JP2011057814A - Method for producing organic solvent system conductive polymer dispersion, and its application - Google Patents

Method for producing organic solvent system conductive polymer dispersion, and its application Download PDF

Info

Publication number
JP2011057814A
JP2011057814A JP2009207897A JP2009207897A JP2011057814A JP 2011057814 A JP2011057814 A JP 2011057814A JP 2009207897 A JP2009207897 A JP 2009207897A JP 2009207897 A JP2009207897 A JP 2009207897A JP 2011057814 A JP2011057814 A JP 2011057814A
Authority
JP
Japan
Prior art keywords
conductive polymer
organic solvent
dispersion
based conductive
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009207897A
Other languages
Japanese (ja)
Other versions
JP5355313B2 (en
Inventor
Ryosuke Sugihara
良介 杉原
Daisaku Ikematsu
大作 池松
Kei Hirota
兄 廣田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tayca Corp
Original Assignee
Tayca Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tayca Corp filed Critical Tayca Corp
Priority to JP2009207897A priority Critical patent/JP5355313B2/en
Publication of JP2011057814A publication Critical patent/JP2011057814A/en
Application granted granted Critical
Publication of JP5355313B2 publication Critical patent/JP5355313B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/48Conductive polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/56Solid electrolytes, e.g. gels; Additives therein

Abstract

<P>PROBLEM TO BE SOLVED: To easily produce an organic solvent system conductive polymer dispersion by easily performing conversion from an aqueous dispersion to an organic solvent system dispersion of a conductive polymer. <P>SOLUTION: The organic solvent system conductive polymer dispersion having ≤10 mass% water content is produced via a step (1) for synthesizing a conductive polymer by oxidatively polymerizing a thiophene or its derivative in water or aqueous liquid made of a mixture of water and a solvent which can be mixed with water in the presence of a polymer sulfonic acid to be a dopant to obtain an aqueous dispersion of the conductive polymer, a step (2) for supplying a non-aqueous amine to the aqueous dispersion of the conductive polymer to flocculate the conductive polymer, a step (3) for taking out flocculated product of the conductive polymer from water or the aqueous liquid and a step (4) for dispersing the flocculated product of the conductive polymer in an organic solvent. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、有機溶剤系導電性高分子分散液およびその応用、すなわち、上記有機溶剤系導電性高分子分散液を乾燥して得られる導電性高分子、上記有機溶剤系導電性高分子分散液とバインダ用樹脂とを混合して得られる有機溶剤系導電性高分子含有樹脂組成物分散液、上記有機溶剤系導電性高分子含有樹脂組成物分散液を乾燥して得られる導電性高分子含有樹脂組成物、上記有機溶剤系導電性高分子含有樹脂組成物分散液を乾燥して得られる導電性高分子含有樹脂組成物フィルムからなる帯電防止フィルム、上記有機溶剤系導電性高分子含有樹脂組成物分散液を乾燥して得られる導電性高分子含有樹脂組成物フィルムを導電層として基材シートの一方の面または両面に有する帯電防止シート、上記有機溶剤系導電性高分子分散液を乾燥して得られる導電性高分子を固体電解質とする固体電解コンデンサ、上記有機溶剤系導電性高分子含有樹脂組成物分散液を乾燥して得られる導電性高分子含有樹脂組成物を固体電解質とする固体電解コンデンサ、上記有機溶剤系導電性高分子分散液を用いて固体電解質を構成する固体電解コンデンサの製造方法、上記有機溶剤系導電性高分子含有樹脂組成物分散液を用いて固体電解質を構成する固体電解コンデンサの製造方法に関する。   The present invention relates to an organic solvent-based conductive polymer dispersion and its application, that is, a conductive polymer obtained by drying the organic solvent-based conductive polymer dispersion, and the organic solvent-based conductive polymer dispersion. Organic solvent-based conductive polymer-containing resin composition dispersion obtained by mixing a binder resin and a conductive polymer-containing resin obtained by drying the organic solvent-based conductive polymer-containing resin composition dispersion Resin composition, antistatic film comprising conductive polymer-containing resin composition film obtained by drying organic solvent-based conductive polymer-containing resin composition dispersion, organic solvent-based conductive polymer-containing resin composition The antistatic sheet having the conductive polymer-containing resin composition film obtained by drying the product dispersion as a conductive layer on one or both sides of the base sheet, and the organic solvent-based conductive polymer dispersion is dried. Get Electrolytic capacitor using a conductive polymer as a solid electrolyte, and a solid electrolytic capacitor using a conductive polymer-containing resin composition obtained by drying the organic solvent-based conductive polymer-containing resin composition dispersion as a solid electrolyte , A method for producing a solid electrolytic capacitor comprising a solid electrolyte using the organic solvent-based conductive polymer dispersion, and a solid electrolyte comprising a solid electrolyte using the organic solvent-based conductive polymer-containing resin composition dispersion The present invention relates to a method for manufacturing a capacitor.

導電性高分子は、その高い導電性により、例えば、帯電防止フィルムや固体電解コンデンサの固体電解質として用いられている。   Conductive polymers are used, for example, as solid electrolytes for antistatic films and solid electrolytic capacitors because of their high conductivity.

そして、この用途における導電性高分子としては、例えば、チオフェンまたはその誘導体などの重合性モノマーを酸化重合することによって合成したものが用いられている。   As the conductive polymer in this application, for example, a polymer synthesized by oxidative polymerization of a polymerizable monomer such as thiophene or a derivative thereof is used.

上記チオフェンまたはその誘導体などの重合性モノマーの酸化重合、特に化学酸化重合を行う際のドーパントとしては、主として有機スルホン酸が用いられ、その中でも、芳香族スルホン酸が適しているといわれており、酸化剤としては遷移金属が用いられ、その中でも、第二鉄が適しているといわれていて、通常、芳香族スルホン酸の第二鉄塩がチオフェンまたはその誘導体などの重合性モノマーの化学酸化重合にあたっての酸化剤兼ドーパント剤として用いられてきた。   As a dopant when performing oxidative polymerization of a polymerizable monomer such as thiophene or a derivative thereof, particularly chemical oxidative polymerization, organic sulfonic acid is mainly used, and among them, aromatic sulfonic acid is said to be suitable. Transition metals are used as oxidants, among which ferric iron is said to be suitable. Usually, ferric salts of aromatic sulfonic acids are chemically oxidative polymerization of polymerizable monomers such as thiophene or its derivatives. It has been used as an oxidizing agent / dopant agent.

そして、その芳香族スルホン酸の第二鉄塩の中でも、トルエンスルホン酸第二鉄塩やメトキシベンゼンスルホン酸第二鉄塩などが特に有用であるとされていて、それらを用いた導電性高分子の合成は、それらの酸化剤兼ドーパントをチオフェンまたはその誘導体などの重合性モノマーと混合することにより行うことができ、簡単で、工業化に向いていると報告されている(特許文献1、特許文献2)。   And among the ferric salts of aromatic sulfonic acids, it is said that ferric salts of toluene sulfonic acid and ferric salts of methoxybenzene sulfonic acid are particularly useful, and conductive polymers using them. It can be synthesized by mixing those oxidizing agent / dopant with a polymerizable monomer such as thiophene or a derivative thereof, and is reported to be simple and suitable for industrialization (Patent Document 1, Patent Document) 2).

しかしながら、トルエンスルホン酸第二鉄塩を酸化剤兼ドーパントとして用いて得られた導電性高分子は、初期抵抗値や耐熱性において、充分に満足できる特性を有さず、また、メトキシベンゼンスルホン酸第二鉄塩を酸化剤兼ドーパントとして用いて得られた導電性高分子は、トルエンスルホン酸第二鉄塩を用いた導電性高分子に比べれば、初期抵抗値が低く、耐熱性も優れているが、それでも、充分に満足できる特性は得られなかった。   However, the conductive polymer obtained using ferric toluenesulfonate as an oxidizing agent and dopant does not have sufficiently satisfactory characteristics in terms of initial resistance and heat resistance, and methoxybenzenesulfonic acid. The conductive polymer obtained using ferric salt as an oxidant and dopant has lower initial resistance and excellent heat resistance than the conductive polymer using ferric toluenesulfonate. Even so, satisfactory characteristics were not obtained.

そこで、本発明者らは、ドーパントとなる有機スルホン酸として、ポリスチレンスルホン酸、スルホン化ポリエステル、フェノールスルホン酸ノボラック樹脂などの高分子スルホン酸を用い、導電性が高く、かつ耐熱性が優れた導電性高分子を開発し、それについて既に特許出願をしてきた(PCT/JP2009/57241、PCT/JP2009/57242)。   Therefore, the present inventors use a high molecular sulfonic acid such as polystyrene sulfonic acid, sulfonated polyester, and phenol sulfonic acid novolak resin as the organic sulfonic acid serving as a dopant, and has high conductivity and excellent heat resistance. Have developed patentable polymers and have already filed patent applications (PCT / JP2009 / 57241, PCT / JP2009 / 57242).

しかしながら、前記の芳香族スルホン酸をドーパントとする場合も、高分子スルホン酸をドーパントとする場合も、重合性モノマーの酸化重合は水中または水と水混和性溶剤との混合物からなる水性液中などの水系で行われるため、導電性高分子は水中または水性液中に分散した状態で得られることになる。   However, in the case where the aromatic sulfonic acid is used as a dopant and the polymer sulfonic acid is used as a dopant, the oxidative polymerization of the polymerizable monomer is carried out in water or in an aqueous liquid composed of a mixture of water and a water-miscible solvent. Therefore, the conductive polymer is obtained in a state of being dispersed in water or an aqueous liquid.

そこで、上記のようにして得られた導電性高分子により帯電防止フィルムを形成しようとして、上記導電性高分子の水系分散液にバインダ用樹脂を混合すると、バインダ用樹脂が凝集してしまい、導電性高分子とバインダ用樹脂との充分な混合が短時間内に行えないという問題があった、   Therefore, when the antistatic film is formed from the conductive polymer obtained as described above and the binder resin is mixed with the aqueous dispersion of the conductive polymer, the binder resin is aggregated, and the conductive polymer is conductive. There was a problem that sufficient mixing of the functional polymer and the binder resin could not be performed within a short time,

また、得られた導電性高分子は、固体電解コンデンサの固体電解質として用いるなど、電子デバイスの有機導電性部材の構成にあたって使用されることが多いが、そのような電子デバイス系用途では、水が電子デバイスの金属製部材を腐食させ、電流漏れを生じさせて電力ロスを引き起こす原因になるため、水系分散液では、その取り扱いに細心の注意を払わなければならないという問題があった。   In addition, the obtained conductive polymer is often used in the construction of an organic conductive member of an electronic device, such as being used as a solid electrolyte of a solid electrolytic capacitor. Since the metal member of the electronic device is corroded and causes electric current leakage to cause power loss, the aqueous dispersion has a problem that careful handling must be taken.

そこで、得られた導電性高分子の水系分散液を有機溶剤系分散液へ変える試みがなされている(特許文献3〜5)。   Therefore, attempts have been made to change the aqueous dispersion of the obtained conductive polymer to an organic solvent dispersion (Patent Documents 3 to 5).

しかしながら、これら特許文献3〜5に記載の方法は、濃縮や溶剤置換などを経て導電性高分子の分散液を水系から有機溶剤系に変換していくものであるため、作業効率が充分とは言えず、そのため、コスト高を招くという問題があった。   However, these methods described in Patent Documents 3 to 5 convert the conductive polymer dispersion liquid from an aqueous system to an organic solvent system through concentration, solvent replacement, and the like. Therefore, there was a problem that the cost was increased.

特開2003−160647号公報JP 2003-160647 A 特開2004−265927号公報JP 2004-265927 A 特許第4038696号公報Japanese Patent No. 40386696 特許第4225785号公報Japanese Patent No. 4225785 特開第4208720号公報Japanese Patent Laid-Open No. 4208720

本発明は、上記のような事情に鑑み、導電性高分子の水系分散液から有機溶剤系分散液へ容易に変換し、有機溶剤系導電性高分子分散液を容易に製造できる方法を提供することを目的とする。   In view of the above circumstances, the present invention provides a method capable of easily converting an aqueous dispersion of a conductive polymer from an aqueous dispersion of an electroconductive polymer to an organic solvent-based dispersion and easily producing an organic solvent-based conductive polymer dispersion. For the purpose.

本発明者は、上記課題を解決すべく鋭意研究を重ねた結果、導電性高分子の水系分散液に非水系アミンを添加するときは、導電性高分子が凝集することを見出し、それに基づいて本発明を完成するにいたった。   As a result of intensive studies to solve the above problems, the present inventor has found that when a non-aqueous amine is added to an aqueous dispersion of a conductive polymer, the conductive polymer aggregates. The present invention has been completed.

すなわち、本発明は、
(1)チオフェンまたはその誘導体をドーパントとなる高分子スルホン酸の存在下で水中または水と水混和性溶剤との混合物からなる水性液中で酸化重合して導電性高分子を合成することにより導電性高分子の水系分散液を得る工程と、
(2)上記導電性高分子の水系分散液に非水系アミンを投入して導電性高分子を凝集させる工程と、
(3)上記導電性高分子の凝集物を水中または水性液中から取り出す工程と、
(4)上記導電性高分子の凝集物を有機溶剤に分散させる工程と
を経由して製造することを特徴とする、水分含有量が10質量%以下の有機溶剤系導電性高分子分散液の製造方法に関する。
That is, the present invention
(1) Conduction is conducted by synthesizing a conductive polymer by oxidative polymerization of thiophene or a derivative thereof in water or an aqueous liquid composed of a mixture of water and a water-miscible solvent in the presence of a polymer sulfonic acid as a dopant. Obtaining an aqueous dispersion of a functional polymer;
(2) adding a non-aqueous amine to the aqueous dispersion of the conductive polymer to aggregate the conductive polymer;
(3) a step of taking out the aggregate of the conductive polymer from water or an aqueous liquid;
(4) An organic solvent-based conductive polymer dispersion having a water content of 10% by mass or less, wherein the conductive polymer aggregate is produced through a step of dispersing the aggregate of the conductive polymer in an organic solvent. It relates to a manufacturing method.

また、本発明は、上記有機溶剤系導電性高分子分散液を乾燥して得られる導電性高分子、上記有機溶剤系導電性高分子分散液とバインダ用樹脂とを混合して得られる有機溶剤系導電性高分子含有樹脂組成物分散液、上記有機溶剤系導電性高分子含有樹脂組成物分散液を乾燥して得られる導電性高分子含有樹脂組成物、上記有機溶剤系導電性高分子含有樹脂組成物分散液を乾燥して得られる導電性高分子含有樹脂組成物フィルムからなる帯電防止フィルム、上記有機溶剤系導電性高分子含有樹脂組成物分散液を乾燥して得られる導電性高分子含有樹脂組成物フィルムを導電層として基材シートの一方の面または両面に有する帯電防止シート、上記有機溶剤系導電性高分子分散液を乾燥して得られる導電性高分子を固体電解質とする固体電解コンデンサ、上記有機溶剤系導電性高分子含有樹脂組成物分散液を乾燥して得られる導電性高分子含有樹脂組成物を固体電解質とする固体電解コンデンサ、上記有機溶剤系導電性高分子分散液を用いて固体電解質を構成する固体電解コンデンサの製造方法、上記有機溶剤系導電性高分子含有樹脂組成物分散液を用いて固体電解質を構成する固体電解コンデンサの製造方法に関する。   The present invention also provides a conductive polymer obtained by drying the organic solvent-based conductive polymer dispersion, an organic solvent obtained by mixing the organic solvent-based conductive polymer dispersion and a binder resin. Conductive polymer-containing resin composition dispersion, conductive polymer-containing resin composition obtained by drying the organic solvent-based conductive polymer-containing resin composition dispersion, and organic solvent-based conductive polymer-containing Antistatic film comprising conductive polymer-containing resin composition film obtained by drying resin composition dispersion, conductive polymer obtained by drying organic solvent-based conductive polymer-containing resin composition dispersion An antistatic sheet having a resin composition film as a conductive layer on one or both sides of a base sheet, a solid having a conductive polymer obtained by drying the organic solvent-based conductive polymer dispersion as a solid electrolyte Electrolytic capacitor A solid electrolytic capacitor having a conductive polymer-containing resin composition obtained by drying the organic solvent-based conductive polymer-containing resin composition dispersion as a solid electrolyte, and the organic solvent-based conductive polymer dispersion described above. The present invention relates to a method for producing a solid electrolytic capacitor comprising a solid electrolyte and a method for producing a solid electrolytic capacitor comprising a solid electrolyte using the organic solvent-based conductive polymer-containing resin composition dispersion.

そして、上記非水系アミンとしては、下記の一般式(1)で表されるアミンが好適に用いられる。
−NH (1)
(式中、Rは、炭素数が6〜30のアルキル基であり、上記アルキル基は、直鎖状のものであってもよく、分岐鎖状のものであってもよい。また、上記アルキル基は、エーテル結合、エステル結合または二重結合を含んでいてもよく、その水素原子が任意に他の原子で置換されていてもよい)
And as said non-aqueous amine, the amine represented by following General formula (1) is used suitably.
R 1 —NH 2 (1)
(In the formula, R 1 is an alkyl group having 6 to 30 carbon atoms, and the alkyl group may be linear or branched. The alkyl group may contain an ether bond, an ester bond or a double bond, and the hydrogen atom may be optionally substituted with another atom)

また、上記高分子スルホン酸としては、ポリスチレンスルホン酸、スルホン化ポリエステル、フェノールスルホン酸ノボラック樹脂が好ましく、上記フェノールスルホン酸ノボラック樹脂としては、次の一般式(2)で表される繰り返し単位を有するものが好ましい。

Figure 2011057814
The polymer sulfonic acid is preferably polystyrene sulfonic acid, sulfonated polyester, or phenol sulfonic acid novolak resin, and the phenol sulfonic acid novolak resin has a repeating unit represented by the following general formula (2). Those are preferred.
Figure 2011057814

本発明によれば、有機溶剤系導電性高分子分散液を容易に製造することができる。すなわち、本発明によれば、導電性高分子の水系分散液への非水系アミンの添加により、水系分散液中の導電性高分子を容易に凝集させることができる。これは、非水系アミンが、導電性高分子のドーパントとして機能する高分子スルホン酸に対し、部分的に結合することにより、導電性高分子が非水性になり、水中または水性液中で導電性高分子の凝集が容易に生じるようになることによるものと考えられる。そして、その凝集物の水中または水性液中からの取り出しも濾過などにより容易に行うことができ、また、凝集物の有機溶剤への分散も非水系アミンの存在により容易に行うことができる。従って、本発明によれば、導電性高分子の水系分散液から有機溶剤系分散液へ容易に変換することができ、それによって、有機溶剤系導電性高分子分散液を容易に製造することができる。   According to the present invention, an organic solvent-based conductive polymer dispersion can be easily produced. That is, according to the present invention, the conductive polymer in the aqueous dispersion can be easily aggregated by adding the non-aqueous amine to the aqueous dispersion of the conductive polymer. This is because the non-aqueous amine is partially bonded to the polymer sulfonic acid that functions as a conductive polymer dopant, so that the conductive polymer becomes non-aqueous and conductive in water or aqueous liquid. It is considered that the polymer is easily aggregated. The aggregate can be easily taken out from water or an aqueous liquid by filtration or the like, and the aggregate can be easily dispersed in an organic solvent due to the presence of a non-aqueous amine. Therefore, according to the present invention, it is possible to easily convert an aqueous dispersion of a conductive polymer into an organic solvent-based dispersion, thereby easily manufacturing an organic solvent-based conductive polymer dispersion. it can.

また、上記有機溶剤系導電性高分子分散液を乾燥して得られる導電性高分子は、導電性が高く、かつ耐熱性が優れている。これは、導電性高分子の合成にあたってドーパントとして用いた高級スルホン酸が、導電性高分子の合成時、優れた分散剤としても機能し、重合性モノマーとしてのチオフェンまたはその誘導体や必要に応じて添加される触媒などを水中または水性液中を均一に分散させ、かつ合成されるポリマー中にドーパントとして取り込まれ、導電性高分子を高い導電性を有するものにさせるとともに、優れた分散剤として機能することが、耐熱性の優れたものにする要因になっているものと考えられる。   Further, the conductive polymer obtained by drying the organic solvent-based conductive polymer dispersion has high conductivity and excellent heat resistance. This is because the higher sulfonic acid used as the dopant in the synthesis of the conductive polymer also functions as an excellent dispersant during the synthesis of the conductive polymer, and thiophene or a derivative thereof as a polymerizable monomer or as required. The added catalyst is uniformly dispersed in water or aqueous liquid, and is incorporated into the synthesized polymer as a dopant, making the conductive polymer highly conductive and functioning as an excellent dispersant. This is considered to be a factor that makes the heat resistance excellent.

また、本発明により得られた有機溶剤系導電性高分子分散液は、非水系のバインダ用樹脂と混合する際に、バインダ用樹脂を凝集させることがないので、導電性高分子とバインダ用樹脂とを短時間で充分に混合することができ、導電性高分子とバインダ用樹脂とが充分に混合した有機溶剤系導電性高分子含有樹脂組成物分散液を容易に得ることができる。   Further, the organic solvent-based conductive polymer dispersion obtained by the present invention does not aggregate the binder resin when mixed with the non-aqueous binder resin. Can be sufficiently mixed in a short time, and an organic solvent-based conductive polymer-containing resin composition dispersion liquid in which the conductive polymer and the binder resin are sufficiently mixed can be easily obtained.

さらに、本発明の有機溶剤系導電性高分子分散液や有機溶剤系導電性高分子含有樹脂組成物分散液は、有機溶剤系なので、固体電解コンデンサの固体電解質層の形成などの電子デバイスの有機導電性部材の構成にあたって、電子デバイスに水による不都合を生じさせることがない。つまり、水系導電性高分子分散液のように、水が電子デバイスの金属製部材を腐食させて漏れ電流を生じさせ、電子デバイスの駆動にあたって電力ロスを生じさせることがない。   Furthermore, since the organic solvent-based conductive polymer dispersion and the organic solvent-based conductive polymer-containing resin composition dispersion of the present invention are based on an organic solvent, they are used in organic devices such as the formation of solid electrolyte layers of solid electrolytic capacitors. In the configuration of the conductive member, there is no problem caused by water in the electronic device. That is, unlike the water-based conductive polymer dispersion, water does not corrode the metal member of the electronic device to cause a leakage current, thereby causing no power loss when driving the electronic device.

本発明においては、導電性高分子の水系分散液に非水系アミンを添加することにより、導電性高分子を凝集させて水と分離できるようにさせたことに最大の特徴を有するので、まず、これに関する事項から説明する。   In the present invention, by adding a non-aqueous amine to the aqueous dispersion of the conductive polymer, the conductive polymer is aggregated so that it can be separated from water. This will be explained from matters related to this.

前記のように、導電性高分子の水系分散液に添加するアミンとしては、一般式(1)で表されるアミンが好ましく、この一般式(1)で表されるアミンの具体例としては、例えば、ヘキシルアミン、へプチルアミン、オクチルアミン、デシルアミン、ラウリルアミン、ミリスチルアミン、ヘキサデシルアミン、オクタデシルアミン、N−メチルヘキシルアミン、2−エチルヘキシルアミン、ジ−2−エチルヘキシルアミン、ジ−n−ブチルアミン、ジ−n−ヘキシルアミン、ジ−n−オクチルアミン、3−(2−エチルヘキシルオキシ)プロピルアミン、オレイルアミンなどが挙げられるが、それらの中でも、3−(2−エチルヘキシルオキシ)プロピルアミン、ヘキシルアミン、ヘプチルアミン、オクチルアミン、デシルアミン、ラウリルアミンが好ましく、特に3−(2−エチルヘキシルオキシ)プロピルアミンが好ましい。つまり、非水系の1級アミン、2級アミンであれば、導電性高分子の凝集を起こさせることができるが、1級アミンの方が、凝集力が強く、特にアルキル基中に水になじみやすいエーテル結合などの置換基を有するアミンの方の凝集力が強いことから、上記のように、1級アミンのヘキシルアミン、ヘプチルアミン、オクチルアミン、デシルアミン、ラウリルアミンが好ましいアミンとして挙げられ、さらに、アルキル基中にエーテル結合を有する3−(2−エチルヘキシル)プロピルアミンが特に好ましいアミンとして挙げられる。そして、非水系アミンのアルキル基が長くなりすぎると、常温下ではアミンが固化する傾向があり、そのため、導電性高分子を凝集させる工程でのアミンの取扱い性が低下するおそれがあるので、炭素数が20以下のアミンが好ましく、特に炭素数が14以下のアミンが好ましい。   As described above, the amine added to the aqueous dispersion of the conductive polymer is preferably an amine represented by the general formula (1). Specific examples of the amine represented by the general formula (1) include For example, hexylamine, heptylamine, octylamine, decylamine, laurylamine, myristylamine, hexadecylamine, octadecylamine, N-methylhexylamine, 2-ethylhexylamine, di-2-ethylhexylamine, di-n-butylamine, Di-n-hexylamine, di-n-octylamine, 3- (2-ethylhexyloxy) propylamine, oleylamine and the like can be mentioned. Among them, 3- (2-ethylhexyloxy) propylamine, hexylamine, Heptylamine, octylamine, decylamine, lauryl Min are preferred, especially 3- (2-ethylhexyl oxy) propylamine are preferred. In other words, the non-aqueous primary amine and secondary amine can cause aggregation of the conductive polymer, but the primary amine has a stronger cohesion and is particularly familiar with water in the alkyl group. Since amines having substituents such as easy ether bonds have a stronger cohesive force, primary amines such as hexylamine, heptylamine, octylamine, decylamine, and laurylamine are mentioned as preferred amines as described above. Among them, 3- (2-ethylhexyl) propylamine having an ether bond in the alkyl group is particularly preferable. And if the alkyl group of the non-aqueous amine becomes too long, the amine tends to solidify at room temperature, and therefore the handling property of the amine in the process of aggregating the conductive polymer may be reduced. An amine having 20 or less is preferable, and an amine having 14 or less carbon atoms is particularly preferable.

上記非水系アミンの添加により凝集を起こさせる導電性高分子の水系分散液中における導電性高分子の濃度は、特に限定されることはないが、0.1質量%以上が好ましく、0.5質量%以上がより好ましく、また、25質量%以上が好ましく、10質量%以下がより好ましい。   The concentration of the conductive polymer in the aqueous dispersion of the conductive polymer that causes aggregation by the addition of the non-aqueous amine is not particularly limited, but is preferably 0.1% by mass or more, 0.5 It is more preferably at least mass%, more preferably at least 25 mass%, and even more preferably at most 10 mass%.

水系分散液中における導電性高分子を凝集させるための非水系アミンの添加速度は、特に限定させることはないが、分散液を撹拌しながら、ゆっくり添加した方がアミンが均一に拡散されるので好ましい。非水系アミンの添加時の温度は、0〜100℃の範囲で行うことができ、特に5℃以上が好ましく、50℃以下が好ましい。   The addition rate of the non-aqueous amine for aggregating the conductive polymer in the aqueous dispersion is not particularly limited, but the amine is more uniformly diffused by slowly adding the dispersion while stirring. preferable. The temperature at the time of addition of a non-aqueous amine can be performed in the range of 0-100 degreeC, 5 degreeC or more is especially preferable, and 50 degreeC or less is preferable.

非水系アミンの添加量としては、導電性高分子の水系分散液のpHが3以上になれば、導電性高分子が凝集を起こすようになるので、それに適した量を添加すればよく、非水系アミンの添加が多くなってpHが上昇しても導電性高分子の凝集そのものには問題ないが、pHが11より高くなる導電性高分子に脱ドープが生じるおそれがあるので、pHが11以下の範囲で添加するのが好ましい。   As the addition amount of the non-aqueous amine, if the pH of the aqueous dispersion of the conductive polymer becomes 3 or more, the conductive polymer will aggregate, so an appropriate amount may be added. Even if the amount of water-based amine is increased and the pH is increased, there is no problem in the aggregation of the conductive polymer itself, but there is a possibility that the conductive polymer having a pH higher than 11 may be dedoped, so that the pH is 11 It is preferable to add in the following range.

導電性高分子の凝集物の水中または水性液中からの取り出しは、例えば、100μmの口径を有するメッシュ(篩)により濾過することによって凝集物を水中または水性液中から分離することにより、簡単に実施することができる。この導電性高分子の凝集物の水中または水性液中からの分離は、残存する水分が少ないほど、好ましいが、完全に水と分離することは要しない。凝集物中に若干の水分が残っている方が次の有機溶剤への分散を早くする面もあり、最終的に得られる有機溶剤系導電性高分子分散液が使用される用途に応じて水分を少なくしておけばよい。   The conductive polymer aggregates can be easily removed from the water or aqueous liquid by, for example, separating the aggregates from the water or aqueous liquid by filtering through a mesh (sieve) having a diameter of 100 μm. Can be implemented. Although it is preferable that the conductive polymer aggregates are separated from water or an aqueous liquid as the remaining moisture is small, it is not necessary to completely separate the aggregate from the water. If some moisture remains in the agglomerate, there is also an aspect of faster dispersion in the next organic solvent, and depending on the intended use of the organic solvent-based conductive polymer dispersion finally obtained, Should be reduced.

つまり、最終的に得られる有機溶剤系導電性高分子分散液が水分を嫌う用途に使用される場合、導電性高分子の凝集物を遠心分離やフィルタープレスなどで凝集物に圧力をかけて水分を減少させつつ水中または水性液中から取り出せばよく、さらに水分の減少が必要な場合は、それに応じて乾燥して水分を少なくすればよい。   In other words, when the finally obtained organic solvent-based conductive polymer dispersion is used in applications where water is not required, the aggregate of the conductive polymer is subjected to pressure by applying pressure to the aggregate by centrifugation or a filter press. It may be taken out from water or an aqueous liquid while reducing the amount of water, and if it is necessary to further reduce the water content, the water content may be reduced by drying accordingly.

水中または水性液中から取り出した導電性高分子の凝集物を、有機溶剤に添加し、SG(サイドグラインダー)や超音波ホモジナイザーなどの分散機で分散させることによって、有機溶剤系導電性高分子分散液が得られる。   Conductive polymer dispersion is dispersed by adding aggregate of conductive polymer taken out of water or aqueous liquid to organic solvent and dispersing with a dispersing machine such as SG (side grinder) or ultrasonic homogenizer. A liquid is obtained.

上記有機溶剤系分散液の調製にあたって使用する有機溶剤としては、例えば、n−メチルピロリドン、ジメチルホルムアミド、ジメチルアセトアミド、エチレングリコール、ジメチルシルホキシド、スルホラン、γ−ブチロラクトン、メチルエチルケトン、酢酸エチルなどが挙げられるが、それらの中でも、n−メチルピロリドン、ジメチルホルムアミド、ジメチルアセトアミドが好ましく、n−メチルピロリドンが特に好ましい。   Examples of the organic solvent used in the preparation of the organic solvent-based dispersion include n-methylpyrrolidone, dimethylformamide, dimethylacetamide, ethylene glycol, dimethylsiloxide, sulfolane, γ-butyrolactone, methyl ethyl ketone, and ethyl acetate. Among these, n-methylpyrrolidone, dimethylformamide, and dimethylacetamide are preferable, and n-methylpyrrolidone is particularly preferable.

上記有機溶剤系導電性高分子分散液は、例えば、帯電防止フィルムや帯電防止シートの導電層の作製にあたって、バインダ用樹脂と混合し、有機溶剤系導電性高分子含有樹脂組成物分散液とされるが、その際には、幾分かの水分を含んでいても、バインダ用樹脂の凝集を招かないので、水分含有量が10質量%以下であればよい。   The organic solvent-based conductive polymer dispersion is mixed with a binder resin to produce an organic solvent-based conductive polymer-containing resin composition dispersion, for example, in the production of a conductive layer for an antistatic film or an antistatic sheet. However, in this case, even if some moisture is contained, the binder resin is not agglomerated, so the moisture content may be 10% by mass or less.

この有機溶剤系導電性高分子分散液における導電性高分子の濃度は、特に限定されることはないが、均一な分散液を得るという観点からは、導電性高分子の濃度は5質量%以下が好ましく、特に3質量%以下が好ましい。また、導電性高分子の濃度があまりにも低すぎると、この有機溶剤系導電性高分子分散液を用いる場合の作業効率が悪くなるので、0.2質量%以上が好ましく、特に0.5質量%以上が好ましい。   The concentration of the conductive polymer in the organic solvent-based conductive polymer dispersion is not particularly limited, but from the viewpoint of obtaining a uniform dispersion, the concentration of the conductive polymer is 5% by mass or less. Is preferable, and 3% by mass or less is particularly preferable. In addition, if the concentration of the conductive polymer is too low, the working efficiency when using the organic solvent-based conductive polymer dispersion is deteriorated, so 0.2% by mass or more is preferable, particularly 0.5% by mass. % Or more is preferable.

有機溶剤系導電性高分子分散液における導電性高分子の濃度が上記の程度であれば、肉眼では、有機溶剤系導電性高分子分散液はほとんど透明に見え、導電性高分子の一部は有機溶剤に溶け、溶解状態で有機溶剤中に分散しているものと考えられる。   If the concentration of the conductive polymer in the organic solvent-based conductive polymer dispersion is the above level, the organic solvent-based conductive polymer dispersion looks almost transparent to the naked eye, and part of the conductive polymer is It is considered that it is dissolved in an organic solvent and dispersed in the organic solvent in a dissolved state.

前記のように、導電性高分子の凝集物は、水中または水性液中(この水や水性液とは、チオフェンまたはその誘導体の酸化重合が行われた系の水や水性液をいう。つまり、チオフェンまたはその誘導体の酸化重合は水中または水性液中で行われている)から濾過により取り出した凝集物は、乾燥固形分が65〜75質量%程度で、35%程度近くまでの水分を含んでいるが、最終的に得られる有機溶剤系導電性高分子分散液における導電性高分子の濃度が5質量%程度までが好ましく、そのような有機溶剤系導電性高分子分散液を得るには、導電性高分子の凝集物がその程度の水分を含んでいても、有機溶剤系導電性高分子分散液の水分含有量を10質量%以下にすることができ、その有機溶剤系導電性高分子分散液の用途によっては、導電性高分子の凝集物中の残存水分量を厳しく押えなくてもよいので、コスト高を招くことなく、有機溶剤系導電性高分子含有樹脂組成物分散液を得ることができる。   As described above, the aggregate of the conductive polymer is in water or an aqueous liquid (this water or aqueous liquid refers to water or aqueous liquid in a system in which oxidative polymerization of thiophene or a derivative thereof is performed. The agglomerates removed by filtration from thiophene or its derivatives are subjected to filtration in water or aqueous liquid), and have a dry solid content of about 65 to 75% by mass and contain moisture up to about 35%. However, the concentration of the conductive polymer in the finally obtained organic solvent-based conductive polymer dispersion is preferably up to about 5% by mass. In order to obtain such an organic solvent-based conductive polymer dispersion, Even if the agglomerates of the conductive polymer contain such a level of water, the water content of the organic solvent-based conductive polymer dispersion can be reduced to 10% by mass or less. Depending on the use of the dispersion, Since it is not pressing severe residual water content of aggregates in the polymer without causing high cost, it is possible to obtain an organic solvent-based conductive polymer-containing resin composition dispersion.

ただし、電子デバイスへの応用にあたっては、水分は少ない方が望ましく、水分含有量が少ない有機溶剤系導電性高分子分散液にすることによって、固体電解コンデンサの固体電解質の作製にあたって好適に使用することができるし、さらには、リチウムイオン電池の導電性向上剤、有機ELのホール輸送層、デバイスの電極、非水系の導電性高分子塗料の導電剤などとしての使用が期待できる。   However, in application to electronic devices, it is desirable that the amount of water is low, and it is suitable for use in the production of solid electrolytes for solid electrolytic capacitors by using organic solvent-based conductive polymer dispersions with low water content. Furthermore, it can be expected to be used as a conductivity improver for lithium ion batteries, a hole transport layer for organic EL, a device electrode, a conductive agent for non-aqueous conductive polymer paints, and the like.

上記有機溶剤系導電性高分子分散液のベースとなる導電性高分子の水系分散液は、重合性モノマーであるチオフェンまたはその誘導体をドーパントとなる高分子スルホン酸の存在下で水中または水性液中で酸化重合することによって得られるが、そのチオフェンまたはその誘導体におけるチオフェンの誘導体としては、例えば、3,4−エチレンジオキシチオフェン、3−アルキルチオフェン、3−アルコキシチオフェン、3−アルキル−4−アルコキシチオフェン、3,4−アルキルチオフェン、3,4−アルコキシチオフェンなどが挙げられ、そのアルキル基やアルコキシ基の炭素数は1〜16が適しているが、特に3,4−エチレンジオキシチオフェンが好ましい。   The aqueous dispersion of the conductive polymer serving as the base of the organic solvent-based conductive polymer dispersion is prepared in water or in an aqueous liquid in the presence of a polymeric monomer, thiophene or a derivative thereof, and a polymer sulfonic acid serving as a dopant. Examples of thiophene derivatives in thiophene or its derivatives include 3,4-ethylenedioxythiophene, 3-alkylthiophene, 3-alkoxythiophene, 3-alkyl-4-alkoxy. Examples thereof include thiophene, 3,4-alkylthiophene, and 3,4-alkoxythiophene. The alkyl group or alkoxy group preferably has 1 to 16 carbon atoms, but 3,4-ethylenedioxythiophene is particularly preferable. .

ドーパントとなる高分子スルホン酸としては、ポリスチレンスルホン酸スルホン化ポリエステル、フェノールスルホン酸ノボラック樹脂が好適に用いられる。   As the polymer sulfonic acid serving as a dopant, polystyrene sulfonic acid sulfonated polyester and phenol sulfonic acid novolak resin are preferably used.

上記ポリスチレンスルホン酸、スルホン化ポリエステル、フェノールスルホン酸ノボラック樹脂などの高分子スルホン酸は、導電性高分子のドーパントとなるものであるが、前記のように、これらは、導電性高分子の合成時、優れた分散剤としても機能し、酸化剤や重合性モノマーとしてのチオフェンまたはその誘導体などを水中または水性液中に均一に分散させ、かつ合成されるポリマー中にドーパントとして取り込まれ、得られる導電性高分子を帯電防止フィルムや固体電解コンデンサの固体電解質として用いるのに適した高い導電性を有するものにさせるとともに、上記ドーパントが、優れた分散剤として機能することが、得られる導電性高分子を固体電解コンデンサの固体電解質として用いるのに適した優れた耐熱性を有させるようにし、また、帯電防止フィルムとして用いるのに適した高い透明性を有させるようにするものと考えられる。   Polymer sulfonic acids such as polystyrene sulfonic acid, sulfonated polyester, phenol sulfonic acid novolak resin and the like serve as dopants for the conductive polymer. As described above, these are used during the synthesis of the conductive polymer. , Which also functions as an excellent dispersant, uniformly disperse thiophene or its derivative as an oxidant or polymerizable monomer in water or an aqueous liquid, and is incorporated as a dopant in the synthesized polymer, resulting in conductivity Conductive polymer obtained by making the conductive polymer have high conductivity suitable for use as an antistatic film or a solid electrolyte of a solid electrolytic capacitor, and that the dopant functions as an excellent dispersant To have excellent heat resistance suitable for use as a solid electrolyte in solid electrolytic capacitors Was also believed to cause have high transparency suitable for use as antistatic film.

上記ポリスチレンスルホン酸としては、その重量平均分子量が10,000〜1,000,000のものが好ましい。   As said polystyrene sulfonic acid, that whose weight average molecular weight is 10,000-1,000,000 is preferable.

すなわち、上記ポリスチレンスルホン酸の重量平均分子量が10,000より小さい場合は、得られる導電性高分子の導電性が低くなり、また、透明性も悪くなるおそれがある。また、上記ポリスチレンスルホン酸の重量平均分子量が1,000,000より大きい場合は、導電性高分子の分散液の粘度が高くなり、固体電解コンデンサの作製にあたって使用しにくくなる。そして、上記ポリスチレンスルホン酸としては、その重量平均分子量が上記範囲内で、20,000以上のものが好ましく、40,000以上のものがより好ましく、また、800,000以下のものが好ましく、300,000以下のものがより好ましい。   That is, when the weight average molecular weight of the polystyrene sulfonic acid is smaller than 10,000, the conductivity of the obtained conductive polymer is lowered and the transparency may be deteriorated. Moreover, when the weight average molecular weight of the said polystyrene sulfonic acid is larger than 1,000,000, the viscosity of the dispersion liquid of a conductive polymer will become high, and it will become difficult to use it in preparation of a solid electrolytic capacitor. The polystyrene sulfonic acid has a weight average molecular weight within the above range, preferably 20,000 or more, more preferably 40,000 or more, and preferably 800,000 or less. More preferable is 1,000 or less.

また、上記スルホン化ポリエステルは、スルホイソフタル酸エステルやスルホテレフタル酸エステルなどのジカルボキシベンゼンスルホン酸ジエステルとアルキレングリコールとを酸化アンチモンや酸化亜鉛などの触媒の存在下で縮重合させたものであり、このスルホン化ポリエステルとしては、その重量平均分子量が5,000〜300,000のものが好ましい。   The sulfonated polyester is a polycondensation polymer of dicarboxybenzenesulfonic acid diester such as sulfoisophthalic acid ester or sulfoterephthalic acid ester and alkylene glycol in the presence of a catalyst such as antimony oxide or zinc oxide. The sulfonated polyester preferably has a weight average molecular weight of 5,000 to 300,000.

すなわち、スルホン化ポリエステルの重量平均分子量が5,000より小さい場合は、得られる導電性高分子の導電性が低くなり、透明性も悪くなるおそれがある。また、スルホン化ポリエステルの重量平均分子量が300,000より大きい場合は、導電性高分子の分散液の粘度が高くなり、固体電解コンデンサなどの作製にあたって使用しにくくなる。そして、この水溶性ポリエステルとしては、その重量平均分子量が上記範囲内で、10,000以上のものが好ましく、20,000以上のものがより好ましく、また、100,000以下のものが好ましく、80,000以下のものがより好ましい。   That is, when the weight average molecular weight of the sulfonated polyester is smaller than 5,000, the conductivity of the obtained conductive polymer is lowered and the transparency may be deteriorated. Further, when the weight average molecular weight of the sulfonated polyester is larger than 300,000, the viscosity of the conductive polymer dispersion becomes high, and it becomes difficult to use in the production of a solid electrolytic capacitor or the like. The water-soluble polyester preferably has a weight average molecular weight of 10,000 or more, more preferably 20,000 or more, and preferably 100,000 or less, within the above range. More preferable is 1,000 or less.

また、フェノールスルホン酸ノボラック樹脂としては、その重量平均分子量が5,000〜500,000のものが好ましい。   Moreover, as a phenolsulfonic acid novolak resin, that whose weight average molecular weight is 5,000-500,000 is preferable.

すなわち、上記フェノールスルホン酸ノボラック樹脂の重量平均分子量が5,000より小さい場合は、得られる導電性高分子の導電性が低くなり、また、透明性も悪くなるおそれがある。また、上記フェノールスルホン酸ノボラック樹脂の重量平均分子量が500,000より大きい場合は、導電性高分子の分散液の粘度が高くなり、固体電解コンデンサの作製にあたって使用しにくくなる。そして、このフェノールスルホン酸ノボラック樹脂としては、その重量平均分子量が上記範囲内で、5,000以上のものが好ましく、10,000以上のものがより好ましく、また、400,000以下のものが好ましく、80,000以下のものがより好ましい。   That is, when the weight average molecular weight of the phenolsulfonic acid novolak resin is less than 5,000, the conductivity of the obtained conductive polymer is lowered and the transparency may be deteriorated. In addition, when the weight average molecular weight of the phenolsulfonic acid novolak resin is larger than 500,000, the viscosity of the conductive polymer dispersion becomes high, which makes it difficult to use in the production of a solid electrolytic capacitor. The phenol sulfonic acid novolak resin has a weight average molecular weight within the above range, preferably 5,000 or more, more preferably 10,000 or more, and preferably 400,000 or less. 80,000 or less is more preferable.

ドーパントとなるポリスチレンスルホン酸、スルホン化ポリエステル、フェノールスルホン酸ノボラック樹脂のいずれも、水や水と水混和性溶剤との混合物からなる水性液に対して溶解性を有していることから、酸化重合は水中または水性液中で行うことができる。   Polystyrene sulfonic acid, sulfonated polyester, and phenol sulfonic acid novolak resin as dopants are all soluble in aqueous liquids consisting of water or a mixture of water and water-miscible solvents. Can be carried out in water or in an aqueous liquid.

上記水性液を構成する水混和性溶剤としては、例えば、メタノール、エタノール、プロパノール、アセトン、アセトニトリルなどが挙げられ、これらの水混和性溶剤の水との混合割合としては、水性液全体中の50質量%以下が好ましい。   Examples of the water-miscible solvent constituting the aqueous liquid include methanol, ethanol, propanol, acetone, acetonitrile, and the like. The mixing ratio of these water-miscible solvents with water is 50 in the entire aqueous liquid. The mass% or less is preferable.

導電性高分子を合成するにあたっての酸化重合は、化学酸化重合、電解酸化重合のいずれも採用することができる。   As the oxidative polymerization for synthesizing the conductive polymer, either chemical oxidative polymerization or electrolytic oxidative polymerization can be employed.

化学酸化重合を行うにあたっての酸化剤としては、例えば、過硫酸塩が用いられるが、その過硫酸塩としては、例えば、過硫酸アンモニウム、過硫酸ナトリウム、過硫酸カリウム、過硫酸カルシウム、過硫酸バリウムなどが用いられる。   For example, persulfate is used as an oxidizing agent in performing chemical oxidative polymerization. Examples of the persulfate include ammonium persulfate, sodium persulfate, potassium persulfate, calcium persulfate, and barium persulfate. Is used.

化学酸化重合において、ドーパント、重合性モノマー、酸化剤の使用量は、特に限定されることはないが、例えば、ドーパントとしてポリスチレンスルホン酸を用い、重合性モノマーとして3,4−エチレンジオキシチオフェンを用い、酸化剤として過硫酸アンモニウムを用いた場合、それらの使用比率としては、質量比で、ドーパント:重合性モノマー:酸化剤=1:0.1〜10:0.1〜10が好ましく、特に、ドーパント:重合性モノマー:酸化剤=1:0.2〜4:0.2〜4が好ましい。そして、このような使用比率は、ドーパント、重合性モノマー、酸化剤に関して、他のものを用いた場合でも、ほぼ同様である。化学酸化重合時の温度としては、5〜95℃が好ましく、10〜30℃がより好ましく、また、重合時間としては、1時間〜72時間が好ましく、8時間〜24時間がより好ましい。   In chemical oxidative polymerization, the amount of dopant, polymerizable monomer, and oxidizing agent used is not particularly limited. For example, polystyrene sulfonic acid is used as the dopant, and 3,4-ethylenedioxythiophene is used as the polymerizable monomer. When ammonium persulfate is used as an oxidizing agent, the use ratio thereof is preferably a mass ratio of dopant: polymerizable monomer: oxidant = 1: 0.1-10: 0.1-10, Dopant: polymerizable monomer: oxidizing agent = 1: 0.2-4: 0.2-4 are preferable. Such a use ratio is substantially the same even when other dopants, polymerizable monomers, and oxidizing agents are used. The temperature during chemical oxidative polymerization is preferably 5 to 95 ° C, more preferably 10 to 30 ° C, and the polymerization time is preferably 1 to 72 hours, more preferably 8 to 24 hours.

電解酸化重合は、定電流でも定電圧でも行い得るが、例えば、定電流で電解酸化重合を行う場合、電流値としては0.05mA/cm〜10mA/cmが好ましく、0.2mA/cm〜4mA/cmがより好ましく、定電圧で電解酸化重合を行う場合は、電圧としては0.5V〜10Vが好ましく、1.5V〜5Vがより好ましい。電解酸化重合時の温度としては、5〜95℃が好ましく、特に10〜30℃が好ましい。また、重合時間としては、1時間〜72時間が好ましく、8時間〜24時間がより好ましい。なお、電解酸化重合にあたっては、触媒として硫酸第一鉄または硫酸第二鉄を添加してもよい。 Electrolytic oxidation polymerization is be carried out even at a constant voltage at a constant current, for example, when performing electrolytic oxidation polymerization at a constant current, preferably 0.05mA / cm 2 ~10mA / cm 2 as the current value, 0.2 mA / cm more preferably 2 ~4mA / cm 2, when performing electrolytic oxidation polymerization at a constant voltage, preferably 0.5V~10V as voltage, 1.5V to 5V is more preferable. The temperature during electrolytic oxidation polymerization is preferably 5 to 95 ° C, particularly preferably 10 to 30 ° C. The polymerization time is preferably 1 hour to 72 hours, more preferably 8 hours to 24 hours. In the electrolytic oxidation polymerization, ferrous sulfate or ferric sulfate may be added as a catalyst.

上記のようにして得られる導電性高分子は、重合直後、水中または水性液中に分散した状態で得られ、酸化剤としての過硫酸塩や触媒として用いた硫酸鉄塩やその分解物などを含んでいる。そこで、その不純物を含んでいる導電性高分子の水分散液を超音波ホモジナイザーや遊星ボールミルなどの分散機にかけて不純物を分散させた後、カチオン交換樹脂で金属成分を除去する。このときの導電性高分子の粒径としては、100μm以下が好ましく、特に10μm以下が好ましい。その後、エタノール沈殿法、限外濾過法、陰イオン交換樹脂などにより、酸化剤や触媒の分解により生成した硫酸などをできるかぎり除去するのが好ましい。   The conductive polymer obtained as described above is obtained immediately after polymerization, in a state of being dispersed in water or an aqueous liquid, and includes a persulfate as an oxidizing agent, an iron sulfate used as a catalyst, or a decomposition product thereof. Contains. Therefore, the conductive polymer aqueous dispersion containing the impurity is dispersed in an dispersing machine such as an ultrasonic homogenizer or a planetary ball mill, and then the metal component is removed with a cation exchange resin. The particle size of the conductive polymer at this time is preferably 100 μm or less, and particularly preferably 10 μm or less. Thereafter, it is preferable to remove as much as possible the sulfuric acid produced by the decomposition of the oxidizing agent and the catalyst by an ethanol precipitation method, an ultrafiltration method, an anion exchange resin or the like.

本発明の有機溶剤系導電性高分子分散液を乾燥して得られる導電性高分子は、固体電解コンデンサの固体電解質として用いることができ、タンタル固体電解コンデンサ、ニオブ固体電解コンデンサ、アルミニウム固体電解コンデンサなどの固体電解コンデンサの固体電解質として好適に用いられ、ESRが小さく、かつ高温条件下における信頼性が高い固体電解コンデンサを提供することができる。   The conductive polymer obtained by drying the organic solvent-based conductive polymer dispersion of the present invention can be used as a solid electrolyte of a solid electrolytic capacitor, such as a tantalum solid electrolytic capacitor, a niobium solid electrolytic capacitor, and an aluminum solid electrolytic capacitor. Therefore, it is possible to provide a solid electrolytic capacitor that is suitably used as a solid electrolyte of a solid electrolytic capacitor such as the above, has low ESR, and high reliability under high temperature conditions.

上記のように、本発明の有機溶剤系導電性高分子分散液を乾燥して得られる導電性高分子を固体電解コンデンサの固体電解質として用いる際は、有機溶剤系導電性高分子分散液を乾燥して導電性高分子としたものをそのまま使用することもできるが、導電性高分子が有機溶剤中に分散した有機溶剤系導電性高分子分散液の状態で使用し、その後、乾燥して得られる導電性高分子を固体電解質として使用に供する方が適している。そして、その際、導電性高分子とコンデンサ素子との密着性を高めるために、導電性高分子の分散液にバインダ用樹脂を添加しておくことが好ましい。   As described above, when the conductive polymer obtained by drying the organic solvent-based conductive polymer dispersion of the present invention is used as the solid electrolyte of the solid electrolytic capacitor, the organic solvent-based conductive polymer dispersion is dried. The conductive polymer can be used as it is, but it is used in the state of an organic solvent-based conductive polymer dispersion in which the conductive polymer is dispersed in an organic solvent, and then dried. It is more suitable to use the conductive polymer to be used as a solid electrolyte. At that time, in order to improve the adhesion between the conductive polymer and the capacitor element, it is preferable to add a binder resin to the dispersion of the conductive polymer.

そのようなバインダ樹脂としては、例えば、ポリウレタン、ポリエステル、アクリル樹脂、ポリアミド、ポリイミド、エポキシ樹脂、ポリアクリロニトリル樹脂、ポリメタクリロニトリル樹脂、ポリスチレン樹脂、ノボラック樹脂、シランカップリング剤などが挙げられ、特にポリエステル、ポリウレタン、アクリル樹脂などが好ましい。また、スルホン化ポリアリル、スルホン化ポリビニル、スルホン化ポリスチレンのように、スルホン基が付加されていると、導電性高分子の導電性を向上させることができるので、より好ましい。   Examples of such binder resins include polyurethane, polyester, acrylic resin, polyamide, polyimide, epoxy resin, polyacrylonitrile resin, polymethacrylonitrile resin, polystyrene resin, novolac resin, silane coupling agent, etc. Polyester, polyurethane, acrylic resin and the like are preferable. Moreover, since the electroconductivity of a conductive polymer can be improved when the sulfone group is added like sulfonated polyallyl, sulfonated polyvinyl, and sulfonated polystyrene, it is more preferable.

上記のようなバインダ用樹脂は、いずれも疎水性であり、導電性高分子の分散液が水系であると、添加時にバインダ用樹脂が凝集して、導電性高分子とバインダ用樹脂との均一な混合物を得るには、混合に長時間を要することになるが、本発明の有機溶剤系導電性高分子分散液によれば、添加したバインダ用樹脂が凝集を起こすことがないので、導電性高分子とバインダ用樹脂との均一な混合が容易に達成でき、導電性高分子とバインダ用樹脂が均一に混合した有機溶剤系導電性高分子含有樹脂組成物の分散液が容易に得られる。   The above binder resins are all hydrophobic, and if the conductive polymer dispersion is aqueous, the binder resin aggregates upon addition, and the conductive polymer and the binder resin are uniform. In order to obtain such a mixture, it takes a long time to mix. However, according to the organic solvent-based conductive polymer dispersion of the present invention, the added binder resin does not cause aggregation. Uniform mixing of the polymer and the binder resin can be easily achieved, and a dispersion of the organic solvent-based conductive polymer-containing resin composition in which the conductive polymer and the binder resin are uniformly mixed can be easily obtained.

そして、これら本発明の有機溶剤系導電性高分子分散液や有機溶剤系導電性高分子含有樹脂組成物分散液を用いて固体電解コンデンサの固体電解質を構成することによって固体電解コンデンサを作製する例を説明する。ただし、本発明の有機溶剤系導電性高分子分散液を用いる場合も、有機溶剤系導電性高分子含有樹脂組成物分散液を用いる場合も同様に行い得るので、有機溶剤系導電性高分子分散液を代表させて説明する。   An example of producing a solid electrolytic capacitor by forming a solid electrolyte of the solid electrolytic capacitor using the organic solvent-based conductive polymer dispersion or the organic solvent-based conductive polymer-containing resin composition dispersion of the present invention. Will be explained. However, since the organic solvent-based conductive polymer dispersion of the present invention can be used in the same manner when the organic solvent-based conductive polymer-containing resin composition dispersion is used, the organic solvent-based conductive polymer dispersion The liquid will be described as a representative.

まず、タンタル固体電解コンデンサ、ニオブ固体電解コンデンサ、積層型アルミニウム固体電解コンデンサなどを作製する場合、タンタル、ニオブ、アルミニウムなどの弁金属の多孔体からなる陽極と、それら弁金属の酸化皮膜からなる誘電体層とを有するコンデンサ素子を、本発明の有機溶剤系導電性高分子分散液に浸漬し、取り出した後、乾燥し、この分散液への浸漬と乾燥する工程を繰り返すことによって、導電性高分子からなる固体電解質層を形成した後、カーボンペースト、銀ペーストを付け、乾燥した後、陽極端子や陰極端子を取り付け、樹脂で外装することによって、タンタル固体電解コンデンサ、ニオブ固体電解コンデンサ、積層型アルミニウム固体電解コンデンサなどを作製することができる。   First, when producing a tantalum solid electrolytic capacitor, a niobium solid electrolytic capacitor, a laminated aluminum solid electrolytic capacitor, etc., an anode made of a porous body of a valve metal such as tantalum, niobium or aluminum, and a dielectric made of an oxide film of the valve metal. The capacitor element having the body layer is immersed in the organic solvent-based conductive polymer dispersion of the present invention, taken out, dried, and repeatedly immersed in this dispersion and dried to repeat the process of increasing the conductivity. After forming a solid electrolyte layer consisting of molecules, carbon paste and silver paste are applied and dried, then anode and cathode terminals are attached and covered with resin, so that tantalum solid electrolytic capacitor, niobium solid electrolytic capacitor, multilayer type An aluminum solid electrolytic capacitor or the like can be manufactured.

また、例えば、ポリスチレンスルホン酸を分散剤兼ドーパントとして用い、重合性モノマー、酸化剤を含む液に、前記のコンデンサ素子を浸漬し、取り出した後、重合を行い、水に浸漬し、取り出し、洗浄した後、乾燥することで導電性高分子を合成した後、それら全体を本発明の有機溶剤系導電性高分子分散液に浸漬し、取り出して乾燥する操作を繰り返して固体電解質層を形成してもよい。   Further, for example, using polystyrene sulfonic acid as a dispersant and dopant, the capacitor element is immersed in a liquid containing a polymerizable monomer and an oxidizing agent, taken out, then polymerized, immersed in water, taken out, and washed. Then, after the conductive polymers are synthesized by drying, the whole is immersed in the organic solvent-based conductive polymer dispersion of the present invention, taken out and dried to form a solid electrolyte layer. Also good.

そして、上記のようにしてコンデンサ素子上に導電性高分子からなる固体電解質層を形成した後、上記と同様にカーボンペーストや銀ペーストのコーティングなどを経て、タンタル固体電解コンデンサ、ニオブ固体電解コンデンサ、積層型アルミニウム固体電解コンデンサなどを作製することもできる。   Then, after forming a solid electrolyte layer made of a conductive polymer on the capacitor element as described above, through a carbon paste or silver paste coating as described above, a tantalum solid electrolytic capacitor, a niobium solid electrolytic capacitor, A laminated aluminum solid electrolytic capacitor or the like can also be produced.

また、巻回型アルミニウム固体電解コンデンサを作製する場合は、アルミニウム箔の表面をエッチング処理した後、化成処理を行って誘電体層を形成した陽極にリード端子を取り付け、また、アルミニウム箔からなる陰極にリード端子を取り付け、それらのリード端子付き陽極と陰極とをセパレータを介して巻回して作製したコンデンサ素子を本発明の有機溶剤系導電性高分子分散液に浸漬し、取り出し、乾燥した後、アルミニウム箔のエッチングにより形成された細孔に入っていない導電性高分子を取り除くため、有機溶剤に浸漬し、取り出した後、乾燥し、これらの操作を繰り返したのち、外装材で外装して、巻回型アルミニウム固体電解コンデンサを作製することができる。   In the case of producing a wound aluminum solid electrolytic capacitor, after etching the surface of the aluminum foil, a lead terminal is attached to the anode on which the dielectric layer is formed by performing a chemical conversion treatment, and a cathode made of aluminum foil. After attaching the lead terminal, the capacitor element produced by winding the anode and cathode with the lead terminal through a separator was immersed in the organic solvent-based conductive polymer dispersion of the present invention, taken out, dried, In order to remove the conductive polymer that does not enter the pores formed by etching the aluminum foil, it is immersed in an organic solvent, taken out, dried, and after repeating these operations, it is packaged with an exterior material, A wound aluminum solid electrolytic capacitor can be produced.

なお、上記例示では、コンデンサ素子を本発明の有機溶剤系導電性高分子分散液に浸漬する方法によって固体電解コンデンサを作製する場合を説明したが、コンデンサ素子を有機溶剤系導電性高分子分散液に浸漬することに代えて、本発明の有機溶剤系導電性高分子分散液をコンデンサ素子を塗布する方法によっても固体電解コンデンサを作製することができる。   In the above example, the case where the solid electrolytic capacitor is produced by the method of immersing the capacitor element in the organic solvent-based conductive polymer dispersion of the present invention has been described. Instead of immersing in a solid electrolytic capacitor, a solid electrolytic capacitor can also be produced by a method of applying a capacitor element to the organic solvent-based conductive polymer dispersion of the present invention.

上記のように本発明の有機溶剤系導電性高分子分散液を用いて固体電解コンデンサを作製する場合、分散液が有機溶剤系なので、水系の分散液に比べて、乾燥が容易であり、また、水系分散液を用いた場合のような残存水分による固体電解コンデンサの不都合が生じない。   As described above, when a solid electrolytic capacitor is produced using the organic solvent-based conductive polymer dispersion of the present invention, since the dispersion is an organic solvent-based, it is easier to dry than the aqueous dispersion. The inconvenience of a solid electrolytic capacitor due to residual moisture as in the case of using an aqueous dispersion does not occur.

帯電防止フィルムや帯電防止シートの作製にあたっては、有機溶剤系導電性高分子分散液よりも、有機溶剤系導電性高分子分散液にバインダ用樹脂を混入させた有機溶剤系導電性高分子含有樹脂組成物分散液を用いる方が好ましく、例えば、基材シートに本発明の有機溶剤系導電性高分子含有樹脂組成物分散液を塗布するか、基材シートを有機溶剤系導電性高分子含有樹脂組成物分散液に浸漬し、引き上げた後、乾燥して、フィルムを形成し、そのフィルムを基材シートから剥離して、それを帯電防止フィルムとして用いればよいし、また、基材シートの一方の面または両面に形成したフィルムを基材シートから剥がさずに、それを導電層とし、基材シートを支持材として帯電防止シートとすればよい。   In the production of an antistatic film or an antistatic sheet, an organic solvent-based conductive polymer-containing resin obtained by mixing a binder resin in an organic solvent-based conductive polymer dispersion rather than an organic solvent-based conductive polymer dispersion The composition dispersion is preferably used. For example, the organic solvent-based conductive polymer-containing resin composition dispersion of the present invention is applied to the base sheet, or the base sheet is used as the organic solvent-based conductive polymer-containing resin. After dipping in the composition dispersion, pulling up and drying, a film is formed, the film may be peeled from the base sheet, and used as an antistatic film, or one of the base sheets The film formed on this surface or both surfaces may be used as a conductive layer without peeling off from the base sheet, and the base sheet as a support material as an antistatic sheet.

以下に実施例を挙げて本発明をより具体的に説明するが、本発明はそれらの実施例に例示のもののみに限定されることはない。なお、以下の実施例などにおいて濃度や使用量を示す際の%は特にその基準を付記しないかぎり、質量基準による%である。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited only to those illustrated in these examples. In the following examples and the like,% in the case of showing the concentration and the amount used is% based on mass unless otherwise specified.

実施例1
ポリスチレンスルホン酸(テイカ社製、重量平均分子量100,000)の4%水溶液600gを内容積1Lのステンレス鋼製容器に入れ、硫酸第一鉄・7水和物0.3gを添加し、その中に3,4−エチレンジオキシチオフェン4mLをゆっくり滴下した。その容器に横3cm×縦20cmのステンレス鋼製のメッシュ(口径:2mm)を、液中に下端から上方に縦5cmの部分までが浸かるところで、攪拌棒を挟むような形で2本向かい合うような形でセットした。上記ステンレス鋼製メッシュの一方に陽極、他方に陰極をつけ、1mA/cmの定電流で、攪拌しながら18時間かけて、3,4−エチレンジオキシチオフェンの電解酸化重合を行った。上記電解酸化重合後、水で6倍に希釈した後、超音波ホモジナイザー(日本精機社製、US−T300)で30分間分散処理を行った。その後、オルガノ社製のカチオン交換樹脂アンバーライト120B(商品名)を100g添加し、1時間攪拌機で攪拌した。次いで、東洋濾紙社製の濾紙No.131で濾過し、このカチオン交換樹脂による処理と濾過を3回繰り返して、液中の鉄イオンなどのカチオン成分をすべて除去した。その液を限外濾過装置〔ザルトリウス社製Vivaflow200(商品名)、分子量分画5万〕で濃縮処理を行った。105℃の条件で測定した乾燥固形分濃度は、3.0%であった。
Example 1
600 g of 4% aqueous solution of polystyrene sulfonic acid (manufactured by Teika Co., Ltd., weight average molecular weight 100,000) is put in a stainless steel container having an internal volume of 1 L, and 0.3 g of ferrous sulfate heptahydrate is added. 4 mL of 3,4-ethylenedioxythiophene was slowly added dropwise. A stainless steel mesh (diameter: 2 mm) measuring 3 cm wide x 20 cm long is placed in the container, and two of them are opposed to each other in a form that sandwiches a stirring bar from the lower end to the 5 cm vertical portion. Set in shape. The stainless steel mesh was attached with an anode and the other with a cathode, and electrolytic oxidation polymerization of 3,4-ethylenedioxythiophene was performed with stirring at a constant current of 1 mA / cm 2 over 18 hours. After the electrolytic oxidation polymerization, it was diluted 6 times with water, and then subjected to a dispersion treatment for 30 minutes with an ultrasonic homogenizer (manufactured by Nippon Seiki Co., Ltd., US-T300). Thereafter, 100 g of Cation Exchange Resin Amberlite 120B (trade name) manufactured by Organo Corporation was added and stirred with a stirrer for 1 hour. Subsequently, filter paper No. manufactured by Toyo Filter Paper Co., Ltd. The mixture was filtered through 131, and the treatment with this cation exchange resin and filtration were repeated three times to remove all cation components such as iron ions in the liquid. The liquid was concentrated using an ultrafiltration device (Vivaflow 200 (trade name) manufactured by Sartorius, molecular weight fraction 50,000). The dry solid content concentration measured at 105 ° C. was 3.0%.

上記のようにして得られた導電性高分子の水系分散液を攪拌機で攪拌しながら、その中に非水系アミンとして3−(2−エチルヘキシルオキシ)プロピルアミンを徐々に添加していくと、pH3程度から徐々に導電性高分子の凝集が始まり、pH4を超えたところで、凝集が完了し、透明な液と凝集物とが分離した液になった。この液を口径が100μmのステンレス鋼製メッシュに通すことで、凝集物を分離した。105℃の条件下で、この凝集物の乾燥固形分濃度を測定したところ68%であった。   While stirring the aqueous dispersion of the conductive polymer obtained as described above with a stirrer, 3- (2-ethylhexyloxy) propylamine as a non-aqueous amine was gradually added thereto, pH 3 The aggregation of the conductive polymer started gradually from the degree, and when the pH exceeded 4, the aggregation was completed, and a transparent liquid and an aggregate were separated. This liquid was passed through a stainless steel mesh having a diameter of 100 μm to separate agglomerates. When the dry solid content concentration of this aggregate was measured under the condition of 105 ° C., it was 68%.

この凝集物5gを250gのn−メチルピロリドンに投入し、超音波ホモジナイザー(日本精機社製、US−T300)で20分間分散処理した後、東洋濾紙社製の濾紙No.131で濾過し、導電性高分子の有機溶剤系分散液を得た。この分散液の150℃の乾燥条件で測定したときの乾燥固形分濃度は、1.4%であった。また、カールフィッシャーにより水分を測定したところ、0.6%であった。この有機溶剤系導電性高分子分散液を5℃の条件下、1ヵ月放置しても、凝集が観察されず、安定していた。   5 g of this agglomerate was put into 250 g of n-methylpyrrolidone and dispersed with an ultrasonic homogenizer (manufactured by Nippon Seiki Co., Ltd., US-T300) for 20 minutes. It filtered with 131 and the organic solvent type dispersion liquid of the conductive polymer was obtained. The dry solid content concentration of this dispersion measured at 150 ° C. under dry conditions was 1.4%. In addition, the moisture content measured by Karl Fischer was 0.6%. Even when this organic solvent-based conductive polymer dispersion was allowed to stand at 5 ° C. for 1 month, no aggregation was observed and the organic dispersion was stable.

実施例2
実施例1におけるポリスチレンスルホン酸に代えて、スルホン化ポリエステル〔互応化学工業社製プラスコートZ−561(商品名)、重量平均分子量27,000〕を用い、その5%水溶液600gに対する硫酸第一鉄・7水和物の添加量を実施例1の0.3gから0.05gに変更した以外は、限外濾過操作のところまで実施例1と同様の操作を行って、導電性高分子の水分散液を得た。105℃の条件で測定した乾燥固形分濃度は、3.0%であった。
Example 2
Instead of polystyrene sulfonic acid in Example 1, sulfonated polyester [Plus Coat Z-561 (trade name), weight average molecular weight 27,000, manufactured by Kyoyo Chemical Industry Co., Ltd.] was used, and ferrous sulfate with respect to 600 g of 5% aqueous solution thereof. -Except that the amount of heptahydrate was changed from 0.3 g in Example 1 to 0.05 g, the same operation as in Example 1 was carried out until the ultrafiltration operation, and water of the conductive polymer was obtained. A dispersion was obtained. The dry solid content concentration measured at 105 ° C. was 3.0%.

上記のようにして得られた導電性高分子の水系分散液を攪拌機で攪拌しながら、その中に3−(2−エチルヘキシルオキシ)プロピルアミンを徐々に添加していくと、pH3.0程度から徐々に導電性高分子の凝集が始まり、pH4を超えたところで、凝集が完了し、透明な液と凝集物とが分離した液になった。この液を口径が100μmのステンレス鋼製メッシュに通すことで、凝集物を分離した。105℃の条件で、この凝集物の乾燥固形分濃度を測定したところ71%であった。   While the aqueous dispersion of the conductive polymer obtained as described above was stirred with a stirrer, 3- (2-ethylhexyloxy) propylamine was gradually added thereto, and the pH was about 3.0. Aggregation of the conductive polymer gradually started, and when pH 4 was exceeded, the aggregation was completed, and a transparent liquid and an aggregate were separated. This liquid was passed through a stainless steel mesh having a diameter of 100 μm to separate agglomerates. When the dry solid content concentration of the aggregate was measured under the condition of 105 ° C., it was 71%.

この凝集物5gを200gのn−メチルピロリドンに投入し、超音波ホモジナイザー(日本精機社製、US−T300)で20分間分散処理した後、東洋濾紙社製の濾紙No.131で濾過し、導電性高分子の有機溶剤系分散液を得た。この分散液の150℃の乾燥条件で測定したときの乾燥固形分濃度は、1.8%であった。また、カールフィッシャーにより水分を測定したところ、0.8%であった。この有機溶剤系導電性高分子分散液は、5℃の条件下、1ヵ月放置しても、凝集が観察されず、安定していた。   5 g of this agglomerate was put into 200 g of n-methylpyrrolidone and dispersed with an ultrasonic homogenizer (Nippon Seiki, US-T300) for 20 minutes. It filtered with 131 and the organic solvent type dispersion liquid of the conductive polymer was obtained. The dry solid content concentration of this dispersion measured at 150 ° C. under dry conditions was 1.8%. In addition, the water content measured by Karl Fischer was 0.8%. The organic solvent-based conductive polymer dispersion was stable with no aggregation observed even after standing for 1 month at 5 ° C.

実施例3
ポリスチレンスルホン酸に代えて、一般式(2)で表される繰り返し単位を有するフェノールスルホン酸ノボラック樹脂〔小西化学工業社製lotEW00130(商品名)、重量平均分子量60,000、Rは水素である〕を用いた以外は、限外濾過操作のところまで実施例1と同様の操作を行って、導電性高分子の水分散液を得た。105℃の条件で測定した乾燥固形分濃度は、3.0%であった。
Example 3
A phenolsulfonic acid novolak resin having a repeating unit represented by the general formula (2) instead of polystyrenesulfonic acid [LotEW00130 (trade name) manufactured by Konishi Chemical Industries, Ltd., weight average molecular weight 60,000, R is hydrogen] Except that was used, the same operation as in Example 1 was performed up to the ultrafiltration operation to obtain an aqueous dispersion of a conductive polymer. The dry solid content concentration measured at 105 ° C. was 3.0%.

この導電性高分子の水系分散液を攪拌機で攪拌しながら、その中に3−(2−エチルヘキシルオキシ)プロピルアミンを徐々に添加していくと、pH2.5程度から徐々に導電性高分子の凝集が始まり、pH3を超えたところで、凝集が完了し、透明な液と凝集物とが分離した液になった。この液を口径が100μmのステンレス鋼製メッシュに通すことで、凝集物を分離した。105℃の条件下で、この凝集物の乾燥固形分濃度を測定したところ70%であった。   While stirring the aqueous dispersion of the conductive polymer with a stirrer, 3- (2-ethylhexyloxy) propylamine is gradually added to the dispersion. Aggregation started, and when pH 3 was exceeded, the aggregation was completed, and the solution became a liquid in which the transparent liquid and the aggregate were separated. This liquid was passed through a stainless steel mesh having a diameter of 100 μm to separate agglomerates. When the dry solid content concentration of the aggregate was measured under the condition of 105 ° C., it was 70%.

この凝集物5gを350gのn−メチルピロリドンに投入し、超音波ホモジナイザー(日本精機社製、US−T300)で20分間分散処理した後、東洋濾紙社製の濾紙No.131で濾過し、導電性高分子の有機溶剤系分散液を得た。この分散液の150℃の乾燥条件で測定したときの乾燥固形分濃度は、1.0%であった。また、カールフィッシャーにより水分を測定したところ、0.4%であった。この有機溶剤系導電性高分子分散液は、5℃の条件下、1ヵ月放置しても、凝集が観察されず、安定していた。   5 g of this agglomerate was put into 350 g of n-methylpyrrolidone and dispersed with an ultrasonic homogenizer (Nippon Seiki Co., Ltd., US-T300) for 20 minutes. It filtered with 131 and the organic solvent type dispersion liquid of the conductive polymer was obtained. The dry solid content concentration of this dispersion measured at 150 ° C. under dry conditions was 1.0%. Further, the moisture content measured by Karl Fischer was 0.4%. The organic solvent-based conductive polymer dispersion was stable with no aggregation observed even after standing for 1 month at 5 ° C.

実施例4
3−(2−エチルヘキシルオキシ)プロピルアミンに代えて、ヘキシルアミンを用いた以外は、実施例1と同じ操作を行い、凝集物をフィルタープレスにより取り出した。105℃の条件で、この凝集物の乾燥固形分濃度を測定したところ90%であった。
Example 4
The same operation as in Example 1 was performed except that hexylamine was used in place of 3- (2-ethylhexyloxy) propylamine, and the aggregate was taken out by a filter press. When the dry solid content concentration of the aggregate was measured at 105 ° C., it was 90%.

この凝集物5gを250gのn−メチルピロリドンに投入し、超音波ホモジナイザー(日本精機社製、US−T300)で20分間分散処理した後、東洋濾紙社製の濾紙No.131で濾過し、導電性高分子の有機溶剤系分散液を得た。この分散液の150℃の乾燥条件で測定したときの乾燥固形分濃度は、1.4%であった。また、カールフィッシャーにより水分を測定したところ、0.2%であった。この有機溶剤系導電性高分子分散液は、5℃の条件下、1ヵ月放置しても、凝集が観察されず、安定していた。   5 g of this agglomerate was put into 250 g of n-methylpyrrolidone and dispersed with an ultrasonic homogenizer (manufactured by Nippon Seiki Co., Ltd., US-T300) for 20 minutes. It filtered with 131 and the organic solvent type dispersion liquid of the conductive polymer was obtained. The dry solid content concentration of this dispersion measured at 150 ° C. under dry conditions was 1.4%. Further, the moisture content measured by Karl Fischer was 0.2%. The organic solvent-based conductive polymer dispersion was stable with no aggregation observed even after standing for 1 month at 5 ° C.

実施例5
3−(2−エチルヘキシルオキシ)プロピルアミンに代えて、オクチルアミンを用いた以外は、実施例1と同じ操作を行い、凝集物をフィルタープレスにより取り出した。105℃の条件で、この凝集物の乾燥固形分濃度を測定したところ90%であった。
Example 5
The same operation as in Example 1 was performed except that octylamine was used instead of 3- (2-ethylhexyloxy) propylamine, and the aggregate was taken out by a filter press. When the dry solid content concentration of the aggregate was measured at 105 ° C., it was 90%.

この凝集物5gを250gのn−メチルピロリドンに投入し、超音波ホモジナイザー(日本精機社製、US−T300)で20分間分散処理した後、東洋濾紙社製の濾紙No.131で濾過し、導電性高分子の有機溶剤系分散液を得た。この凝集物の150℃の乾燥条件で測定したときの乾燥固形分濃度は、1.4%であった。また、カールフィッシャーにより水分を測定したところ、0.2%であった。この有機溶剤系導電性高分子分散液は、5℃の条件下、1ヵ月放置しても、凝集が観察されず、安定していた。   5 g of this agglomerate was put into 250 g of n-methylpyrrolidone and dispersed with an ultrasonic homogenizer (manufactured by Nippon Seiki Co., Ltd., US-T300) for 20 minutes. It filtered with 131 and the organic solvent type dispersion liquid of the conductive polymer was obtained. The dry solid content concentration of this agglomerate when measured under a drying condition of 150 ° C. was 1.4%. Further, the moisture content measured by Karl Fischer was 0.2%. The organic solvent-based conductive polymer dispersion was stable with no aggregation observed even after standing for 1 month at 5 ° C.

実施例6
3−(2−エチルヘキシルオキシ)プロピルアミンに代えて、ラウリルアミンを用いた以外は、実施例1と同じ操作を行い、凝集物をフィルタープレスにより取り出した。105℃の条件で、この凝集物の乾燥固形分濃度を測定したところ90%であった。
Example 6
The same operation as in Example 1 was performed except that laurylamine was used in place of 3- (2-ethylhexyloxy) propylamine, and the aggregate was taken out by a filter press. When the dry solid content concentration of the aggregate was measured at 105 ° C., it was 90%.

この凝集物5gを250gのn−メチルピロリドンに投入し、超音波ホモジナイザー(日本精機社製、US−T300)で20分間分散処理した後、東洋濾紙社製の濾紙No.131で濾過し、導電性高分子の有機溶剤系分散液を得た。この分散液の150℃の乾燥条件で測定したときの乾燥固形分濃度は、1.4%であった。また、カールフィッシャーにより水分を測定したところ、0.2%であった。この有機溶剤系導電性高分子分散液は、5℃の条件下、1ヵ月放置しても、凝集が観察されず、安定していた。   5 g of this agglomerate was put into 250 g of n-methylpyrrolidone and dispersed with an ultrasonic homogenizer (manufactured by Nippon Seiki Co., Ltd., US-T300) for 20 minutes. It filtered with 131 and the organic solvent type dispersion liquid of the conductive polymer was obtained. The dry solid content concentration of this dispersion measured at 150 ° C. under dry conditions was 1.4%. Further, the moisture content measured by Karl Fischer was 0.2%. The organic solvent-based conductive polymer dispersion was stable with no aggregation observed even after standing for 1 month at 5 ° C.

比較例1
3−(2−エチルヘキシルオキシ)プロピルアミンに代えて、ブチルアミンを徐々に添加していくところまで実施例1と同様の操作を行った。しかし、pH14になるまでブチルアミンを徐々に添加しても、導電性高分子は凝集しなかった。
Comparative Example 1
The same operation as in Example 1 was performed until butylamine was gradually added instead of 3- (2-ethylhexyloxy) propylamine. However, even when butylamine was gradually added until pH 14 was reached, the conductive polymer did not aggregate.

比較例2
3−(2−エチルヘキシルオキシ)プロピルアミンに代えて、2−メチルイミダゾールを徐々に添加していくところまで実施例1と同様の操作を行った。しかし、2−メチルイミダゾールの添加によるpH上昇限度のpH9になるまで2−メチルイミダゾールを徐々に添加しても、導電性高分子は凝集しなかった。
Comparative Example 2
The same operation as in Example 1 was performed until 2-methylimidazole was gradually added instead of 3- (2-ethylhexyloxy) propylamine. However, the conductive polymer did not aggregate even when 2-methylimidazole was gradually added until the pH increase limit of 9 due to the addition of 2-methylimidazole was reached.

比較例3
濃度3%の導電性高分子の水系分散液を得るところまでは、実施例1と同様の操作を行った。この導電性高分子の水系分散液50gにn−メチルピロリドンを100g添加し、真空度20hPaの条件下、40℃の水浴中で蒸留を行い濃縮を行った。
Comparative Example 3
The same operation as in Example 1 was performed until an aqueous dispersion of a conductive polymer having a concentration of 3% was obtained. 100 g of n-methylpyrrolidone was added to 50 g of this aqueous dispersion of conductive polymer, and the mixture was concentrated by distillation in a water bath at 40 ° C. under a vacuum degree of 20 hPa.

しかし、水分が約35g程度流出した時点で、凝集が起こり、導電性高分子が析出してしまい、水分含有量が10%以下の導電性高分子の有機溶剤系分散液を調製することができなかった。   However, when about 35 g of water flows out, agglomeration occurs and the conductive polymer is precipitated, and an organic solvent-based dispersion of the conductive polymer having a water content of 10% or less can be prepared. There wasn't.

比較例4
濃度3%の導電性高分子の水系分散液を得るところまでは、実施例1と同様の操作を行った。この導電性高分子の水系分散液50gにエチレングリコールを200g添加し、真空度20hPaの条件下、40℃の水浴中で蒸留を行い濃縮を行った。
Comparative Example 4
The same operation as in Example 1 was performed until an aqueous dispersion of a conductive polymer having a concentration of 3% was obtained. 200 g of ethylene glycol was added to 50 g of this aqueous dispersion of conductive polymer, and the mixture was concentrated by distillation in a water bath at 40 ° C. under a vacuum degree of 20 hPa.

水分が約30g程度流出した時点で、濃縮を止め、カールフィッシャーにより水分含量を測定したところ9%で、固形分含有量が0.7%あった。しかし、この有機溶剤系分散液は、5℃の条件下、1日放置したところ、導電性高分子が凝集し、安定性に欠け、実用性を有しなかった。   When about 30 g of water flowed out, concentration was stopped and the water content was measured by Karl Fischer. As a result, it was 9% and the solid content was 0.7%. However, when this organic solvent-based dispersion was allowed to stand for 1 day at 5 ° C., the conductive polymer aggregated, lacked stability, and was not practical.

〔帯電防止フィルムとしての評価〕
実施例7
実施例1で調製した有機溶剤系導電製高分子分散液15gに対し、バインダ用樹脂としてアクリディックA801(商品名、DIC社製のアクリル樹脂)20g、メチルエチルケトン30gおよびイソプロピルアルコール20gを添加し攪拌混合したところ、添加したバインダ用樹脂が凝集することなく有機溶剤系導電性高分子含有樹脂組成物分散液が得られた。そして、その有機溶剤系導電性高分子含有樹脂組成物分散液を基材シートとしての10cm×20cmのポリエチレンシートの上に400μL滴下し、No.12のバーコーターで均一にした後、150℃で2分間乾燥して、導電性高分子含有樹脂組成物のフィルムからなる帯電防止フィルムを作製した。
[Evaluation as antistatic film]
Example 7
To 15 g of the organic solvent-based conductive polymer dispersion prepared in Example 1, 20 g of Acrydic A801 (trade name, acrylic resin manufactured by DIC), 30 g of methyl ethyl ketone and 20 g of isopropyl alcohol were added as a binder resin, and mixed by stirring. As a result, an organic solvent-based conductive polymer-containing resin composition dispersion was obtained without aggregation of the added binder resin. Then, 400 μL of the organic solvent-based conductive polymer-containing resin composition dispersion liquid was dropped on a 10 cm × 20 cm polyethylene sheet as a base sheet. After making it uniform with 12 bar coaters, it was dried at 150 ° C. for 2 minutes to produce an antistatic film comprising a film of a conductive polymer-containing resin composition.

実施例8
実施例2で調製した有機溶剤系導電製高分子分散液10gに対し、バインダ用樹脂としてアクリディックA801(前出)20g、メチルエチルケトン35gおよびイソプロピルアルコール20gを添加し攪拌混合したところ、凝集が生じることなく有機溶剤系導電性高分子含有樹脂組成物分散液が得られた。そして、その有機溶剤系導電性高分子含有樹脂組成物分散液を基材シートとしての10cm×20cmのポリエチレンシートの上に400μL滴下し、No.12のバーコーターで均一にした後、150℃で2分間乾燥して、導電性高分子含有樹脂組成物のフィルムからなる帯電防止フィルムを作製した。
Example 8
When 10 g of the organic solvent-based conductive polymer dispersion prepared in Example 2 is added as a binder resin, 20 g of Acrydic A801 (supra), 35 g of methyl ethyl ketone and 20 g of isopropyl alcohol are stirred and mixed, aggregation occurs. Thus, an organic solvent-based conductive polymer-containing resin composition dispersion was obtained. Then, 400 μL of the organic solvent-based conductive polymer-containing resin composition dispersion liquid was dropped on a 10 cm × 20 cm polyethylene sheet as a base sheet. After making it uniform with 12 bar coaters, it was dried at 150 ° C. for 2 minutes to produce an antistatic film comprising a film of a conductive polymer-containing resin composition.

実施例9
実施例3で調製した有機溶剤系導電製高分子分散液15gに対し、バインダ用樹脂としてアクリディックA801(前出)20g、メチルエチルケトン30gおよびイソプロピルアルコール20gを添加し攪拌混合したところ、凝集が生じることなく有機溶剤系導電性高分子含有樹脂組成物分散液が得られた。そして、その有機溶剤系導電性高分子含有樹脂組成物分散液を基材シートしての10cm×20cmのポリエチレンシートの上に400μL滴下し、No.12のバーコーターで均一にした後、150℃で2分間乾燥して、導電性高分子含有樹脂組成物のフィルムからなる帯電防止フィルムを作製した。
Example 9
When 15 g of the organic solvent-based conductive polymer dispersion prepared in Example 3 is added as a binder resin, 20 g of Acrydic A801 (supra), 30 g of methyl ethyl ketone and 20 g of isopropyl alcohol are stirred and mixed, aggregation occurs. Thus, an organic solvent-based conductive polymer-containing resin composition dispersion was obtained. Then, 400 μL of the organic solvent-based conductive polymer-containing resin composition dispersion was dropped onto a 10 cm × 20 cm polyethylene sheet as a base sheet, After making it uniform with 12 bar coaters, it was dried at 150 ° C. for 2 minutes to produce an antistatic film comprising a film of a conductive polymer-containing resin composition.

比較例5
30%の導電性高分子の水系分散液を得るところまでは実施例1と同様の操作をし、それによって得られた導電製高分子の水系分散液25gに対し、バインダ用樹脂としてアクリディックA801(前出)20g、メチルエチルケトン30gおよびイソプロピルアルコール30gを添加し攪拌混合したところ、混合直後にバインダ用樹脂のアクリディックA801の凝集が生じ、均一な有機溶剤系導電性高分子含有樹脂組成物分散液を得ることができず、その結果、フィルム形成ができなかった。
Comparative Example 5
The same operation as in Example 1 was carried out until a 30% conductive polymer aqueous dispersion was obtained, and Acrydic A801 was used as a binder resin with respect to 25 g of the conductive polymer aqueous dispersion thus obtained. (Above) When 20 g, 30 g of methyl ethyl ketone and 30 g of isopropyl alcohol were added and stirred and mixed, immediately after mixing, agglomeration of Acrydic A801, a resin for binder, occurred, and a uniform organic solvent-based conductive polymer-containing resin composition dispersion liquid As a result, a film could not be formed.

得られた実施例7〜9の帯電防止フィルムの表面抵抗を室温(約25℃)下でJIS K 7194に準じて4探針方式の電導度測定器〔三菱化学社製MCP−T600(商品名)〕により測定するとともに、波長400nm〜700nmの可視光透過率をUV−VIS−NIR RECORDING SPECTROPHOTOMETER〔島津社製UV3100(商品名)〕により測定した。その結果を使用した有機溶剤系導電性高分子分散液の種類とともに表1に示す。なお、測定は、各試料とも、5点ずつについて行い、表1に示す数値はその5点の平均値を求め、小数点以下を四捨五入して示したものである。   The surface resistance of the obtained antistatic films of Examples 7 to 9 was measured at room temperature (about 25 ° C.) according to JIS K 7194, a four-probe conductivity meter [MCP-T600 (trade name, manufactured by Mitsubishi Chemical Corporation). )] And the visible light transmittance at a wavelength of 400 nm to 700 nm was measured by UV-VIS-NIR RECORDING SPECTROTOPOMETER [UV3100 (trade name) manufactured by Shimadzu Corporation]. It shows in Table 1 with the kind of organic-solvent type conductive polymer dispersion using the result. In addition, measurement is performed for each sample for five points, and the numerical values shown in Table 1 are obtained by calculating an average value of the five points and rounding off the decimals.

Figure 2011057814
Figure 2011057814

[巻回型アルミニウム固体電解コンデンサでの評価]
実施例10
アルミニウム箔の表面をエッチング処理した後、化成処理を行って誘電体層を形成した陽極にリード端子を取り付け、また、アルミニウム箔からなる陰極にリード端子を取り付け、それらのリード端子付き陽極と陰極とをセパレータを介して巻回して、コンデンサ素子を作製した。
[Evaluation with a wound aluminum solid electrolytic capacitor]
Example 10
After etching the surface of the aluminum foil, a lead terminal is attached to the anode on which the dielectric layer is formed by performing a chemical conversion treatment, and the lead terminal is attached to the cathode made of aluminum foil. Was wound through a separator to produce a capacitor element.

このコンデンサ素子を実施例1で得た有機溶剤系導電性高分子分散液を浸漬し、120秒後に取り出し、180℃で30分間乾燥した。この操作を4回繰り返した後、200℃で30分間放置して、導電性高分子からなる固体電解質層を形成した。その後、アルミニウムの外装ケースに入れ、封止して、巻回型アルミニウム固体電解コンデンサを作製した。   The capacitor element was immersed in the organic solvent-based conductive polymer dispersion obtained in Example 1, taken out after 120 seconds, and dried at 180 ° C. for 30 minutes. This operation was repeated 4 times, and then allowed to stand at 200 ° C. for 30 minutes to form a solid electrolyte layer made of a conductive polymer. Then, it was put in an aluminum outer case and sealed to produce a wound aluminum solid electrolytic capacitor.

実施例11
実施例1で得た有機溶剤系導電性高分子分散液に代えて、実施例5で得た有機溶剤系導電性高分子分散液を用いた以外は、実施例10と同様の操作を行って巻回型アルミニウム固体電解コンデンサを作製した。
Example 11
The same operation as in Example 10 was performed except that the organic solvent-based conductive polymer dispersion obtained in Example 5 was used instead of the organic solvent-based conductive polymer dispersion obtained in Example 1. A wound aluminum solid electrolytic capacitor was produced.

比較例6
3%の導電性高分子の水系分散液を得るところまでは、実施例1と同様の操作を行い、それによって得られた導電性高分子の水系分散液を、実施例1で得た有機溶剤系導電性高分子分散液に代えて用いた以外は、実施例10と同様の操作を行って、巻回型アルミニウム固体電解コンデンサを作製した。
Comparative Example 6
The same operation as in Example 1 was performed until a 3% conductive polymer aqueous dispersion was obtained, and the conductive polymer aqueous dispersion obtained thereby was obtained as the organic solvent obtained in Example 1. A wound aluminum solid electrolytic capacitor was produced in the same manner as in Example 10 except that the conductive polymer dispersion was used instead of the conductive polymer dispersion.

上記のように作製した実施例10、11および比較例6の巻回型アルミニウム固体電解コンデンサについて、そのESR(等価直列抵抗)、静電容量および漏れ電流を測定した。その結果を表2に示す。なお、ESR、静電容量および漏れ電流の測定方法は以下に示す通りである。ESRの測定にはHEWLETT PACKARD社製のLCRメーター(4284A)を用い、25℃、100kHzでESRを測定し、静電容量の測定にはHEWLETT PACKARD社製のLCRメーター(4284A)を用い、25℃、120Hzで静電容量を測定した。漏れ電流の測定は、25℃、25Vの定格電圧を60秒間印加したあと、デジタルオシロスコープにて漏れ電流を測定した。それらの測定は、各試料とも、10個ずつについて行い、表2に示すESR値、静電容量値および漏れ電流値は、それら10個の平均値を求め、小数点以下を四捨五入して示したものである。   For the wound aluminum solid electrolytic capacitors of Examples 10 and 11 and Comparative Example 6 produced as described above, their ESR (equivalent series resistance), capacitance and leakage current were measured. The results are shown in Table 2. In addition, the measuring method of ESR, an electrostatic capacitance, and a leakage current is as showing below. The ESR is measured using an LCR meter (4284A) manufactured by HEWLETT PACKARD at 25 ° C. and 100 kHz, and the capacitance is measured using an LCR meter (4284A) manufactured by HEWLETT PACKARD at 25 ° C. The electrostatic capacity was measured at 120 Hz. The leakage current was measured by applying a rated voltage of 25 ° C. and 25 V for 60 seconds, and then measuring the leakage current with a digital oscilloscope. Each sample was measured for 10 samples, and the ESR value, capacitance value, and leakage current value shown in Table 2 were obtained by calculating the average of those 10 values and rounding off the decimals. It is.

Figure 2011057814
Figure 2011057814

表2に示すように、実施例10および実施例11の巻回型アルミニウム固体電解コンデンサは、比較例6の巻回型アルミ固体電解コンデンサに比べて、漏れ電流が2桁低かった。これは、比較例6の巻回型アルミニウム固体電解コンデンサでは、その作製にあたって導電性高分子の水系分散液を用いているため、誘電体層を構成する酸化皮膜の表面が水で腐食したためであると考えられる。   As shown in Table 2, the wound aluminum solid electrolytic capacitors of Example 10 and Example 11 had a leakage current two orders of magnitude lower than that of the wound aluminum solid electrolytic capacitor of Comparative Example 6. This is because the wound aluminum solid electrolytic capacitor of Comparative Example 6 uses an aqueous dispersion of a conductive polymer for its production, and therefore the surface of the oxide film constituting the dielectric layer is corroded with water. it is conceivable that.

上記のように、実施例10および実施例11の巻回型アルミニウム固体電解コンデンサは、比較例6の巻回型アルミニウム固体電解コンデンサに比べて、漏れ電流が低く、コンデンサとして電力ロスが少ないものであることを示しているとともに、ESRが小さく、かつ静電容量が大きく、導電性高分子を有機溶剤系分散液にしたことによる特性低下は認められなかった。   As described above, the wound aluminum solid electrolytic capacitors of Example 10 and Example 11 have lower leakage current and less power loss as a capacitor than the wound aluminum solid electrolytic capacitor of Comparative Example 6. In addition to this, the ESR was small, the capacitance was large, and no deterioration in characteristics due to the use of the conductive polymer as an organic solvent-based dispersion was observed.

Claims (12)

(1)チオフェンまたはその誘導体をドーパントとなる高分子スルホン酸の存在下で水中または水と水混和性溶剤との混合物からなる水性液中で酸化重合して導電性高分子を合成することにより導電性高分子の水系分散液を得る工程と、
(2)上記導電性高分子の水系分散液に非水系アミンを投入して導電性高分子を凝集させる工程と、
(3)上記導電性高分子の凝集物を水中または水性液中から取り出す工程と、
(4)上記導電性高分子の凝集物を有機溶剤に分散させる工程と
を経由して製造することを特徴とする、水分含有量が10質量%以下の有機溶剤系導電性高分子分散液の製造方法。
(1) Conduction is conducted by synthesizing a conductive polymer by oxidative polymerization of thiophene or a derivative thereof in water or an aqueous liquid composed of a mixture of water and a water-miscible solvent in the presence of a polymer sulfonic acid as a dopant. Obtaining an aqueous dispersion of a functional polymer;
(2) adding a non-aqueous amine to the aqueous dispersion of the conductive polymer to aggregate the conductive polymer;
(3) a step of taking out the aggregate of the conductive polymer from water or an aqueous liquid;
(4) An organic solvent-based conductive polymer dispersion having a water content of 10% by mass or less, wherein the conductive polymer aggregate is produced through a step of dispersing the aggregate of the conductive polymer in an organic solvent. Production method.
非水系アミンが、下記の一般式(1)で表されるアミンである請求項1記載の有機溶剤系導電性高分子分散液の製造方法。
−NH (1)
(式中、Rは、炭素数が6〜30のアルキル基であり、上記アルキル基は、直鎖状のものであってもよく、分岐鎖状のものであってもよい。また、上記アルキル基は、その分子鎖中にエーテル結合、エステル結合または二重結合を含んでいてもよく、その水素原子が他の原子で置換されていてもよい)
The method for producing an organic solvent-based conductive polymer dispersion according to claim 1, wherein the non-aqueous amine is an amine represented by the following general formula (1).
R 1 —NH 2 (1)
(In the formula, R 1 is an alkyl group having 6 to 30 carbon atoms, and the alkyl group may be linear or branched. The alkyl group may contain an ether bond, an ester bond or a double bond in the molecular chain, and the hydrogen atom may be substituted with another atom)
高分子スルホン酸が、ポリスチレンスルホン酸、スルホン化ポリエステルおよびフェノールスルホン酸ノボラック樹脂よりなる群から選ばれる少なくとも1種である請求項1記載の有機溶剤系導電性高分子分散液の製造方法。   The method for producing an organic solvent-based conductive polymer dispersion according to claim 1, wherein the polymer sulfonic acid is at least one selected from the group consisting of polystyrene sulfonic acid, sulfonated polyester, and phenolsulfonic acid novolak resin. 請求項1〜3のいずれかに記載の有機溶剤系導電性高分子分散液を乾燥して得られたことを特徴とする導電性高分子。   A conductive polymer obtained by drying the organic solvent-based conductive polymer dispersion according to claim 1. 請求項1〜3のいずれかに記載の有機溶剤系導電性高分子分散液とバインダ用樹脂とを混合して得られたことを特徴とする有機溶剤系導電性高分子含有樹脂組成物分散液。   An organic solvent-based conductive polymer-containing resin composition dispersion obtained by mixing the organic solvent-based conductive polymer dispersion according to any one of claims 1 to 3 and a binder resin. . 請求項5記載の有機溶剤系導電性高分子含有樹脂分散液を乾燥して得られたことを特徴とする導電性高分子含有樹脂組成物。   A conductive polymer-containing resin composition obtained by drying the organic solvent-based conductive polymer-containing resin dispersion according to claim 5. 請求項5記載の有機溶剤系導電性高分子含有樹脂組成物分散液を乾燥することにより得られた導電性高分子含有樹脂組成物フィルムからなることを特徴とする帯電防止フィルム。   An antistatic film comprising a conductive polymer-containing resin composition film obtained by drying the organic solvent-based conductive polymer-containing resin composition dispersion according to claim 5. 請求項5記載の有機溶剤系導電性高分子含有樹脂組成物分散液を乾燥することにより得られた導電性高分子含有樹脂組成物フィルムを導電層として基材シートの一方の面または両面に有することを特徴とする帯電防止シート。   The conductive polymer-containing resin composition film obtained by drying the organic solvent-based conductive polymer-containing resin composition dispersion according to claim 5 is used as a conductive layer on one or both sides of the base sheet. An antistatic sheet characterized by the above. 請求項1〜3のいずれかに記載の有機溶剤系導電性高分子分散液を乾燥して得られた導電性高分子を固体電解質とすることを特徴とする固体電解コンデンサ。   A solid electrolytic capacitor, wherein the conductive polymer obtained by drying the organic solvent-based conductive polymer dispersion according to claim 1 is used as a solid electrolyte. 請求項5記載の有機溶剤系導電性高分子含有樹脂組成物分散液を乾燥して得られた導電性高分子含有樹脂組成物を固体電解質とすることを特徴とする固体電解コンデンサ。   A solid electrolytic capacitor comprising a conductive polymer-containing resin composition obtained by drying the organic solvent-based conductive polymer-containing resin composition dispersion according to claim 5 as a solid electrolyte. タンタル、ニオブ、アルミニウムなどの弁金属の多孔体からなる陽極と、弁金属の酸化皮膜からなる誘電体層と、固体電解質を有する固体電解コンデンサの製造にあたり、請求項1〜3のいずれかに記載の有機溶剤系導電性高分子分散液にコンデンサ素子を浸漬するか、または請求項1〜3のいずれかに記載の有機溶剤系導電性高分子分散液をコンデンサ素子に塗布し、乾燥して得られる導電性高分子を固体電解質としてすることを特徴とする固体電解コンデンサの製造方法。   In manufacturing a solid electrolytic capacitor having an anode made of a porous body of valve metal such as tantalum, niobium or aluminum, a dielectric layer made of an oxide film of the valve metal, and a solid electrolyte, any one of claims 1 to 3. A capacitor element is immersed in the organic solvent-based conductive polymer dispersion liquid or obtained by applying the organic solvent-based conductive polymer dispersion liquid according to claim 1 to the capacitor element and drying. A method for producing a solid electrolytic capacitor, wherein the conductive polymer used is a solid electrolyte. タンタル、ニオブ、アルミニウムなどの弁金属の多孔体からなる陽極と、弁金属の酸化皮膜からなる誘電体層と、固体電解質を有する固体電解コンデンサの製造にあたり、請求項5記載の有機溶剤系導電性高分子含有樹脂組成物分散液にコンデンサ素子を浸漬するか、または請求項5記載の有機溶剤系導電性高分子含有樹脂組成物分散液をコンデンサ素子に塗布し、乾燥して得られる導電性高分子含有樹脂組成物を固体電解質としてすることを特徴とする固体電解コンデンサの製造方法。
6. An organic solvent-based conductive material according to claim 5, in manufacturing a solid electrolytic capacitor having an anode made of a porous body of valve metal such as tantalum, niobium or aluminum, a dielectric layer made of an oxide film of the valve metal, and a solid electrolyte. A capacitor element is immersed in the polymer-containing resin composition dispersion, or the organic solvent-based conductive polymer-containing resin composition dispersion according to claim 5 is applied to the capacitor element and dried. A method for producing a solid electrolytic capacitor, wherein the molecule-containing resin composition is used as a solid electrolyte.
JP2009207897A 2009-09-09 2009-09-09 Process for producing organic solvent-based conductive polymer dispersion and its application Active JP5355313B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009207897A JP5355313B2 (en) 2009-09-09 2009-09-09 Process for producing organic solvent-based conductive polymer dispersion and its application

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009207897A JP5355313B2 (en) 2009-09-09 2009-09-09 Process for producing organic solvent-based conductive polymer dispersion and its application

Publications (2)

Publication Number Publication Date
JP2011057814A true JP2011057814A (en) 2011-03-24
JP5355313B2 JP5355313B2 (en) 2013-11-27

Family

ID=43945815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009207897A Active JP5355313B2 (en) 2009-09-09 2009-09-09 Process for producing organic solvent-based conductive polymer dispersion and its application

Country Status (1)

Country Link
JP (1) JP5355313B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013058389A (en) * 2011-09-08 2013-03-28 Konica Minolta Holdings Inc Transparent electrode and organic electroluminescent element
JP2018053191A (en) * 2016-09-30 2018-04-05 信越ポリマー株式会社 Method for producing amine adduct of conductive composite, method for producing amine adduct liquid of conductive composite and method for producing conductive film
JP2019104858A (en) * 2017-12-13 2019-06-27 信越ポリマー株式会社 Manufacturing method of conductive polymer dispersion, and manufacturing method of conductive film
KR20200106275A (en) * 2019-03-04 2020-09-14 한국생산기술연구원 Method for preparing conductive polymer dispersion with improved physical properties

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008045061A (en) * 2006-08-18 2008-02-28 Shin Etsu Polymer Co Ltd Electroconductive solid matter, method for producing the same, and electroconductive polymer solution
JP2008115215A (en) * 2006-11-01 2008-05-22 Shin Etsu Polymer Co Ltd Method for producing conductive polymer solution
WO2008088028A1 (en) * 2007-01-17 2008-07-24 Arakawa Chemical Industries, Ltd. Organic solvent dispersion of conductive polymer/dopant and composition containing the dispersion
JP2009001624A (en) * 2007-06-20 2009-01-08 Tayca Corp Dispersant and dopant for synthesizing electroconductive polymer, electroconductive polymer synthesized by using the same, electroconductive composition comprising the electroconductive polymer, dispersion of the electroconductive polymer or electroconductive composition and applied material of the electroconductive polymer or electroconductive composition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008045061A (en) * 2006-08-18 2008-02-28 Shin Etsu Polymer Co Ltd Electroconductive solid matter, method for producing the same, and electroconductive polymer solution
JP2008115215A (en) * 2006-11-01 2008-05-22 Shin Etsu Polymer Co Ltd Method for producing conductive polymer solution
WO2008088028A1 (en) * 2007-01-17 2008-07-24 Arakawa Chemical Industries, Ltd. Organic solvent dispersion of conductive polymer/dopant and composition containing the dispersion
JP2009001624A (en) * 2007-06-20 2009-01-08 Tayca Corp Dispersant and dopant for synthesizing electroconductive polymer, electroconductive polymer synthesized by using the same, electroconductive composition comprising the electroconductive polymer, dispersion of the electroconductive polymer or electroconductive composition and applied material of the electroconductive polymer or electroconductive composition

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013058389A (en) * 2011-09-08 2013-03-28 Konica Minolta Holdings Inc Transparent electrode and organic electroluminescent element
JP2018053191A (en) * 2016-09-30 2018-04-05 信越ポリマー株式会社 Method for producing amine adduct of conductive composite, method for producing amine adduct liquid of conductive composite and method for producing conductive film
CN108299987A (en) * 2016-09-30 2018-07-20 信越聚合物株式会社 The preparation method of the amine additives of conductive composite body and its preparation method of solution and conductive film
JP2019104858A (en) * 2017-12-13 2019-06-27 信越ポリマー株式会社 Manufacturing method of conductive polymer dispersion, and manufacturing method of conductive film
KR20200106275A (en) * 2019-03-04 2020-09-14 한국생산기술연구원 Method for preparing conductive polymer dispersion with improved physical properties
KR102186871B1 (en) 2019-03-04 2020-12-04 한국생산기술연구원 Method for preparing conductive polymer dispersion with improved physical properties

Also Published As

Publication number Publication date
JP5355313B2 (en) 2013-11-27

Similar Documents

Publication Publication Date Title
JP4454042B2 (en) Dispersion liquid of conductive composition, conductive composition, and solid electrolytic capacitor
JP4454041B2 (en) Dispersion liquid of conductive composition, conductive composition and use thereof
JP5191171B2 (en) Dispersant and dopant for conductive polymer synthesis, conductive polymer synthesized using the same, conductive composition containing the conductive polymer, dispersion of the conductive polymer or conductive composition, and the above Application of conductive polymer or conductive composition
JP5807997B2 (en) Manufacturing method of solid electrolytic capacitor
JP5892547B2 (en) Conductive polymer dispersion for production of solid electrolytic capacitor and solid electrolytic capacitor produced using the same
JP5062738B2 (en) Conductive composition, method for producing the same, dispersion of conductive composition, and application of conductive composition
JP2006228679A (en) Conductive polymer composition and solid electrolytic capacitor using the same
WO2010090206A1 (en) Electrically conductive polymer composition and process for production thereof, and solid electrolytic capacitor utilizing electrically conductive polymer composition
WO2012153790A1 (en) Method for manufacturing solid electrolyte capacitor
JP4573363B1 (en) Process for producing organic solvent-based conductive polymer dispersion and its application
JP5355313B2 (en) Process for producing organic solvent-based conductive polymer dispersion and its application
JP2014011222A (en) Conductive polymer dispersion for manufacturing solid electrolytic capacitor and solid electrolytic capacitor manufactured by using the same
CN107251179B (en) Solid electrolytic capacitor
CN107430938B (en) Electrolytic capacitor and its manufacturing method
JP4565522B2 (en) Method for producing conductive polymer dispersion, conductive polymer dispersion, conductive polymer and use thereof
JP6266241B2 (en) Conductive polymer composition and method for producing the same
CN110444396B (en) Wound capacitor assembly for improving structural strength and method for manufacturing same
JP2011060980A (en) Solid electrolytic capacitor
JP2012153867A (en) Conductive composition as well as production method therefor, and capacitor prepared using the conductive composition
CN107533921B (en) Electrolytic capacitor
CN107430939B (en) Electrolytic capacitor and electroconductive polymer dispersion
JP6417452B2 (en) Conductive polymer and method for producing the same
JP5062694B2 (en) Oxidizing agent for producing conductive polymer, solid electrolytic capacitor using the same, and method for producing the same
JP2011009617A (en) Oxidizer for manufacturing conductive polymer, solid electrolytic capacitor using the same, and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120903

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130705

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130827

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130827

R150 Certificate of patent or registration of utility model

Ref document number: 5355313

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250