JP2011057505A - Porous ceramics - Google Patents

Porous ceramics Download PDF

Info

Publication number
JP2011057505A
JP2011057505A JP2009208961A JP2009208961A JP2011057505A JP 2011057505 A JP2011057505 A JP 2011057505A JP 2009208961 A JP2009208961 A JP 2009208961A JP 2009208961 A JP2009208961 A JP 2009208961A JP 2011057505 A JP2011057505 A JP 2011057505A
Authority
JP
Japan
Prior art keywords
resin
silicon carbide
porous ceramic
dielectric material
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009208961A
Other languages
Japanese (ja)
Inventor
Chou-Mo Wang
州模 王
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ABC Taiwan Electronics Corp
Original Assignee
ABC Taiwan Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ABC Taiwan Electronics Corp filed Critical ABC Taiwan Electronics Corp
Priority to JP2009208961A priority Critical patent/JP2011057505A/en
Publication of JP2011057505A publication Critical patent/JP2011057505A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a porous ceramics, regarding one kind of porous ceramics, in which, particularly, the surface area of air contact is increased, and the heat radiation effect of a radiator can be improved. <P>SOLUTION: A resin is added to granular silicon carbide by a suitable proportion, thereafter, a solvent is added thereto, and mixing is caused so as to uniformly stir the mixture. In the kneading process, the resin covers the surface of the granular silicon carbide so as to form a colloid object, this colloid object is molded by extrusion molding, and the solid matter is sintered at the melting temperature of the silicon carbide. Since the melting temperature of the silicon carbide is extremely higher than that of the resin, the resin is perfectly burnt, and vacancies are formed in the spaces of the silicon carbide so as to form porous ceramics. Further, by altering the addition ratio of the resin, the size of the vacancies and the number of the vacancies, the proper conditions of the thermal conductivity and heat radiation in the porous ceramics can be adjusted. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は一種の多孔質セラミックスに係り、特に空気接触の表面積を増やし、放熱器の放熱効果を向上できる多孔質セラミックスに関する。 The present invention relates to a kind of porous ceramics, and more particularly to a porous ceramic that can increase the surface area of air contact and improve the heat dissipation effect of a radiator.

最近は、電子素子の微小化および単位面積当たりの集積度の増加に伴って、電子デバイスの総発熱量が高くなるため、放熱効果を向上する必要がある。また、電子素子による電子電離と熱応力が全体の安定性に影響を与え、電子素子の寿命が短縮されることを避けなければならない。一方、いままでの純銅またはアルミ合金を熱拡散基材とした放熱方式は、もはや使用に適さない。よって、先進技術においては、炭化ケイ素(silicon carbide、SiC)の粉体を多孔質炭化ケイ素セラミック体に焼結し、空孔によって空気接触の表面積を増すことにより放熱の加速化が図られている。 Recently, the total heat generation of an electronic device increases with the miniaturization of electronic elements and the increase in the degree of integration per unit area, so it is necessary to improve the heat dissipation effect. In addition, it must be avoided that the electron ionization and thermal stress caused by the electronic element affect the overall stability and shorten the life of the electronic element. On the other hand, the conventional heat dissipation method using pure copper or aluminum alloy as a heat diffusion base material is no longer suitable for use. Therefore, in advanced technology, silicon carbide powder (SiC) powder is sintered into a porous silicon carbide ceramic body, and the heat release is accelerated by increasing the surface area of the air contact by the pores. .

しかしながら、この種の多孔質炭化ケイ素セラミック体は製造するときに、以下の欠点があった。 However, this type of porous silicon carbide ceramic body has the following disadvantages when manufactured.

<イ>炭化ケイ素粉体は焼結するときに、炭化ケイ素自体の拡散係数によって空孔が形成されるが、その空孔の分布が均一でなく、かつ空孔の形成面積を精確に管理できないため、放熱効果が限られている。 <I> When silicon carbide powder is sintered, vacancies are formed by the diffusion coefficient of silicon carbide itself, but the distribution of the vacancies is not uniform and the formation area of the vacancies cannot be accurately controlled. Therefore, the heat dissipation effect is limited.

<ロ>炭化ケイ素を焼結する前に、水と少量の結合剤を添加し炭化ケイ素と結合させた上、スラッジ状に攪拌した後に、水分を蒸発させて、成形体に加圧成形し、その後の焼結に提供する。しかしながら、炭化ケイ素の硬度は非常に高く、加圧成形に使用されている金型が炭化ケイ素と接触するため、金型の損耗が大きいほか、成形体の成形に大きい圧力が必要であった。 <B> Before sintering silicon carbide, after adding water and a small amount of binder and bonding with silicon carbide, after stirring in a sludge form, water is evaporated and pressure-molded into a molded body, Provided for subsequent sintering. However, the hardness of silicon carbide is very high, and since the mold used for pressure molding comes into contact with silicon carbide, the wear of the mold is large, and a large pressure is required for molding the molded body.

そこで、本発明の主な目的は、樹脂を炭化ケイ素粉粒子に添加し、炭化ケイ素を焼結した後に、樹脂が完全に燃焼され、空孔を形成する働きを利用し、樹脂の添加率を調節することによって、炭化ケイ素焼結後の空孔の大きさと単位面積を有する空孔数を改変し、多孔質セラミックスの熱伝導と放熱の最適条件の調製を行う、一種の多孔質セラミックスを提供することにある。 Therefore, the main object of the present invention is to add the resin to the silicon carbide powder particles and sinter the silicon carbide. Then, the resin is completely burned and the function of forming pores is used to increase the resin addition rate. Providing a kind of porous ceramics by adjusting the size of pores after silicon carbide sintering and adjusting the number of pores with unit area by adjusting the optimal conditions for heat conduction and heat dissipation of porous ceramics There is to do.

また、本発明の次の目的は、誘電体材料を炭化ケイ素間の結合物質として、省エネと製造コストの低減を実現する、一種の多孔質セラミックスを提供することにある。 Another object of the present invention is to provide a kind of porous ceramics that realizes energy saving and reduction in manufacturing cost by using a dielectric material as a bonding material between silicon carbide.

また、本発明のもう一つの目的は、樹脂を粉粒子状の炭化ケイ素の表面に覆い、金型によって押出成形するときに、金型は硬度の低い樹脂と接触し、成形に必要な圧力を和らげ、金型の損耗を低減する、一種の多孔質セラミックスを提供することにある。 Another object of the present invention is to cover the resin on the surface of powdered silicon carbide, and when the mold is extruded by a mold, the mold comes into contact with a resin having low hardness, and the pressure required for molding is applied. An object of the present invention is to provide a kind of porous ceramics that can soften and reduce the wear of the mold.

さらに、本発明のさらなる一つの目的は、樹脂を粉粒子状の炭化ケイ素の表面に覆い、金型によって押出成形する前に、あらかじめ造粒し一定範囲の粒径を選別した後に、これらの顆粒を金型に入れて押出成形加工を実施し、炭化ケイ素を焼結し樹脂を完全に燃焼した後に形成される空孔が均一である、一種の多孔質セラミックスを提供することにある。 Further, another object of the present invention is to cover the resin on the surface of powdered silicon carbide, and granulate these particles after pre-granulating and selecting a certain range of particle size before extrusion molding with a mold. It is an object of the present invention to provide a kind of porous ceramics in which the pores formed after the silicon carbide is sintered and the resin is completely burned are uniform.

前記目的を達成するため、本発明に係る多孔質セラミックスの製作は、以下のステップによって行われる。 In order to achieve the above object, the porous ceramic according to the present invention is manufactured by the following steps.

<イ>混練、粉粒子状の炭化ケイ素と誘電体材料とを適切な比例によって混練し、樹脂を加える。さらに溶剤を加えて、均一に攪拌して混合することによって、混練の過程で樹脂を粉粒子表面に覆わせる。 <I> Kneading, kneading powdered silicon carbide and dielectric material in an appropriate proportion, and adding a resin. Further, a solvent is added and uniformly stirred and mixed, so that the resin is covered on the surface of the powder particles in the course of kneading.

<ロ>揮発、溶剤が完全に揮発されるまで引き続き攪拌する。 <B> Continue to stir until volatilization and solvent are completely volatilized

<ハ>造粒、溶剤が揮発した後の混練物を造粒し、得られた顆粒から一定粒径の粒子を選別する。 <C> Granulation and granulation of the kneaded product after the solvent has been volatilized, and selecting particles having a fixed particle size from the obtained granules.

<ニ>成形、選別された顆粒を金型に入れて、押出成形する。 <D> The molded and selected granules are put into a mold and extruded.

<ホ>硬化、押出成形された炭化ケイ素を加熱し、炭化ケイ素に覆われた樹脂を固化させ、炭化ケイ素を固形物に形成する。 <E> Cured and extruded silicon carbide is heated to solidify the resin covered with silicon carbide to form silicon carbide into a solid.

<へ>焼結、誘電体材料の溶融点温度によって前記固形物を加熱させ、誘電体材料を溶融し炭化ケイ素に結合した上、樹脂を完全に燃焼させて空孔を形成し、多孔質セラミックスを仕上げる。 <F> Sintering, heating the solid according to the melting point temperature of the dielectric material, melting the dielectric material and bonding it to silicon carbide, and then completely burning the resin to form pores, thereby producing porous ceramics. Finish.

前記説明の通り、本発明が公知技術の不足点と欠点を解決し得る主な技術手段を以下の通り説明する。 As described above, main technical means by which the present invention can solve deficiencies and shortcomings of known techniques will be described as follows.

<イ>本発明は樹脂を粉粒子状の炭化ケイ素と炭化ケイ素ベースの表面に覆い、金型によって押出成形加工するときに、炭化ケイ素ではなく樹脂と接触する。樹脂の硬度が炭化ケイ素より柔らかいため、低い圧力による成形加工が可能であり、金型は硬度の高い炭化ケイ素に接触することによる高い損耗を避けられる。 <I> In the present invention, the resin is covered with powdered silicon carbide and a silicon carbide base surface, and is contacted with the resin instead of silicon carbide when extrusion molding is performed by a mold. Since the hardness of the resin is softer than that of silicon carbide, molding can be performed with a low pressure, and the mold can avoid high wear due to contact with the silicon carbide having high hardness.

<ロ>本発明は樹脂を完全に燃焼させ、炭化ケイ素同士の間に空間を残し、炭化ケイ素は炭化ケイ素ベースによって結合し空孔を形成する。よって、空孔の大きさと単位面積の有する空孔数は、樹脂の添加率を調節すれば、多孔質セラミックスの熱伝導と放熱の最適条件に調製できる。 <B> The present invention completely burns the resin, leaving a space between the silicon carbides, and the silicon carbide is bonded by the silicon carbide base to form pores. Therefore, the size of the pores and the number of pores of the unit area can be adjusted to optimum conditions for heat conduction and heat dissipation of the porous ceramics by adjusting the resin addition rate.

<ハ>本発明は誘電体材料を炭化ケイ素間の結合物質に使用し、誘電体材料の溶融温度は炭化ケイ素よりはるかに低いため、燃焼温度を引き下げることによって、省エネと製造コストの低減を実現できるほか、様々な需要により、異なる誘電体材料を使用できる。その例として、ベアリングに使用されるときには、溶融温度の高い誘電体材料を使用し、ヒートシンクに使用されるときは、溶融温度の低い誘電体材料を使用する。 <C> The present invention uses a dielectric material as a bonding material between silicon carbide, and since the melting temperature of the dielectric material is much lower than that of silicon carbide, lowering the combustion temperature realizes energy saving and reduced manufacturing costs In addition, different dielectric materials can be used according to various demands. For example, a dielectric material having a high melting temperature is used when used for a bearing, and a dielectric material having a low melting temperature is used when used for a heat sink.

<ニ>本発明は、樹脂を粉粒子状の炭化ケイ素の表面に覆い、金型によって押出成形する前に、あらかじめ造粒し、一定範囲の粒径を選別した後に、これらの顆粒を金型に入れて押出成形加工を実施し、炭化ケイ素を焼結し樹脂が完全燃焼された後に形成する空孔を均一にさせることによって、全体の放熱効果を均一化できる。 <D> In the present invention, the resin is coated on the surface of powdered silicon carbide, granulated in advance before extrusion molding with a mold, and after selecting a certain range of particle diameter, these granules are molded into a mold. The entire heat dissipation effect can be made uniform by carrying out extrusion molding and making the pores formed after the silicon carbide is sintered and the resin is completely burned.

本発明に係る多孔質セラミックスは炭化ケイ素(silicon carbide、SiC)を基材とし、多孔質セラミックスを製作するとき、あらかじめ粉粒子状の炭化ケイ素に適切な比例の熱硬化性樹脂を添加した後に、アセトンなどの溶剤を加えて、炭化ケイ素と均一に攪拌し混練する。溶剤によって、樹脂を液状に溶解し、樹脂は混練の過程で、粉粒子状の炭化ケイ素の表面を覆い、溶剤を完全に揮発させて膠質物になるまで、引き続き攪拌する。 The porous ceramic according to the present invention is based on silicon carbide (SiC), and when a porous ceramic is manufactured, after adding an appropriate proportional thermosetting resin to powdered silicon carbide in advance, A solvent such as acetone is added, and the mixture is uniformly stirred and mixed with silicon carbide. The resin is dissolved in a liquid state with a solvent, and the resin is continuously stirred in the course of kneading until the surface of the powdered silicon carbide is covered and the solvent is completely volatilized to become a glue.

続いて、この膠質物を造粒し、得られた顆粒のうち一定の粒径範囲を選別した後に、この顆粒を金型に入れて、押出成形加工し、製品の所望形状を形成した後に、低温加熱(約摂氏180度)方式によって、樹脂を硬化させ固形物を形成する。 Subsequently, after granulating this colloid and selecting a certain particle size range among the obtained granules, this granule is put into a mold and extruded to form the desired shape of the product. The resin is cured to form a solid by a low-temperature heating (about 180 degrees Celsius) method.

さらに炭化ケイ素の溶融点温度(約摂氏2000〜2600度)によって、この固形物を加熱して、炭化ケイ素をセラミックスに焼結する。炭化ケイ素の溶融点は樹脂をはるかに超えるため、樹脂は焼結プロセスで完全に燃焼し、占めていた体積が失われて空孔を形成し、多孔質セラミックスを形成する。 Further, the solid is heated by the melting point temperature of silicon carbide (about 2000 to 2600 degrees Celsius) to sinter silicon carbide into ceramics. Since the melting point of silicon carbide far exceeds that of the resin, the resin burns completely during the sintering process, and the occupied volume is lost, forming voids and forming porous ceramics.

以上の説明から、多孔質セラミックスの空孔は樹脂を完全に燃焼し残された空孔からなることが分かる。よって、空孔の大きさまたは単位面積の空孔数を調節することは、樹脂の添加率を調節すれば実現可能であり、必要によって、多種類の多孔質セラミックスを製造できる。 From the above description, it can be seen that the pores of the porous ceramics are pores left after the resin is completely burned. Therefore, adjusting the size of the pores or the number of pores per unit area can be realized by adjusting the resin addition rate, and various types of porous ceramics can be produced as necessary.

炭化ケイ素の溶融点は非常に高く、製造された多孔質セラミックスの耐熱温度も非常に高い。そこで、余り高くない耐熱温度で使用する場合には、低溶融点の誘電体材料を炭化ケイ素間の結合物質として添加し、燃焼温度を引き下げて、誘電体材料の溶融点で焼結することによって、省エネと製造コストの低減を実現できる。 The melting point of silicon carbide is very high, and the heat resistance temperature of the produced porous ceramics is also very high. Therefore, when using at a heat resistance temperature that is not too high, a dielectric material with a low melting point is added as a bonding substance between silicon carbides, and the combustion temperature is lowered and sintered at the melting point of the dielectric material. , Energy saving and manufacturing cost reduction can be realized.

さらに、この誘電体材料は酸化ケイ素ベース溶融物(Silicon Oxide Based Meltings、溶融温度約摂氏1000度)であり、前記誘電体材料をプロセスに添加する前に、あらかじめ粉粒子状の炭化ケイ素と誘電体材料とを適切な比例によって混合し樹脂を加える。このとき、樹脂は熱硬化性樹脂を使用し、粉粒子状の炭化ケイ素と誘電体材料と樹脂との添加比例は約8:1:1とする。さらに、溶剤を加えて均一になるまで攪拌し混練する。このとき、溶剤はアセトンなどを使用する。溶剤によって、樹脂の溶液を液状に溶解し、樹脂は混練プロセスにおいて、粉粒子状の炭化ケイ素と誘電体材料の表面を覆い、溶剤が完全に揮発し膠質物になるまで、引き続きに攪拌する。それに伴い、この膠質物を造粒して得られた顆粒のうち、一定の粒径範囲を選別し、これらの顆粒を金型に入れて押出成形加工した後に、低温加熱(約摂氏180度)によって樹脂を硬化させ、固形物を形成する。 Further, the dielectric material is a silicon oxide based melt (Silicon Oxide Based Meltings, melting temperature about 1000 degrees Celsius), and before adding the dielectric material to the process, the powdered silicon carbide and dielectric The ingredients are mixed in appropriate proportions and the resin is added. At this time, a thermosetting resin is used as the resin, and the addition proportion of the powdered silicon carbide, the dielectric material, and the resin is about 8: 1: 1. Further, a solvent is added, and the mixture is stirred and kneaded until uniform. At this time, acetone or the like is used as the solvent. The resin solution is dissolved in a liquid by the solvent, and the resin is continuously stirred in the kneading process until the powdered silicon carbide and the surface of the dielectric material are covered and the solvent is completely volatilized and becomes a colloid. Along with this, a certain particle size range is selected from the granules obtained by granulating this colloid, and these granules are put into a mold and extruded, and then heated at a low temperature (about 180 degrees Celsius). To cure the resin and form a solid.

さらに、誘電体材料の溶融温度によって、この固形物を加熱し、誘電体材料を溶かして、炭化ケイ素に結合させる。誘電体材料の溶融点は樹脂よりはるかに高いため、樹脂が完全に燃焼した後、それまでに占めていた体積が失われて、多孔質セラミックスが形成される。 Further, the solid material is heated according to the melting temperature of the dielectric material, and the dielectric material is melted and bonded to silicon carbide. Since the melting point of the dielectric material is much higher than that of the resin, after the resin is completely burned, the volume occupied so far is lost and porous ceramics are formed.

Claims (5)

空気接触の表面積を増やし、放熱器の放熱効果を向上する多孔質セラミックスであって、
前記多孔質セラミックスは炭化ケイ素(SiC)を基材とし、多孔質セラミックスは成形される前に、あらかじめ粉粒子状の前記炭化ケイ素に適切な比例によって、樹脂を加えた後に、溶剤を添加して均一に攪拌し、前記樹脂は前記溶剤によって液状に溶解され、前記樹脂は混練プロセスにおいて、前記粉粒子状の炭化ケイ素の表面を覆い、溶剤が完全に揮発され膠質物になるまでに引き続き攪拌し、前記膠質物を押出成形加工によって成形した後、引き続き低温加熱によって前記樹脂を硬化させ、成形された前記膠質物が固形物を形成し、炭化ケイ素の溶融温度によって焼結を行い、炭化ケイ素をセラミックスに焼成し、炭化ケイ素の溶融点が樹脂よりはるかに高いため、樹脂は焼結プロセスで完全に燃焼され、いままでに占めていた容積が失われて空孔を形成し、多孔質セラミックスが出来上がることを特徴とする、多孔質セラミックス。
It is a porous ceramic that increases the surface area of air contact and improves the heat dissipation effect of the radiator,
The porous ceramic is based on silicon carbide (SiC). Before the porous ceramic is molded, a resin is added to the silicon carbide in powder form in an appropriate proportion, and then a solvent is added. Stir uniformly, the resin is dissolved in a liquid state by the solvent, and the resin covers the surface of the powdered silicon carbide in the kneading process, and is continuously stirred until the solvent is completely volatilized and becomes a glue. Then, after the colloid is formed by extrusion molding, the resin is subsequently cured by low-temperature heating, the formed colloid forms a solid, and is sintered at the melting temperature of silicon carbide. Fired into ceramics, the melting point of silicon carbide is much higher than that of the resin, so the resin is completely burned in the sintering process, and the volume it has occupied so far Lost to form pores, characterized in that the porous ceramic is completed, the porous ceramics.
前記粉粒子状の炭化ケイ素と樹脂とが膠質物に形成された後に、造粒を行い、粒径範囲が一定範囲の顆粒を選別した上、選別された顆粒を押出成形することを特徴とする、請求項1に記載の多孔質セラミックス。 After the powdered silicon carbide and the resin are formed into a colloid, granulation is performed to select granules having a certain particle size range, and then the selected granules are extruded. The porous ceramic according to claim 1. 空気接触の表面積を増やし、放熱器の放熱効果を向上する多孔質セラミックスであって、前記多孔質セラミックスは炭化ケイ素(SiC)を基材とし、誘電体材料によって結合され、前記多孔質セラミックスが成形される前、あらかじめ粉粒子状の前記炭化ケイ素と誘電体材料とを適切な比例によって混合し、樹脂を加えた後に、溶剤を添加して均一に攪拌し、前記樹脂は前記溶剤によって液状に溶解され、前記樹脂は混練プロセスにおいて、前記粉粒子状の炭化ケイ素の表面を覆い、溶剤が完全に揮発され膠質物になるまで引き続き攪拌し、前記膠質物を押出成形加工によって成形した後に、低温加熱によって前記樹脂を硬化させ、成形された前記膠質物を固形物に形成した上、誘電体材料の溶融温度によって固形物を加熱し、誘電体材料を溶融し、炭化ケイ素に結合させ、誘電体材料の溶融点が樹脂よりはるかに高いため、樹脂は焼結プロセスで完全に燃焼され、いままでに占めていた容積が失われて、炭化ケイ素の空間に空孔を形成し、多孔質セラミックスが出来上がることを特徴とする、多孔質セラミックス。 A porous ceramic that increases the surface area of air contact and improves the heat dissipation effect of a radiator, wherein the porous ceramic is based on silicon carbide (SiC) and bonded by a dielectric material, and the porous ceramic is molded Before being mixed, the powdered silicon carbide and dielectric material are mixed in an appropriate proportion, and after adding a resin, a solvent is added and stirred uniformly, and the resin is dissolved in a liquid by the solvent. In the kneading process, the resin covers the surface of the powdered silicon carbide, and is continuously stirred until the solvent is completely volatilized into a gelatinous substance. The resin is cured by the above, and the formed gelatinous substance is formed into a solid substance, and then the solid substance is heated by the melting temperature of the dielectric material. Because it melts and bonds to silicon carbide and the melting point of the dielectric material is much higher than that of the resin, the resin is completely burned in the sintering process, losing the previously occupied volume, and the silicon carbide space Porous ceramics characterized in that pores are formed in the porous ceramics. 前記粉粒子状の炭化ケイ素と誘電体材料と樹脂とが膠質物に形成された後に、造粒を行い、粒径範囲が一定範囲の顆粒を選別した上、選別された顆粒を押出成形することを特徴とする、請求項3に記載の多孔質セラミックス。 After the powdered silicon carbide, dielectric material, and resin are formed into a glue, granulation is performed to select granules having a certain particle size range, and then the selected granules are extruded. The porous ceramic according to claim 3, wherein: 前記誘電体材料は酸化ケイ素ベース(Silicon Oxide Based Meltings)であることを特徴とする、請求項3に記載の多孔質セラミックス。 The porous ceramic according to claim 3, wherein the dielectric material is based on silicon oxide based melting.
JP2009208961A 2009-09-10 2009-09-10 Porous ceramics Withdrawn JP2011057505A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009208961A JP2011057505A (en) 2009-09-10 2009-09-10 Porous ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009208961A JP2011057505A (en) 2009-09-10 2009-09-10 Porous ceramics

Publications (1)

Publication Number Publication Date
JP2011057505A true JP2011057505A (en) 2011-03-24

Family

ID=43945597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009208961A Withdrawn JP2011057505A (en) 2009-09-10 2009-09-10 Porous ceramics

Country Status (1)

Country Link
JP (1) JP2011057505A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112011105028T5 (en) 2011-03-16 2013-12-24 Panasonic Corporation Tape feeder and component mounting device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112011105028T5 (en) 2011-03-16 2013-12-24 Panasonic Corporation Tape feeder and component mounting device

Similar Documents

Publication Publication Date Title
JP2003234586A5 (en)
CN103602869B (en) Powder metallurgic method is prepared high body and is divided the process of carborundum aluminum matrix composite
TW201113494A (en) Heat dissipation structure and manufacturing method thereof
CN1921064A (en) Electrode for cold-cathode fluorescent lamp and its manufacturing method
CN105645963B (en) A kind of re-crystallized silicon carbide product and preparation method thereof
CN109534820A (en) A kind of glass bending molding ceramic mold and preparation method thereof
KR101579912B1 (en) Method of manufacturing a graphite-aluminum compound and use thereof
CN104148645B (en) A kind of composite ceramic heat-dissipating material and its preparation method
EP2589580A1 (en) A spherical alpha-type crystal silicon carbide, the method for manufacturing the same, and a sintered body as well as an organic resin-based composite made from the silicon carbide
CN101747078A (en) Making method for sintering high-purity silicon carbide honeycomb ceramics by using nanometer silicon carbide as auxiliary
JP2011057505A (en) Porous ceramics
CN101436573A (en) Electronic packaging device and preparation method thereof
CN102050638A (en) Cavitated ceramic
JPH11269302A (en) Filler for improving thermal conductivity of resin product and its production
KR101571230B1 (en) Sintered mo part for heat sink plate for semiconductor device and semiconductor device including same
KR20110030844A (en) Micro porous ceramics
CN105693260B (en) A kind of low-temperature sintering copper fiber ceramic base composite base plate
JP4192145B2 (en) Process for producing reaction bonded silicon carbide
KR101891405B1 (en) Metal foam and manufacturing method of the metal foam
JP4265247B2 (en) High heat dissipation alloy, heat dissipation plate, package for semiconductor element, and manufacturing method thereof
TW201105604A (en) Cavitation ceramics
EP2301905A1 (en) Porous ceramic preparation method
CN111486732B (en) Capillary structure processing method for heat dissipation device
KR20160055522A (en) Ceramic powder-cnt complex and method of manufacturing the same
CN104261835A (en) Method for preparing molybdenum disilicide heating element

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20121204