追加コストしか支払っていないのに、30倍もの割当がある意味で不公平感がある。   That is, when the additional user becomes 16 users, the conventional user also becomes the same bandwidth allocation as the additional user due to the survivor's profit, which is unfair to the user who paid the additional cost. In addition, although the maximum bandwidth is generated at the time of non-congestion, in the initial stage when there are few additional users, only the additional cost of allocation at most is paid, but there is an unfair feeling in the sense that there is an allocation of 30 times.

前記課題を解決するために、本発明は、割当帯域の公平性を確保しつつ、複数のユーザを複数のグループに振り分けて収容して総帯域を拡張する光通信システム及び光通信方法を提供することを目的とする。   In order to solve the above-described problems, the present invention provides an optical communication system and an optical communication method for extending a total bandwidth by distributing and accommodating a plurality of users into a plurality of groups while ensuring fairness of the allocated bandwidth. For the purpose.

上記目的を達成するために、本発明の光通信システム及び光通信方法は、割当帯域の平均値が所定の割当帯域比の範囲内となるように割り当てることで、ユーザ間の割当帯域の公平性を実現することとした。   In order to achieve the above object, the optical communication system and the optical communication method of the present invention allocate the bandwidth so that the average value of the allocated bandwidth is within a predetermined allocated bandwidth ratio, thereby ensuring fairness of the allocated bandwidth between users. It was decided to realize.

具体的には、本発明の光通信システムは、複数の光加入者側装置と一つの局側装置間で時間領域及び複数の波長領域を共用し、受動光分岐回路を利用して信号光を送受信する光通信システムであって、前記局側装置は、前記光加入者側装置の光送信機に割り当てられた波長及び時間を監視して前記光送信機ごとの割当帯域の平均値を算出し、前記光送信機間の前記平均値の比を算出して、前記平均値の比が予め定められた一定の範囲を超過すると、前記平均値の高い前記光送信機に割り当てる波長又は時間を減らす。   Specifically, the optical communication system of the present invention shares a time region and a plurality of wavelength regions between a plurality of optical subscriber-side devices and a single station-side device, and transmits signal light using a passive optical branch circuit. An optical communication system for transmitting and receiving, wherein the station side device monitors the wavelength and time assigned to the optical transmitter of the optical subscriber side device and calculates an average value of the allocated bandwidth for each of the optical transmitters. When the ratio of the average values between the optical transmitters is calculated and the ratio of the average values exceeds a predetermined range, the wavelength or time allocated to the optical transmitter having the high average value is reduced. .

局側装置は、各光送信機の割当帯域の平均値の比が予め定められた一定の範囲内となるように、割当帯域を各光送信機に割り当てる。これにより、ユーザ間の割当帯域の公平性を実現することができる。   The station side apparatus allocates the allocated band to each optical transmitter so that the ratio of the average values of the allocated bands of the respective optical transmitters is within a predetermined range. Thereby, fairness of the allocated bandwidth between users can be realized.

具体的には、本発明の光通信システムは、複数の光加入者側装置と一つの局側装置間で時間領域及び複数の芯線を共用し、受動光分岐回路を利用して信号光を送受信する光通信システムであって、前記局側装置は、前記光加入者側装置の光送信機に割り当てられた芯線及び時間を監視して前記光送信機ごとの割当帯域の平均値を算出し、前記光送信機間の前記平均値の比が予め定められた一定の範囲を超過すると、前記平均値の高い前記光送信機に割り当てる芯線又は時間を減らす。   Specifically, the optical communication system of the present invention shares a time domain and a plurality of core wires between a plurality of optical subscriber side devices and one station side device, and transmits and receives signal light using a passive optical branch circuit. In the optical communication system, the station side device monitors the core line and time assigned to the optical transmitter of the optical subscriber side device, calculates the average value of the allocated bandwidth for each optical transmitter, When the ratio of the average values between the optical transmitters exceeds a predetermined range, the core or time allocated to the optical transmitter having a high average value is reduced.

局側装置は、各光送信機の割当帯域の平均値の比が予め定められた一定の範囲内となるように、割当帯域を各光送信機に割り当てる。これにより、ユーザ間の割当帯域の公平性を実現することができる。   The station side apparatus allocates the allocated band to each optical transmitter so that the ratio of the average values of the allocated bands of the respective optical transmitters is within a predetermined range. Thereby, fairness of the allocated bandwidth between users can be realized.

本発明の光通信システムでは、前記局側装置は、予め定められた保証帯域を超える帯域割当を要求している前記光送信機間で前記平均値を算出することが好ましい。   In the optical communication system of the present invention, it is preferable that the station side apparatus calculates the average value between the optical transmitters requesting bandwidth allocation exceeding a predetermined guaranteed bandwidth.

具体的には、本発明の光通信方法は、複数の光加入者側装置と一つの局側装置間で時間領域及び複数の波長領域を共用し、受動光分岐回路を利用して信号光を送受信する光通信方法であって、前記局側装置は、前記光加入者側装置の光送信機に割り当てられた波長及び時間を監視して前記光送信機ごとの割当帯域の平均値を算出し、前記光送信機間の前記平均値の比が予め定められた一定の範囲を超過すると、前記平均値の高い前記光送信機に割り当てる波長又は時間を減らす。   Specifically, the optical communication method of the present invention shares a time domain and a plurality of wavelength domains between a plurality of optical subscriber-side devices and a single station-side device, and transmits signal light using a passive optical branch circuit. An optical communication method for transmitting and receiving, wherein the station side device monitors the wavelength and time assigned to the optical transmitter of the optical subscriber side device and calculates an average value of the allocated bandwidth for each of the optical transmitters. When the ratio of the average values between the optical transmitters exceeds a predetermined range, the wavelength or time allocated to the optical transmitter having a high average value is reduced.

局側装置は、各光送信機の割当帯域の平均値の比が予め定められた一定の範囲内となるように、割当帯域を各光送信機に割り当てる。これにより、ユーザ間の割当帯域の公平性を実現することができる。   The station side apparatus allocates the allocated band to each optical transmitter so that the ratio of the average values of the allocated bands of the respective optical transmitters is within a predetermined range. Thereby, fairness of the allocated bandwidth between users can be realized.

具体的には、本発明の光通信方法は、複数の光加入者側装置と一つの局側装置間で時間領域及び複数の芯線を共用し、受動光分岐回路を利用して信号光を送受信する光通信方法であって、前記局側装置は、前記光加入者側装置の光送信機に割り当てられた芯線及び時間を監視して前記光送信機ごとの割当帯域の平均値を算出し、前記光送信機間の前記平均値の比が予め定められた一定の範囲を超過すると、前記平均値の高い前記光送信機に割り当てる芯線又は時間を減らす。   Specifically, the optical communication method of the present invention shares a time domain and a plurality of core wires between a plurality of optical subscriber side devices and one station side device, and transmits and receives signal light using a passive optical branch circuit. In the optical communication method, the station side device monitors the core line and time assigned to the optical transmitter of the optical subscriber side device, calculates an average value of the allocated bandwidth for each optical transmitter, When the ratio of the average values between the optical transmitters exceeds a predetermined range, the core or time allocated to the optical transmitter having a high average value is reduced.

局側装置は、各光送信機の割当帯域の平均値の比が予め定められた一定の範囲内となるように、割当帯域を各光送信機に割り当てる。これにより、ユーザ間の割当帯域の公平性を実現することができる。   The station side apparatus allocates the allocated band to each optical transmitter so that the ratio of the average values of the allocated bands of the respective optical transmitters is within a predetermined range. Thereby, fairness of the allocated bandwidth between users can be realized.

本発明の光通信方法では、前記局側装置は、予め定められた保証帯域を超える帯域割当を要求している前記光送信機間で前記平均値を算出することが好ましい。   In the optical communication method of the present invention, it is preferable that the station side device calculates the average value between the optical transmitters requesting bandwidth allocation exceeding a predetermined guaranteed bandwidth.

なお、上記各発明は、可能な限り組み合わせることができる。   The above inventions can be combined as much as possible.

本発明によれば、割当帯域の平均値が所定の割当帯域比の範囲内となるように割り当てることで、ユーザ間の割当帯域の公平性を実現する光通信システム及び光通信方法を提供することができる。   According to the present invention, it is possible to provide an optical communication system and an optical communication method that realize fairness of allocated bandwidth between users by allocating so that an average value of allocated bandwidth is within a predetermined allocated bandwidth ratio. Can do.

実施形態1に係る光通信システムの一例を示す構成概略図である。1 is a schematic configuration diagram illustrating an example of an optical communication system according to a first embodiment. X点における光送信機からの信号光のタイムチャートの一例を表す。An example of a time chart of signal light from an optical transmitter at point X is shown. 帯域割当方法の一例を示す。An example of a bandwidth allocation method is shown. 実施形態2に係る光通信システムの一例を示す構成概略図である。FIG. 5 is a schematic configuration diagram illustrating an example of an optical communication system according to a second embodiment. X点における光送信機からの信号光のタイムチャートの一例を表す。An example of a time chart of signal light from an optical transmitter at point X is shown. 従来の帯域割当方法の一例を示す。An example of a conventional bandwidth allocation method is shown.

添付の図面を参照して本発明の実施形態を説明する。以下に説明する実施形態は本発明の実施形態であり、本発明は、以下の実施形態に制限されるものではない。なお、本明細書及び図面において符号が同じ構成要素は、相互に同一のものを示すものとする。   Embodiments of the present invention will be described with reference to the accompanying drawings. The embodiments described below are embodiments of the present invention, and the present invention is not limited to the following embodiments. In the present specification and drawings, the same reference numerals denote the same components.

(実施形態1)
図1は、本実施形態に係る光通信システムの一例を示す構成概略図である。本実施形態に係る光通信システムは、複数の光加入者側装置としてのONU−A(11−1−A)及びONU−B(11−1−B)及びONU−C(11−1−C)と、局側装置としてのOLT(21−1)と、受動光分岐回路としての光スプリッタ12と、を備える。
(Embodiment 1)
FIG. 1 is a schematic configuration diagram illustrating an example of an optical communication system according to the present embodiment. The optical communication system according to the present embodiment includes ONU-A (11-1-A), ONU-B (11-1-B), and ONU-C (11-1-C) as a plurality of optical subscriber side devices. ), An OLT (21-1) as a station side device, and an optical splitter 12 as a passive optical branching circuit.

本実施形態に係る光通信システムは、ONU−A〜C(11−1−A〜C)とOLT(21−1)間で時間領域及び複数の波長領域を共用し、光スプリッタ12を利用して信号光を送受信する。光通信システムは、例えば、PONへの適用が代表的であるが、PON以外のパッシブツリーなども適用できる。   The optical communication system according to the present embodiment uses the optical splitter 12 by sharing a time domain and a plurality of wavelength domains between the ONU-A to C (11-1-A to C) and the OLT (21-1). To transmit and receive signal light. The optical communication system is typically applied to a PON, for example, but a passive tree other than the PON can also be applied.

本実施形態に係る光通信システムは、制御器(不図示)を備え、本実施形態に係る光通信方法を実行する。制御器(不図示)は、光送信機A〜C(10−1−A〜C)に割り当てられた波長及び時間を監視して光送信機A〜C(10−1−A〜C)ごとの割当帯域の平均値を算出する。そして、光送信機A〜C(10−1−A〜C)間の平均値の比を算出して、平均値の比が予め定められた一定の範囲に収まるように、光送信機A〜C(10−1−A〜C)に割り当てる波長及び時間を決定する。以下、本実施形態に係る光通信システム及び光通信方法について、具体的に説明する。   The optical communication system according to the present embodiment includes a controller (not shown) and executes the optical communication method according to the present embodiment. The controller (not shown) monitors the wavelength and time assigned to the optical transmitters A to C (10-1-A to C) and monitors each of the optical transmitters A to C (10-1-A to C). The average value of the allocated bandwidth is calculated. Then, an average value ratio between the optical transmitters A to C (10-1-A to C) is calculated, and the optical transmitters A to C are set so that the average value ratio falls within a predetermined range. The wavelength and time allocated to C (10-1-A to C) are determined. Hereinafter, the optical communication system and the optical communication method according to the present embodiment will be specifically described.

制御器(不図示)は、光送信機A〜C(10−1−A〜C)の通信状態を監視可能な位置に接続されている。例えば、光スプリッタ12を介したOLT(21−1)との光伝送路に接続される。制御器(不図示)は、例えば、OLT(21−1)に配置される。   The controller (not shown) is connected to a position where the communication states of the optical transmitters A to C (10-1-A to C) can be monitored. For example, it is connected to the optical transmission line with the OLT (21-1) via the optical splitter 12. A controller (not shown) is arrange | positioned at OLT (21-1), for example.

ONU−A(11−1−A)は、光送信機A(10−1−A)を備える。ONU−B(11−1−B)及びONU−C(11−1−C)についても同様である。OLT(21−1)は、光合分波器(25)と、受光器a(22−1−a)と、受光器b(22−1−b)と、を備える。光合分波器(25)は、例えば、波長フィルタである。受光器a,b(22−1−a,b)は、例えば、フォトダイオードである。ここでは、ONU−A〜C(11−1−A〜C)に搭載される光受信機、OLT(21−1)に搭載される光送信機は省略している。   The ONU-A (11-1-A) includes an optical transmitter A (10-1-A). The same applies to ONU-B (11-1-B) and ONU-C (11-1-C). The OLT (21-1) includes an optical multiplexer / demultiplexer (25), a light receiver a (22-1-a), and a light receiver b (22-1-b). The optical multiplexer / demultiplexer (25) is, for example, a wavelength filter. The light receivers a and b (22-1-a and b) are, for example, photodiodes. Here, an optical receiver mounted on the ONU-A to C (11-1-A to C) and an optical transmitter mounted on the OLT (21-1) are omitted.

ONU−A〜C(11−1−A〜C)は、加入者宅に設置されている。光送信機A〜C(10−1−A〜C)は、割り当てられた波長の信号光を出力する。割り当てられた波長は、選択可能な複数の波長のうちの1波長である。出力された信号光は、光ファイバを伝達し、光スプリッタ(12)で結合される。光伝送路は、光送信機A〜C(10−1−A〜C)からの信号光を波長分割多重且つ時分割多重して光受信機(20−1)へ結合する。光合分波器(25)は、光伝送路からの信号光を波長毎に分波して出力する。受光器a,b(22−1−a,b)は、光合分波器(25)からの信号光をそれぞれ受光する。これにより、光受信機(20−1)は、複数の波長毎に光送信機A〜C(10−1−A〜C)からの信号光を受信する。   ONU-A to C (11-1-A to C) are installed in the subscriber's house. The optical transmitters A to C (10-1-A to C) output signal light having an allocated wavelength. The assigned wavelength is one of a plurality of selectable wavelengths. The output signal light is transmitted through the optical fiber and is coupled by the optical splitter (12). The optical transmission line couples the signal light from the optical transmitters A to C (10-1-A to C) to the optical receiver (20-1) by wavelength division multiplexing and time division multiplexing. The optical multiplexer / demultiplexer (25) demultiplexes and outputs the signal light from the optical transmission path for each wavelength. The light receivers a and b (22-1-a, b) respectively receive the signal light from the optical multiplexer / demultiplexer (25). Accordingly, the optical receiver (20-1) receives the signal light from the optical transmitters A to C (10-1-A to C) for each of a plurality of wavelengths.

制御器(不図示)は、光送信機A〜C(10−1−A〜C)に対して信号光を送信できる波長と時間を割り当てる。例えば、光送信機A〜C(10−1−A〜C)は、2波長(λ1,λ2)の中から割り当てられた所定の1波長で信号光を出力する。このように制御器(不図示)が光送信機A〜C(10−1−A〜C)に波長と時間を割り当てることで、割当帯域が決定される。   A controller (not shown) assigns a wavelength and a time at which signal light can be transmitted to the optical transmitters A to C (10-1-A to C). For example, the optical transmitters A to C (10-1-A to C) output signal light at a predetermined one wavelength assigned from two wavelengths (λ1, λ2). In this way, the controller (not shown) assigns the wavelength and time to the optical transmitters A to C (10-1-A to C), whereby the allocated band is determined.

図2は、X点における光送信機からの信号光のタイムチャートの一例を表す。縦方向が光送信機A〜Cに与えられた送信波長領域であり、横方向が光送信機A〜Cに与えられた送信割当時間を示す。光送信機Aは、波長λ1の信号光を時間t1から時間t2までの割当時間領域で送信する。光送信機Bは、波長λ1の信号光を時間t2から時間t3までの割当時間領域で送信する。光送信機Cは、波長λ2の信号光を時間t1から時間t2までの割当時間領域で送信する。このように、図1に示す光通信システムは、光送信機A〜C(10−1−A〜C)からの信号光を波長分割多重且つ時分割多重をして光受信機(20−1)に結合する。   FIG. 2 shows an example of a time chart of signal light from the optical transmitter at point X. The vertical direction is the transmission wavelength region given to the optical transmitters A to C, and the horizontal direction shows the transmission allocation time given to the optical transmitters A to C. The optical transmitter A transmits the signal light of wavelength λ1 in the allocated time region from time t1 to time t2. The optical transmitter B transmits the signal light having the wavelength λ1 in the allocated time region from time t2 to time t3. The optical transmitter C transmits the signal light of wavelength λ2 in the allocated time region from time t1 to time t2. As described above, the optical communication system shown in FIG. 1 performs the wavelength division multiplexing and the time division multiplexing on the signal light from the optical transmitters A to C (10-1-A to C) to perform the optical receiver (20-1). ).

このとき、制御器は、波長λ1の光送信機A,B(10−1−A,B)と波長λ2の光送信機C(10−1−C)への割当帯域が公平となるように、波長λ2の光送信機C(10−1−C)の割当帯域を抑制する。この結果、時間t1〜t3の間で、どの光送信機A〜C(10−1−A〜C)も均等に帯域が割り当てられている。   At this time, the controller ensures that the bandwidth allocated to the optical transmitters A and B (10-1-A, B) having the wavelength λ1 and the optical transmitter C (10-1-C) having the wavelength λ2 is fair. The bandwidth allocated to the optical transmitter C (10-1-C) having the wavelength λ2 is suppressed. As a result, the bandwidth is equally allocated to any of the optical transmitters A to C (10-1-A to C) between the times t1 and t3.

光合分波器(25)は、信号光を波長λ1と波長λ2に分波し、それぞれ受光器a,b(22−1−a,b)に結合する。受光器a,b(22−1−a,b)は、それぞれ受光した信号光を電気信号として出力する。   The optical multiplexer / demultiplexer (25) demultiplexes the signal light into the wavelengths λ1 and λ2, and couples them to the light receivers a and b (22-1-a, b), respectively. The light receivers a and b (22-1-a and b) respectively output the received signal light as electric signals.

光受信機(20−1)は、異なる波長の信号光は同時に受信できるが、同一波長の信号光を同時に受信することはできない。そこで、制御器(不図示)は、同一波長の信号光が同時に光受信機(20−1)に到着しないように、光送信機A〜C(10−1−A〜C)に対して通信可能時間を割り当てる必要がある。   The optical receiver (20-1) can simultaneously receive signal lights of different wavelengths, but cannot simultaneously receive signal lights of the same wavelength. Therefore, the controller (not shown) communicates with the optical transmitters A to C (10-1-A to C) so that the signal light with the same wavelength does not reach the optical receiver (20-1) at the same time. It is necessary to allocate possible time.

このため、制御器は、時間t1で光送信機A(10−1−A)に波長λ1の信号光を出力するよう指示し、光送信機B(10−1−B)に波長λ1の信号光の送出を止めるように指示し、光送信機C(10−1−C)に波長λ2の信号光を出力するよう指示する。制御器は、時間t2で光送信機A(10−1−A)に信号光の送出を止めるように指示し、光送信機B(10−1−B)に波長λ1の信号光を出力するよう指示し、光送信機C(10−1−C)に信号光の送出を止めるように指示する。   For this reason, the controller instructs the optical transmitter A (10-1-A) to output the signal light having the wavelength λ1 at time t1, and instructs the optical transmitter B (10-1-B) to output the signal having the wavelength λ1. An instruction is given to stop the transmission of light, and an instruction is given to the optical transmitter C (10-1-C) to output the signal light of wavelength λ2. The controller instructs the optical transmitter A (10-1-A) to stop sending the signal light at time t2, and outputs the signal light having the wavelength λ1 to the optical transmitter B (10-1-B). And instruct the optical transmitter C (10-1-C) to stop sending the signal light.

光送信機A〜C(10−1−A〜C)から光受信機(20−1)までの伝送距離が異なる場合、制御器は、合波したときに重ならないように信号光間の時間間隔を調整する。信号光がフレームで構成されている場合、制御器は、フレーム間隔を調整する。   When the transmission distances from the optical transmitters A to C (10-1-A to C) to the optical receiver (20-1) are different, the controller sets the time between the signal lights so as not to overlap when they are combined. Adjust the interval. When the signal light is composed of frames, the controller adjusts the frame interval.

制御器は、波長λ1に属する光送信機A、B(10−1−A、B)と波長λ2に属する光送信機C(10−1−C)への割当帯域が公平となるように、波長λ2に属する光送信機C(10−1−C)の割当帯域を抑制している。言い換えれば、本光通信システムは、割当帯域の基本となる値、たとえば保証帯域の比に割当帯域が、収容される波長によらずに一定の範囲に収まるように、割当帯域の基本となる値、たとえば保証帯域の総和が少ない波長に収容される収容ユーザへの過剰割当を抑制する操作を制御器で行うことで、収容される波長によらずユーザ間の割当帯域の公平性を実現している。   The controller is configured so that the bandwidth allocated to the optical transmitters A and B (10-1-A, B) belonging to the wavelength λ1 and the optical transmitter C (10-1-C) belonging to the wavelength λ2 is fair. The allocated bandwidth of the optical transmitter C (10-1-C) belonging to the wavelength λ2 is suppressed. In other words, the present optical communication system is a basic value of the allocated bandwidth so that the allocated bandwidth is within a certain range regardless of the accommodated wavelength, for example, the ratio of the guaranteed bandwidth to the guaranteed bandwidth ratio. For example, the controller performs an operation to suppress excessive allocation to accommodated users accommodated in wavelengths where the total guaranteed bandwidth is small, thereby realizing fairness of allocated bandwidth between users regardless of the accommodated wavelengths. Yes.

このような割当の方法として、例えば、制御器は、光送信機A〜C(10−1−A〜C)に割り当てられた波長及び時間を監視し、光送信機A〜C(10−1−A〜C)ごとの割当帯域の平均値を算出し、光送信機A〜C(10−1−A〜C)間の平均値の比を算出する。そして、制御器は、平均値の比が予め定められた一定の範囲に収まるように、光送信機A〜C(10−1−A〜C)に割り当てる波長及び時間を決定する。   As a method for such allocation, for example, the controller monitors the wavelength and time allocated to the optical transmitters A to C (10-1-A to C), and the optical transmitters A to C (10-1). The average value of the allocated bands for each of (A to C) is calculated, and the ratio of the average values among the optical transmitters A to C (10-1-A to C) is calculated. Then, the controller determines the wavelength and time to be assigned to the optical transmitters A to C (10-1-A to C) so that the ratio of the average values falls within a predetermined range.

そのために、制御器は、光送信機A〜C(10−1−A〜C)に対して要求する要求帯域に対して割り当てられている割当帯域の履歴を保持し、保持した履歴を比較する。そしおて、割当帯域が所定の比の範囲に収まるように、光送信機A〜C(10−1−A〜C)への割当帯域を決定する。   For this purpose, the controller retains the history of the allocated bandwidth assigned to the requested bandwidth requested to the optical transmitters A to C (10-1-A to C), and compares the retained history. . Then, the bandwidth allocated to the optical transmitters A to C (10-1-A to C) is determined so that the bandwidth allocated falls within a predetermined ratio range.

例えば、制御器は、ユーザ毎の割当帯域又は要求帯域と割当帯域の両方の履歴を保持する履歴保持部と、履歴保持部の保持する履歴を比較する比較部と、比較部の比較した値に応じて過剰に割り当てられているユーザへの割当を所定の時間または割当帯域を抑制する抑制部を含む。履歴は、通信履歴は過去一定時間のウインドウでの履歴であってもよいし、一定時間のスライディングウインドウの履歴であっても良いし、指数平均や加重平均等の平均による履歴であってもよい。   For example, the controller includes a history holding unit that holds the history of both the allocated bandwidth or the requested bandwidth and the allocated bandwidth for each user, a comparison unit that compares the history held by the history holding unit, and a comparison value of the comparison unit. Accordingly, a suppression unit is included that suppresses allocation to a user who is allocated excessively for a predetermined time or allocated bandwidth. As for the history, the communication history may be a history in a window for a certain period of time in the past, may be a history of a sliding window for a certain period of time, or may be a history based on an average such as an exponential average or a weighted average. .

そして、制御器は、割当帯域の平均値が所定の比率を超過するまでは、当該ユーザに対する割当の上限を最大帯域とし、超過してから平均値が所定の比率に戻るまでは、当該ユーザに対する割当の上限を、割当を保証する保証帯域にするといった処理を行う。   Then, the controller sets the upper limit of the allocation to the user as the maximum bandwidth until the average value of the allocated bandwidth exceeds a predetermined ratio, and until the average value returns to the predetermined ratio after exceeding, Processing is performed such that the upper limit of allocation is set to a guaranteed bandwidth that guarantees allocation.

ここで、予め定められた一定の範囲は、任意に設定することができる。例えば、一定の範囲は、保証帯域の比である。光送信機A〜C(10−1−A〜C)の保証帯域が1:1:1の場合、予め定められた一定の範囲を1:1:1とする。この場合、全光送信機A〜C(10−1−A〜C)の割当帯域を均等にすることができる。光送信機A〜C(10−1−A〜C)の優先度が異なるために保証帯域の比が異なれば、その保証帯域の比とする。これにより、優先度に応じた割当帯域の公平性を実現することができる。なお、ここで一定の範囲として、単一の値の組で例示したが、均等な割当帯域からのずれを許容する場合、例えば最低の割当の値に対して、その2倍まで許容すると、割当が最低の光送信機への割当帯域:割当が最大の光送信機へ割当帯域=1:1〜1:2がその予め定められた一定の範囲となる。   Here, the predetermined range can be arbitrarily set. For example, the certain range is the ratio of the guaranteed bandwidth. When the guaranteed bandwidth of the optical transmitters A to C (10-1-A to C) is 1: 1: 1, a predetermined range is set to 1: 1: 1. In this case, the allocated bandwidths of all-optical transmitters A to C (10-1-A to C) can be equalized. If the ratios of the guaranteed bands differ because the priorities of the optical transmitters A to C (10-1-A to C) are different, the ratio of the guaranteed bands is set. Thereby, the fairness of the allocated bandwidth according to the priority can be realized. Here, the fixed range is illustrated as a single set of values. However, when the deviation from the uniform allocation band is allowed, for example, if the maximum allocation value is allowed up to twice that, the allocation Allocated bandwidth to the lowest optical transmitter: Allocated bandwidth = 1: 1 to 1: 2 to the largest allocated optical transmitter is a predetermined fixed range.

光送信機A〜C(10−1−A〜C)には、光送信機A〜C(10−1−A〜C)のそれぞれに割り当てを保証しなければならない帯域である保証帯域又は光送信機A〜C(10−1−A〜C)のそれぞれに対する割当の上限の帯域である最大帯域の一方あるいは両方が設定されている場合がある。また、光送信機A〜C(10−1−A〜C)に割当する帯域は、光送信機A〜C(10−1−A〜C)が必要とする要求帯域に従って割り当てる。要求帯域は、光送信機A〜C(10−1−A〜C)が申告する光送信機A〜C(10−1−A〜C)内に蓄積している伝送待ちの情報量や伝送中の情報量や、過去の通信履歴に従い決定する。通信履歴は過去一定時間のウインドウでの履歴であってもよいし、一定時間のスライディングウインドウの履歴であっても良いし、指数平均や加重平均等の平均による履歴であってもよい。   For the optical transmitters A to C (10-1-A to C), a guaranteed band or a light that is a band that must be allocated to each of the optical transmitters A to C (10-1-A to C). There may be a case where one or both of the maximum bandwidths, which are the upper bandwidths of the allocation to each of the transmitters A to C (10-1-A to C), are set. In addition, the bandwidth allocated to the optical transmitters A to C (10-1-A to C) is allocated according to the required bandwidth required by the optical transmitters A to C (10-1-A to C). The requested bandwidth is the amount of information waiting to be transmitted and the transmission stored in the optical transmitters A to C (10-1-A to C) declared by the optical transmitters A to C (10-1-A to C). It is decided according to the amount of information in the past and past communication history. The communication history may be a history in a window for a fixed time in the past, a history of a sliding window for a fixed time, or a history based on an average such as an exponential average or a weighted average.

図3に、帯域割当方法の一例を示す。予め定められた一定の範囲が、1対1の一定値である場合について説明する。この場合、当初、光送信機Aは最大帯域を利用し、光送信機Cは最大帯域と保証帯域の中間の帯域を利用している。所定の時間ΔTが経過すると、時間ΔTにおける光送信機Aの割当帯域の平均値が一定の範囲(一定値)を超え、光送信機Aに割り当てる帯域が過剰となる。この時点で、光送信機Aに割り当てる波長帯域を保証帯域まで減少させる。 FIG. 3 shows an example of the bandwidth allocation method. A case where the predetermined range is a one-to-one constant value will be described. In this case, initially, the optical transmitter A uses the maximum bandwidth, and the optical transmitter C uses the intermediate bandwidth between the maximum bandwidth and the guaranteed bandwidth. When the predetermined time ΔT 1 elapses, the average value of the allocated bandwidth of the optical transmitter A at the time ΔT 1 exceeds a certain range (constant value), and the bandwidth allocated to the optical transmitter A becomes excessive. At this point, the wavelength band assigned to the optical transmitter A is reduced to the guaranteed band.

所定の時間ΔTが経過すると、時間ΔT及び時間ΔTにおける光送信機Aと光送信機C間での割当帯域の平均値が同じになる。この時点t3で、光送信機Aと光送信機Cに同じ帯域を割り当てる。これにより、光送信機Aと光送信機Cの割当帯域の平均値の比を、予め定められた一定の範囲(一定値)である1対1にし、帯域の公平性を保つことができる。光送信機Aと光送信機C間での割当帯域の平均値が同じになった後、最大帯域と保証帯域の両値を交互に割り当てて、割当帯域の時間平均値が同じとなるように割り当てることとしても良い。 When the predetermined time ΔT 2 elapses, the average value of the allocated bands between the optical transmitter A and the optical transmitter C at the time ΔT 1 and the time ΔT 2 becomes the same. At this time t3, the same band is allocated to the optical transmitter A and the optical transmitter C. As a result, the ratio of the average values of the allocated bands of the optical transmitter A and the optical transmitter C can be set to 1: 1, which is a predetermined range (fixed value), and the fairness of the band can be maintained. After the average value of the allocated bandwidth between the optical transmitter A and the optical transmitter C becomes the same, both the maximum bandwidth and the guaranteed bandwidth are alternately allocated so that the time average value of the allocated bandwidth becomes the same. It may be assigned.

なお、図3では光送信機Aと光送信機Cの例について示したが、光送信機Aは、複数の光送信機で構成されたグループであってもよい。光送信機B及び光送信機Cについても同様である。この場合、1つのグループに割り当てられる割当帯域の平均値の比が予め定められた一定の範囲を超過すると、平均値の高いグループに割り当てる時間を減らす。   Although FIG. 3 shows an example of the optical transmitter A and the optical transmitter C, the optical transmitter A may be a group composed of a plurality of optical transmitters. The same applies to the optical transmitter B and the optical transmitter C. In this case, when the ratio of the average values of the allocated bands allocated to one group exceeds a predetermined range, the time allocated to the group having a high average value is reduced.

このような処理をするために、制御器は処理の際、少なくとも、所定の時間で、帯域割当を要求していないユーザを除き帯域割当を要求しているユーザ間で割当帯域が所定の比の範囲となるように、割当帯域を決定する。これは、少なくとも、帯域割当を要求しているユーザ間で割当帯域が所定の比の範囲となるようにしないと、全ユーザが割当帯域を要求しない限り、帯域割当ができないからである。全ユーザの要求帯域が保証帯域以上要求するか全く要求しないかのいずれかに概ね分類できる時は、帯域割当を要求しているユーザ間で割当帯域が所定の比の範囲となるようにすればよい。   In order to perform such processing, at the time of processing, the controller, at least for a predetermined time, except for a user who does not request bandwidth allocation, the allocated bandwidth has a predetermined ratio between users who request bandwidth allocation. The allocated bandwidth is determined so as to be within the range. This is because bandwidth allocation cannot be performed unless all users request the allocated bandwidth unless the allocated bandwidth is within a predetermined ratio range between users requesting bandwidth allocation. If the bandwidth requirement for all users can be roughly categorized as either requiring more than the guaranteed bandwidth or not requiring it at all, if the allocated bandwidth is within a predetermined ratio range between users requesting bandwidth allocation Good.

更に、保証帯域以下の少量の帯域のみを要求するユーザが多くいる場合、要求帯域が割当帯域以上のユーザ間で割当帯域が所定の比の範囲となるように、割当帯域を決定する。例えば、制御器は、予め定められた保証帯域を超える帯域割当を要求している光送信機間で平均値を算出する。これにより、保証帯域以下の少量の帯域のみを要求するユーザがいたときに、要求帯域が最少のユーザの帯域によって、割当帯域が抑制されることを防ぐことができる。   Furthermore, when there are many users who request only a small amount of bandwidth less than the guaranteed bandwidth, the allocated bandwidth is determined so that the allocated bandwidth is within a predetermined ratio range between users whose requested bandwidth is equal to or greater than the allocated bandwidth. For example, the controller calculates an average value between optical transmitters that request bandwidth allocation exceeding a predetermined guaranteed bandwidth. Thereby, when there is a user who requests only a small amount of bandwidth below the guaranteed bandwidth, it is possible to prevent the allocated bandwidth from being suppressed by the bandwidth of the user having the minimum required bandwidth.

保証帯域が少ない従来ユーザの残存者利益のみを抑止するのが目的であれば、従来ユーザの平均値が、割当帯域以上の要求帯域がある割増ユーザの平均値に対して所定の比率を超過した時に、従来ユーザの割当を抑制するという処理も可能である。   If the objective is to suppress only the profits of survivors of conventional users with low guaranteed bandwidth, the average value of conventional users exceeded a predetermined ratio with respect to the average value of premium users who have a required bandwidth that exceeds the allocated bandwidth. Sometimes, it is also possible to suppress the conventional user assignment.

上述のように、制御器は光送信機A〜C(10−1−A〜C)毎に要求する要求帯域と割当帯域の履歴を保持し、保持した履歴を比較し、過剰に割り当てられている光送信機への割当帯域を抑制することで、割当帯域が所定の比の範囲となるように、光送信機A〜C(10−1−A〜C)への割当帯域を決定する。   As described above, the controller holds the history of the requested bandwidth and the allocated bandwidth requested for each of the optical transmitters A to C (10-1-A to C), compares the retained history, and is over-allocated. By suppressing the bandwidth allocated to the existing optical transmitter, the bandwidth allocated to the optical transmitters A to C (10-1-A to C) is determined so that the allocated bandwidth falls within a predetermined ratio range.

本発明は、帯域割当を要求しているユーザ間で、割り当てられる平均帯域が時間平均で等しくなるようにしていることに特徴がある。これは、平均帯域を固定値とする場合と比べて、公平性及び効率の面で利点がある。   The present invention is characterized in that the average bandwidth allocated between users requesting bandwidth allocation is equal in time average. This is advantageous in terms of fairness and efficiency compared to the case where the average bandwidth is a fixed value.

平均帯域を、例えば保証帯域に固定した場合、どのグループも輻輳していない場合も、最大帯域が出ないことになる。その場合、最大帯域は概ね出なくなるため、装置の利用効率は無意味に低下する。平均帯域を保証帯域以上に設定し、利用可能な最大帯域が当該グループの保証帯域の総和に等しい場合、特に帯域を共有するユーザ数が少なく統計多重効果が期待できないアクセス回線においては、輻輳するグループでは、平均帯域に到達しない。そのため、非輻輳のグループの割当帯域は制限がない場合に比べれば低下するが、グループ間の不公平は残ったままである。   For example, when the average bandwidth is fixed to the guaranteed bandwidth, the maximum bandwidth does not appear even if no group is congested. In that case, since the maximum bandwidth is almost not output, the utilization efficiency of the apparatus is reduced meaninglessly. If the average bandwidth is set to be equal to or greater than the guaranteed bandwidth and the maximum available bandwidth is equal to the total guaranteed bandwidth of the group, a congested group, especially on access lines where the number of users sharing the bandwidth is small and the statistical multiplexing effect cannot be expected Then, the average bandwidth is not reached. For this reason, the allocated bandwidth of the non-congested group is reduced as compared with the case where there is no limit, but the unfairness between the groups remains.

なお、本実施形態では、ユーザ毎に単一の要求帯域、割当帯域として示しているが、複数の要求帯域と割当帯域として、それぞれ異なる割当方をしても良い。例えば、各ユーザに固定的に割り当てる帯域を別途設けてその帯域を除いた帯域のみで本実施形態の割当としてもよい。   In the present embodiment, a single request bandwidth and an allocation bandwidth are shown for each user, but different allocation methods may be used for a plurality of request bandwidths and allocation bandwidths. For example, a band that is fixedly allocated to each user may be separately provided, and only the band excluding the band may be allocated in the present embodiment.

また、図1では、3つの光送信機A〜C(10−1−A〜C)と2波長で例示しているが、光送信機A〜C(10−1−A〜C)の数は増減してもよいし、波長分割多重する波長の数も3以上であってよい。また、図1では、1つの光受信機(20−1)側が波長分割多重した信号を受信しているが、波長分割多重した信号をそれぞれ受信する光受信機(20−1)は複数であってもよい。さらに、本光通信システムは双方向通信のシステムであってもよい。また、上記の説明では、単一の光送信機A〜C(10−1−A〜C)は、同時に単一の波長でのみ通信する例で説明したが、同時に複数の波長を用いて通信する場合の同様である。   In FIG. 1, three optical transmitters A to C (10-1-A to C) and two wavelengths are illustrated, but the number of optical transmitters A to C (10-1-A to C) is illustrated. The number of wavelengths to be wavelength-division multiplexed may be 3 or more. In FIG. 1, one optical receiver (20-1) side receives a wavelength division multiplexed signal, but there are a plurality of optical receivers (20-1) that respectively receive the wavelength division multiplexed signals. May be. Further, the optical communication system may be a bidirectional communication system. In the above description, the single optical transmitters A to C (10-1-A to C) communicate with only a single wavelength at the same time, but simultaneously communicate using a plurality of wavelengths. The same applies to

(実施形態2)
図4は、本実施形態の光通信システムを説明する概念図である。本光通信システムと図1の光通信システムとの違いは、各光送信機を複数の波長に振り分けて収容する代りに、複数の芯線に振り分けて収容することである。
(Embodiment 2)
FIG. 4 is a conceptual diagram illustrating the optical communication system of the present embodiment. The difference between the present optical communication system and the optical communication system of FIG. 1 is that each optical transmitter is distributed and accommodated in a plurality of core wires instead of being distributed and accommodated in a plurality of wavelengths.

本実施形態に係る光通信システムは、ONU−A〜C(11−1−A〜C)とOLT(21−1)間で時間領域及び複数の芯線を共用し、光スプリッタ12を利用して信号光を送受信する。光通信システムは、例えば、PONへの適用が代表的であるが、PON以外のパッシブツリーなども適用できる。   The optical communication system according to the present embodiment shares the time domain and a plurality of core wires between the ONU-A to C (11-1-A to C) and the OLT (21-1), and uses the optical splitter 12. Transmit and receive signal light. The optical communication system is typically applied to a PON, for example, but a passive tree other than the PON can also be applied.

本実施形態に係る光通信システムは、制御器(不図示)を備え、本実施形態に係る光通信方法を実行する。制御器(不図示)は、OLT(21−2)は、光送信機A〜C(10−2−A〜C)に割り当てられた芯線及び時間を監視して光送信機A〜C(10−2−A〜C)ごとの割当帯域の平均値を算出する。そして、光送信機A〜C(10−2−A〜C)間の平均値の比を算出して、平均値の比が予め定められた一定の範囲に収まる一定値となるように、光送信機A〜C(10−2−A〜C)に割り当てる芯線及び時間を決定する。以下、本実施形態に係る光通信システム及び光通信方法について、具体的に説明する。   The optical communication system according to the present embodiment includes a controller (not shown) and executes the optical communication method according to the present embodiment. The controller (not shown) is configured so that the OLT (21-2) monitors the core wires and times assigned to the optical transmitters A to C (10-2-A to C) and the optical transmitters A to C (10 The average value of the allocated bandwidth for each of (-2-A to C) is calculated. Then, the ratio of the average values between the optical transmitters A to C (10-2-A to C) is calculated, and the optical ratio is set so that the ratio of the average values is a constant value within a predetermined range. The core line and time allocated to the transmitters A to C (10-2-A to C) are determined. Hereinafter, the optical communication system and the optical communication method according to the present embodiment will be specifically described.

制御器(不図示)は、光送信機A〜C(10−2−A〜C)の通信状態を監視可能な位置に接続されている。例えば、光スプリッタ12を介したOLT(21−2)との光伝送路に接続される。制御器(不図示)は、例えば、OLT(21−2)に配置される。   The controller (not shown) is connected to a position where the communication states of the optical transmitters A to C (10-2-A to C) can be monitored. For example, it is connected to the optical transmission line with the OLT (21-2) via the optical splitter 12. A controller (not shown) is arrange | positioned at OLT (21-2), for example.

ONU−A(11−2−A)は、光送信機A(10−2−A)を備える。ONU−B(11−2−B)及びONU−C(11−2−C)についても同様である。OLT(21−2)は、受光器a(22−2−a)と、受光器b(22−2−b)と、を備える。受光器a,b(22−2−a,b)は、例えば、フォトダイオードである。ここでは、ONU−A〜C(11−2−A〜C)に搭載される光受信機、OLT(21−2)に搭載される光送信機は省略している。   The ONU-A (11-2-A) includes an optical transmitter A (10-2-A). The same applies to ONU-B (11-2-B) and ONU-C (11-2-C). The OLT (21-2) includes a light receiver a (22-2a) and a light receiver b (22-2b). The light receivers a and b (22-2a and b) are, for example, photodiodes. Here, an optical receiver mounted on the ONU-A to C (11-2-A to C) and an optical transmitter mounted on the OLT (21-2) are omitted.

ONU−A〜C(11−2−A〜C)は、加入者宅に設置されている。光送信機A〜C(10−2−A〜C)は、選択可能な複数の芯線のうちの1芯線に信号光を出力する。割り当てられた芯線は、選択可能な複数の芯線のうちの1芯線である。出力された信号光は、光ファイバを伝達し、光スプリッタ(12)で結合される。光伝送路は、光送信機A〜C(10−2−A〜C)からの信号光を芯線多重且つ時分割多重して光受信機(20−2)へ結合する。   ONU-A to C (11-2-A to C) are installed in the subscriber's house. The optical transmitters A to C (10-2-A to C) output signal light to one of the selectable core wires. The assigned core wire is one core wire among a plurality of selectable core wires. The output signal light is transmitted through the optical fiber and is coupled by the optical splitter (12). The optical transmission line couples the signal light from the optical transmitters A to C (10-2-A to C) to the optical receiver (20-2) by performing core line multiplexing and time division multiplexing.

光受信機(20−2)は、光伝送路からの光を芯線毎にそれぞれ受光する複数の受光器a,b(22−2−a,b)を有する。受光器a,b(22−2−a,b)は、例えば、フォトダイオードである。受光器a,b(22−2−a,b)は、それぞれ受光した信号光を電気信号として出力する。このように、本実施形態の光通信システムは、光送信機A〜C(10−2−A〜C)からの信号光を芯線多重且つ時分割多重をして光受信機(20−2)に結合する。   The optical receiver (20-2) includes a plurality of light receivers a and b (22-2-a and b) that receive light from the optical transmission path for each core wire. The light receivers a and b (22-2a and b) are, for example, photodiodes. The light receivers a and b (22-2a and b) respectively output the received signal light as electric signals. As described above, the optical communication system according to the present embodiment is configured such that the signal light from the optical transmitters A to C (10-2-A to C) is subjected to the core line multiplexing and the time division multiplexing to the optical receiver (20-2). To join.

制御器は、実施形態1における波長を芯線に読み替えれば同様である。制御器(不図示)は、光送信機A〜C(10−2−A〜C)に対して信号光を送信できる芯線と時間を割り当てる。例えば、光送信機A〜C(10−2−A〜C)は、2芯線(H1、H2)の中から割り当てられた所定の1芯線で信号光を出力する。このように制御器(不図示)が光送信機A〜C(10−2−A〜C)に芯線と時間を割り当てることで、割当帯域が決定される。   The controller is the same if the wavelength in the first embodiment is read as the core wire. A controller (not shown) allocates a core wire and time capable of transmitting signal light to the optical transmitters A to C (10-2-A to C). For example, the optical transmitters A to C (10-2-A to C) output signal light using a predetermined single core line assigned from the two core lines (H1, H2). As described above, the controller (not shown) assigns the core wire and time to the optical transmitters A to C (10-2-A to C), thereby determining the allocation band.

図5は、X点における光送信機からの信号光のタイムチャートの一例を表す。縦方向が光送信機A〜Cに与えられた芯線であり、横方向が光送信機A〜Cに与えられた送信割当時間を示す。光送信機Aは、芯線H1の信号光を時間t1から時間t2までの割当時間領域で送信する。光送信機Bは、芯線H1の信号光を時間t2から時間t3までの割当時間領域で送信する。光送信機Cは、芯線H2の信号光を時間t1から時間t2までの割当時間領域で送信する。このように、図4に示す光通信システムは、光送信機A〜C(10−2−A〜C)からの信号光を芯線多重且つ時分割多重をして光受信機(20−2)に結合する。   FIG. 5 shows an example of a time chart of signal light from the optical transmitter at point X. The vertical direction is the core line given to the optical transmitters A to C, and the horizontal direction shows the transmission allocation time given to the optical transmitters A to C. The optical transmitter A transmits the signal light of the core wire H1 in the allocated time region from time t1 to time t2. The optical transmitter B transmits the signal light of the core wire H1 in the allocated time region from time t2 to time t3. The optical transmitter C transmits the signal light of the core wire H2 in the allocated time region from time t1 to time t2. As described above, the optical communication system shown in FIG. 4 is an optical receiver (20-2) in which signal light from the optical transmitters A to C (10-2-A to C) is subjected to core line multiplexing and time division multiplexing. To join.

このとき、制御器は、芯線H1の光送信機A,B(10−2−A,B)と芯線H2の光送信機C(10−2−C)への割当帯域が公平となるように、芯線H2の光送信機C(10−2−C)の割当帯域を抑制する。この結果、時間t1〜t3の間で、どの光送信機も均等に帯域が割り当てられている。   At this time, the controller ensures that the bandwidth allocated to the optical transmitters A and B (10-2-A, B) of the core wire H1 and the optical transmitter C (10-2-C) of the core wire H2 is fair. The allocated bandwidth of the optical transmitter C (10-2-C) of the core wire H2 is suppressed. As a result, every optical transmitter is evenly allocated a band between times t1 and t3.

光送信機A〜C(10−2−A〜C)は、2芯線(H1、H2)の中から割り当てられた所定の1芯線で信号光を出力する。光送信機Aは芯線H1で信号光を送信可能領域で送信する。光送信機Bは芯線H1の信号光を送信可能領域で送信する。光送信機Cは芯線H2の信号光を送信可能領域で送信する。   The optical transmitters A to C (10-2-A to C) output signal light using a predetermined one core wire assigned from the two core wires (H1, H2). The optical transmitter A transmits the signal light in the transmittable area through the core wire H1. The optical transmitter B transmits the signal light of the core wire H1 in the transmittable area. The optical transmitter C transmits the signal light of the core wire H2 in the transmittable area.

光伝送路は、光送信機A〜C(10−2−A〜C)からの信号光を合波して光受信機(20−2)に結合する。ここで、異なる芯線の信号光は同時に受信できるが、同一芯線の信号光を同時に受信することはできない。そこで、制御器は同一芯線の信号光が同時に光受信機(20−2)に到着しないように、光送信機A〜C(10−2−A〜C)に対して通信可能時間を指定する。   The optical transmission line combines the signal light from the optical transmitters A to C (10-2-A to C) and couples it to the optical receiver (20-2). Here, although signal light of different core wires can be received simultaneously, signal light of the same core wire cannot be received simultaneously. Therefore, the controller designates the communicable time to the optical transmitters A to C (10-2-A to C) so that the signal light of the same core wire does not reach the optical receiver (20-2) at the same time. .

このため、制御器は、時間t1で光送信機Aに芯線H1の信号光を出力するよう指示し、光送信機Bに芯線H1の信号光の送出を止めるように指示し、光送信機Cに芯線H2の信号光を出力するよう指示する。制御器は、時間t2で光送信機Aに信号光の送出を止めるように指示し、光送信機Bに芯線H1の信号光を出力するよう指示し、光送信機Cに信号光の送出を止めるように指示する。   Therefore, the controller instructs the optical transmitter A to output the signal light of the core wire H1 at the time t1, instructs the optical transmitter B to stop sending the signal light of the core wire H1, and transmits the optical transmitter C. Is instructed to output the signal light of the core wire H2. The controller instructs the optical transmitter A to stop sending the signal light at time t2, instructs the optical transmitter B to output the signal light of the core wire H1, and sends the signal light to the optical transmitter C. Instruct to stop.

光送信機から光受信機(20−2)までの伝送距離が異なる場合、制御器は、合波したときに重ならないように信号光間の間隔を調整する。信号光がフレームで構成されている場合、制御器はフレーム間隔を調整する。   When the transmission distance from the optical transmitter to the optical receiver (20-2) is different, the controller adjusts the interval between the signal lights so that they do not overlap when combined. When the signal light is composed of frames, the controller adjusts the frame interval.

制御器は、芯線H1に属する光送信機A、Bと芯線H2に属する光送信機Cへの割当帯域が公平となるように、芯線H2に属する光送信機Cの割当帯域を抑制している。言い換えれば、本光通信システムは、割当帯域の基本となる値、たとえば保証帯域の比に割当帯域が、収容される芯線によらずに一定の範囲に収まるように、割当帯域の基本となる値、たとえば保証帯域の総和が少ない芯線に収容される収容ユーザへの過剰割当を抑制する操作を制御器で行うことで、収容される芯線によらずユーザ間の割当帯域の公平性を実現している。   The controller suppresses the allocated bandwidth of the optical transmitter C belonging to the core H2 so that the allocated bandwidth to the optical transmitters A and B belonging to the core H1 and the optical transmitter C belonging to the core H2 is fair. . In other words, the present optical communication system is a basic value of the allocated bandwidth such that the allocated bandwidth is within a certain range regardless of the core wire accommodated, for example, the ratio of the guaranteed bandwidth. For example, the controller performs an operation to suppress over-allocation to accommodated users accommodated in core wires with a small sum of guaranteed bandwidths, thereby realizing fairness of allocated bandwidth between users regardless of the accommodated core wires. Yes.

このような割当の方法として、例えば、制御器は、光送信機A〜C(10−2−A〜C)に割り当てられた芯線及び時間を監視して光送信機A〜C(10−2−A〜C)ごとの割当帯域の平均値を算出する。そして、光送信機A〜C(10−2−A〜C)間の平均値の比を算出して、平均値の比が予め定められた一定の範囲に収まるように、光送信機A〜C(10−2−A〜C)に割り当てる芯線及び時間を決定する。   As a method of such allocation, for example, the controller monitors the cores and times allocated to the optical transmitters A to C (10-2-A to C) and monitors the optical transmitters A to C (10-2). The average value of the allocated bandwidth for each of (A to C) is calculated. Then, an average value ratio between the optical transmitters A to C (10-2-A to C) is calculated, and the optical transmitters A to C are set so that the average value ratio falls within a predetermined range. The core line and time allocated to C (10-2-A to C) are determined.

そのために、制御器は、光送信機A〜C(10−2−A〜C)に対して要求する要求帯域に対して割り当てられている割当帯域の履歴を保持し、保持した履歴を比較し、過剰に割り当てられている光送信機への割当帯域を抑制することで、割当帯域が所定の比の範囲に収まるように、光送信機A〜C(10−2−A〜C)への割当帯域を決定する。   For this purpose, the controller holds the history of the allocated bandwidth allocated to the requested bandwidth requested to the optical transmitters A to C (10-2-A to C), and compares the held history. By suppressing the bandwidth allocated to the excessively allocated optical transmitter, the bandwidth to the optical transmitters A to C (10-2-A to C) is adjusted so that the allocated bandwidth falls within a predetermined ratio range. Determine the allocated bandwidth.

制御器は、例えば、ユーザ毎の割当帯域又は要求帯域と割当帯域の両方の履歴を保持する履歴保持部と、履歴保持部の保持する履歴を比較する比較部と、比較部の比較した値に応じて過剰に割り当てられているユーザへの割当を所定の時間または割当帯域を抑制する抑制部を含む。履歴は、通信履歴は過去一定時間のウインドウでの履歴であってもよいし、一定時間のスライディングウインドウの履歴であっても良いし、指数平均や加重平均等の平均による履歴であってもよい。   The controller includes, for example, a history holding unit that holds the history of both the allocated bandwidth or the requested bandwidth and the allocated bandwidth for each user, a comparison unit that compares the history held by the history holding unit, and a comparison value of the comparison unit. Accordingly, a suppression unit is included that suppresses allocation to a user who is allocated excessively for a predetermined time or allocated bandwidth. As for the history, the communication history may be a history in a window for a certain period of time in the past, may be a history of a sliding window for a certain period of time, or may be a history based on an average such as an exponential average or a weighted average. .

そして、制御器は、割当帯域の平均値が所定の比率を超過するまでは、当該ユーザに対する割当の上限を最大帯域とし、超過してから平均値が所定の比率に戻るまでは、当該ユーザに対する割当の上限を、割当を保証する保証帯域にするといった処理を行う。制御器の機能及び動作については、実施形態1で説明したとおりである。   Then, the controller sets the upper limit of the allocation to the user as the maximum bandwidth until the average value of the allocated bandwidth exceeds a predetermined ratio, and until the average value returns to the predetermined ratio after exceeding, Processing is performed such that the upper limit of allocation is set to a guaranteed bandwidth that guarantees allocation. The functions and operations of the controller are as described in the first embodiment.

本実施形態においても、実施形態1で説明したとおり、保証帯域以下の少量の帯域のみを要求するユーザが多くいる場合、要求帯域が割当帯域以上のユーザ間で割当帯域が所定の比の範囲となるように、割当帯域を決定する。例えば、制御器は、予め定められた保証帯域を超える帯域割当を要求している光送信機間で平均値を算出する。これにより、保証帯域以下の少量の帯域のみを要求するユーザがいたときに、要求帯域が最少のユーザの帯域によって、割当帯域が抑制されることを防ぐことができる。   Also in the present embodiment, as described in the first embodiment, when there are many users who request only a small amount of bandwidth less than or equal to the guaranteed bandwidth, the allocated bandwidth is within a predetermined ratio range between users whose requested bandwidth is greater than or equal to the allocated bandwidth. The allocated bandwidth is determined so that For example, the controller calculates an average value between optical transmitters that request bandwidth allocation exceeding a predetermined guaranteed bandwidth. Thereby, when there is a user who requests only a small amount of bandwidth below the guaranteed bandwidth, it is possible to prevent the allocated bandwidth from being suppressed by the bandwidth of the user having the minimum required bandwidth.

上述のように、制御器は光送信機A〜C(10−2−A〜C)毎に要求する要求帯域と割当帯域の履歴を保持し、保持した履歴を比較し、過剰に割り当てられている光送信機への割当帯域を抑制することで、割当帯域が所定の比の範囲となるように、光送信機A〜C(10−2−A〜C)への割当帯域を決定する。   As described above, the controller holds the history of the requested bandwidth and the assigned bandwidth requested for each of the optical transmitters A to C (10-2-A to C), compares the retained history, and is over-allocated. By allocating the allocated bandwidth to the existing optical transmitter, the allocated bandwidth to the optical transmitters A to C (10-2-A to C) is determined so that the allocated bandwidth falls within a predetermined ratio range.

なお、ここでは芯線毎に時分割多重としているが、実施形態1と同様に各芯線内でも波長分割多重且つ時分割多重としてもよい。この時、制御器は各芯線の各芯線間で公平性を担保する。   Here, although time division multiplexing is used for each core wire, wavelength division multiplexing and time division multiplexing may be used in each core wire as in the first embodiment. At this time, the controller ensures fairness between the core wires of the core wires.

また、図4では、3つの光送信機と2芯線で例示しているが、光送信機の数は増減してもよいし、芯線多重する芯線の数も3以上であってよい。また、図4では、1つの光受信機(20−2)側が芯線多重した信号を受信しているが、光受信機(20−2)は複数であってもよい。さらに、本光通信システムは双方向通信のシステムであってもよい。   In FIG. 4, three optical transmitters and two core wires are illustrated, but the number of optical transmitters may be increased or decreased, and the number of core wires to be multiplexed may be three or more. Further, in FIG. 4, one optical receiver (20-2) side receives the signal multiplexed by the core wire, but there may be a plurality of optical receivers (20-2). Further, the optical communication system may be a bidirectional communication system.

また、上記の説明では、単一の光送信機A〜C(10−2−A〜C)は、同時に単一の芯線でのみ通信する例で説明したが、同時に複数の芯線を用いて通信する場合の同様であるし、本発明の第1の実施形態と本実施形態を組み合わせた場合も同様である。なお、割当に際して、ONU−OLT間の距離差、波長分散、複数の芯線間の距離差に伴う伝達時間の差を考慮して、同時に送信できない場合の送信機の送信時間が重複しないように、同時に受信できない場合の受信機に到着する信号の到着時間同士が重複しないように割り当てる。   In the above description, the single optical transmitters A to C (10-2-A to C) are described as examples in which communication is performed using only a single core wire at the same time, but communication is performed using a plurality of core wires at the same time. The same applies to the case where the first embodiment of the present invention is combined with the present embodiment. When assigning, in consideration of the difference in ONU-OLT distance difference, chromatic dispersion, and the difference in transmission time due to the distance difference between the plurality of core wires, the transmission time of the transmitter in the case where simultaneous transmission is not possible, When the signals cannot be received simultaneously, the arrival times of the signals arriving at the receiver are assigned so as not to overlap each other.

本発明は、情報通信産業に適用することができる。   The present invention can be applied to the information communication industry.

10−1−A〜C,10−2−A〜C:光送信機
11−1−A〜C,11−2−A〜C:光加入者側装置ONU
12:光スプリッタ
20−1,20−2:光受信機
21−1,21−2:局側装置OLT
22−1−a,22−2−a:受光器a
22―1−b,22−2−b:受光器b
23:芯線H1
24:芯線H2
25:光合分波器
10-1-A to C, 10-2-A to C: Optical transmitter
11-1-A to C, 11-2-A to C: Optical subscriber unit ONU
12: Optical splitters 20-1, 20-2: Optical receivers 21-1, 21-2: Station side apparatus OLT
22-1-a, 22-2-a: light receiver a
22-1-b, 22-2-b: light receiver b
23: Core wire H1
24: Core wire H2
25: Optical multiplexer / demultiplexer

Claims (6)

複数の光加入者側装置と一つの局側装置間で時間領域及び複数の波長領域を共用し、受動光分岐回路を利用して信号光を送受信する光通信システムであって、
前記局側装置は、前記光加入者側装置の光送信機に割り当てられた波長及び時間を監視して前記光送信機ごとの割当帯域の平均値を算出し、前記光送信機間の前記平均値の比を算出して、前記平均値の比が予め定められた一定の範囲内となるように、前記光加入者側装置の光送信機に割り当てる波長及び時間を決定する光通信システム。
An optical communication system that shares a time domain and a plurality of wavelength domains between a plurality of optical subscriber-side devices and a single station-side device, and transmits and receives signal light using a passive optical branch circuit,
The station side device monitors the wavelength and time assigned to the optical transmitter of the optical subscriber side device, calculates the average value of the allocated bandwidth for each optical transmitter, and the average between the optical transmitters An optical communication system that calculates a ratio of values and determines a wavelength and time to be allocated to an optical transmitter of the optical subscriber side apparatus so that the ratio of the average values is within a predetermined range.
複数の光加入者側装置と一つの局側装置間で時間領域及び複数の芯線を共用し、受動光分岐回路を利用して信号光を送受信する光通信システムであって、
前記局側装置は、前記光加入者側装置の光送信機に割り当てられた芯線及び時間を監視して前記光送信機ごとの割当帯域の平均値を算出し、前記平均値の比が予め定められた一定の範囲内となるように、前記光加入者側装置の光送信機に割り当てる芯線及び時間を決定する光通信システム。
An optical communication system that shares a time domain and a plurality of core wires between a plurality of optical subscriber side devices and a single station side device, and transmits and receives signal light using a passive optical branch circuit,
The station side device monitors the core line and time assigned to the optical transmitter of the optical subscriber side device, calculates the average value of the allocated bandwidth for each optical transmitter, and the ratio of the average values is predetermined. An optical communication system for determining a core line and a time allocated to an optical transmitter of the optical subscriber side apparatus so as to be within a predetermined range.
前記局側装置は、予め定められた保証帯域を超える帯域割当を要求している前記光送信機間で前記平均値を算出する請求項1又は2に記載の光通信システム。   3. The optical communication system according to claim 1, wherein the station side device calculates the average value between the optical transmitters requesting bandwidth allocation exceeding a predetermined guaranteed bandwidth. 4. 複数の光加入者側装置と一つの局側装置間で時間領域及び複数の波長領域を共用し、受動光分岐回路を利用して信号光を送受信する光通信方法であって、
前記局側装置は、前記光加入者側装置の光送信機に割り当てられた波長及び時間を監視して前記光送信機ごとの割当帯域の平均値を算出し前記平均値の比が予め定められた一定の範囲内となるように、前記光加入者側装置の光送信機に割り当てる波長及び時間を決定する光通信方法。
An optical communication method for sharing a time domain and a plurality of wavelength domains between a plurality of optical subscriber side apparatuses and a single station side apparatus, and transmitting and receiving signal light using a passive optical branch circuit,
The station side device monitors the wavelength and time assigned to the optical transmitter of the optical subscriber side device, calculates the average value of the allocated bandwidth for each optical transmitter, and the ratio of the average values is determined in advance. An optical communication method for determining a wavelength and a time to be allocated to an optical transmitter of the optical subscriber side apparatus so as to be within a certain range.
複数の光加入者側装置と一つの局側装置間で時間領域及び複数の芯線を共用し、受動光分岐回路を利用して信号光を送受信する光通信方法であって、
前記局側装置は、前記光加入者側装置の光送信機に割り当てられた芯線及び時間を監視して前記光送信機ごとの割当帯域の平均値を算出し、前記平均値の比が予め定められた一定の範囲内となるように、前記光加入者側装置の光送信機に割り当てる芯線及び時間を決定する光通信方法。
An optical communication method for transmitting and receiving signal light using a passive optical branch circuit, sharing a time domain and a plurality of core wires between a plurality of optical subscriber side devices and one station side device,
The station side device monitors the core line and time assigned to the optical transmitter of the optical subscriber side device, calculates the average value of the allocated bandwidth for each optical transmitter, and the ratio of the average values is predetermined. An optical communication method for determining a core line and a time allocated to an optical transmitter of the optical subscriber side apparatus so as to be within a predetermined range.
前記局側装置は、予め定められた保証帯域を超える帯域割当を要求している前記光送信機間で前記平均値を算出する請求項4又は5に記載の光通信方法。   The optical communication method according to claim 4 or 5, wherein the station side device calculates the average value between the optical transmitters requesting bandwidth allocation exceeding a predetermined guaranteed bandwidth.
JP2009208703A 2009-09-09 2009-09-09 Optical communication system and optical communication method Active JP5290917B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009208703A JP5290917B2 (en) 2009-09-09 2009-09-09 Optical communication system and optical communication method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009208703A JP5290917B2 (en) 2009-09-09 2009-09-09 Optical communication system and optical communication method

Publications (2)

Publication Number Publication Date
JP2011061480A true JP2011061480A (en) 2011-03-24
JP5290917B2 JP5290917B2 (en) 2013-09-18

Family

ID=43948613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009208703A Active JP5290917B2 (en) 2009-09-09 2009-09-09 Optical communication system and optical communication method

Country Status (1)

Country Link
JP (1) JP5290917B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012222434A (en) * 2011-04-05 2012-11-12 Oki Electric Ind Co Ltd Dynamic communication band allocation method, dynamic communication band allocation program, and pon system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004336578A (en) * 2003-05-09 2004-11-25 Mitsubishi Electric Corp Point-multipoint optical transmission system and station-side communication device
JP2005354252A (en) * 2004-06-09 2005-12-22 Nippon Telegr & Teleph Corp <Ntt> Optical communication method, optical transmitter, program, and recording medium
JP2006165953A (en) * 2004-12-07 2006-06-22 Oki Electric Ind Co Ltd Optical communication system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004336578A (en) * 2003-05-09 2004-11-25 Mitsubishi Electric Corp Point-multipoint optical transmission system and station-side communication device
JP2005354252A (en) * 2004-06-09 2005-12-22 Nippon Telegr & Teleph Corp <Ntt> Optical communication method, optical transmitter, program, and recording medium
JP2006165953A (en) * 2004-12-07 2006-06-22 Oki Electric Ind Co Ltd Optical communication system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012222434A (en) * 2011-04-05 2012-11-12 Oki Electric Ind Co Ltd Dynamic communication band allocation method, dynamic communication band allocation program, and pon system

Also Published As

Publication number Publication date
JP5290917B2 (en) 2013-09-18

Similar Documents

Publication Publication Date Title
EP3443693B1 (en) Channel bonding in multiple-wavelength passive optical networks (pons)
JP5109710B2 (en) Band allocation method, station side apparatus, subscriber station apparatus, communication system, and apparatus program
JP6590017B2 (en) Station side device and station side device control program
KR101585362B1 (en) Wavelength bandwidth allocation method
JP6467519B2 (en) Relay transmission system, relay transmission method, and relay transmission apparatus
US9331809B2 (en) DWA control in an OLT with decrease in margin of bandwidth utilization caused by bandwidth reallocation minimized
JP5378899B2 (en) Optical communication system and optical communication method
JP5327804B2 (en) Optical communication system and optical communication method
JP5290917B2 (en) Optical communication system and optical communication method
JP5487055B2 (en) ONU, optical communication system, and ONU suspension method
JP6852957B2 (en) Subscriber side optical network unit
JP2014011666A (en) Method for allocating band for uplink data and communication device
JP5775031B2 (en) Optical subscriber line termination device, optical network termination device, and optical network system
JP5563376B2 (en) Optical communication system and optical communication method
JP6863426B2 (en) Resource allocation device, resource allocation program, resource allocation method, and station side device
CN112913164A (en) Time division and wavelength division multiplexing
JP5882926B2 (en) Station side apparatus and link speed changing method
JP5466321B2 (en) Optical communication system and optical communication method
JP5826125B2 (en) BAND ALLOCATION METHOD, BAND ALLOCATION DEVICE, STATION TERMINAL TERMINAL DEVICE, AND PASSIVE OPTICAL NETWORK SYSTEM
JP6992596B2 (en) Station-side equipment, subscriber-side equipment, optical access network and bandwidth allocation method
JP5227276B2 (en) Optical communication system and optical communication method
JP5235181B2 (en) Optical communication system and optical communication method
JP2019146079A (en) Station side termination device, subscriber side termination device, communication system, station side program, and subscriber side program
Nakahira et al. Channel allocation to improve bandwidth utilization performance for CDMA-PONs
KR20060010437A (en) Dynamic bandwidth allocation method and epon system supporting the qos mechanism

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111024

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130606

R150 Certificate of patent or registration of utility model

Ref document number: 5290917

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350