JP2012153867A - Conductive composition as well as production method therefor, and capacitor prepared using the conductive composition - Google Patents

Conductive composition as well as production method therefor, and capacitor prepared using the conductive composition Download PDF

Info

Publication number
JP2012153867A
JP2012153867A JP2011024370A JP2011024370A JP2012153867A JP 2012153867 A JP2012153867 A JP 2012153867A JP 2011024370 A JP2011024370 A JP 2011024370A JP 2011024370 A JP2011024370 A JP 2011024370A JP 2012153867 A JP2012153867 A JP 2012153867A
Authority
JP
Japan
Prior art keywords
conductive composition
conductive
pnva
double bond
composition according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011024370A
Other languages
Japanese (ja)
Inventor
Yasuo Kudo
康夫 工藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2011024370A priority Critical patent/JP2012153867A/en
Publication of JP2012153867A publication Critical patent/JP2012153867A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To attain a conductive composition obtained by chemical polymerization as well as a production method therefor, and an antistatic material as well as an electrolytic capacitor prepared using the conductive composition; and to provide a conductive composition having high electric conductivity and excellent adhesion to a substrate and a production method therefor, and an antistatic material having excellent adhesion to the substrate each prepared using the conductive composition; as well as a solid electrolytic capacitor having excellent high frequency characteristics.SOLUTION: A polymerizable monomer is subjected to chemical oxidative polymerization in a polymerization medium in which poly-N-vinyl acetamide (PNVA) is present, to obtain an antistatic material which improves electric conductivity of a conductive composition obtained after evaporation of the polymer medium and has excellent adhesiveness because the PNVA acts as a binder. Further, when the conductive composition is used for a cathode conductive layer, a solid capacitor having excellent high frequency characteristics can be attained.

Description

本発明は、アニオンがドープされた共役二重結合導電性高分子とポリ−N−ビニルアセトアミド(PNVA)からなる導電性組成物ならびにその製造方法に関するものである。本発明はまた、前記導電性組成物を用いたキャパシタに関するものである。  The present invention relates to a conductive composition comprising a conjugated double bond conductive polymer doped with anions and poly-N-vinylacetamide (PNVA), and a method for producing the same. The present invention also relates to a capacitor using the conductive composition.

一般的に、ポリアニリン、ポリピロールやポリチオフェンに代表される共役二重結合導電性高分子は、化学的酸化重合および電解重合で作製することができる。電解重合を利用した場合には、導電性高分子が電極上にフィルム状に形成されるため大量に製造することに困難が伴うのに対し、化学的酸化重合を利用した場合には、そのような制約がなく、原理的に重合性モノマーと適当な酸化剤の反応によって大量の導電性高分子を比較的容易に得ることができる。化学重合ポリアニリン、ポリピロール(PPy)ならびにポリエチレンジオキシチオフェン(PEDOT)に関しては、例えば特許文献1、2ならびに3に開示されている。
導電性高分子を陰極導電層に用いたキャパシタは例えば特許文献4ならびに特許文献5に開示されている。特許文献4には導電性高分子層を電解重合で形成する方法が開示されている。また特許文献5には導電性高分子層を、酸化剤を用いた化学的酸化重合で形成する方法が開示されている。導電性高分子はπ共役二重結合を有しているために、剛直で熱にも溶媒にも溶けないために、後加工が困難であり、導電性高分子層を形成したいその場で重合させる必要があった。その場重合の工程が煩雑でかつ特別な技術ノーハウが必要であり、製造コストも高いという課題を抱えていた。現在市販されている導電性高分子を用いた電解キャパシタは、電解重合PPyを用いたもの、化学重合PPyを用いたもの、化学重合PEDOTを用いたものに大きく分けられる。
In general, a conjugated double bond conductive polymer represented by polyaniline, polypyrrole or polythiophene can be produced by chemical oxidative polymerization and electrolytic polymerization. When using electropolymerization, the conductive polymer is formed into a film on the electrode, making it difficult to manufacture in large quantities, whereas when using chemical oxidative polymerization, In principle, a large amount of conductive polymer can be obtained relatively easily by the reaction of a polymerizable monomer and an appropriate oxidizing agent. Chemically polymerized polyaniline, polypyrrole (PPy) and polyethylenedioxythiophene (PEDOT) are disclosed in, for example, Patent Documents 1, 2 and 3.
Capacitors using a conductive polymer for the cathode conductive layer are disclosed in, for example, Patent Document 4 and Patent Document 5. Patent Document 4 discloses a method of forming a conductive polymer layer by electrolytic polymerization. Patent Document 5 discloses a method of forming a conductive polymer layer by chemical oxidative polymerization using an oxidizing agent. Conductive polymer has a π-conjugated double bond, so it is rigid and insoluble in heat and solvent, so post-processing is difficult, and polymerization is performed in situ to form a conductive polymer layer. It was necessary to let them. The in-situ polymerization process is complicated, special technical know-how is required, and the production cost is high. Electrolytic capacitors using conductive polymers currently on the market can be broadly divided into those using electrolytic polymerization PPy, those using chemical polymerization PPy, and those using chemical polymerization PEDOT.

エチレンジオキシチオフェン(EDOT)を重合媒体中で酸化剤を用いて重合して得られるPEDOTの場合、3、4位が置換基でブロックされているためこの部位において酸化反応が起こらないことに起因して、環境安定性の極めて高い高分子導電性組成物が実現でき、応用面から有用性が高いと期待されている。
さらに、水媒体系で得られたアニオン界面活性剤の有機酸イオンと無機酸イオンを含むPEDOTは、モノマーのEDOTが低濃度でありながら、高収率で得られ高電気伝導度も高いことが例えば特許文献2に開示されている。
In the case of PEDOT obtained by polymerizing ethylenedioxythiophene (EDOT) in a polymerization medium using an oxidizing agent, the oxidation reaction does not occur at this site because the 3rd and 4th positions are blocked with a substituent. Thus, it is expected that a polymer conductive composition having extremely high environmental stability can be realized and is highly useful in terms of application.
Furthermore, the PEDOT containing the organic acid ions and inorganic acid ions of the anionic surfactant obtained in an aqueous medium system is obtained in a high yield while having a low concentration of the monomer EDOT, and has a high electrical conductivity. For example, it is disclosed in Patent Document 2.

さらに、PEDOTとポリスチレンスルホン酸(PSS)からなる導電性組成物が分散された水媒体にスルホキシド溶剤あるいは多価アルコール、ポリオールまたはこれらの混合物の少なくても一種を添加することによって、前記導電性組成物の被膜を形成した場合に電気伝導度が向上することが、例えば特許文献3に開示されている。  Further, by adding at least one of a sulfoxide solvent, a polyhydric alcohol, a polyol or a mixture thereof to an aqueous medium in which a conductive composition comprising PEDOT and polystyrene sulfonic acid (PSS) is dispersed, the conductive composition is added. For example, Patent Document 3 discloses that electrical conductivity is improved when a coating film is formed.

ただ、化学重合によって得られる上記導電性高分子は、不溶性であり反応媒体中では分散状態で存在する。そのため、例えばキャスティング法等では緻密なフィルム状の被膜を得ることが困難である。
このため重合後反応媒体に溶解するバインダ樹脂等を添加混合することにより、フィルム状の導電性組成物薄膜を得ている。この方法は例えば特許文献6ならびに特許文献7に開示されている。
However, the conductive polymer obtained by chemical polymerization is insoluble and exists in a dispersed state in the reaction medium. Therefore, for example, it is difficult to obtain a dense film-like film by a casting method or the like.
Therefore, a film-like conductive composition thin film is obtained by adding and mixing a binder resin or the like that dissolves in the reaction medium after polymerization. This method is disclosed in Patent Document 6 and Patent Document 7, for example.

特開平6−200017号公報JP-A-6-200017 特開平9−268258号公報JP 9-268258 A 特開平7−90060号公報Japanese Patent Laid-Open No. 7-90060 特開平1−310529号公報JP-A-1-310529 特開平9−74050号公報Japanese Patent Laid-Open No. 9-74050 特開2010−6079号公報JP 2010-6079 A 特開2007−324124号公報JP 2007-324124 A

PSS存在下で化学重合を行うことによって、固体として回収せず、水媒体中に1重量%程度の極めて希薄な濃度でコロイド状に分散した、PSSがドープされたPEDOT(PEDOT/PSSと略記する)を作製することができる。このPEDOT/PSS分散液から液体を揮散させることにより、PEDOT/PSSからなる導電性高分子層を容易に得ることができる。しかしながら、この層は微粉末が凝集した形態であり、基板ならびにPEDOT/PSS粒子間の密着強度が低く、基板から剥離しやすいという課題があった。  By conducting chemical polymerization in the presence of PSS, PEDOT doped with PSS (abbreviated as PEDOT / PSS) that is not recovered as a solid but dispersed in an aqueous medium in a colloidal form at a very dilute concentration of about 1% by weight. ) Can be produced. By evaporating the liquid from the PEDOT / PSS dispersion, a conductive polymer layer made of PEDOT / PSS can be easily obtained. However, this layer has a form in which fine powders are aggregated, and there is a problem that adhesion strength between the substrate and the PEDOT / PSS particles is low, and it is easy to peel off from the substrate.

この課題を解決するために、PEDOT/PSSが分散された液体に溶解するポリマーをバインダとして添加して、そのバインダにより基板に対する付着強度を改善する試みがなされている。バインダは分散媒体に溶解可能なものであればよく、例えば水が分散媒体である場合には、ポリビニルピロリドンまたはポリビニルアルコール等が好適に用いられる。また、分散媒体が有機溶媒の場合には、その有機溶媒に可溶なポリマーをバインダとして使用することができる。有機溶媒に可溶なバインダポリマーとして、例えばポリメチルメタクリレート、ポリスチレン、ポリ塩化ビニルなどが上げられる。これらのバインダは使用される分散媒体ならびに被着体等によって適宜使い分けられる。
ただしこれらのバインダを添加してPEDOT/PSSを含む導電層を形成した場合、その膜の密着強度は向上するものの、絶縁物で希釈さっれているために、しばしば電気伝導性が低下するという課題が新たに生じる。
In order to solve this problem, an attempt has been made to add a polymer that dissolves in a liquid in which PEDOT / PSS is dispersed as a binder and to improve the adhesion strength to the substrate by the binder. The binder only needs to be soluble in the dispersion medium. For example, when water is the dispersion medium, polyvinyl pyrrolidone or polyvinyl alcohol is preferably used. When the dispersion medium is an organic solvent, a polymer soluble in the organic solvent can be used as the binder. Examples of the binder polymer soluble in the organic solvent include polymethyl methacrylate, polystyrene, and polyvinyl chloride. These binders are properly used depending on the dispersion medium used and the adherend.
However, when these binders are added to form a conductive layer containing PEDOT / PSS, the adhesion strength of the film is improved, but the electrical conductivity often decreases because it is diluted with an insulator. Newly occurs.

ここまでは、導電性高分子としてPEDOT/PSSを用いた場合についてのみ述べたが、例えば界面活性アニオンならびに硫酸イオン等の他のドーパントを含む分散型のPEDOTを用いた場合でも、バインダ樹脂を用いればPEDOT/PSSの場合と同様の課題が生じる。なお、この課題はアニオンがドープされたPPyが含まれる分散媒体でも同様に生じる。  Up to this point, only the case where PEDOT / PSS is used as the conductive polymer has been described. However, for example, even when a dispersed type PEDOT containing other dopants such as a surface active anion and sulfate ion is used, a binder resin is used. For example, the same problem as in the case of PEDOT / PSS occurs. This problem similarly occurs in a dispersion medium containing PPy doped with anions.

本発明は、上記従来技術の課題を解決するもので、アニオンがドープされた共役二重結合導電性高分子とポリ−N−ビニルアセトニトリル(PNVA)を含む導電性組成物ならびにその製造方法を提供することを目的としたものである。
PNVAは昭和電工株式会社から平均分子量の異なるグレードが販売されており、容易に入手することができる。
PNVAは両親媒性であり、水のほか例えばアルコール、グリコール、ジメチルスルホキシド等の有機媒体に溶解するため、分散媒体によってバインダの使い分けを考慮せずに済む。また、重合性モノマーの分散性が向上するため、微粉末の分散安定性の高い導電性高分子が得られる。さらに加えてPNVAをバインダとして用いた場合には、導電性高分子微粒子のパーコレーション閾値が小さくなり、低濃度の導電性高分子の場合においても高い導電性を有する。さらに加えてPNVAは密着性に優れているために、高い密着強度を有する導電性組成物層を形成することができる。
本発明はまた、PNVAを含む導電性組成物を用いた帯電防止材料を提供するものである。本帯電防止材料は、分散媒体を揮散させることにより密着性が高くかつ導電性の高い耐電防止材料を容易に実現するものである。
本発明はまた、PNVAを含む導電性組成物を陰極導電層に用いた固体電解キャパシタを提供するものである。本導電性組成物は塗布によって容易に陰極導電層を形成することができ、しかも本導電性組成物の導電性が高いため、高周波特性の優れた固体電解キャパシタを実現することができる。その場重合工程という煩雑な工程を省略できるために製造が容易で大幅なコストダウンに繋がる。
キャパシタ用陽極として弁作用を有する金属、例えばアルミニウム、タンタル、ニオブ、チタン等を用いることができる。
The present invention solves the above-mentioned problems of the prior art, and provides a conductive composition containing a conjugated double bond conductive polymer doped with an anion and poly-N-vinylacetonitrile (PNVA), and a method for producing the same. It is intended to do.
PNVA is available from Showa Denko Co., Ltd. in different grades with different average molecular weights and can be easily obtained.
Since PNVA is amphiphilic and dissolves in water and other organic media such as alcohol, glycol, dimethyl sulfoxide, etc., it is not necessary to consider the use of a binder depending on the dispersion medium. Moreover, since the dispersibility of the polymerizable monomer is improved, a conductive polymer having a fine powder dispersion stability is obtained. In addition, when PNVA is used as a binder, the percolation threshold of the conductive polymer fine particles becomes small, and high conductivity is obtained even in the case of a low concentration conductive polymer. In addition, since PNVA is excellent in adhesion, a conductive composition layer having high adhesion strength can be formed.
The present invention also provides an antistatic material using a conductive composition containing PNVA. This antistatic material easily realizes an antistatic material having high adhesion and high conductivity by volatilizing the dispersion medium.
The present invention also provides a solid electrolytic capacitor using a conductive composition containing PNVA as a cathode conductive layer. The conductive composition can easily form a cathode conductive layer by coating, and since the conductive composition has high conductivity, a solid electrolytic capacitor having excellent high-frequency characteristics can be realized. Since a complicated process called an in-situ polymerization process can be omitted, production is easy and the cost is greatly reduced.
A metal having a valve action such as aluminum, tantalum, niobium, titanium, or the like can be used as the capacitor anode.

本発明の請求項1記載の発明は、アニオンがドープされた共役二重結合導電性高分子とポリ−N−ビニルアセトニトリル(PNVA)を含む導電性組成物である。  The invention described in claim 1 of the present invention is a conductive composition comprising a conjugated double bond conductive polymer doped with an anion and poly-N-vinylacetonitrile (PNVA).

請求項2に示すように、共役二重結合導電性高分子がピロールまたはチオフェン環を繰り返し単位とするものを用いることができる。  As shown in claim 2, a conjugated double bond conductive polymer having a pyrrole or thiophene ring as a repeating unit can be used.

請求項3に記載のように、共役二重結合導電性高分子が3,4−エチレンジオキシチオフェン(EDOT)またはピロール(Py)を繰り返し単位として含むものであってものよい。  As described in claim 3, the conjugated double bond conductive polymer may contain 3,4-ethylenedioxythiophene (EDOT) or pyrrole (Py) as a repeating unit.

請求項4記載のように、アニオンがドープされた共役二重結合導電性高分子とポリ−N−ビニルアセトニトリル(PNVA)を含む導電性組成物が液体媒体中に分散された導電性組成物であってもいい。この場合は、分散媒体を揮散させることにより導電性組成物からなる導電層を得ることができる。  The conductive composition comprising a conjugated double bond conductive polymer doped with an anion and poly-N-vinylacetonitrile (PNVA) according to claim 4, wherein the conductive composition is dispersed in a liquid medium. It's okay. In this case, a conductive layer made of a conductive composition can be obtained by volatilizing the dispersion medium.

分散媒体として、請求項5に記載のように少なくても水を含むものが用いうる。  As the dispersion medium, a medium containing at least water as described in claim 5 can be used.

本発明はまた、請求項6記載のように、PNVAと共役二重結合導電性高分子を生成する重合性モノマーと前記重合性モノマーを重合させるための酸化剤を液体媒体中で共存させ、前記酸化剤により前記重合性モノマーを重合させてなる導電性組成物の製造方法を含む。  The present invention also provides a polymerizable monomer that forms PNVA and a conjugated double bond conductive polymer and an oxidizing agent for polymerizing the polymerizable monomer in a liquid medium, as described in claim 6, And a method for producing a conductive composition obtained by polymerizing the polymerizable monomer with an oxidizing agent.

請求項7記載のように、本発明の製造方法では共役二重結合導電性高分子がピロールまたはチオフェン環を繰り返し単位として含むものを用い得る。  As described in claim 7, in the production method of the present invention, a conjugated double bond conductive polymer containing a pyrrole or thiophene ring as a repeating unit can be used.

請求項8記載のように、共役二重結合導電性高分子が3,4−エチレンジオキシチオフェン(EDOT)またはピロール(PPy)を繰り返し単位として含むものが好適に用いられる。  The conjugated double bond conductive polymer as described in claim 8 preferably contains 3,4-ethylenedioxythiophene (EDOT) or pyrrole (PPy) as a repeating unit.

請求項9記載のように、液体媒体として少なくても水を含むものが好適に用いられる。  As described in claim 9, a liquid medium containing at least water is preferably used.

請求項10記載のように、酸化剤として遷移金属塩あるいは過硫酸塩から選ばれる少なくても1種を含むことが好適である。  As described in claim 10, it is preferable that at least one selected from transition metal salts or persulfates is included as an oxidizing agent.

請求項11記載のように、本発明による導電性組成物層は帯電防止材料、就中帯電防止塗料として好適に用いることができる。  As described in claim 11, the conductive composition layer according to the present invention can be suitably used as an antistatic material, especially an antistatic coating.

請求項12記載のように、本発明にかかる導電性組成物を陰極導電層に用いることにより高周波特性の優れた固体電解キャパシタが得られる。  As described in claim 12, by using the conductive composition according to the present invention for the cathode conductive layer, a solid electrolytic capacitor having an excellent high frequency characteristic can be obtained.

本発明の導電性組成物は、アニオンを含む共役二重結合導電性高分子とPNVAからなり、液体媒体中で分散して存在する。この系から分散媒体を除去することにより、高導電性の薄膜状導電層を容易に得ることができる。
これはPNVAの中では共役二重結合導電性高分子のパーコレーション形成のための閾値が低いことに起因していると考えられる。
The conductive composition of the present invention comprises a conjugated double bond conductive polymer containing an anion and PNVA, and is dispersed in a liquid medium. By removing the dispersion medium from this system, a highly conductive thin-film conductive layer can be easily obtained.
This is thought to be due to the low threshold for percolation formation of conjugated double bond conductive polymers in PNVA.

また、媒体に溶解したPNVA共存下で重合性モノマーを、酸化剤を用いて重合することにより、PNVAと重合性モノマーの相互作用により、微粉末の共役二重結合導電性高分子が得られるために安定した分散状態を保つことができる。  In addition, since a polymerizable monomer is polymerized using an oxidizing agent in the presence of PNVA dissolved in a medium, a conjugated double bond conductive polymer in fine powder can be obtained by the interaction between PNVA and the polymerizable monomer. In a stable dispersion state.

また、本発明の導電性組成物は媒体を除去することにより、容易に薄膜状にできるため、帯電防止剤就中帯電防止塗料として用いることができる。  In addition, since the conductive composition of the present invention can be easily formed into a thin film by removing the medium, it can be used as an antistatic coating, particularly as an antistatic agent.

さらに本発明の導電性組成物を電解キャパシタの陰極導電層に用いることができる。本発明の導電性組成物を用いれば、従来主要な陰極導電層形成方法であったその場重合が不要になり、工程が簡略化することが可能であり、大きな産業貢献が期待できる。  Furthermore, the conductive composition of the present invention can be used for the cathode conductive layer of an electrolytic capacitor. When the conductive composition of the present invention is used, in-situ polymerization, which has been the main method for forming a cathode conductive layer in the past, is no longer required, the process can be simplified, and a great industrial contribution can be expected.

本発明の導電性組成物を構成する共役二重結合導電性高分子は置換されてもいいピロール環またはチオフェン環を繰り返し単位として含むものであればいいが、特に置換基を有さないピロールないしはエチレンジオキシチオフェンを繰り返し単位とするものが好適である。  The conjugated double bond conductive polymer constituting the conductive composition of the present invention is not particularly limited as long as it contains an optionally substituted pyrrole ring or thiophene ring as a repeating unit. Those having ethylenedioxythiophene as a repeating unit are preferred.

本発明の実施の形態4のキャパシタの陽極を示す平面図。  The top view which shows the anode of the capacitor of Embodiment 4 of this invention. 本発明の実施の形態4のキャパシタの模式構造を示す断面図。  Sectional drawing which shows the schematic structure of the capacitor of Embodiment 4 of this invention. 本発明の実施の形態4のキャパシタの周波数とインピーダンスの関係図。  The relationship figure of the frequency and impedance of the capacitor of Embodiment 4 of this invention.

以下に本発明の実施の形態を図と共に示す。  Embodiments of the present invention will be described below with reference to the drawings.

(実施の形態1)
最初に、本発明の第1の実施の形態について説明する。まず、本実施の形態では、反応媒体となる純水1000gにPNVA(昭和電工製GE191−000)を10g溶解した。次に酸化剤として硫酸鉄(III)n水和物9gと過硫酸カリウム6.8gを、重合性モノマーとしてEDOTを7.1gを、ドーパントとしてポリスチレンスルホン酸(アクゾノーベル社製17%水溶液)(PSS)を29gそれぞれ添加した。その後45℃大気圧下で48時間間攪拌しながら重合させた。液全体が薄い黒色に着色したことからPSSがドープされたPEDOTが形成され、水中に分散していることが確認された。ここで、EDOTはHCスタルク社から市販されているものを用いたが、EDOTを一般的な作製方法で合成してもよい。
(Embodiment 1)
First, a first embodiment of the present invention will be described. First, in this Embodiment, 10g of PNVA (GE191-000 by Showa Denko) was melt | dissolved in the pure water 1000g used as a reaction medium. Next, 9 g of iron (III) sulfate n-hydrate and 6.8 g of potassium persulfate as the oxidizing agent, 7.1 g of EDOT as the polymerizable monomer, and polystyrenesulfonic acid (17% aqueous solution manufactured by Akzo Nobel) as the dopant ( 29 g each of PSS) was added. Thereafter, polymerization was carried out with stirring at 45 ° C. and atmospheric pressure for 48 hours. Since the whole liquid was colored light black, it was confirmed that PEDOT doped with PSS was formed and dispersed in water. Here, although what was marketed from HC Starck was used for EDOT, you may synthesize | combine EDOT with a general preparation method.

次に二次凝集している導電性高分子の分散させるため、ホモジナイザを用いて処理を行った後、目開き1μmの濾紙を用いてろ過した。ろ液中の残余の鉄

Figure 2012153867
ヤイオンSK110:三菱化学製)を用いてイオン交換処理を行った。さらに
Figure 2012153867
A:三菱化学製))を用いてイオン交換処理を行った。Next, in order to disperse the secondary agglomerated conductive polymer, treatment was performed using a homogenizer, followed by filtration using filter paper having an opening of 1 μm. The remaining iron in the filtrate
Figure 2012153867
Ion exchange treatment was performed using Yaion SK110 (manufactured by Mitsubishi Chemical). further
Figure 2012153867
A: manufactured by Mitsubishi Chemical Corporation)).

この液をスライドガラスに塗布し、110℃で1時間乾燥したところ強固に密着したフィルム状導電性組成物層が形成された。このフィルムの電気伝導度を4端子法で測定したところ、1.4S/cmが得られた。  When this liquid was applied to a slide glass and dried at 110 ° C. for 1 hour, a strongly conductive film-like conductive composition layer was formed. When the electrical conductivity of this film was measured by the 4-terminal method, 1.4 S / cm was obtained.

(比較例1)
比較のため比較例1として、PNVAを添加しなかった以外は実施の形態1と同様にしてPEDOT分散液を得た。スライドガラス上に塗布し、110℃で1時間乾燥した後フィルム状の連続層が形成されず、容易に粉末状に剥離した。この粉末から直径13mmの加圧ペレットを作製し、4端子法で電気伝導度を測定したところ1.5S/cmであった。
(Comparative Example 1)
For comparison, a PEDOT dispersion was obtained as Comparative Example 1 in the same manner as in Example 1 except that PNVA was not added. After coating on a slide glass and drying at 110 ° C. for 1 hour, a film-like continuous layer was not formed, and it was easily peeled into a powder form. A pressed pellet having a diameter of 13 mm was produced from this powder, and the electrical conductivity was measured by a four-terminal method, which was 1.5 S / cm.

実施の形態1と比較例1の比較から、PNVA添加により基板に強固に密着したフィルム状の導電層が容易に得られ、かつ電気伝導度の低下もほとんどないことが明らかになった。おそらく反応系内に共存するPNVAとの相互作用により、PPSがドープされたPEDOTの分散性が向上しかつまたPNVA中でパーコレーションを形成して高い導電性が保たれているものと考えられる。  From the comparison between Embodiment 1 and Comparative Example 1, it became clear that a film-like conductive layer firmly adhered to the substrate was easily obtained by addition of PNVA and there was almost no decrease in electrical conductivity. Presumably, the dispersibility of PEDOT doped with PPS is improved by the interaction with PNVA coexisting in the reaction system, and percolation is formed in PNVA, and high conductivity is maintained.

(比較例2)
さらに比較のため比較例2として、PNVAに代えて、重量平均分子量85000〜124000、鹸化度98〜99%のポリビニルアルコール(Aldrich製)(PVA)を添加した以外、実施の形態1と同様にしてPSSが゛ドープされたPEDOT分散液を作製した。スライドガラスに塗布し、110℃で乾燥したところ、ガラス基板に強固に密着したフィルム状導電層が得られた。
(Comparative Example 2)
Further, as Comparative Example 2 for comparison, in the same manner as in Embodiment 1 except that polyvinyl alcohol (Aldrich) (PVA) having a weight average molecular weight of 85000 to 124000 and a saponification degree of 98 to 99% was added instead of PNVA. A PEDOT dispersion liquid doped with PSS was prepared. When applied to a slide glass and dried at 110 ° C., a film-like conductive layer adhered firmly to the glass substrate was obtained.

実施の形態1と同様に電気伝導度を測定したところ0.5S/cmが得られた。PVAは反応過程でPEDOTとの相互作用が小さく、かつまたPNVAの方がPVAよりも導電性微粒子のパーコレーション形成の閾値が低いために同じ比率の絶縁性ポリマーが含まれているにも関わらず、本発明の導電性組成物の方が高い電気伝導度が得られるものと考えられる。  When the electric conductivity was measured in the same manner as in the first embodiment, 0.5 S / cm was obtained. Although PVA has a smaller interaction with PEDOT during the reaction process, and PNVA has a lower threshold for percolation of conductive fine particles than PVA, it contains the same proportion of insulating polymer, It is considered that the electrically conductive composition of the present invention provides higher electrical conductivity.

(比較例3)
さらに比較のため比較例3として、PNVAに変えて、重量平均分子量630000のポリビニルピロリドン(東京化成工業製)(PVP)を添加した以外、実施の形態1と同様にしてPSSが゛ドープされたPEDOT分散液を作製した。スライドガラスに塗布し、110℃で乾燥したところ、強固に密着したフィルム状導電層が得られた。
(Comparative Example 3)
For comparison, as Comparative Example 3, PEDOT doped with PSS in the same manner as in Embodiment 1 except that polyvinylpyrrolidone (manufactured by Tokyo Chemical Industry) (PVP) having a weight average molecular weight of 630000 was added instead of PNVA. A dispersion was prepared. When applied to a slide glass and dried at 110 ° C., a film-like conductive layer that was firmly adhered was obtained.

実施の形態1と同様に電気伝導度を測定したところ0.4S/cmが得られた。PVPは反応過程でPEDOTとの相互作用が小さく、かつまたPNVAの方がPVPよりも導電性微粒子のパーコレーション形成の閾値が低いために同じ比率の絶縁性ポリマーが含まれているにも関わらず、本発明の導電性組成物の方が高い電気伝導度が得られるものと考えられる。When the electric conductivity was measured in the same manner as in the first embodiment, 0.4 S / cm was obtained. Although PVP has less interaction with PEDOT during the reaction process, and PNVA has a lower threshold for percolation of conductive fine particles than PVP, it contains the same proportion of insulating polymer, It is considered that the electrically conductive composition of the present invention provides higher electrical conductivity.

以上述べたように、実施の形態1と比較例(1)〜比較例(3)比較から、PNVAを添加することによりPEDOTの電気伝導度の大幅な低下を招来させることなく、優れた密着強度を有する導電性フィルムが得られることが明らかになった。  As described above, from the comparison between Embodiment 1 and Comparative Examples (1) to (3), the addition of PNVA has an excellent adhesion strength without causing a significant decrease in the electrical conductivity of PEDOT. It was revealed that a conductive film having the following can be obtained.

本発明による導電性組成物は容易に薄膜状に形成でき、電気伝導度が大きくかつ基板への密着製にも優れ手いるために帯電防止材料として有用性が極めて高い。  The conductive composition according to the present invention can be easily formed into a thin film, has high electrical conductivity, and is excellent in adhesion to a substrate, so that it is extremely useful as an antistatic material.

(実施の形態2)
PNVAを10g用いる代わりにPNVAを15gを用いた以外実施の形態1と同様にしてPSSがドープされたPEDOTとPNVAからなる分散液を得た。この分散液から実施の形態1と同様の処理を行い、実施の形態1と同様にしてフィルムを形成して電気伝導度を測定したところ1.3S/cmが得られた。実施の形態1と比較してPNVAの比率が大きくなっているにも関わらず、ほぼ同様の電気伝導度が観測された。これはPNVA中の導電性高分子粒子のパーコレーション閾値が低いことを示している。
(Embodiment 2)
A dispersion composed of PEDOT doped with PSS and PNVA was obtained in the same manner as in Example 1 except that 15 g of PNVA was used instead of 10 g of PNVA. The same treatment as in Embodiment 1 was performed from this dispersion, a film was formed in the same manner as in Embodiment 1, and the electrical conductivity was measured. As a result, 1.3 S / cm was obtained. Although the ratio of PNVA is larger than that in the first embodiment, almost the same electric conductivity was observed. This indicates that the percolation threshold of the conductive polymer particles in PNVA is low.

導電性高分子に対するPNVAの比率をさらに高めることが可能であるが、実施の形態1で用いたPNVAの分子量が大きく分散液の粘度が大きくなる。分子量のより小さいPNVAも上市されており、より低分子量のPNVAを用いれば系の粘度を抑えながらより高濃度添加が可能になる。これにより導電性薄膜中のPEDOTの比率を下げ、電気伝導度の大きな低下を招来することなく、得られる導電性組成物フィルムのコスト低減が可能になり、産業的価値がより高くなる。  Although the ratio of PNVA to the conductive polymer can be further increased, the molecular weight of PNVA used in Embodiment 1 is large and the viscosity of the dispersion liquid is increased. PNVA having a lower molecular weight is also on the market, and if a lower molecular weight PNVA is used, a higher concentration can be added while suppressing the viscosity of the system. Accordingly, the ratio of PEDOT in the conductive thin film is reduced, and the cost of the obtained conductive composition film can be reduced without causing a large decrease in electrical conductivity, thereby increasing the industrial value.

PSSがドープされたPEDOTの電気伝導度がジメチルスルホキシド(DMSO)などの高沸点溶媒を添加することによって100倍程度高くなることが知られており、その種の導電性組成物が実用化されている。本発明にかかる導電性組成物の場合にもDMSO添加によって電気伝導度が2桁程上昇することが確かめられた。  It is known that the electric conductivity of PEDOT doped with PSS is increased about 100 times by adding a high boiling point solvent such as dimethyl sulfoxide (DMSO), and such a conductive composition has been put into practical use. Yes. Also in the case of the conductive composition according to the present invention, it was confirmed that the electrical conductivity increased by about two orders of magnitude by adding DMSO.

(実施の形態3)
EDOTの代わりにピロールモノマー(東京化成工業製)を0.35g用い、さらに界面活性剤アルキルスルホン酸ナトリウム(竹本油脂製:40%溶液)(ANS)2gをさらに加えて添加した以外実施の形態1と同様の重合用溶液を準備した。この溶液を5℃で4時間撹拌したところ、系全体が黒く着色した。これはANSが支配的にドープされたポリピロール(PPy)が生成していることを示す。この液に対して実施の形態1と同様に分散、ろ過、イオン交換の処理を行った。
(Embodiment 3)
Embodiment 1 except that 0.35 g of pyrrole monomer (manufactured by Tokyo Chemical Industry Co., Ltd.) is used instead of EDOT, and 2 g of surfactant sodium alkylsulfonate (manufactured by Takemoto Yushi: 40% solution) (ANS) is further added and added. The same polymerization solution was prepared. When this solution was stirred at 5 ° C. for 4 hours, the entire system was colored black. This indicates that ANS is predominantly doped polypyrrole (PPy). Dispersion, filtration, and ion exchange treatment were performed on this liquid in the same manner as in the first embodiment.

上記で得られたPPy分散液をガラス基板上に塗布し、110℃で乾燥したところ密着性に優れた導電性組成物フィルムが得られた。4端子法で電気伝導度を測定したところ、18S/cmが得られた。  When the PPy dispersion obtained above was applied onto a glass substrate and dried at 110 ° C., a conductive composition film excellent in adhesion was obtained. When the electric conductivity was measured by the four-terminal method, 18 S / cm was obtained.

(比較例4)
比較のため比較例4として、PNVAを添加しなかった以外は実施の形態2と同様にしてPPy分散液を得た。スライドガラス上に塗布し、110℃で1時間乾燥した後フィルム状の連続層が形成されず、容易に粉末状に剥離した。この粉末から直径13mmの加圧ペレットを作製し、4端子法で電気伝導度を測定したところ17S/cmであった。
(Comparative Example 4)
For comparison, a PPy dispersion was obtained as Comparative Example 4 in the same manner as in Embodiment 2 except that PNVA was not added. After coating on a slide glass and drying at 110 ° C. for 1 hour, a film-like continuous layer was not formed, and it was easily peeled into a powder form. A pressure pellet having a diameter of 13 mm was produced from this powder, and the electrical conductivity was measured by a four-terminal method. As a result, it was 17 S / cm.

実施の形態3と比較例4の比較から、PNVA添加により基板に強固に密着したフィルム状の導電層が容易に得られ、かつ電気伝導度の低下もほとんどないことが明らかになった。おそらくANSがドープされたPPyがPNVA中でパーコレーションを形成しているものと考えられる。  Comparison between Embodiment 3 and Comparative Example 4 revealed that a film-like conductive layer that was firmly adhered to the substrate was easily obtained by addition of PNVA, and that there was almost no decrease in electrical conductivity. Probably ANS-doped PPy is percolated in PNVA.

(比較例5)
さらに比較のため比較例5として、PNVAに変えて、重量平均分子量85000〜124000、鹸化度98〜99%のPVA(Aldrich製)を添加した以外、実施の形態1と同様にしてPSSが゛ドープされたPEDOT分散液を作製した。スライドガラスに塗布し、110℃で乾燥したところ、強固に密着したフィルム状導電層が得られた。
(Comparative Example 5)
Further, as a comparative example 5 for comparison, in place of PNVA, PSS having a weight average molecular weight of 85000 to 124000 and a saponification degree of 98 to 99% was added in the same manner as in the embodiment 1, except that PVA was added. A prepared PEDOT dispersion was prepared. When applied to a slide glass and dried at 110 ° C., a film-like conductive layer that was firmly adhered was obtained.

実施の形態1と同様に電気伝導度を測定したところ8.2S/cmが得られた。PNVAの方がPVAよりも導電性微粒子のパーコレーション形成の閾値が低いために同じ比率の絶縁性ポリマーが含まれているにも関わらず、本発明の導電性組成物の方が高い電気伝導度が得られることが明らかである。  When the electric conductivity was measured in the same manner as in the first embodiment, 8.2 S / cm was obtained. The conductive composition of the present invention has higher electrical conductivity even though PNVA contains the same proportion of insulating polymer because the threshold of percolation formation of conductive fine particles is lower than that of PVA. It is clear that it is obtained.

(比較例6)
さらに比較のため比較例6として、PNVAに変えて、重量平均分子量630000のポリビニルピロリドン(PVP:東京化成工業製)を添加した以外、実施の形態3と同様にしてANSが゛ドープされたPPy分散液を作製した。スライドガラスに塗布し、110℃で乾燥したところ、強固に密着したフィルム状導電層が得られた。
(Comparative Example 6)
Further, as a comparative example 6 for comparison, PPy dispersion in which ANS was “doped” in the same manner as in the third embodiment except that polyvinylpyrrolidone (PVP: manufactured by Tokyo Chemical Industry Co., Ltd.) having a weight average molecular weight of 630000 was added instead of PNVA. A liquid was prepared. When applied to a slide glass and dried at 110 ° C., a film-like conductive layer that was firmly adhered was obtained.

実施の形態1と同様に電気伝導度を測定したところ7.9S/cmが得られた。PNVAの方がPVPよりも導電性微粒子のパーコレーション形成の閾値が低いために同じ比率の絶縁性ポリマーが含まれているにも関わらず、本発明の導電性組成物の方が高い電気伝導度が得られることが明らかである。  When the electrical conductivity was measured in the same manner as in the first embodiment, 7.9 S / cm was obtained. The conductive composition of the present invention has a higher electrical conductivity even though PNVA contains the same proportion of insulating polymer because the threshold of percolation formation of conductive fine particles is lower than that of PVP. It is clear that it is obtained.

以上述べたように、実施の形態3と比較例(4)〜比較例(6)比較から、PNVAを添加することによりPPyの電気伝導度をほとんど低下させることなく、優れた密着強度を有する導電性フィルムが得られることが明らかになった。  As described above, from the comparison of Embodiment 3 and Comparative Example (4) to Comparative Example (6), the conductivity having excellent adhesion strength is obtained by adding PNVA with almost no decrease in the electrical conductivity of PPy. It became clear that a protective film was obtained.

本発明による導電性組成物は容易に薄膜状に形成でき、バインダ添加による電気伝導度の低下がほとんどなくかつ基板への密着製にも優れているために帯電防止材料として有用性が極めて高い。
上記の実施の形態では、PSSがドープされたPEDOTとANSが支配的にドープされたPPyについてのみ述べたが、他のドーパントがドープされた場合にも同様の効果が得られ、本発明はドーパントの種類に限定されない。またとしてPEDOTとPPyを用いた場合についてのみ述べたが、他のπ共役二重結合導電性を用いることもでき、本発明はその種類に限定されない。また、酸化剤として過硫酸カリウムと硫酸鉄(III)を混合して用いた場合についてのみ述べたが、単独で使用しても良く、過硫酸塩は、例えばアンモニウムなど他のカチオンを用いたものも使用できる。また遷移金属酸化剤として鉄(III)を用いた場合のみ述べたが、例えばセリウム(IV)など他の遷移金属塩を用いることもできる。重合性モノマーを酸化重合可能な遷移金属であれば、どのようなものを用いてもよく、本発明はその種類に限定されない。
The conductive composition according to the present invention can be easily formed into a thin film, has almost no decrease in electrical conductivity due to the addition of a binder, and is excellent in adhesion to a substrate. Therefore, it is extremely useful as an antistatic material.
In the above embodiment, only PEDOT doped with PSS and PPy doped predominantly with ANS are described, but the same effect can be obtained when other dopants are doped. It is not limited to the kind of. Moreover, although only the case where PEDOT and PPy were used was described, other π-conjugated double bond conductivity can also be used, and the present invention is not limited to that type. Moreover, although only the case where potassium persulfate and iron (III) sulfate were mixed and used as an oxidizing agent was described, it may be used alone, and the persulfate is one using other cations such as ammonium, for example. Can also be used. Although only the case where iron (III) is used as the transition metal oxidant has been described, other transition metal salts such as cerium (IV) can also be used. Any transition metal that can oxidatively polymerize a polymerizable monomer may be used, and the present invention is not limited to that type.

(実施の形態4)
厚さ100μmのアルミニウムエッチド箔(幅5mm長さ7mm)の一端に、図1に示すように直径1mmのアルミニウムリードを溶接して、キャパシタ陽極とした。この陽極を10個準備した。この陽極に3%アジピン酸アンモニウム水溶液を用いて70℃/16Vで陽極酸化被膜を形成した。120Hzにおける静電容量は18.5μFであった。実施の形態1で作製した導電性高分子分散液にDMSOを5重量%添加して陰極導電層形成用PEDOT分散液を準備した。前記分散液に前記陽極を浸漬後110℃で乾燥した。この操作を2回繰り返してPVNAをバインダとしたPEDOT層からなる陰極導電層を形成

Figure 2012153867
mm銅製の陰極リードを前記銀ペイント接着した。加熱条件は110℃で1時間である。このようにして平板型アルミニウム固体電解コンデンサを10個作製した。図2にその断面概要図を示す。(Embodiment 4)
As shown in FIG. 1, an aluminum lead having a diameter of 1 mm was welded to one end of an aluminum etched foil (width 5 mm, length 7 mm) having a thickness of 100 μm to form a capacitor anode. Ten anodes were prepared. An anodized film was formed on this anode at 70 ° C./16 V using a 3% ammonium adipate aqueous solution. The capacitance at 120 Hz was 18.5 μF. 5% by weight of DMSO was added to the conductive polymer dispersion prepared in Embodiment 1 to prepare a PEDOT dispersion for forming a cathode conductive layer. The anode was dipped in the dispersion and dried at 110 ° C. This operation is repeated twice to form a cathode conductive layer consisting of a PEDOT layer using PVNA as a binder.
Figure 2012153867
A silver lead made of mm copper was bonded to the silver paint. The heating condition is 110 ° C. for 1 hour. In this manner, 10 flat aluminum solid electrolytic capacitors were produced. FIG. 2 shows a schematic sectional view thereof.

このキャパシタの120Hzにおける静電容量ならびに損失係数をLCRメータ4263B(アジレント製)で測定した。静電容量の平均値は15.7μF(平均容量達成率85%)、また損失係数の平均値は1.5%であった。
さらにインピーダンスの周波数特性をインピーダンスアナライザ(アジレント製4294A)で測定した。その結果の1例を図3に示す。陰極導電層に使用された導電性組成物の電気伝導度が高いことが反映した理想的なインピーダンス周波数特性を示すことが明らかになった。またPNVAをバインダとして用いることにより、誘電体被膜に対する密着性にも優れ、カーボン塗料ならびに銀ペイントからなる集電体形成の際の熱ストレスにも耐え、剥離による容量の劣化は観察されなかった。
The capacitance and loss factor at 120 Hz of this capacitor were measured with an LCR meter 4263B (manufactured by Agilent). The average value of the capacitance was 15.7 μF (average capacity achievement rate of 85%), and the average value of the loss coefficient was 1.5%.
Furthermore, the frequency characteristic of the impedance was measured with an impedance analyzer (Agilent 4294A). An example of the result is shown in FIG. It became clear that the impedance frequency characteristic reflecting the high electrical conductivity of the conductive composition used for the cathode conductive layer was exhibited. Further, by using PNVA as a binder, the adhesiveness to the dielectric film was excellent, and it was able to withstand thermal stress when forming a current collector made of carbon paint and silver paint, and no capacity deterioration due to peeling was observed.

本発明で得られたキャパシタは、陰極導電層のPEDOTの耐熱性が優れているために、樹脂モールドすれば表面実装型の構成も容易である。またこれまで不可欠であったその場重合が不必要になるために、理想的な周波数特性を有する固体電解キャパシタを容易に低コストで得ることが可能である。
ANSがドープされたPPyも耐熱性に優れているため、PEDOTの場合と同様に優れた特性の固体電解キャパシタが実現できる。ANSがドープされたPPyの電気伝導度の劣化は主としてピロール環の酸化によるもので、外装により酸素の透過を抑制することにより、実用的なレベルの耐熱性を付与することができる。なお本発明のキャパシタは積層が容易であり、積層により大容量化が可能である。
Since the capacitor obtained by the present invention is excellent in the heat resistance of PEDOT of the cathode conductive layer, a surface mount type configuration can be easily achieved by resin molding. Further, since in-situ polymerization which has been indispensable until now becomes unnecessary, a solid electrolytic capacitor having ideal frequency characteristics can be easily obtained at low cost.
Since PPy doped with ANS is also excellent in heat resistance, a solid electrolytic capacitor with excellent characteristics can be realized as in the case of PEDOT. The deterioration of the electrical conductivity of PPy doped with ANS is mainly due to oxidation of the pyrrole ring, and a practical level of heat resistance can be imparted by suppressing oxygen permeation by the exterior. Note that the capacitor of the present invention can be easily stacked, and the capacity can be increased by stacking.

本発明による導電性組成物は、PNVAを共存させるようにしており、PNVAが導電性高分子の重合過程で相互作用を果たし、分散性の高い導電性高分子微粒子が形成され、かつまた重合導電性高分子微粒子のパーコレーション形成の閾値が低いため、従来のバインダで見られたような、バインダに起因する電気伝導度の低下が極めて小さく、高い電気伝導度のフィルムが得られる。  In the conductive composition according to the present invention, PNVA is allowed to coexist, PNVA interacts in the polymerization process of the conductive polymer, conductive polymer fine particles having high dispersibility are formed, and polymerization conductive Since the threshold value for forming the percolation of the conductive polymer fine particles is low, the decrease in electric conductivity caused by the binder as seen in the conventional binder is extremely small, and a film having high electric conductivity can be obtained.

本発明で得られる導電性組成物は電気伝導度が高く、かつ基板に対する密着性にも優れているために、帯電防止材として有用である。他の絶縁性高分子フィルム上にコーティングすることにより、帯電防止包装材として、例えば帯電が原因で故障を起こす恐れがある電子デバイスの包装に使用することが可能である。また、繊維の表面に薄くコーティングすることにより、帯電防止繊維を容易に製造することが可能になる。  The conductive composition obtained in the present invention is useful as an antistatic material because of its high electrical conductivity and excellent adhesion to the substrate. By coating on another insulating polymer film, it can be used as an antistatic packaging material, for example, for packaging electronic devices that may fail due to charging. Moreover, it becomes possible to manufacture an antistatic fiber easily by thinly coating the fiber surface.

本発明にかかる導電性組成物は、キャパシタの陰極導電層として用いることができる。本発明にかかるキャパシタは陰極導電層を塗布あるいはディップ乾燥することにより容易に形成できる。しかも用いたれている導電性組成物の電気伝導度が高いために理想的なインピーダンス−周波数を示す。従来のその場重合により導電性高分子を用いて陰極導電層を形成する必要がなく、工程が容易で導電性高分子モノマーのロスが発生することもない。そのため、高性能の固体電解キャパシタを安価に製造することができる。  The conductive composition according to the present invention can be used as a cathode conductive layer of a capacitor. The capacitor according to the present invention can be easily formed by applying or dipping the cathode conductive layer. And since the electrical conductivity of the electrically conductive composition used is high, an ideal impedance-frequency is shown. It is not necessary to form a cathode conductive layer using a conductive polymer by conventional in-situ polymerization, the process is easy, and no loss of the conductive polymer monomer occurs. Therefore, a high performance solid electrolytic capacitor can be manufactured at low cost.

本発明にかかる導電性組成物の応用としては上記の他、例えば有機ELの電荷輸送層、太陽電池の電極、ITOからなる透明電極の代替、リチウム二次電池の正極構成材料等が上げられる。このように電子デバイスならびにエネルギーデバイス等に応用が可能であり、産業上の利用可能性が極めて高い。  In addition to the above, the conductive composition according to the present invention includes, for example, organic EL charge transport layers, solar cell electrodes, alternatives to transparent electrodes made of ITO, and positive electrode constituent materials for lithium secondary batteries. Thus, it can be applied to electronic devices, energy devices and the like, and the industrial applicability is extremely high.

1:陽極箔
2:陽極リード
3:陽極化成被膜
4:導電性組成物層
5:カーボン層
6:銀ペイント層
7:7陽極リード
1: Anode foil 2: Anode lead 3: Anodized coating 4: Conductive composition layer 5: Carbon layer 6: Silver paint layer 7: 7 Anode lead

Claims (12)

アニオンがドープされた共役二重結合導電性高分子とポリ−N−ビニルアセトニトリル(PNVA)を含む導電性組成物。  A conductive composition comprising a conjugated double bond conductive polymer doped with anions and poly-N-vinylacetonitrile (PNVA). 共役二重結合導電性高分子がピロールまたはチオフェン環を繰り返し単位として有するものである請求項1記載の導電性組成物。  The conductive composition according to claim 1, wherein the conjugated double bond conductive polymer has a pyrrole or thiophene ring as a repeating unit. 共役二重結合導電性高分子が3,4−エチレンジオキシチオフェン(EDOT)またはピロールを繰り返し単位として有するものである請求項1記載の導電性組成物。  The conductive composition according to claim 1, wherein the conjugated double bond conductive polymer has 3,4-ethylenedioxythiophene (EDOT) or pyrrole as a repeating unit. アニオンがドープされた共役二重結合導電性高分子とポリ−N−ビニルアセトニトリル(PNVA)を含む導電性組成物が液体媒体中に分散された請求項1記載の導電性組成物。  The conductive composition according to claim 1, wherein a conductive composition comprising a conjugated double bond conductive polymer doped with anions and poly-N-vinylacetonitrile (PNVA) is dispersed in a liquid medium. 液体媒体として、少なくても水を含む請求項4記載の導電性組成物。  The conductive composition according to claim 4, wherein the liquid medium contains at least water. PNVAと共役二重結合導電性高分子を生成する重合性モノマーと前記重合性モノマーを重合するための酸化剤が共存する液体媒体中で前記重合性モノマーを重合させてなる導電性組成物の製造方法。  Production of a conductive composition obtained by polymerizing the polymerizable monomer in a liquid medium in which a polymerizable monomer that forms PNVA and a conjugated double bond conductive polymer and an oxidizing agent for polymerizing the polymerizable monomer coexist Method. 共役二重結合導電性高分子がピロールまたはチオフェン環を繰り返し単位として有するものである請求項6記載の導電性組成物の製造方法。  The method for producing a conductive composition according to claim 6, wherein the conjugated double bond conductive polymer has a pyrrole or thiophene ring as a repeating unit. 共役二重結合導電性高分子が3,4−エチレンジオキシチオフェン(EDOT)またはピロールを繰り返し単位として有するものある請求項7記載の導電性組成物の製造方法。  The method for producing a conductive composition according to claim 7, wherein the conjugated double bond conductive polymer has 3,4-ethylenedioxythiophene (EDOT) or pyrrole as a repeating unit. 液体媒体として、少なくても水を含む請求項6から8記載の導電性組成物の製造方法。  The method for producing a conductive composition according to claim 6, wherein the liquid medium contains at least water. 酸化剤として遷移金属塩あるいは過硫酸塩から選ばれる少なくても1種を含む請求項6から9記載の導電性組成物の製造方法。  The method for producing a conductive composition according to any one of claims 6 to 9, comprising at least one selected from transition metal salts or persulfates as an oxidizing agent. 請求項1から5記載の導電性組成物層を形成した帯電防止材料。  An antistatic material on which the conductive composition layer according to claim 1 is formed. 請求項1から5記載の導電性組成物を陰極導電層に用いた固体電解コンデンサ。  A solid electrolytic capacitor using the conductive composition according to claim 1 for a cathode conductive layer.
JP2011024370A 2011-01-21 2011-01-21 Conductive composition as well as production method therefor, and capacitor prepared using the conductive composition Pending JP2012153867A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011024370A JP2012153867A (en) 2011-01-21 2011-01-21 Conductive composition as well as production method therefor, and capacitor prepared using the conductive composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011024370A JP2012153867A (en) 2011-01-21 2011-01-21 Conductive composition as well as production method therefor, and capacitor prepared using the conductive composition

Publications (1)

Publication Number Publication Date
JP2012153867A true JP2012153867A (en) 2012-08-16

Family

ID=46835931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011024370A Pending JP2012153867A (en) 2011-01-21 2011-01-21 Conductive composition as well as production method therefor, and capacitor prepared using the conductive composition

Country Status (1)

Country Link
JP (1) JP2012153867A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014228959A (en) * 2013-05-20 2014-12-08 日本電信電話株式会社 Interface, and information processor
JP2015118978A (en) * 2013-12-17 2015-06-25 ニチコン株式会社 Solid electrolytic capacitor and method for manufacturing the same
WO2020230835A1 (en) 2019-05-16 2020-11-19 昭和電工株式会社 Conductive polymer composition and method for stably storing conductive polymer solution

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014228959A (en) * 2013-05-20 2014-12-08 日本電信電話株式会社 Interface, and information processor
JP2015118978A (en) * 2013-12-17 2015-06-25 ニチコン株式会社 Solid electrolytic capacitor and method for manufacturing the same
WO2020230835A1 (en) 2019-05-16 2020-11-19 昭和電工株式会社 Conductive polymer composition and method for stably storing conductive polymer solution
KR20220003596A (en) 2019-05-16 2022-01-10 쇼와 덴코 가부시키가이샤 Stable storage method of conductive polymer composition and conductive polymer solution
EP3971242A4 (en) * 2019-05-16 2023-05-24 Resonac Corporation Conductive polymer composition and method for stably storing conductive polymer solution

Similar Documents

Publication Publication Date Title
JP7182588B2 (en) Dispersion comprising a mixture of a conductive polymer having a chain-bound counterion and a conductive polymer having a non-chain-bound counterion for use in a capacitor anode
JP5491246B2 (en) Conductive polymer and method for producing the same, conductive polymer dispersion, solid electrolytic capacitor and method for producing the same
JP4600398B2 (en) Solid electrolytic capacitor and manufacturing method thereof
US9793058B2 (en) Capacitor with charge time reducing additives and work function modifiers
JP5152882B1 (en) Conductive polymer solution, conductive polymer composition, solid electrolytic capacitor using the same, and method for producing the same
Kim et al. High performance flexible double-sided micro-supercapacitors with an organic gel electrolyte containing a redox-active additive
WO2012157693A1 (en) Conductive polymer suspension and method for producing same, conductive polymer material, and electrolytic capacitor and method for producing same
US8804312B2 (en) Electroconductive polymer composition, method for producing the same, and solid electrolytic capacitor using electroconductive polymer composition
WO2018020985A1 (en) Electrolytic capacitor and production method thereof
JP4315038B2 (en) Solid electrolytic capacitor
JP6183835B2 (en) Method for producing conductive polymer dispersion
JP2010040770A (en) Conductive polymer suspension, method of manufacturing same, conductive polymer material, electrolytic capacitor, solid electrolytic capacitor, and method of manufacturing same
WO2011004833A1 (en) Composition for solid electrolyte and solar cell using same
JP2013172142A (en) Conductive polymer suspension solution, conductive polymer material, and electrolytic capacitor and method for manufacturing the same
JP6016780B2 (en) Conductive polymer solution and method for producing the same, conductive polymer material, solid electrolytic capacitor using the same, and method for producing the same
US7862852B2 (en) Manufacturing method of tantalum condenser
JP2012153867A (en) Conductive composition as well as production method therefor, and capacitor prepared using the conductive composition
JP6878896B2 (en) Electrolytic capacitors and their manufacturing methods
JP2010044951A (en) Electrode active material and electrode using the same
JP7081161B2 (en) Polymerization solution for electrolytic capacitors, cathode for electrolytic capacitors using this polymerization solution, and method for manufacturing electrolytic capacitors
JP6266241B2 (en) Conductive polymer composition and method for producing the same
WO2018043063A1 (en) Electrolytic capacitor and method for producing same
US10204743B2 (en) Capacitor with charge time reducing additives and work function modifiers
WO2024057931A1 (en) Additive for organic conductors
JP2009087789A (en) Electrode active material and electrode using the same