JP2011057114A - Power output device of vehicle - Google Patents

Power output device of vehicle Download PDF

Info

Publication number
JP2011057114A
JP2011057114A JP2009210097A JP2009210097A JP2011057114A JP 2011057114 A JP2011057114 A JP 2011057114A JP 2009210097 A JP2009210097 A JP 2009210097A JP 2009210097 A JP2009210097 A JP 2009210097A JP 2011057114 A JP2011057114 A JP 2011057114A
Authority
JP
Japan
Prior art keywords
power
transmission path
planetary gear
shaft
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009210097A
Other languages
Japanese (ja)
Inventor
Tsuneyuki Egami
常幸 江上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2009210097A priority Critical patent/JP2011057114A/en
Publication of JP2011057114A publication Critical patent/JP2011057114A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/92Energy efficient charging or discharging systems for batteries, ultracapacitors, supercapacitors or double-layer capacitors specially adapted for vehicles

Landscapes

  • Hybrid Electric Vehicles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To effectively improve fuel economy when traveling by dividing the power of an engine into a drive shaft side and a first MG (motor generator) side with a planetary gear mechanism. <P>SOLUTION: The power of an engine 10 is divided into a sun gear shaft 18 and a ring gear shaft 19 with a first planetary gear mechanism 14. Furthermore, the power of the sun gear shaft 18 is divided into a sun gear shaft 24 and a ring gear shaft 25 with a second planetary gear mechanism 20, and the ratio of power transmitted from the engine 10 to the first MG 11 side is made small by transmitting the power of the sun gear shaft 24 to the first MG 11. On the other hand, both powers of the ring gear shaft 19 of the first planetary gear mechanism 14 and the ring gear shaft 25 of the second planetary gear mechanism 20 are transmitted to a drive shaft 26, and thereby the ratio of power transmitted from the engine 10 to the drive shaft 26 side is made large. Thus, the electric loss of the MG 11, 12 and inverters 31, 32 is reduced, and the energy loss of the whole vehicle is reduced. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、内燃機関とモータと発電機とを搭載した車両の動力出力装置に関する発明である。   The present invention relates to a power output apparatus for a vehicle equipped with an internal combustion engine, a motor, and a generator.

近年、低燃費、低排気エミッションの社会的要請からハイブリッド車の需要が増大している。現在、市販されているハイブリッド車においては、例えば、特許文献1(特開2001−329884号公報)に記載されているように、内燃機関とモータと発電機とを搭載し、内燃機関の動力を動力分割機構(例えば遊星ギヤ機構)によって二系統に分割し、その一方の系統の出力で駆動軸を駆動して車輪を駆動し、他方の系統の出力で発電機を駆動して発電機で発電し、その発電電力やバッテリ電力でモータを駆動してモータの動力でも車輪を駆動するようにしたスプリットタイプのハイブリッド車がある。   In recent years, the demand for hybrid vehicles has increased due to the social demand for low fuel consumption and low exhaust emissions. Currently, in a hybrid vehicle that is commercially available, for example, as described in Patent Document 1 (Japanese Patent Laid-Open No. 2001-329884), an internal combustion engine, a motor, and a generator are mounted, and the power of the internal combustion engine is increased. The system is divided into two systems by a power split mechanism (for example, planetary gear mechanism), the drive shaft is driven by the output of one system to drive the wheels, and the generator is driven by the output of the other system to generate power by the generator. There is a split type hybrid vehicle in which a motor is driven by the generated power or battery power and the wheels are driven by the power of the motor.

特開2001−329884号公報JP 2001-329884 A

上記従来のスプリットタイプのハイブリッド車は、動力分割機構(例えば遊星ギヤ機構)のプラネタリ比(サンギヤの歯数とリングギヤの歯数との比)によって動力分割比(内燃機関から駆動軸側に伝達される動力と発電機側に伝達される動力との比)が決まるが、車両の設計上、プラネタリ比(つまり動力分割比)は、動力分割機構が車両に搭載可能なサイズに収まるような範囲内に制限されるため、内燃機関から発電機側に伝達される動力の割合を十分に小さくできないという問題がある。このため、内燃機関の動力を動力分割機構で駆動軸側と発電機側とに分割して走行する際に、内燃機関から発電機側に伝達される動力の割合を十分に小さくすることができず、発電機及びそれを駆動するインバータの電気出力が小さくできず、更に電気損失が増加して、車両全体のエネルギ損失が増加してしまい、燃費の飛躍的な向上が望めず、燃費が伸び悩んでいたり、小型・低コスト化の弊害となっていた。   In the conventional split type hybrid vehicle, the power split ratio (the ratio between the number of teeth of the sun gear and the number of teeth of the ring gear) of the power split mechanism (for example, the planetary gear mechanism) is transmitted to the drive shaft side from the internal combustion engine. The ratio between the power to be transmitted and the power transmitted to the generator is determined), but the planetary ratio (that is, the power split ratio) is within the range that allows the power split mechanism to fit within the vehicle. Therefore, there is a problem that the ratio of power transmitted from the internal combustion engine to the generator side cannot be sufficiently reduced. For this reason, when the power of the internal combustion engine is divided into the drive shaft side and the generator side by the power split mechanism and travels, the ratio of the power transmitted from the internal combustion engine to the generator side can be sufficiently reduced. In addition, the electrical output of the generator and the inverter that drives it cannot be reduced, the electrical loss increases, the energy loss of the entire vehicle increases, and a dramatic improvement in fuel efficiency cannot be expected, and the fuel efficiency is sluggish. It was an adverse effect of downsizing and cost reduction.

そこで、本発明が解決しようとする課題は、内燃機関から発電機側に伝達される動力の割合を十分に小さくすることができ、燃費を効果的に向上させると共にインバータや発電機を小型・低コスト化できる車両の動力出力装置を提供することにある。   Therefore, the problem to be solved by the present invention is that the ratio of power transmitted from the internal combustion engine to the generator side can be sufficiently reduced, and the fuel efficiency is effectively improved and the inverter and generator are reduced in size and low. An object of the present invention is to provide a power output device for a vehicle that can be reduced in cost.

上記課題を解決するために、請求項1に係る発明は、内燃機関とモータと発電機とを備えた車両の動力出力装置において、内燃機関の動力を出力する動力伝達経路として第1の機械伝達路と第2の機械伝達路と電気伝達路を少なくとも有するように構成したものである。   In order to solve the above-mentioned problem, the invention according to claim 1 is the first mechanical transmission as a power transmission path for outputting the power of the internal combustion engine in the vehicle power output device including the internal combustion engine, the motor, and the generator. It is configured to have at least a road, a second mechanical transmission path, and an electrical transmission path.

具体的には、請求項2のように、内燃機関の動力を第1の動力伝達経路と第2の動力伝達経路とに分割する第1の動力分割手段と、第1の動力伝達経路の動力を第3の動力伝達経路と第4の動力伝達経路とに分割する第2の動力分割手段とを備え、第1の動力伝達経路を第1の機械伝達路とすると共に、第2の動力伝達経路を介して第4の動力伝達経路を第2の機械伝達路とし、第2の動力伝達経路と第4の動力伝達経路とが連結されると共に第2の動力伝達経路にモータと車両の駆動軸とが連結され、第3の動力伝達経路に発電機が連結されて発電機とモータ間で電力を相互伝達できる電気伝達路を備えているようにすると良い。   Specifically, as in claim 2, the first power dividing means for dividing the power of the internal combustion engine into the first power transmission path and the second power transmission path, and the power of the first power transmission path Is divided into a third power transmission path and a fourth power transmission path, and the first power transmission path is used as the first mechanical transmission path, and the second power transmission. The fourth power transmission path is defined as the second mechanical transmission path via the path, the second power transmission path and the fourth power transmission path are coupled, and the motor and the vehicle are driven in the second power transmission path. The shaft may be connected, and a generator may be connected to the third power transmission path to provide an electric transmission path that can transmit power between the generator and the motor.

この構成では、内燃機関の動力を第1の動力分割手段で第1の動力伝達経路と第2の動力伝達経路の二系統に分割し、更に、その第1の動力伝達経路の動力を第2の動力分割手段で第3の動力伝達経路と第4の動力伝達経路の二系統に分割して、その第3の動力伝達経路の動力を発電機に伝達することができるため、内燃機関から発電機側に伝達される動力の割合を小さくすることができ、一方、第2の動力伝達経路の動力と第4の動力伝達経路の動力の両方を駆動軸に伝達することができるため、内燃機関から駆動軸側に伝達される動力の割合を大きくすることができる。これにより、内燃機関の動力を動力分割機構で駆動軸側と発電機側とに分割して走行する際に、内燃機関から発電機側に伝達される動力の割合を十分に小さくすることができ、発電機及びそれを駆動するインバータの電気出力が小さくできるため、それらを小型・低コスト化でき、また、それらの電気損失を低減させて、車両全体のエネルギ損失を低減させることができ、燃費を効果的に向上させることができる。   In this configuration, the power of the internal combustion engine is divided into two systems of the first power transmission path and the second power transmission path by the first power split means, and further, the power of the first power transmission path is divided into the second power. Can be divided into two systems of a third power transmission path and a fourth power transmission path, and the power of the third power transmission path can be transmitted to the generator. The ratio of the power transmitted to the machine side can be reduced, and on the other hand, both the power of the second power transmission path and the power of the fourth power transmission path can be transmitted to the drive shaft. The ratio of power transmitted from the drive shaft to the drive shaft can be increased. As a result, when the power of the internal combustion engine is divided into the drive shaft side and the generator side by the power split mechanism, the ratio of the power transmitted from the internal combustion engine to the generator side can be sufficiently reduced. Because the electrical output of the generator and the inverter that drives it can be reduced, they can be reduced in size and cost, and the electrical loss can be reduced to reduce the energy loss of the entire vehicle. Can be improved effectively.

図1は本発明の一実施例における車両の駆動システム全体の概略構成図である。FIG. 1 is a schematic configuration diagram of an entire vehicle drive system according to an embodiment of the present invention. 図2は各部の回転速度の関係を示す共線図である。FIG. 2 is a collinear diagram showing the relationship between the rotational speeds of the respective parts.

以下、本発明を実施するための形態を具体化した一実施例を説明する。
まず、図1に基づいて車両の駆動システム全体の概略構成を説明する。
内燃機関であるエンジン10と第1のモータジェネレータ(発電機:以下「第1のMG」と表記する)11と第2のモータジェネレータ(以下「第2のMG」と表記する)12が搭載され、主にエンジン10と第2のMG12が車輪29を駆動する動力源となる。この第2のMG12が特許請求の範囲でいうモータに相当する。
Hereinafter, an embodiment embodying a mode for carrying out the present invention will be described.
First, a schematic configuration of the entire vehicle drive system will be described with reference to FIG.
An internal combustion engine 10, a first motor generator (generator: hereinafter referred to as “first MG”) 11, and a second motor generator (hereinafter referred to as “second MG”) 12 are mounted. The engine 10 and the second MG 12 are mainly power sources that drive the wheels 29. The second MG 12 corresponds to a motor in the claims.

エンジン10のクランク軸13の動力は、第1の遊星ギヤ機構14(第1の動力分割手段)で二系統に分割される。この第1の遊星ギヤ機構14は、中心で回転するサンギヤ15と、このサンギヤ15の外周を自転しながら公転するプラネタリギヤ16と、このプラネタリギヤ16の外周を回転するリングギヤ17とから構成され、プラネタリギヤ16には、図示しないキャリアを介してエンジン10のクランク軸13が連結され、サンギヤ15には、第1の動力伝達経路(第1の機械伝達路)であるサンギヤ軸18が連結され、リングギヤ17には、第2の動力伝達経路(第2の機械伝達路)であるリングギヤ軸19が連結されている。これにより、エンジン10のクランク軸13の動力が第1の遊星ギヤ機構14によってサンギヤ軸18とリングギヤ軸19に分割されて伝達される。   The power of the crankshaft 13 of the engine 10 is divided into two systems by the first planetary gear mechanism 14 (first power split means). The first planetary gear mechanism 14 includes a sun gear 15 that rotates at the center, a planetary gear 16 that revolves while rotating on the outer periphery of the sun gear 15, and a ring gear 17 that rotates on the outer periphery of the planetary gear 16. Is connected to the crankshaft 13 of the engine 10 via a carrier (not shown), and the sun gear 15 is connected to a sun gear shaft 18 as a first power transmission path (first mechanical transmission path). Is connected to a ring gear shaft 19 which is a second power transmission path (second mechanical transmission path). Thereby, the power of the crankshaft 13 of the engine 10 is divided and transmitted to the sun gear shaft 18 and the ring gear shaft 19 by the first planetary gear mechanism 14.

更に、第1の遊星ギヤ機構14のサンギヤ軸18の動力は、第2の遊星ギヤ機構20(第2の動力分割手段)で二系統に分割される。この第2の遊星ギヤ機構20は、中心で回転するサンギヤ21と、このサンギヤ21の外周を自転しながら公転するプラネタリギヤ22と、このプラネタリギヤ22の外周を回転するリングギヤ23とから構成され、プラネタリギヤ22には、図示しないキャリアを介して第1の遊星ギヤ機構14のサンギヤ軸18が連結され、サンギヤ21には、第3の動力伝達経路であるサンギヤ軸24が連結され、リングギヤ23には、第4の動力伝達経路(第2の機械伝達路)であるリングギヤ軸25が連結されている。これにより、第1の遊星ギヤ機構14のサンギヤ軸18の動力が第2の遊星ギヤ機構20によってサンギヤ軸24とリングギヤ軸25に分割されて伝達される。   Further, the power of the sun gear shaft 18 of the first planetary gear mechanism 14 is divided into two systems by the second planetary gear mechanism 20 (second power dividing means). The second planetary gear mechanism 20 includes a sun gear 21 that rotates at the center, a planetary gear 22 that revolves while rotating on the outer periphery of the sun gear 21, and a ring gear 23 that rotates on the outer periphery of the planetary gear 22. Is connected to the sun gear shaft 18 of the first planetary gear mechanism 14 via a carrier (not shown), the sun gear 21 is connected to the sun gear shaft 24 as a third power transmission path, and the ring gear 23 is connected to the first gear mechanism. A ring gear shaft 25 that is a power transmission path (second mechanical transmission path) 4 is connected. Thereby, the power of the sun gear shaft 18 of the first planetary gear mechanism 14 is divided and transmitted to the sun gear shaft 24 and the ring gear shaft 25 by the second planetary gear mechanism 20.

また、第1の遊星ギヤ機構14のリングギヤ軸19と第2の遊星ギヤ機構20のリングギヤ軸25とが連結されると共に、第1の遊星ギヤ機構14のリングギヤ軸19に、第2のMG12の回転軸と車両の駆動軸26とが連結され、この駆動軸26の動力がデファレンシャルギヤ27や車軸28等を介して車輪29に伝達される。更に、第2の遊星ギヤ機構20のサンギヤ軸24には、主に発電機として使用する第1のMG11の回転軸が連結されている。この第1のMG11が特許請求の範囲でいう発電機に相当する。   Further, the ring gear shaft 19 of the first planetary gear mechanism 14 and the ring gear shaft 25 of the second planetary gear mechanism 20 are connected, and the ring gear shaft 19 of the first planetary gear mechanism 14 is connected to the second gear MG 12. The rotating shaft and the drive shaft 26 of the vehicle are connected, and the power of the drive shaft 26 is transmitted to the wheels 29 via the differential gear 27, the axle 28, and the like. Further, the sun gear shaft 24 of the second planetary gear mechanism 20 is connected to the rotation shaft of the first MG 11 mainly used as a generator. The first MG 11 corresponds to the generator referred to in the claims.

また、第1のMG11を駆動する第1のインバータ31と、第2のMG12を駆動する第2のインバータ32とが設けられ、各MG11,12は、それぞれインバータ31,32を介して互いに電力の授受ができるようになっており、第1のMG11と第2のMG12との間で電力を相互伝達できる電気伝達路が形成されていると共に、各MG11,12は、バッテリ33とも電力を授受するようになっている。   In addition, a first inverter 31 that drives the first MG 11 and a second inverter 32 that drives the second MG 12 are provided, and the MGs 11 and 12 are connected to each other via the inverters 31 and 32, respectively. An electric transmission path capable of mutually transmitting power between the first MG 11 and the second MG 12 is formed, and each MG 11, 12 also receives power from the battery 33. It is like that.

車両ECU34は、車両全体を総合的に制御するコンピュータであり、アクセル操作量(アクセルペダルの操作量)を検出するアクセルセンサ35、シフトレバーの操作位置を検出するシフトスイッチ36、ブレーキ操作を検出するブレーキスイッチ37等の各種のセンサやスイッチの出力信号を読み込んで、車両の運転状態を検出する。この車両ECU34は、エンジン10の運転を制御するエンジンECU38と、第1のインバータ31を制御して第1のMG11を制御する第1のMG−ECU39と、第2のインバータ32を制御して第2のMG12を制御する第2のMG−ECU40との間で制御信号やデータ信号を送受信し、各ECU38〜40によって車両の運転状態に応じてエンジン10と第1のMG11と第2のMG12を制御する。   The vehicle ECU 34 is a computer that comprehensively controls the entire vehicle, and detects an accelerator sensor 35 that detects an accelerator operation amount (an accelerator pedal operation amount), a shift switch 36 that detects a shift lever operation position, and a brake operation. The output signals of various sensors such as the brake switch 37 and the switch are read to detect the driving state of the vehicle. The vehicle ECU 34 controls an engine ECU 38 that controls the operation of the engine 10, a first MG-ECU 39 that controls the first inverter 31 to control the first MG 11, and a second inverter 32 that controls the second inverter 32. Control signals and data signals are transmitted to and received from the second MG-ECU 40 that controls the second MG 12, and the ECUs 38 to 40 transmit the engine 10, the first MG 11, and the second MG 12 according to the driving state of the vehicle. Control.

例えば、発進時や低負荷時(エンジン10の燃費効率が悪い領域)は、エンジン10を停止状態に維持して、バッテリ33の電力で第2のMG12を駆動し、この第2のMG12の動力のみで車輪29を駆動して走行するモータ走行を行う。   For example, at the time of starting or at a low load (a region where the fuel efficiency of the engine 10 is poor), the engine 10 is maintained in a stopped state, the second MG 12 is driven by the power of the battery 33, and the power of the second MG 12 is Only by driving the wheels 29, the motor travels.

通常走行時には、エンジン10のクランク軸13の動力を第1の遊星ギヤ機構14によってサンギヤ軸18とリングギヤ軸19の二系統に分割し、更に、第1の遊星ギヤ機構14のサンギヤ軸18の動力を第2の遊星ギヤ機構20によってサンギヤ軸24とリングギヤ軸25の二系統に分割する。そして、第1の遊星ギヤ機構14のリングギヤ軸19の動力と第2の遊星ギヤ機構20のリングギヤ軸25の動力の両方を駆動軸26に伝達することで駆動軸26を駆動して車輪29を駆動する。また、第2の遊星ギヤ機構20のサンギヤ軸24の動力を第1のMG11に伝達することで第1のMG11を駆動して第1のMG11で発電し、その発電電力で第2のMG12を駆動して第2のMG12の動力でも駆動軸26を駆動して車輪29を駆動する。更に、急加速時等には、第1のMG11の発電電力の他にバッテリ33の電力も第2のMG12に供給して、第2のMG12の駆動分を増加させる。   During normal travel, the power of the crankshaft 13 of the engine 10 is divided into two systems of the sun gear shaft 18 and the ring gear shaft 19 by the first planetary gear mechanism 14, and further the power of the sun gear shaft 18 of the first planetary gear mechanism 14. Is divided into two systems of a sun gear shaft 24 and a ring gear shaft 25 by the second planetary gear mechanism 20. Then, by transmitting both the power of the ring gear shaft 19 of the first planetary gear mechanism 14 and the power of the ring gear shaft 25 of the second planetary gear mechanism 20 to the drive shaft 26, the drive shaft 26 is driven and the wheels 29 are moved. To drive. Further, the power of the sun gear shaft 24 of the second planetary gear mechanism 20 is transmitted to the first MG 11 to drive the first MG 11 to generate power by the first MG 11, and the generated MG 12 generates the second MG 12. The drive shaft 26 is driven by the driving power of the second MG 12 to drive the wheels 29. Further, at the time of rapid acceleration or the like, the power of the battery 33 is supplied to the second MG 12 in addition to the generated power of the first MG 11 to increase the driving amount of the second MG 12.

減速時には、車輪29の動力で第2のMG12を駆動して第2のMG12を発電機として作動させることで、車両の運動エネルギを第2のMG12で電力に変換してバッテリ33に充電して回収する。   During deceleration, the second MG 12 is driven by the power of the wheels 29 and the second MG 12 is operated as a generator so that the kinetic energy of the vehicle is converted into electric power by the second MG 12 and the battery 33 is charged. to recover.

ここで、図2は、第1の遊星ギヤ機構14のプラネタリギヤ16のキャリアに連結されたエンジン10のクランク軸13の回転速度Ne と、第1の遊星ギヤ機構14のサンギヤ軸18の回転速度Ns1(=第2の遊星ギヤ機構20のプラネタリギヤ22のキャリアの回転速度Nc2)と、第1及び第2の遊星ギヤ機構14,20のリングギヤ軸19,25に連結された駆動軸26の回転速度Np と、第2の遊星ギヤ機構20のサンギヤ軸24に連結された第1のMG11の回転速度Ng との関係を示す共線図であり、各回転速度が一直線で結ばれる関係となる。   Here, FIG. 2 shows the rotational speed Ne of the crankshaft 13 of the engine 10 connected to the carrier of the planetary gear 16 of the first planetary gear mechanism 14 and the rotational speed Ns1 of the sun gear shaft 18 of the first planetary gear mechanism 14. (= The rotational speed Nc2 of the planetary gear 22 carrier of the second planetary gear mechanism 20) and the rotational speed Np of the drive shaft 26 connected to the ring gear shafts 19 and 25 of the first and second planetary gear mechanisms 14 and 20. And a nomographic chart showing the relationship between the rotational speed Ng of the first MG 11 connected to the sun gear shaft 24 of the second planetary gear mechanism 20, and the rotational speeds are connected in a straight line.

エンジン10のトルクTe は、第1の遊星ギヤ機構14によってサンギヤ軸18とリングギヤ軸19に分割されて伝達される。この際、サンギヤ軸18に伝達されるトルクTs1とリングギヤ軸19に伝達されるトルクTr1は、それぞれエンジン10のトルクTe と第1の遊星ギヤ機構14のプラネタリ比ρ1 (サンギヤ15の歯数とリングギヤ17の歯数との比)とを用いて下記(1),(2)式により表すことができる。
Ts1=Te ×ρ1 /(1+ρ1 ) ……(1)
Tr1=Te /(1+ρ1 ) ……(2)
The torque Te of the engine 10 is divided and transmitted to the sun gear shaft 18 and the ring gear shaft 19 by the first planetary gear mechanism 14. At this time, the torque Ts1 transmitted to the sun gear shaft 18 and the torque Tr1 transmitted to the ring gear shaft 19 are respectively the torque Te of the engine 10 and the planetary ratio ρ1 of the first planetary gear mechanism 14 (the number of teeth of the sun gear 15 and the ring gear). 17) and the following formulas (1) and (2).
Ts1 = Te × ρ1 / (1 + ρ1) (1)
Tr1 = Te / (1 + ρ1) (2)

更に、第1の遊星ギヤ機構14のサンギヤ軸18のトルクTs1は、第2の遊星ギヤ機構20によってサンギヤ軸24とリングギヤ軸25に分割されて伝達される。この際、サンギヤ軸24に伝達されるトルクTs2とリングギヤ軸25に伝達されるトルクTr2は、それぞれ第1の遊星ギヤ機構14のサンギヤ軸18のトルクTs1と第2の遊星ギヤ機構20のプラネタリ比ρ2 (サンギヤ21の歯数とリングギヤ23の歯数との比)とを用いて下記(3),(4)式により表すことができる。
Ts2=Ts1×ρ2 /(1+ρ2 ) ……(3)
Tr2=Ts1/(1+ρ2 ) ……(4)
Further, the torque Ts1 of the sun gear shaft 18 of the first planetary gear mechanism 14 is divided and transmitted to the sun gear shaft 24 and the ring gear shaft 25 by the second planetary gear mechanism 20. At this time, the torque Ts2 transmitted to the sun gear shaft 24 and the torque Tr2 transmitted to the ring gear shaft 25 are the torque Ts1 of the sun gear shaft 18 of the first planetary gear mechanism 14 and the planetary ratio of the second planetary gear mechanism 20, respectively. Using ρ2 (ratio of the number of teeth of the sun gear 21 and the number of teeth of the ring gear 23), it can be expressed by the following equations (3) and (4).
Ts2 = Ts1 × ρ2 / (1 + ρ2) (3)
Tr2 = Ts1 / (1 + ρ2) (4)

上記(1),(3)式から、第2の遊星ギヤ機構20のサンギヤ軸24に伝達されるトルクTs2は、下記(5)式により表すことができる。
Ts2=Te ×ρ1 /(1+ρ1 )×ρ2 /(1+ρ2 ) ……(5)
From the above equations (1) and (3), the torque Ts2 transmitted to the sun gear shaft 24 of the second planetary gear mechanism 20 can be expressed by the following equation (5).
Ts2 = Te × ρ1 / (1 + ρ1) × ρ2 / (1 + ρ2) (5)

この第2の遊星ギヤ機構20のサンギヤ軸24のトルクTs2が第1のMG11に作用するため、第1のMG11のトルクTg と第2の遊星ギヤ機構20のサンギヤ軸24のトルクTs2との関係は、下記(6)式により表すことができる。
Tg +Ts2=0 ……(6)
Since the torque Ts2 of the sun gear shaft 24 of the second planetary gear mechanism 20 acts on the first MG11, the relationship between the torque Tg of the first MG11 and the torque Ts2 of the sun gear shaft 24 of the second planetary gear mechanism 20 Can be expressed by the following equation (6).
Tg + Ts2 = 0 (6)

これにより、従来のシステム(エンジンの動力を分割する遊星ギヤ機構を1つのみ備えたシステム)に比べて、エンジン10から第1のMG11に伝達されるトルクの割合を小さくすることができる。   As a result, the ratio of torque transmitted from engine 10 to first MG 11 can be reduced as compared with a conventional system (a system including only one planetary gear mechanism that divides engine power).

一方、エンジン11のトルクTe のうち第1の遊星ギヤ機構14のリングギヤ軸19に伝達されるトルクTr1と第2の遊星ギヤ機構20のリングギヤ軸25に伝達されるトルクTr2の両方が駆動軸26に伝達され、更に、第2のMG12のトルクTm も駆動軸26に伝達されるため、駆動軸26に伝達されるトルクTp は、下記(7)式により表すことができる。
Tp =Tr1+Tr2+Tm ……(7)
On the other hand, both the torque Tr1 transmitted to the ring gear shaft 19 of the first planetary gear mechanism 14 and the torque Tr2 transmitted to the ring gear shaft 25 of the second planetary gear mechanism 20 out of the torque Te of the engine 11 are driven shafts 26. In addition, since the torque Tm of the second MG 12 is also transmitted to the drive shaft 26, the torque Tp transmitted to the drive shaft 26 can be expressed by the following equation (7).
Tp = Tr1 + Tr2 + Tm (7)

上記(1),(2),(4),(7)式から駆動軸26に伝達されるトルクTp は、下記(8)式により表すことができる。
Tp =Te / (1+ρ1)+Te ×ρ1 / (1+ρ1)/ (1+ρ2)+Tm ……(8)
The torque Tp transmitted to the drive shaft 26 from the above equations (1), (2), (4), and (7) can be expressed by the following equation (8).
Tp = Te / (1 + ρ1) + Te × ρ1 / (1 + ρ1) / (1 + ρ2) + Tm (8)

これにより、従来のシステム(エンジンの動力を分割する遊星ギヤ機構を1つのみ備えたシステム)に比べて、エンジン10から駆動軸26に伝達されるトルクの割合を大きくすることができる。   Thereby, the ratio of the torque transmitted from the engine 10 to the drive shaft 26 can be increased as compared with a conventional system (a system including only one planetary gear mechanism that divides engine power).

一般に、エンジン10の動力を第1のMG11に伝達して、その第1のMG11の発電電力で第2のMG12を駆動して駆動軸26を駆動するときの損失よりも、エンジン10の動力を機械的に駆動軸26に伝達して駆動軸26を駆動するときの損失の方が小さいため、エンジン10から第1のMG11側に伝達される動力の割合を小さくして、エンジン10から駆動軸26に伝達されるトルクの割合を大きくすることで、動力伝達効率を向上させることができる。   In general, the power of the engine 10 is transmitted to the first MG 11, and the power of the engine 10 is less than the loss when the second MG 12 is driven by the power generated by the first MG 11 to drive the drive shaft 26. Since the loss when the drive shaft 26 is mechanically transmitted to the drive shaft 26 is smaller, the ratio of the power transmitted from the engine 10 to the first MG 11 side is reduced so that the drive shaft is driven from the engine 10. Power transmission efficiency can be improved by increasing the ratio of the torque transmitted to 26.

以上説明した本実施例では、エンジン10の動力を第1の遊星ギヤ機構14によってサンギヤ軸18とリングギヤ軸19の二系統に分割し、更に、第1の遊星ギヤ機構14のサンギヤ軸18の動力を第2の遊星ギヤ機構20によってサンギヤ軸24とリングギヤ軸25の二系統に分割して、そのサンギヤ軸24の動力を第1のMG11に伝達することができるため、エンジン10から第1のMG11側に伝達される動力の割合を小さくすることができ、一方、第1の遊星ギヤ機構14のリングギヤ軸19の動力と第2の遊星ギヤ機構20のリングギヤ軸25の動力の両方を駆動軸26に伝達することができるため、エンジン10から駆動軸26側に伝達される動力の割合を大きくすることができる。   In the present embodiment described above, the power of the engine 10 is divided into two systems of the sun gear shaft 18 and the ring gear shaft 19 by the first planetary gear mechanism 14, and the power of the sun gear shaft 18 of the first planetary gear mechanism 14 is further divided. Can be divided into two systems of the sun gear shaft 24 and the ring gear shaft 25 by the second planetary gear mechanism 20 and the power of the sun gear shaft 24 can be transmitted to the first MG 11. The ratio of the power transmitted to the side can be reduced, while the power of the ring gear shaft 19 of the first planetary gear mechanism 14 and the power of the ring gear shaft 25 of the second planetary gear mechanism 20 are both driven by the drive shaft 26. Therefore, the ratio of the power transmitted from the engine 10 to the drive shaft 26 side can be increased.

これにより、エンジン10の動力を遊星ギヤ機構14,20で駆動軸26側と第1のMG11側とに分割して走行する際に、エンジン10から第1のMG11側に伝達される動力の割合を十分に小さくすることができ、第1のMG11や第2のMG12及びそれらを駆動するインバータ31,32での電気損失を低減させて、車両全体のエネルギ損失を低減させることができ、燃費を効果的に向上させることができる。   As a result, the ratio of the power transmitted from the engine 10 to the first MG 11 side when the power of the engine 10 is divided by the planetary gear mechanisms 14 and 20 into the drive shaft 26 side and the first MG 11 side. Can be made sufficiently small, the electric loss in the first MG 11 and the second MG 12 and the inverters 31 and 32 that drive them can be reduced, the energy loss of the entire vehicle can be reduced, and the fuel efficiency can be reduced. It can be improved effectively.

尚、上記実施例では、エンジン10と第1の遊星ギヤ機構14のプラネタリギヤ16のキャリアとを連結し、第1の遊星ギヤ機構14のサンギヤ15と第2の遊星ギヤ機構20のプラネタリギヤ22のキャリアとを連結し、第1の遊星ギヤ機構14のリングギヤ19と第2の遊星ギヤ機構20のリングギヤ25とを連結すると共に第1の遊星ギヤ機構14のリングギヤ19と第2のMG12及び駆動軸26とを連結し、第2の遊星ギヤ機構20のサンギヤ21と第1のMG11とを連結する構成としたが、遊星ギヤ機構14,20を介してエンジン10とMG11,12と駆動軸26とを連結する方法は、上記実施例の方法に限定されず、駆動システムの搭載スペースや駆動方式(例えば、FF方式、FR方式、RR方式)等に応じて適宜変更しても良い。   In the above embodiment, the engine 10 and the planetary gear 16 carrier of the first planetary gear mechanism 14 are connected, and the sun gear 15 of the first planetary gear mechanism 14 and the carrier of the planetary gear 22 of the second planetary gear mechanism 20 are connected. And the ring gear 19 of the first planetary gear mechanism 14 and the ring gear 25 of the second planetary gear mechanism 20 and the ring gear 19 of the first planetary gear mechanism 14, the second MG 12, and the drive shaft 26. And the sun gear 21 of the second planetary gear mechanism 20 and the first MG 11 are connected to each other, but the engine 10, the MGs 11, 12 and the drive shaft 26 are connected via the planetary gear mechanisms 14, 20. The connection method is not limited to the method of the above embodiment, and may be changed as appropriate according to the mounting space of the drive system and the drive method (for example, FF method, FR method, RR method). It may be.

また、上記実施例では、遊星ギヤ機構を2つ設けてエンジンの動力を2段階で分割するようにしたが、他の実施例として、遊星ギヤ機構を3つ以上設けてエンジンの動力を3段階以上で分割するようにしても良い。   In the above embodiment, two planetary gear mechanisms are provided and the engine power is divided in two stages. However, as another embodiment, three or more planetary gear mechanisms are provided and the engine power is provided in three stages. You may make it divide | segment by the above.

10…エンジン(内燃機関)、11…第1のMG(発電機)、12…第2のMG(モータ)、14…第1の遊星ギヤ機構(第1の動力分割手段)、18…サンギヤ軸(第1の動力伝達経路)、19…リングギヤ軸(第2の動力伝達経路)、20…第2の遊星ギヤ機構(第2の動力分割手段)、24…サンギヤ軸(第3の動力伝達経路)、25…リングギヤ軸(第4の動力伝達経路)、26…駆動軸、29…車輪、31,32…インバータ、33…バッテリ、34…車両ECU、38…エンジンECU、39,40…MG−ECU   DESCRIPTION OF SYMBOLS 10 ... Engine (internal combustion engine), 11 ... 1st MG (generator), 12 ... 2nd MG (motor), 14 ... 1st planetary gear mechanism (1st power division means), 18 ... Sun gear shaft (First power transmission path), 19 ... ring gear shaft (second power transmission path), 20 ... second planetary gear mechanism (second power split means), 24 ... sun gear shaft (third power transmission path) ), 25 ... Ring gear shaft (fourth power transmission path), 26 ... Drive shaft, 29 ... Wheel, 31, 32 ... Inverter, 33 ... Battery, 34 ... Vehicle ECU, 38 ... Engine ECU, 39, 40 ... MG- ECU

Claims (2)

内燃機関とモータと発電機とを備えた車両の動力出力装置において、
前記内燃機関の動力を出力する動力伝達経路として第1の機械伝達路と第2の機械伝達路と電気伝達路を少なくとも有することを特徴とする車両の動力出力装置。
In a vehicle power output device including an internal combustion engine, a motor, and a generator,
A power output apparatus for a vehicle, comprising at least a first mechanical transmission path, a second mechanical transmission path, and an electrical transmission path as a power transmission path for outputting the power of the internal combustion engine.
前記内燃機関の動力を第1の動力伝達経路と第2の動力伝達経路とに分割する第1の動力分割手段と、前記第1の動力伝達経路の動力を第3の動力伝達経路と第4の動力伝達経路とに分割する第2の動力分割手段とを備え、
前記第1の動力伝達経路を前記第1の機械伝達路とすると共に、前記第2の動力伝達経路を介して前記第4の動力伝達経路を前記第2の機械伝達路とし、
前記第2の動力伝達経路と前記第4の動力伝達経路とが連結されると共に前記第2の動力伝達経路に前記モータと車両の駆動軸とが連結され、前記第3の動力伝達経路に前記発電機が連結されて前記発電機と前記モータ間で電力を相互伝達できる前記電気伝達路を備えていることを特徴とする請求項1に記載の車両の動力出力装置。
A first power dividing means for dividing the power of the internal combustion engine into a first power transmission path and a second power transmission path; a power of the first power transmission path; a third power transmission path and a fourth power transmission path; A second power split means for splitting the power transmission path of
The first power transmission path is the first mechanical transmission path, and the fourth power transmission path is the second mechanical transmission path via the second power transmission path.
The second power transmission path is connected to the fourth power transmission path, the motor and a drive shaft of the vehicle are connected to the second power transmission path, and the third power transmission path is connected to the third power transmission path. The power output apparatus for a vehicle according to claim 1, further comprising: an electric transmission path that is connected to a generator and is capable of mutually transmitting electric power between the generator and the motor.
JP2009210097A 2009-09-11 2009-09-11 Power output device of vehicle Pending JP2011057114A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009210097A JP2011057114A (en) 2009-09-11 2009-09-11 Power output device of vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009210097A JP2011057114A (en) 2009-09-11 2009-09-11 Power output device of vehicle

Publications (1)

Publication Number Publication Date
JP2011057114A true JP2011057114A (en) 2011-03-24

Family

ID=43945269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009210097A Pending JP2011057114A (en) 2009-09-11 2009-09-11 Power output device of vehicle

Country Status (1)

Country Link
JP (1) JP2011057114A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108621776A (en) * 2017-03-15 2018-10-09 丰田自动车株式会社 Drive device for hybrid vehicle

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000108693A (en) * 1998-09-28 2000-04-18 Caterpillar Inc Elelctromechanical transmission
JP2000326739A (en) * 1999-05-19 2000-11-28 Kyowa Gokin Kk Driving device for automobile
JP2005295691A (en) * 2004-03-31 2005-10-20 Toyota Motor Corp Power output unit and automobile mounting it
JP2008037304A (en) * 2006-08-08 2008-02-21 Toyota Motor Corp Power output device
JP2008273363A (en) * 2007-04-27 2008-11-13 Honda Motor Co Ltd Power system
WO2009051056A1 (en) * 2007-10-17 2009-04-23 Toyota Jidosha Kabushiki Kaisha Gear train unit with motor generator

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000108693A (en) * 1998-09-28 2000-04-18 Caterpillar Inc Elelctromechanical transmission
JP2000326739A (en) * 1999-05-19 2000-11-28 Kyowa Gokin Kk Driving device for automobile
JP2005295691A (en) * 2004-03-31 2005-10-20 Toyota Motor Corp Power output unit and automobile mounting it
JP2008037304A (en) * 2006-08-08 2008-02-21 Toyota Motor Corp Power output device
JP2008273363A (en) * 2007-04-27 2008-11-13 Honda Motor Co Ltd Power system
WO2009051056A1 (en) * 2007-10-17 2009-04-23 Toyota Jidosha Kabushiki Kaisha Gear train unit with motor generator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108621776A (en) * 2017-03-15 2018-10-09 丰田自动车株式会社 Drive device for hybrid vehicle
CN108621776B (en) * 2017-03-15 2021-10-19 丰田自动车株式会社 Drive device for hybrid vehicle

Similar Documents

Publication Publication Date Title
JP5076829B2 (en) Hybrid vehicle
JP5212756B2 (en) Vehicle power output device and vehicle
JP4140647B2 (en) Power output device and hybrid vehicle
KR101628130B1 (en) Four wheel drive power transmission system of hybrid electric vehicle
JP4222406B2 (en) Power output device and hybrid vehicle
JP4222407B2 (en) Power output device and hybrid vehicle
KR101459490B1 (en) Power transmission system of hybrid electric vehicle
JP6024691B2 (en) Control device for drive device for hybrid vehicle
JP2008001279A (en) Power outputting apparatus, and vehicle which loads the same
JP2008302892A (en) Vehicle driving system
JP2008062765A (en) Power output device and hybrid automobile
JP5971330B2 (en) Drive control apparatus for hybrid vehicle
JP6263889B2 (en) Hybrid vehicle drive device
CN113453928A (en) Power split type hybrid power system and hybrid power vehicle
KR20150071183A (en) Hybrid powertrain
JP2015157544A (en) Control apparatus for hybrid vehicle drive device
JP2007314033A (en) Hybrid drive unit
JP2009166793A (en) Hybrid driving device
JP2014046860A (en) Hybrid system
JP4281739B2 (en) Driving device and automobile equipped with the same
WO2013145091A1 (en) Hybrid vehicle drive control device
JP2011057114A (en) Power output device of vehicle
WO2012104963A1 (en) Hybrid vehicle
JP2013001181A (en) Power train of vehicle
JP4285579B2 (en) Power output device and hybrid vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130221

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130626