JP2011057987A5 - - Google Patents

Download PDF

Info

Publication number
JP2011057987A5
JP2011057987A5 JP2010204215A JP2010204215A JP2011057987A5 JP 2011057987 A5 JP2011057987 A5 JP 2011057987A5 JP 2010204215 A JP2010204215 A JP 2010204215A JP 2010204215 A JP2010204215 A JP 2010204215A JP 2011057987 A5 JP2011057987 A5 JP 2011057987A5
Authority
JP
Japan
Prior art keywords
catalyst
section
switchable
viii
reaction zones
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010204215A
Other languages
Japanese (ja)
Other versions
JP2011057987A (en
JP5952999B2 (en
Filing date
Publication date
Priority claimed from FR0904350A external-priority patent/FR2950072B1/en
Application filed filed Critical
Publication of JP2011057987A publication Critical patent/JP2011057987A/en
Publication of JP2011057987A5 publication Critical patent/JP2011057987A5/ja
Application granted granted Critical
Publication of JP5952999B2 publication Critical patent/JP5952999B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Claims (12)

予備精製された合成原油の製造のために、少なくとも0.5重量%のアスファルテンおよび10重量ppm超の金属(ニッケルおよび/またはバナジウム)を含む重質炭化水素原油供給原料の予備精製および水素化転化を行う固定床方法であって、
・ 前記供給原料は、水素化脱金属(HDM)セクションにおいて水素化脱金属処理を経、該水素化脱金属(HDM)セクションは、少なくとも2つの切替可能な反応帯域を含み、該切替可能な反応帯域は、それぞれ、少なくとも1種の水素化脱金属触媒を含み;
・ 次いで、少なくとも部分的に脱金属された流出物の少なくとも一部が、水素化分解(HCK)セクションにおいて水素化分解され、該水素化分解(HCK)セクションは、少なくとも1種の固定床水素化分解触媒を含み;
・ 次いで、少なくとも部分的に水素化分解された流出物の少なくとも一部が、水素化脱硫セクションにおいて水素化脱硫され、該水素化脱硫セクションは、少なくとも1種の水素化脱硫触媒を含み;
HDMセクションおよびHDSセクションは、一方はHDM用であり他方はHDS用である少なくとも2種の触媒を含む触媒系の存在下に操作し、HCK工程は、HDM工程およびHDS工程の間に行われ、前記HDM触媒およびHDS触媒は、多孔質耐火性酸化物によって構成される少なくとも1種の担体と、第VIB族からの少なくとも1種の金属と、第VIII族からの少なくとも2種の金属とを含み、該第VIII族からの少なくとも2種の金属の内の1種は、VIII-1と称される主要プロモータであり、他方(単数または複数)は、共プロモータVIII-i(iは2〜5の範囲である)と称され、前記触媒において、第VIII族からの元素は、原子比[VIII-1/(VIII-1+・・・+VIII-i)]によって規定される割合0.5〜0.85で存在する、方法。
Prerefining and hydroconversion of heavy hydrocarbon crude feed containing at least 0.5 wt% asphaltenes and more than 10 wtppm metals (nickel and / or vanadium) for the production of prerefined synthetic crude A fixed floor method of performing,
The feedstock has undergone hydrodemetallation in a hydrodemetallation (HDM) section, the hydrodemetallation (HDM) section comprising at least two switchable reaction zones, the switchable reaction Each zone comprises at least one hydrodemetallation catalyst;
-At least a portion of the at least partially demetalized effluent is then hydrocracked in a hydrocracking (HCK) section, the hydrocracking (HCK) section comprising at least one fixed bed hydrogenation Including a cracking catalyst;
• at least a portion of the at least partially hydrocracked effluent is then hydrodesulfurized in a hydrodesulfurization section, the hydrodesulfurization section comprising at least one hydrodesulfurization catalyst;
The HDM section and the HDS section operate in the presence of a catalyst system comprising at least two catalysts, one for HDM and the other for HDS, the HCK process is performed between the HDM process and the HDS process, The HDM catalyst and the HDS catalyst comprise at least one support composed of a porous refractory oxide, at least one metal from Group VIB, and at least two metals from Group VIII. , One of the at least two metals from group VIII is a major promoter termed VIII-1, and the other (s) is a co-promoter VIII-i (i is 2-5) In the catalyst, the elements from group VIII are in a proportion of 0.5-0 defined by the atomic ratio [VIII-1 / (VIII-1 +... + VIII-i)] A method existing at .85.
前記切替可能な反応帯域は、以下に規定される工程b)およびc)の連続的繰り返しからなる循環方式での使用のために直列に配置される、請求項1に記載の方法:
a) 切替可能な反応帯域が、それらの内の1つの不活性化時間および/または閉塞時間に少なくとも等しい期間にわたって全て一緒に用いられる工程;
b) 切替可能な反応帯域の少なくとも1つがバイパスされ、それが含む触媒が再生されおよび/または新鮮な触媒または再生された触媒と置換される工程;
c) 切替可能な反応帯域が全て一緒に用いられる工程であって、先行工程中に触媒が再生されおよび/または置換された切替可能な反応帯域は、それらの最初の位置または切替可能な帯域の内の別の位置に再接続され、前記工程は、切替可能な帯域の1つの不活性化時間および/または閉塞時間に少なくとも等しい期間にわたって続けられる。
The process according to claim 1, wherein the switchable reaction zones are arranged in series for use in a circulation mode consisting of continuous repetition of steps b) and c) as defined below:
a) the switchable reaction zones are all used together for a period at least equal to the inactivation time and / or the occlusion time of one of them;
b) at least one of the switchable reaction zones is bypassed and the catalyst it contains is regenerated and / or replaced with fresh or regenerated catalyst;
c) a process in which all switchable reaction zones are used together, wherein the switchable reaction zones in which the catalyst has been regenerated and / or replaced during the preceding process are in their initial position or switchable zone Reconnected to another location within, the process continues for a period at least equal to the deactivation time and / or occlusion time of one of the switchable bands.
工程b)中に触媒が再生された切替可能な反応帯域が、工程c)の間に、切替可能な反応帯域の内の別の位置に再接続される、請求項2に記載の方法。   The process according to claim 2, wherein the switchable reaction zone in which the catalyst has been regenerated during step b) is reconnected to another position within the switchable reaction zone during step c). 水素化脱金属セクションは、少なくとも1つのバイパス反応帯域も含む、請求項1または2に記載の方法。   The method according to claim 1 or 2, wherein the hydrodemetallation section also comprises at least one bypass reaction zone. 水素化分解セクションおよび/または水素化脱硫セクションは、少なくとも1つのバイパス反応帯域を含む、請求項1〜のいずれか1つに記載の方法。 The process according to any one of claims 1 to 4 , wherein the hydrocracking section and / or the hydrodesulfurization section comprises at least one bypass reaction zone. 請求項1〜のいずれか1つに記載の方法であって、少なくとも2つの切替可能な反応帯域を含む水素化脱金属セクションは、工程b)およびc)の連続的な繰り返しからなる循環方式での使用のために、少なくとも1種の水素化脱金属触媒を含む少なくとも1つのバイパス水素化脱金属反応器によって構成される少なくとも1つの反応帯域をも、直列に配置されて含み、続く水素化分解セクションおよび強い水素化脱硫セクションは、下記の工程d)およびe)により好ましくは別々にまたは他の方法でバイパス可能である1つ以上の反応帯域からなる、方法:
a) 反応帯域が全て一緒に使用される工程;
b) 切替可能な反応帯域の少なくとも1つがバイパスされ、それが含む触媒は、再生されおよび/または新鮮な触媒または再生された触媒と置換される工程;
c) 反応帯域は全て一緒に使用される工程であって、先行する工程中に触媒が再生されおよび/または置換された切替可能な反応帯域は、それらの最初の位置または切替可能な帯域の内の別の位置に再接続される工程;
d) 水素化脱金属セクションおよび/または水素化分解セクションおよび/または水素化脱硫セクションの反応帯域の少なくとも1つは、触媒が不活性化されたおよび/または閉塞した場合にサイクル中にバイパスされ得、それが含む触媒は、再生されおよび/または新鮮な触媒または再生された触媒と置換される、工程;
e)先行工程中に触媒が再生されおよび/または置換された反応帯域が、それらの最初の位置に再接続される、工程。
6. The method according to any one of claims 1 to 5 , wherein the hydrodemetallation section comprising at least two switchable reaction zones consists of a continuous repetition of steps b) and c). At least one reaction zone constituted by at least one bypass hydrodemetallation reactor comprising at least one hydrodemetallation catalyst for use in the process, which is also arranged in series, followed by hydrogenation The cracking section and the strong hydrodesulfurization section consist of one or more reaction zones, which can preferably be bypassed separately or otherwise by steps d) and e) below:
a) a step where all reaction zones are used together;
b) at least one of the switchable reaction zones is bypassed and the catalyst it contains is regenerated and / or replaced with fresh or regenerated catalyst;
c) The reaction zones are all used together, and switchable reaction zones in which the catalyst has been regenerated and / or replaced during the preceding steps are within their initial positions or switchable zones. Reconnecting to another location of the;
d) At least one of the reaction zones of the hydrodemetallation section and / or hydrocracking section and / or hydrodesulfurization section may be bypassed during the cycle if the catalyst is deactivated and / or blocked. Wherein the catalyst it contains is regenerated and / or replaced with fresh or regenerated catalyst;
e) A process in which the reaction zones in which the catalyst has been regenerated and / or replaced during the preceding process are reconnected to their initial position.
水素化脱金属セクションは、2つの切替可能な反応帯域を含み、バイパス水素化脱金属反応器によって構成される1つの反応帯域も含み、続く水素化分解セクションおよび水素化脱硫セクションは、バイパス反応帯域からなる、請求項6に記載の方法。   The hydrodemetallization section includes two switchable reaction zones and also includes one reaction zone constituted by a bypass hydrodemetallation reactor, the subsequent hydrocracking section and hydrodesulfurization section comprising a bypass reaction zone The method of claim 6, comprising: 工程b)中に触媒が置換された切替可能な反応帯域は、工程c)の間に、切替反応帯域の内の別の位置に再接続される、請求項6または7に記載の方法。   8. A process according to claim 6 or 7, wherein the switchable reaction zone in which the catalyst has been replaced during step b) is reconnected to another position within the switching reaction zone during step c). 前記水素化転化触媒は、単独でまたは混合物として利用される第VIII族および第VIB族からの金属によって形成される群から選択される少なくとも1種の金属と、1種の担体とを含み、該担体は、10〜90重量%の鉄含有ゼオライトと、90〜10重量%の無機酸化物とを含む、請求項1〜8のいずれか1つに記載の方法。   The hydroconversion catalyst comprises at least one metal selected from the group formed by the metals from Group VIII and Group VIB used alone or as a mixture, and one support, The method according to any one of claims 1 to 8, wherein the support comprises 10 to 90 wt% iron-containing zeolite and 90 to 10 wt% inorganic oxide. 前記HDM触媒およびHDS触媒は、アルミナによって構成される担体と、第VIB族からの元素としてのモリブデンと、第VIII族からの元素としてのニッケルおよびコバルトとを含み、該第VIII族からの元素うちの一方は、VIII-1と称される主要プロモータであり、他方は、共プロモータVIII-iと称され、iは2に等しく、これらの触媒において、第VIII族からの元素は、原子比[VIII-1/(VIII-1+VIII-2)]によって規定される割合0.5〜0.85で存在する、請求項1〜9のいずれか1つに記載の方法。   The HDM catalyst and the HDS catalyst include a support composed of alumina, molybdenum as an element from Group VIB, nickel and cobalt as elements from Group VIII, and among the elements from Group VIII, One of these is a major promoter called VIII-1 and the other is called co-promoter VIII-i, i is equal to 2, in these catalysts the elements from group VIII are in atomic ratio [ The method according to any one of claims 1 to 9, wherein the method is present in a ratio of 0.5 to 0.85 defined by VIII-1 / (VIII-1 + VIII-2)]. 前記触媒系は、HDMセクションへの入口にある第1の切替可能な反応帯域(単数または複数)において、および、HDSセクションへの入口にある第1の反応帯域(単数または複数)上で用いられ、前記HDMセクションおよびHDSセクションは、HCKセクションによって分離されている、請求項110のいずれか1つに記載の方法。 The catalyst system is used in the first switchable reaction zone (s) at the inlet to the HDM section and on the first reaction zone (s) at the inlet to the HDS section. The method according to any one of claims 1 to 10, wherein the HDM section and the HDS section are separated by an HCK section. 前記水素化脱硫された流出物の少なくとも一部は、次いで、常圧蒸留によって蒸留され、少なくとも1種の常圧蒸留物留分と常圧残渣とが得られる、請求項1〜11のいずれか1つに記載の方法。   12. At least a portion of the hydrodesulfurized effluent is then distilled by atmospheric distillation to obtain at least one atmospheric distillate fraction and atmospheric residue. The method according to one.
JP2010204215A 2009-09-11 2010-09-13 A process for the fixed bed hydroconversion of overhead and other crude oils using a switchable reactor for the production of pre-refined synthetic crude oils Expired - Fee Related JP5952999B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0904350 2009-09-11
FR0904350A FR2950072B1 (en) 2009-09-11 2009-09-11 METHOD OF HYDROCONVERSION IN FIXED BED OF A CRUDE OIL, OFF OR NOT, USING PERMUTABLE REACTORS FOR THE PRODUCTION OF A SYNTHETIC RAW PRERAFFIN.

Publications (3)

Publication Number Publication Date
JP2011057987A JP2011057987A (en) 2011-03-24
JP2011057987A5 true JP2011057987A5 (en) 2013-10-31
JP5952999B2 JP5952999B2 (en) 2016-07-13

Family

ID=42111307

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010204215A Expired - Fee Related JP5952999B2 (en) 2009-09-11 2010-09-13 A process for the fixed bed hydroconversion of overhead and other crude oils using a switchable reactor for the production of pre-refined synthetic crude oils

Country Status (6)

Country Link
JP (1) JP5952999B2 (en)
KR (1) KR101831445B1 (en)
CN (1) CN102021021B (en)
BR (1) BRPI1003423A2 (en)
FR (1) FR2950072B1 (en)
RU (1) RU2541540C2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2983866B1 (en) * 2011-12-07 2015-01-16 Ifp Energies Now PROCESS FOR HYDROCONVERSION OF PETROLEUM LOADS IN BEDS FOR THE PRODUCTION OF LOW SULFUR CONTENT FIELDS
CN103805233A (en) * 2012-11-14 2014-05-21 中国石油天然气股份有限公司 Application of prevulcanization method by hydrogenation catalyst dry method in residue hydrotreating switchable reactor system
CN103801410A (en) * 2012-11-14 2014-05-21 中国石油天然气股份有限公司 Presulfurization method for hydrogenation catalyst
CN103805232A (en) * 2012-11-14 2014-05-21 中国石油天然气股份有限公司 Application of hydrogenation catalyst prevulcanization method in residue hydrotreating switchable reactor system
US9847543B2 (en) * 2013-03-06 2017-12-19 Fuelcell Energy, Inc. Fuel cell system having biogas desulfurizer assembly with manganese oxide desulfurizer material
FR3015514B1 (en) 2013-12-23 2016-10-28 Total Marketing Services IMPROVED PROCESS FOR DESAROMATIZATION OF PETROLEUM CUTTERS
FR3050735B1 (en) * 2016-04-27 2020-11-06 Ifp Energies Now CONVERSION PROCESS INCLUDING PERMUTABLE HYDRODEMETALLATION GUARD BEDS, A FIXED BED HYDRO-TREATMENT STAGE AND A PERMUTABLE REACTOR HYDRO-CRACKING STAGE
FR3054453B1 (en) * 2016-07-28 2020-11-20 Ifp Energies Now PROCESS FOR THE PRODUCTION OF A HEAVY HYDROCARBON FRACTION WITH LOW SULFUR CONTENT INCLUDING A DEETTALATION AND HYDROCRACKING SECTION WITH REACTORS THAT CAN BE EXCHANGED BETWEEN THE TWO SECTIONS.
US10253272B2 (en) 2017-06-02 2019-04-09 Uop Llc Process for hydrotreating a residue stream
KR102098148B1 (en) * 2018-06-22 2020-04-07 서울대학교산학협력단 Reduction method of asphaltenes
CN110684556B (en) * 2018-07-06 2021-11-16 中国石油化工股份有限公司 Hydrotreating method and system
CN109652124A (en) * 2019-02-27 2019-04-19 伦涛 No. 180 fuel oil of one kind are hydrocracked production light-weight fuel oil method

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4017382A (en) * 1975-11-17 1977-04-12 Gulf Research & Development Company Hydrodesulfurization process with upstaged reactor zones
US4657663A (en) * 1985-04-24 1987-04-14 Phillips Petroleum Company Hydrotreating process employing a three-stage catalyst system wherein a titanium compound is employed in the second stage
FR2660322B1 (en) * 1990-03-29 1992-06-19 Inst Francais Du Petrole PROCESS FOR HYDROTREATING AN OIL RESIDUE OR HEAVY OIL WITH A VIEW TO REFINING THEM AND CONVERTING THEM INTO LIGHTER FRACTIONS.
FR2681871B1 (en) * 1991-09-26 1993-12-24 Institut Francais Petrole PROCESS FOR HYDROTREATING A HEAVY FRACTION OF HYDROCARBONS WITH A VIEW TO REFINING IT AND CONVERTING IT TO LIGHT FRACTIONS.
JP2966985B2 (en) * 1991-10-09 1999-10-25 出光興産株式会社 Catalytic hydrotreating method for heavy hydrocarbon oil
JPH0753967A (en) * 1993-08-18 1995-02-28 Catalysts & Chem Ind Co Ltd Hydrotreatment of heavy oil
FR2784687B1 (en) * 1998-10-14 2000-11-17 Inst Francais Du Petrole PROCESS FOR HYDROTREATING A HEAVY HYDROCARBON FRACTION WITH PERMUTABLE REACTORS AND INTRODUCING A MEDIUM DISTILLATE
EP1343857B1 (en) * 2000-12-11 2006-07-26 Institut Francais Du Petrole Method for hydrotreatment of a heavy hydrocarbon fraction with switchable reactors and reactors capable of being shorted out
JP2004263117A (en) * 2003-03-04 2004-09-24 Idemitsu Kosan Co Ltd Catalytic hydrogenation method for crude oil
RU2339680C2 (en) * 2003-07-09 2008-11-27 Институто Мехикано Дель Петролео Method for catalytic hydro-treatment of heavy hydrocarbons of oil and product received by this method

Similar Documents

Publication Publication Date Title
JP2011057987A5 (en)
JP6106354B2 (en) Process for hydrocracking feedstock containing 200 wtppm to 2 wt% asphaltenes, including a switchable reactor
US10221366B2 (en) Residue hydrocracking
JP2010159416A5 (en)
JP5952999B2 (en) A process for the fixed bed hydroconversion of overhead and other crude oils using a switchable reactor for the production of pre-refined synthetic crude oils
JP2966985B2 (en) Catalytic hydrotreating method for heavy hydrocarbon oil
CN105567311B (en) Catalyst for hydrotreatment of residual oil grading method and process for hydrogenating residual oil
JP2008093493A (en) Demetallization catalyst and method for hydrotreating heavy oil by using the same
CN105623717A (en) Hydrogenation catalyst grading method and heavy oil hydrotreatment method
EP2169031A1 (en) Hydrorefining method for hydrocarbon oil
JPWO2016194686A1 (en) Method for producing hydrotreated oil and method for producing catalytic cracking oil
JP6181378B2 (en) Hydrotreating method
JP2005314657A (en) Method for hydrotreating heavy hydrocarbon oil
JP4576334B2 (en) Hydrotreating process for diesel oil fraction
CN105567312B (en) Catalyst for hydrotreatment of residual oil grading method and process for hydrogenating residual oil
CA2891885C (en) Hydrotreating and dewaxing process
US20230055751A1 (en) Layered catalyst reactor systems and processes for hydrotreatment of hydrocarbon feedstocks
JP2001064657A (en) Production of low-sulfur gas oil
JP4223630B2 (en) Method for producing low sulfur gas oil
JP2000017274A (en) Hydrogenation method for heavy oil
JP2006052390A (en) Method for producing hydrocarbon oil
RU2020123947A (en) IMPROVED METHOD OF RESIDUES CONVERSION COMBINING STAGES OF DEEP HYDROCONVERSION AND DEAPHALTIZATION STAGE
JP2019518128A (en) Method of operating a boiling bed process to reduce precipitate yield