JP2011058428A - Exhaust gas recirculation device - Google Patents

Exhaust gas recirculation device Download PDF

Info

Publication number
JP2011058428A
JP2011058428A JP2009209180A JP2009209180A JP2011058428A JP 2011058428 A JP2011058428 A JP 2011058428A JP 2009209180 A JP2009209180 A JP 2009209180A JP 2009209180 A JP2009209180 A JP 2009209180A JP 2011058428 A JP2011058428 A JP 2011058428A
Authority
JP
Japan
Prior art keywords
passage
egr
exhaust
valve
dust collector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009209180A
Other languages
Japanese (ja)
Other versions
JP5063652B2 (en
Inventor
Kenichiro Imaoka
健一郎 今岡
Naotoshi Amano
直利 天野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UD Trucks Corp
Original Assignee
UD Trucks Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UD Trucks Corp filed Critical UD Trucks Corp
Priority to JP2009209180A priority Critical patent/JP5063652B2/en
Publication of JP2011058428A publication Critical patent/JP2011058428A/en
Application granted granted Critical
Publication of JP5063652B2 publication Critical patent/JP5063652B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

<P>PROBLEM TO BE SOLVED: To surely return PM collected by a cyclone type dust collection device to an exhaust system while relaxing restriction of layout. <P>SOLUTION: The cyclone type duct collection device 34 is disposed so as to collect PM of EGR gas flowing in an EGR passage 30 and to discharge PM at a communication passage 38 communication between an intake pipe 14 at an exhaust gas downstream of a turbocharger 18 and an exhaust pipe 24 at exhaust gas upstream of an oxidation catalyst 26. A first open close valve 40 opening and closing the communication passage 38 in a direction toward the exhaust pipe 24 from the intake pipe 14, and a check valve 42 opening only in this direction are disposed at the communication passage 38 in this order. A second open close valve 46 opening and closing a drain passage 44 discharging PM from the cyclone type duct collection device 34 to the communication passage 38 is provided. The first open close valve 40 is closed and the second open close valve 46 is opened when DPF 28 is not forcibly regenerated, and the first open close valve 40 is opened and the second open close valve 46 is closed when DPF 28 is forcibly regenerated. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、排気の一部を吸気系に導入して再循環させ、燃焼温度の低下を通して窒素酸化物(NOx)の発生量を低減させる排気再循環(EGR:Exhaust Gas Recirculation)装置に関する。   The present invention relates to an exhaust gas recirculation (EGR) device that introduces a part of exhaust gas into an intake system and recirculates the exhaust gas to reduce the generation amount of nitrogen oxides (NOx) through a decrease in combustion temperature.

ディーゼルエンジンのEGR装置では、排気系から取り出したEGRガスに煤及び可溶性有機成分(SOF:Soluble Organic Fraction)を主成分とする粒子状物質(PM:
Particulate Matter)が含まれているため、特開2009−97441号公報(特許文献1)に記載されるように、サイクロン式集塵装置でPMを除去する技術が提案されている。この提案技術では、重力を利用して、サイクロン式集塵装置で除去したPMを排気系に戻す構成が採用されている。
In an EGR device for a diesel engine, particulate matter (PM: PM: Soluble Organic Fraction) is mainly contained in soot and soluble organic components (SOF) in the EGR gas extracted from the exhaust system.
Since Particulate Matter) is included, as described in JP 2009-97441 A (Patent Document 1), a technique for removing PM with a cyclone dust collector has been proposed. In this proposed technology, a configuration is adopted in which the PM removed by the cyclone type dust collector is returned to the exhaust system using gravity.

特開2009−97441号公報JP 2009-97441 A

しかしながら、重力を利用してPMを排気系に戻す構成では、サイクロン式集塵装置の鉛直下方に排気系が位置する必要があり、レイアウト上の制約を受けると共に、PMを排気系に確実に戻せるとは限らない。また、吸気圧力が変動すると、サイクロン式集塵装置で除去したPMが吸気系に逆流する可能性も否めない。   However, in the configuration in which the PM is returned to the exhaust system using gravity, the exhaust system needs to be positioned vertically below the cyclone dust collector, which is subject to layout restrictions and can reliably return the PM to the exhaust system. Not necessarily. Further, when the intake pressure varies, there is no denying that the PM removed by the cyclone dust collector may flow back into the intake system.

そこで、本発明は従来技術の問題点に鑑み、ターボチャージャにより過給された吸気を利用して、サイクロン式集塵装置で除去したPMをディーゼルパティキュレートフィルタ(DPF:Diesel Particulate Filter)の排気上流に戻すようにすることで、レイアウト上の制約を緩和しつつ、PMを確実に排気系に戻せるようにしたEGR装置を提供することを目的とする。   Therefore, in view of the problems of the prior art, the present invention utilizes the intake air supercharged by the turbocharger, and removes the PM removed by the cyclone type dust collector in the exhaust upstream of the diesel particulate filter (DPF: Diesel Particulate Filter). An object of the present invention is to provide an EGR device that can reliably return PM to the exhaust system while relaxing the constraints on the layout.

このため、本発明に係るEGR装置は、ターボチャージャの吸気上流に位置する吸気通路とターボチャージャの排気下流に位置する排気通路とを連通するEGR通路と、ターボチャージャの吸気下流に位置する吸気通路と排気通路に対するEGR通路の接続箇所より排気下流であって排気通路に配設されたDPFより排気上流に位置する排気通路とを連通する連通路と、EGR通路を流れるEGRガスに含まれるPMを集塵すると共に、集塵したPMを連通路に排出するように配設されるサイクロン式集塵装置と、吸気通路に対する連通路の接続箇所とサイクロン式集塵装置からPMが排出される箇所との間に位置する連通路を開閉する第1の開閉弁と、サイクロン式集塵装置からPMが排出される箇所と排気通路に対する連通路の接続箇所との間に位置する連通路に配設され、排気通路に向かう方向にのみ開弁する逆止弁と、サイクロン式集塵装置から連通路にPMを排出する通路を開閉する第2の開閉弁と、DPFの強制再生処理が実行中であるか否かを判定する判定手段と、判定手段により強制再生処理が実行中であると判定されたときに、第1の開閉弁を開弁させると共に第2の開閉弁を閉弁させる一方、判定手段により強制再生処理が実行中でないと判定されたときに、第1の開閉弁を閉弁させると共に第2の開閉弁を開弁させる制御手段と、を含んで構成される。   For this reason, the EGR device according to the present invention includes an EGR passage that communicates an intake passage located upstream of the turbocharger with an exhaust passage located downstream of the turbocharger, and an intake passage located downstream of the turbocharger. And a communication passage communicating with the exhaust passage located downstream of the DGR disposed in the exhaust passage and upstream of the DPF disposed in the exhaust passage, and PM contained in the EGR gas flowing through the EGR passage. A cyclone type dust collector arranged to collect dust and discharge the collected PM to the communication path, a connection point of the communication path to the intake passage, and a part from which the PM is discharged from the cyclone type dust collector The first on-off valve that opens and closes the communication passage located between the first passage, the location where PM is discharged from the cyclone type dust collector, and the connection location of the communication passage to the exhaust passage A check valve that is disposed in the communication passage located between them and opens only in a direction toward the exhaust passage, and a second on-off valve that opens and closes a passage that discharges PM from the cyclone dust collector to the communication passage; And determining means for determining whether or not the forced regeneration process of the DPF is being executed, and opening the first on-off valve when the determining means determines that the forced regeneration process is being executed and Control means for closing the first open / close valve and opening the second open / close valve when the determination means determines that the forced regeneration process is not being executed, It is comprised including.

本発明によれば、DPFが強制再生処理中でなければ、第1の開閉弁が閉弁すると共に第2の開閉弁が開弁するため、サイクロン式集塵装置で集塵されたPMは、連通路の内部に溜まる。このとき、連通路には、排気通路に向かう方向にのみ開弁する逆止弁が配設されているため、排気通路の排気圧力によってPMがサイクロン式集塵装置に逆流することを防止できる。   According to the present invention, if the DPF is not in the forced regeneration process, the first on-off valve is closed and the second on-off valve is opened, so that the PM collected by the cyclone dust collector is It collects inside the communication path. At this time, since the check passage that opens only in the direction toward the exhaust passage is disposed in the communication passage, it is possible to prevent PM from flowing back to the cyclone dust collector due to the exhaust pressure in the exhaust passage.

一方、DPFの強制再生処理中であれば、第1の開閉弁が開弁すると共に第2の開閉弁が閉弁するため、ターボチャージャにより過給された吸気の一部が連通路へと導入される。そして、この吸気を使用して、連通路の内部に溜まったPMは、逆止弁を通ってDPFの排気上流へと強制的に戻される。このとき、サイクロン式集塵装置から連通路にPMを排出する通路は第2の開閉弁により閉鎖されているため、吸気によりPMがサイクロン式集塵装置に逆流することが防止される。その後、DPFの排気上流に戻されたPMは、DPFで捕集されつつ焼却される。ここで、DPFの排気上流にPMを戻す条件として、DPFの強制再生処理中であることを採用しているため、排気にPMを戻しても、DPFの目詰まりが進行することを抑制できる。   On the other hand, if the DPF forced regeneration process is in progress, the first on-off valve opens and the second on-off valve closes, so that part of the intake air supercharged by the turbocharger is introduced into the communication path. Is done. Then, using this intake air, the PM accumulated in the communication passage is forcibly returned to the exhaust upstream of the DPF through the check valve. At this time, since the passage for discharging PM from the cyclone dust collector to the communication passage is closed by the second on-off valve, the backflow of PM to the cyclone dust collector is prevented by intake air. Thereafter, the PM returned to the upstream side of the DPF is incinerated while being collected by the DPF. Here, as the condition for returning the PM to the exhaust upstream of the DPF, the fact that the DPF forced regeneration process is in progress is adopted, so that the clogging of the DPF can be suppressed even if the PM is returned to the exhaust.

従って、レイアウト上の制約を緩和しつつ、サイクロン式集塵装置で分離集塵したPMを確実に排気系に戻すことができる。   Therefore, the PM separated and collected by the cyclone type dust collector can be surely returned to the exhaust system while relaxing the constraints on the layout.

本発明を具現化したEGR装置の第1実施形態を示す全体構成図1 is an overall configuration diagram showing a first embodiment of an EGR device that embodies the present invention; サイクロン式集塵装置の具体的構成を示し、(A)は縦断面図、(B)は横断面図The concrete composition of a cyclone type dust collector is shown, (A) is a longitudinal section, and (B) is a transverse section. 制御プログラムの内容を示すフローチャートFlow chart showing contents of control program 本発明を具現化したEGR装置の第2実施形態を示す全体構成図The whole block diagram which shows 2nd Embodiment of the EGR apparatus which actualized this invention. プラズマ発生装置の具体的構成を示し、(A)は縦断面図、(B)は横断面図、(C)はPM粒径成長メカニズムの説明図The specific structure of a plasma generator is shown, (A) is a longitudinal sectional view, (B) is a transverse sectional view, and (C) is an explanatory view of a PM particle size growth mechanism.

以下、添付された図面を参照して本発明を詳述する。
図1は、ターボチャージャを搭載したディーゼルエンジンに対して本発明を適用して構築したEGR装置の第1実施形態を示す。
Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1 shows a first embodiment of an EGR device constructed by applying the present invention to a diesel engine equipped with a turbocharger.

ディーゼルエンジン10の吸気マニフォールド12に接続される吸気管14(吸気通路)には、吸気流通方向に沿って、空気中の埃などを除去するエアクリーナ16,ターボチャージャ18のコンプレッサ18A,ターボチャージャ18により高温となった吸気を冷却するインタークーラ20がこの順番で配設される。一方、ディーゼルエンジン10の排気マニフォールド22に接続される排気管24(排気通路)には、排気流通方向に沿って、ターボチャージャ18のタービン18B,排気中の一酸化窒素(NO)を二酸化窒素(NO2)へと酸化させる酸化触媒26,排気中のPMを捕集除去するDPF28がこの順番で配設される。なお、酸化触媒26及びDPF28により、連続再生式DPF装置が構成されるが、DPF28のみとしてもよい。また、DPF28の代わりに、DPF28の表面に活性成分及び添加成分を担持させたCSF(Catalyzed Soot Filter)を使用することもできる。 An intake pipe 14 (intake passage) connected to the intake manifold 12 of the diesel engine 10 is provided with an air cleaner 16 that removes dust and the like in the air along the intake flow direction, a compressor 18A of the turbocharger 18 and a turbocharger 18. An intercooler 20 that cools the intake air that has become hot is arranged in this order. On the other hand, in the exhaust pipe 24 (exhaust passage) connected to the exhaust manifold 22 of the diesel engine 10, the turbine 18B of the turbocharger 18 and nitrogen monoxide (NO) in the exhaust gas are nitrogen dioxide (NO) along the exhaust circulation direction. An oxidation catalyst 26 that oxidizes to NO 2 ) and a DPF 28 that collects and removes PM in the exhaust are disposed in this order. The oxidation catalyst 26 and the DPF 28 constitute a continuous regeneration type DPF device, but only the DPF 28 may be used. Further, instead of DPF 28, CSF (Catalyzed Soot Filter) in which an active component and an additive component are supported on the surface of DPF 28 can be used.

ターボチャージャ18の吸気上流に位置する吸気管14とその排気下流に位置する排気管24とは、EGR通路30を介して連通接続される。具体的には、エアクリーナ16とターボチャージャ18のコンプレッサ18Aとの間に位置する吸気管14に、EGR通路30の一端が接続される一方、ターボチャージャ18のタービン18Bと酸化触媒26との間に位置する排気管24に、EGR通路30の他端が接続される。また、EGR通路30には、EGRガスの流通方向に沿って、EGRガスを冷却するEGRクーラ32と、EGRガスからPMを分離集塵するサイクロン式集塵装置34と、エンジン運転状態に応じてEGR率を変化させるためのEGRバルブ36と、がこの順番で配設される。サイクロン式集塵装置34は、図2に示すように、鉛直下方が小径をなす略裁頭円錐形状の外筒部34Aと、その上部かつ外周部において接線方向に接続された導入筒部34Bと、外筒部34Aの天板を貫通して鉛直方向に延びる排出筒部34Cと、外筒部24Aの底板から鉛直下方に延びるドレン筒部34Dと、を含んで構成される。なお、EGR通路30には、サイクロン式集塵装置34の導入筒部34B及び排出筒部34Cが夫々接続される。   The intake pipe 14 positioned upstream of the intake air of the turbocharger 18 and the exhaust pipe 24 positioned downstream of the exhaust thereof are connected in communication via an EGR passage 30. Specifically, one end of the EGR passage 30 is connected to the intake pipe 14 positioned between the air cleaner 16 and the compressor 18 </ b> A of the turbocharger 18, while between the turbine 18 </ b> B of the turbocharger 18 and the oxidation catalyst 26. The other end of the EGR passage 30 is connected to the exhaust pipe 24 positioned. The EGR passage 30 includes an EGR cooler 32 that cools the EGR gas along the flow direction of the EGR gas, a cyclone dust collector 34 that separates and collects PM from the EGR gas, and an engine operating state. The EGR valve 36 for changing the EGR rate is arranged in this order. As shown in FIG. 2, the cyclone type dust collecting apparatus 34 includes a substantially truncated cone-shaped outer cylinder part 34 </ b> A having a small diameter in the vertically lower part, and an introduction cylinder part 34 </ b> B connected tangentially at the upper part and the outer peripheral part thereof. A discharge cylinder part 34C extending vertically through the top plate of the outer cylinder part 34A and a drain cylinder part 34D extending vertically downward from the bottom plate of the outer cylinder part 24A are configured. The EGR passage 30 is connected to the introduction cylinder portion 34B and the discharge cylinder portion 34C of the cyclone dust collector 34, respectively.

ターボチャージャ18の吸気下流に位置する吸気管14と排気管24に対するEGR通路30の接続箇所より排気下流であって酸化触媒26より排気上流に位置する排気管24とは、連通路38を介して連通接続される。具体的には、ターボチャージャ18のコンプレッサ18Aとインタークーラ20との間に位置する吸気管14に、連通路38の一端が接続される一方、排気管24に対するEGR通路30の接続箇所と酸化触媒26との間に位置する排気管24に、連通路38の他端が接続される。また、連通路38には、吸気管14に対する接続箇所から排気管24に対する接続箇所へと向かう方向に沿って、連通路38を開閉する電磁式の第1の開閉弁40と、排気管24へと向かう方向にのみ開弁する逆止弁42と、がこの順番で配設される。   The intake pipe 14 positioned downstream of the intake air of the turbocharger 18 and the exhaust pipe 24 positioned downstream of the exhaust gas from the connection portion of the EGR passage 30 to the exhaust pipe 24 and upstream of the oxidation catalyst 26 are connected via the communication path 38. Communication connection. Specifically, one end of the communication passage 38 is connected to the intake pipe 14 located between the compressor 18A of the turbocharger 18 and the intercooler 20, while the connection portion of the EGR passage 30 to the exhaust pipe 24 and the oxidation catalyst are connected. The other end of the communication path 38 is connected to the exhaust pipe 24 located between the exhaust pipe 24 and the exhaust pipe 24. In addition, the communication passage 38 includes an electromagnetic first on-off valve 40 that opens and closes the communication passage 38 along the direction from the connection point to the intake pipe 14 to the connection point to the exhaust pipe 24, and the exhaust pipe 24. And a check valve 42 that opens only in the direction toward the front.

さらに、第1の開閉弁40と逆止弁42との間に位置する連通路38には、サイクロン式集塵装置34のドレン筒部34Dと連通するドレン通路44が接続され、ここにドレン通路44を開閉する電磁式の第2の開閉弁46が配設される。要するに、サイクロン式集塵装置34は、EGR通路30を流れるEGRガスに含まれるPMを集塵すると共に、集塵したPMを連通路38に排出するように配設される。   Further, a drain passage 44 communicating with the drain cylinder portion 34D of the cyclone type dust collector 34 is connected to the communication passage 38 positioned between the first on-off valve 40 and the check valve 42, and the drain passage is connected thereto. An electromagnetic second on-off valve 46 that opens and closes 44 is disposed. In short, the cyclone type dust collector 34 is arranged to collect PM contained in the EGR gas flowing through the EGR passage 30 and to discharge the collected PM to the communication passage 38.

EGRバルブ36,第1の開閉弁40及び第2の開閉弁46を電子制御するために、コンピュータを内蔵したEGRコントロールユニット48が設けられる。EGRコントロールユニット48は、ディーゼルエンジン10の回転速度Ne及び負荷Qを読み込み可能とすべく、CAN(Controller Area Network)などを介してエンジンコントロールユニット50に接続される。ここで、負荷Qとしては、燃料噴射量,吸気圧力,過給圧力,アクセル開度などトルクと密接に関連する状態量を利用することができる。また、ディーゼルエンジン10の回転速度Ne及び負荷Qは、エンジンコントロールユニット50から読み込む構成に限らず、公知の回転速度センサ及び負荷センサで直接検出するようにしてもよい。さらに、EGRコントロールユニット48は、エンジンコントロールユニット50に組み込んだり、他のコントロールユニットに組み込むようにしてもよい。   In order to electronically control the EGR valve 36, the first on-off valve 40, and the second on-off valve 46, an EGR control unit 48 incorporating a computer is provided. The EGR control unit 48 is connected to the engine control unit 50 via a CAN (Controller Area Network) or the like so that the rotational speed Ne and the load Q of the diesel engine 10 can be read. Here, as the load Q, a state quantity closely related to the torque, such as a fuel injection amount, an intake pressure, a supercharging pressure, and an accelerator opening, can be used. Further, the rotational speed Ne and the load Q of the diesel engine 10 are not limited to the configuration read from the engine control unit 50, and may be directly detected by a known rotational speed sensor and load sensor. Further, the EGR control unit 48 may be incorporated into the engine control unit 50 or another control unit.

そして、EGRコントロールユニット48は、ROM(Read Only Memory)などに記憶された制御プログラムを実行することで、エンジン運転状態としての回転速度Ne及び負荷Qに応じてEGRバルブ36を電子制御すると共に、DPF28の強制再生処理中であるか否かに応じて第1の開閉弁40及び第2の開閉弁46を夫々電子制御する。ここで、DPF28の強制再生処理中であるか否かは、例えば、強制再生処理中に排気温度を上昇させる制御を実行するエンジンコントロールユニット50に問い合わせればよい。なお、EGRコントロールユニット48が制御プログラムを実行することで、判定手段及び制御手段が夫々具現化される。   The EGR control unit 48 executes a control program stored in a ROM (Read Only Memory) or the like, thereby electronically controlling the EGR valve 36 according to the rotational speed Ne and the load Q as the engine operating state. The first on-off valve 40 and the second on-off valve 46 are electronically controlled according to whether or not the forced regeneration process of the DPF 28 is in progress. Here, whether or not the forced regeneration process of the DPF 28 is being performed may be inquired of, for example, the engine control unit 50 that executes control for increasing the exhaust temperature during the forced regeneration process. The EGR control unit 48 executes the control program, so that the determination unit and the control unit are realized.

図3は、ディーゼルエンジン10が始動されたことを契機として、EGRコントロールユニット48が所定時間ごとに繰り返し実行する制御プログラムの内容を示す。
ステップ1(図では「S1」と略記する。以下同様。)では、DFP28が強制再生処理中であるか否かを判定する。そして、DPF28が強制再生処理中であればステップ2へと進む一方(Yes)、DPF28が強制再生処理中でなければステップ4へと進む(No)。
FIG. 3 shows the contents of a control program that the EGR control unit 48 repeatedly executes at predetermined time intervals when the diesel engine 10 is started.
In step 1 (abbreviated as “S1” in the figure, the same applies hereinafter), it is determined whether or not the DFP 28 is in the forced regeneration process. If the DPF 28 is in the forced regeneration process, the process proceeds to step 2 (Yes), whereas if the DPF 28 is not in the forced regeneration process, the process proceeds to step 4 (No).

ステップ2では、第1の開閉弁40を開弁させる。
ステップ3では、第2の開閉弁46を閉弁させる。
ステップ4では、第1の開閉弁40を閉弁させる。
In step 2, the first on-off valve 40 is opened.
In step 3, the second on-off valve 46 is closed.
In step 4, the first on-off valve 40 is closed.

ステップ5では、第2の開閉弁46を開弁させる。
このようなEGR装置によれば、ターボチャージャ18のタービン18Bを通過した排気の一部は、EGRガスとして、EGR通路30を通ってEGRクーラ32へと導入される。EGRクーラ32へと導入されたEGRガスは、EGRクーラ32により冷却されてSOFが凝縮して集塵され易い状態となり、サイクロン式集塵装置34に導入される。サイクロン式集塵装置34では、導入筒部34Bから外筒部34Aの内部に導入されたEGRガスは、外筒部34Aの内周面に沿って排出筒部34Cの周りで旋回しつつ下方に流れ、その下方に位置する開口から排出筒部34Cに入り込んで排出される。このとき、EGRガスが外筒部34Aの内部で高速旋回することで、EGRガスに含まれるPMに大きな遠心力が作用し、外筒部34Aの底部にこれが分離集塵される。
In step 5, the second on-off valve 46 is opened.
According to such an EGR device, a part of the exhaust gas that has passed through the turbine 18B of the turbocharger 18 is introduced into the EGR cooler 32 through the EGR passage 30 as EGR gas. The EGR gas introduced into the EGR cooler 32 is cooled by the EGR cooler 32, so that the SOF is condensed and easily collected, and is introduced into the cyclone type dust collector 34. In the cyclone type dust collector 34, the EGR gas introduced into the outer cylinder part 34A from the introduction cylinder part 34B is swung downward around the discharge cylinder part 34C along the inner peripheral surface of the outer cylinder part 34A. It flows into the discharge cylinder part 34C from the opening located below, and is discharged. At this time, the EGR gas swirls at a high speed inside the outer cylinder portion 34A, so that a large centrifugal force acts on the PM contained in the EGR gas, and this is separated and collected at the bottom of the outer cylinder portion 34A.

そして、DPF28が強制再生処理中でなければ、第1の開閉弁40が閉弁する一方、第2の開閉弁46が開弁するため、サイクロン式集塵装置34で分離集塵されたPMは、ドレン通路44を通って連通路38の内部に溜まる。このとき、連通路38には、排気管24に向かう方向にのみ開弁する逆止弁42が配設されているため、排気管24の排気圧力によってPMがサイクロン式集塵装置34に逆流することを防止できる。   If the DPF 28 is not in the forced regeneration process, the first on-off valve 40 is closed and the second on-off valve 46 is opened, so that the PM separated and collected by the cyclone dust collector 34 is collected. Then, it accumulates in the communication passage 38 through the drain passage 44. At this time, since the check valve 42 that opens only in the direction toward the exhaust pipe 24 is disposed in the communication path 38, PM flows backward to the cyclone dust collector 34 due to the exhaust pressure of the exhaust pipe 24. Can be prevented.

DPF28の強制再生処理中であれば、第1の開閉弁40が開弁する一方、第2の開閉弁46が閉弁するため、ターボチャージャ18のコンプレッサ18Aにより過給された吸気の一部が連通路38へと導入される。そして、この吸気を使用して、連通路38の内部に溜まったPMは、逆止弁42を通って酸化触媒26の排気上流へと強制的に戻される。このとき、ドレン通路44を開閉する第2の開閉弁46が閉弁しているため、吸気によりPMがサイクロン式集塵装置34に逆流することが防止される。酸化触媒26の排気上流に戻されたPMは、酸化触媒26とDPF28で捕集されつつ焼却される。ここで、酸化触媒26の排気上流にPMを戻す条件として、DPF28の強制再生処理中であることを採用しているため、排気にPMを戻しても、DPF28の目詰まりが進行することを抑制できる。   If the DPF 28 is in the forced regeneration process, the first on-off valve 40 is opened while the second on-off valve 46 is closed, so that a part of the intake air supercharged by the compressor 18A of the turbocharger 18 is partially discharged. It is introduced into the communication path 38. Then, using this intake air, the PM accumulated in the communication passage 38 is forcibly returned to the exhaust upstream of the oxidation catalyst 26 through the check valve 42. At this time, since the second on-off valve 46 that opens and closes the drain passage 44 is closed, PM is prevented from flowing back to the cyclone dust collector 34 due to intake air. The PM returned to the upstream side of the exhaust of the oxidation catalyst 26 is incinerated while being collected by the oxidation catalyst 26 and the DPF 28. Here, as the condition for returning PM to the upstream side of the exhaust of the oxidation catalyst 26, the fact that the DPF 28 is being forcedly regenerated is adopted, so that the clogging of the DPF 28 is prevented from proceeding even if PM is returned to the exhaust. it can.

従って、レイアウト上の制約を緩和しつつ、サイクロン式集塵装置34で分離集塵したPMを確実に排気系に戻すことができる。
図4は、ターボチャージャを搭載したディーゼルエンジンに対して本発明を適用して構築したEGR装置の第2実施形態を示す。なお、先の第1実施形態と共通する構成は、同一符号を付すことで、その説明を省略又は簡潔にするものとする。
Therefore, the PM separated and collected by the cyclone dust collector 34 can be reliably returned to the exhaust system while relaxing the constraints on the layout.
FIG. 4 shows a second embodiment of an EGR device constructed by applying the present invention to a diesel engine equipped with a turbocharger. In addition, the structure which is common in the first embodiment will be omitted or simplified by attaching the same reference numerals.

EGR装置の第2実施形態では、EGRクーラ32とサイクロン式集塵装置34との間に位置するEGR通路30に、EGRガスに含まれるPMを結合させてその粒径を成長させる粒径成長手段として、プラズマ発生装置52が更に配設される。   In the second embodiment of the EGR device, particle size growth means for growing PM by combining PM contained in EGR gas with the EGR passage 30 positioned between the EGR cooler 32 and the cyclone dust collector 34. As a result, a plasma generator 52 is further provided.

ここで、プラズマ発生装置52としては、図5(A)及び(B)に示すように、EGR通路30の周壁に沿って配設された略円筒状をなす接地電極52Aと、接地電極52Aの略全長に亘ってその横断面の略中央に配設された線状をなす放電電極18Bと、を含んで構成される。   Here, as shown in FIGS. 5A and 5B, the plasma generator 52 includes a substantially cylindrical ground electrode 52A disposed along the peripheral wall of the EGR passage 30, and a ground electrode 52A. And a linear discharge electrode 18B disposed substantially at the center of the cross section over the entire length.

このようなEGR装置によれば、EGRクーラ32を通過したEGRガスがプラズマ発生装置52に導入されると、EGRガスに含まれるPMが略同数の正負の電荷に帯電し、極性の異なる電荷に帯電したPM同士が電気的引力により引き合って結合することで、その粒径が成長する。即ち、EGRガスに含まれるPMは、図5(C)に示すように、放電電極52Bの放電により負極に帯電され、接地電極52Aとの間に作用する電気的引力を受けて、接地電極52Aに捕集される。接地電極52Aに捕集されたPMは、その電荷を失った後、誘導帯電により逆極性(正極)に帯電され、電界による力を受けて接地電極52Aから放出されEGRガス中に引き戻される。EGRガス中に引き戻されたPMは、放電電極52Bの放電により再度負極に帯電される。このような現象が繰り返し行なわれることで、PM同士が衝突して結合し、その粒径が成長する。このため、EGRガスに含まれるPMは、極性が異なるPM同士が電気的引力により引き合って結合することに加え、接地電極52Aに繰り返し捕集されるときに衝突して結合するので、その粒径を一層成長させることができる。そして、PMの粒径が成長することで、サイクロン式集塵装置34におけるPM集塵能力をさらに向上させることができる。   According to such an EGR device, when the EGR gas that has passed through the EGR cooler 32 is introduced into the plasma generator 52, the PM contained in the EGR gas is charged to approximately the same number of positive and negative charges, and the charges having different polarities are charged. When the charged PMs are attracted and bonded by electrical attraction, the particle size grows. That is, as shown in FIG. 5C, the PM contained in the EGR gas is charged to the negative electrode by the discharge of the discharge electrode 52B and receives an electric attractive force acting between the ground electrode 52A and the ground electrode 52A. To be collected. The PM collected by the ground electrode 52A loses its charge, and then is charged to a reverse polarity (positive electrode) by induction charging. The PM is discharged from the ground electrode 52A under the force of the electric field and is pulled back into the EGR gas. The PM drawn back into the EGR gas is charged to the negative electrode again by the discharge of the discharge electrode 52B. By repeating such a phenomenon, the PMs collide with each other and bond, and the particle size grows. For this reason, the PM contained in the EGR gas collides with each other when the PMs having different polarities are attracted and combined by the electric attractive force, and collide when they are repeatedly collected by the ground electrode 52A. Can be further grown. And the PM dust collection capability in the cyclone type dust collector 34 can further be improved because the particle size of PM grows.

14 吸気管
18 ターボチャージャ
24 排気管
28 DPF
30 EGR通路
32 EGRクーラ
34 サイクロン式集塵装置
38 連通路
40 第1の開閉弁
42 逆止弁
44 ドレン通路
46 第2の開閉弁
48 EGRコントロールユニット
50 エンジンコントロールユニット
52 プラズマ発生装置
14 Intake pipe 18 Turbocharger 24 Exhaust pipe 28 DPF
Reference Signs List 30 EGR passage 32 EGR cooler 34 cyclone dust collector 38 communication passage 40 first on-off valve 42 check valve 44 drain passage 46 second on-off valve 48 EGR control unit 50 engine control unit 52 plasma generator

Claims (5)

ターボチャージャの吸気上流に位置する吸気通路と該ターボチャージャの排気下流に位置する排気通路とを連通するEGR通路と、
前記ターボチャージャの吸気下流に位置する吸気通路と前記排気通路に対するEGR通路の接続箇所より排気下流であって該排気通路に配設されたディーゼルパティキュレートフィルタより排気上流に位置する排気通路とを連通する連通路と、
前記EGR通路を流れるEGRガスに含まれる粒子状物質を集塵すると共に、集塵した粒子状物質を前記連通路に排出するように配設されるサイクロン式集塵装置と、
前記吸気通路に対する連通路の接続箇所と前記サイクロン式集塵装置から粒子状物質が排出される箇所との間に位置する連通路を開閉する第1の開閉弁と、
前記サイクロン式集塵装置から粒子状物質が排出される箇所と前記排気通路に対する連通路の接続箇所との間に位置する連通路に配設され、前記排気通路に向かう方向にのみ開弁する逆止弁と、
前記サイクロン式集塵装置から連通路に粒子状物質を排出する通路を開閉する第2の開閉弁と、
前記ディーゼルパティキュレートフィルタの強制再生処理が実行中であるか否かを判定する判定手段と、
前記判定手段により強制再生処理が実行中であると判定されたときに、前記第1の開閉弁を開弁させると共に、前記第2の開閉弁を閉弁させる一方、前記判定手段により強制再生処理が実行中でないと判定されたときに、前記第1の開閉弁を閉弁させると共に、前記第2の開閉弁を開弁させる制御手段と、
を含んで構成されたことを特徴とする排気再循環装置。
An EGR passage communicating the intake passage located upstream of the turbocharger with the exhaust passage located downstream of the turbocharger;
The intake passage located downstream of the turbocharger and the exhaust passage located downstream of the EGR passage connected to the exhaust passage and upstream of the diesel particulate filter disposed in the exhaust passage communicate with each other. A communication path
A cyclone type dust collector arranged to collect particulate matter contained in EGR gas flowing through the EGR passage and to discharge the collected particulate matter to the communication passage;
A first on-off valve that opens and closes a communication passage located between a connection portion of the communication passage to the intake passage and a portion from which the particulate matter is discharged from the cyclonic dust collector;
A reverse passage that is disposed in a communication passage located between a location where particulate matter is discharged from the cyclone dust collector and a connection location of the communication passage to the exhaust passage and opens only in the direction toward the exhaust passage. A stop valve,
A second on-off valve for opening and closing a passage for discharging particulate matter from the cyclone dust collector to the communication passage;
Determination means for determining whether or not forced regeneration processing of the diesel particulate filter is being executed;
When the determination unit determines that the forced regeneration process is being executed, the first opening / closing valve is opened and the second opening / closing valve is closed, while the determination unit performs the forced regeneration process. Control means for closing the first on-off valve and opening the second on-off valve when it is determined that is not being executed,
An exhaust gas recirculation device comprising:
前記サイクロン式集塵装置と前記排気通路に対するEGR通路の接続箇所との間に位置するEGR通路に、該EGR通路を流れるEGRガスを冷却するEGRクーラが更に配設されたことを特徴とする請求項1記載の排気再循環装置。   An EGR cooler for cooling EGR gas flowing through the EGR passage is further disposed in an EGR passage located between the cyclone type dust collector and a connection portion of the EGR passage with respect to the exhaust passage. Item 2. An exhaust gas recirculation device according to Item 1. 前記サイクロン式集塵装置に流れ込むEGRガスに含まれる粒子状物質を結合させてその粒径を成長させる粒径成長手段が更に配設されたことを特徴とする請求項1又は請求項2に記載の排気再循環装置。   The particle size growing means for combining the particulate matter contained in the EGR gas flowing into the cyclone type dust collector and growing the particle size thereof is further provided. Exhaust recirculation device. 前記粒径成長手段は、プラズマ発生装置からなることを特徴とする請求項3記載の排気再循環装置。   4. The exhaust gas recirculation device according to claim 3, wherein the particle size growth means comprises a plasma generator. 前記プラズマ発生装置は、前記EGR通路の周壁に沿って配設された円筒状をなす接地電極と、前記接地電極の全長に亘って横断面の中央に配設された線状をなす放電電極と、を含んで構成されたことを特徴とする請求項4記載の排気再循環装置。   The plasma generator includes a cylindrical ground electrode disposed along a peripheral wall of the EGR passage, and a linear discharge electrode disposed in the center of a transverse section over the entire length of the ground electrode. The exhaust gas recirculation device according to claim 4, comprising:
JP2009209180A 2009-09-10 2009-09-10 Exhaust gas recirculation device Expired - Fee Related JP5063652B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009209180A JP5063652B2 (en) 2009-09-10 2009-09-10 Exhaust gas recirculation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009209180A JP5063652B2 (en) 2009-09-10 2009-09-10 Exhaust gas recirculation device

Publications (2)

Publication Number Publication Date
JP2011058428A true JP2011058428A (en) 2011-03-24
JP5063652B2 JP5063652B2 (en) 2012-10-31

Family

ID=43946343

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009209180A Expired - Fee Related JP5063652B2 (en) 2009-09-10 2009-09-10 Exhaust gas recirculation device

Country Status (1)

Country Link
JP (1) JP5063652B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0948823A (en) * 1995-08-07 1997-02-18 Mitsui Petrochem Ind Ltd Ethylenic copolymer rubber, its production and vulcanizable rubber composition containing the copolymer rubber
JP2014055567A (en) * 2012-09-13 2014-03-27 Kawasaki Heavy Ind Ltd Exhaust emission control system and ship engine system
FR3048023A1 (en) * 2016-02-24 2017-08-25 Peugeot Citroen Automobiles Sa ENGINE ASSEMBLY COMPRISING A CYCLON FILTER EXHAUST GAS RECIRCULATION DEVICE
CN114278446A (en) * 2020-10-01 2022-04-05 通用汽车环球科技运作有限责任公司 Gasoline particulate filter regeneration system and method
DE102015117965B4 (en) 2014-10-22 2023-12-07 Ford Global Technologies, Llc Exhaust system for effective exhaust heat recovery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58214657A (en) * 1982-06-08 1983-12-13 Nagatoshi Suzuki Exhaust gas recirculation apparatus equipped with filter in exhaust gas discharge passage
JPH04148012A (en) * 1990-10-09 1992-05-21 Nissan Motor Co Ltd Exhaust gas recirculation device for engine
JP2007198310A (en) * 2006-01-27 2007-08-09 Toyota Motor Corp Exhaust emission control system for internal control device
JP2008280945A (en) * 2007-05-11 2008-11-20 Toyota Motor Corp Exhaust gas recirculation device for internal combustion engine
JP2009097441A (en) * 2007-10-17 2009-05-07 Toyota Motor Corp Exhaust emission circulation device of internal combustion engine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58214657A (en) * 1982-06-08 1983-12-13 Nagatoshi Suzuki Exhaust gas recirculation apparatus equipped with filter in exhaust gas discharge passage
JPH04148012A (en) * 1990-10-09 1992-05-21 Nissan Motor Co Ltd Exhaust gas recirculation device for engine
JP2007198310A (en) * 2006-01-27 2007-08-09 Toyota Motor Corp Exhaust emission control system for internal control device
JP2008280945A (en) * 2007-05-11 2008-11-20 Toyota Motor Corp Exhaust gas recirculation device for internal combustion engine
JP2009097441A (en) * 2007-10-17 2009-05-07 Toyota Motor Corp Exhaust emission circulation device of internal combustion engine

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0948823A (en) * 1995-08-07 1997-02-18 Mitsui Petrochem Ind Ltd Ethylenic copolymer rubber, its production and vulcanizable rubber composition containing the copolymer rubber
JP2014055567A (en) * 2012-09-13 2014-03-27 Kawasaki Heavy Ind Ltd Exhaust emission control system and ship engine system
DE102015117965B4 (en) 2014-10-22 2023-12-07 Ford Global Technologies, Llc Exhaust system for effective exhaust heat recovery
FR3048023A1 (en) * 2016-02-24 2017-08-25 Peugeot Citroen Automobiles Sa ENGINE ASSEMBLY COMPRISING A CYCLON FILTER EXHAUST GAS RECIRCULATION DEVICE
CN114278446A (en) * 2020-10-01 2022-04-05 通用汽车环球科技运作有限责任公司 Gasoline particulate filter regeneration system and method
CN114278446B (en) * 2020-10-01 2024-03-01 通用汽车环球科技运作有限责任公司 System and method for regenerating a gasoline particulate filter

Also Published As

Publication number Publication date
JP5063652B2 (en) 2012-10-31

Similar Documents

Publication Publication Date Title
US9027341B2 (en) System for a charge-air-cooler
JP4442459B2 (en) Internal combustion engine having supercharger with electric motor
CN100439685C (en) Exhaust gas control apparatus for internal combustion engine
JP5063652B2 (en) Exhaust gas recirculation device
CN107420234A (en) For controlling the method and system of the inlet air flow path in engine
US9144761B2 (en) Method and device for interior heating in a motor vehicle
US20130306040A1 (en) Misfire prevention water agitator system and method
WO2007004471A1 (en) Control device for diesel engine
JP2007198310A (en) Exhaust emission control system for internal control device
JP2008280945A (en) Exhaust gas recirculation device for internal combustion engine
JP2009275673A (en) Egr system and controlling method of egr system
CN105697133A (en) Turbocharging system for use with internal combustion engine
US8893493B2 (en) Engine exhaust system and method of operation
WO2017082481A1 (en) Intercooler and device for discharging intercooler condensate water
JP2016113935A (en) Supercharger for internal combustion engine
JP6631220B2 (en) Hybrid vehicle control device
JP2012219777A (en) Exhaust gas recirculation device for internal combustion engine
JP6162433B2 (en) EGR device
JP2018035679A (en) Control device for engine
JP2009108701A (en) Exhaust recirculating device for internal combustion engine
CN102105672B (en) Exhaust cleaner for internal combustion engine
JP6120649B2 (en) EGR device
JP6073644B2 (en) Control device for exhaust pressure adjustment valve
JPH06221228A (en) Exhaust gas reflux device for engine with supercharger
JP5761135B2 (en) Internal combustion engine with a supercharger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120723

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120807

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120807

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150817

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees