JP2011057036A - Road surface friction coefficient estimation device - Google Patents

Road surface friction coefficient estimation device Download PDF

Info

Publication number
JP2011057036A
JP2011057036A JP2009207341A JP2009207341A JP2011057036A JP 2011057036 A JP2011057036 A JP 2011057036A JP 2009207341 A JP2009207341 A JP 2009207341A JP 2009207341 A JP2009207341 A JP 2009207341A JP 2011057036 A JP2011057036 A JP 2011057036A
Authority
JP
Japan
Prior art keywords
friction coefficient
road surface
surface friction
driving force
estimated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009207341A
Other languages
Japanese (ja)
Other versions
JP5271209B2 (en
Inventor
Masayasu Saito
正容 齊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Fuji Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Heavy Industries Ltd filed Critical Fuji Heavy Industries Ltd
Priority to JP2009207341A priority Critical patent/JP5271209B2/en
Publication of JP2011057036A publication Critical patent/JP2011057036A/en
Application granted granted Critical
Publication of JP5271209B2 publication Critical patent/JP5271209B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Steering Control In Accordance With Driving Conditions (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Regulating Braking Force (AREA)
  • Power Steering Mechanism (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To continuously estimate a road surface friction coefficient with high accuracy by a natural value without applying complicated processing such as weighting even in a motion state of any vehicle. <P>SOLUTION: This road surface friction coefficient estimation device calculates actually occurring an estimation rack driving force Fr_star, estimation wheel braking/driving force Fx_star, and estimation lateral force Fy_star, calculates a reference rack driving force Fr_model, a reference wheel braking/driving force Fx_model, and a reference lateral force Fy_model by a brush model of a tire including the road surface friction coefficient μ and a parameter λ representing a lengthwise strain and a lateral strain of the tire as parameters, and obtains, by optimization calculation, a value of the road surface friction coefficient μ such that a difference between the estimation rack driving force Fr_star and the reference rack driving force Fr_model, a difference between the estimation wheel braking/driving force Fx_star and the reference wheel braking/driving force Fx_model, and a difference between the estimation lateral force Fy_star and the reference lateral force Fy_model become the minimum. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、様々な車両の運動状態においても適切に路面摩擦係数を推定する路面摩擦係数推定装置に関する。   The present invention relates to a road surface friction coefficient estimating device that appropriately estimates a road surface friction coefficient even in various vehicle motion states.

近年、車両においてはトラクション制御、制動力制御、トルク配分制御等について様々な制御技術が提案され、実用化されている。これらの技術では、必要な制御量の演算、或いは、補正に路面摩擦係数を用いるものも多く、その制御を確実に実行するためには、正確な路面摩擦係数を推定する必要がある。このような路面摩擦係数の推定を行うものとして、例えば、特許第3393654号公報(以下、特許文献1)には、車体に作用する横加速度に基づいて第1路面摩擦係数を推定し、車体に作用する前後加速度に基づいて第2路面摩擦係数を推定し、第1路面摩擦係数と第2路面摩擦係数とを比較して高い方の路面摩擦係数を路面摩擦係数として選択する車両のスリップ制御装置が開示されている。   In recent years, various control techniques for traction control, braking force control, torque distribution control, and the like have been proposed and put into practical use in vehicles. Many of these techniques use a road surface friction coefficient for calculation or correction of a necessary control amount, and it is necessary to estimate an accurate road surface friction coefficient in order to reliably execute the control. For example, Japanese Patent No. 3393654 (hereinafter referred to as Patent Document 1) estimates the first road surface friction coefficient based on the lateral acceleration acting on the vehicle body. A vehicle slip control device that estimates a second road surface friction coefficient based on a longitudinal acceleration acting, compares the first road surface friction coefficient with a second road surface friction coefficient, and selects the higher road surface friction coefficient as the road surface friction coefficient. Is disclosed.

特許第3393654号公報Japanese Patent No. 3393654

しかしながら、上述の特許文献1に開示される路面摩擦係数推定方法では、第1路面摩擦係数と第2路面摩擦係数とを比較して高い方の路面摩擦係数を採用するようになっているため、車両の運動状態によっては、路面摩擦係数の値が断続的に変動し、自然で滑らかな制御を行い難いという問題がある。また、上述の特許文献1に開示される路面摩擦係数推定方法では、横方向運動情報から算出する第1路面摩擦係数はタイヤの縦ひずみを考慮しておらず、前後方向運動情報から算出する第1路面摩擦係数はタイヤの横ひずみを考慮していないため、タイヤの縦ひずみ、横ひずみの両ひずみを必要とする旋回駆動時、旋回制動時では、路面摩擦係数の推定精度が悪くなるという問題がある。更に、上述の特許文献1に開示される路面摩擦係数推定方法では、最終的に路面摩擦係数を決定する際に、車体速度、前後加速度、横加速度等による条件で、重み付けする必要があり、処理が複雑になるという問題もある。   However, in the road surface friction coefficient estimation method disclosed in Patent Document 1 described above, the higher road surface friction coefficient is adopted by comparing the first road surface friction coefficient and the second road surface friction coefficient. Depending on the motion state of the vehicle, there is a problem that the value of the road surface friction coefficient fluctuates intermittently, making it difficult to perform natural and smooth control. Moreover, in the road surface friction coefficient estimation method disclosed in Patent Document 1 described above, the first road surface friction coefficient calculated from the lateral motion information does not take into account the longitudinal strain of the tire, and is calculated from the longitudinal motion information. 1 Road surface friction coefficient does not take into account the lateral strain of the tire, so the estimation accuracy of the road surface friction coefficient becomes worse during cornering driving and cornering braking that require both tire longitudinal strain and lateral strain. There is. Furthermore, in the road surface friction coefficient estimation method disclosed in Patent Document 1 described above, when the road surface friction coefficient is finally determined, it is necessary to weight the vehicle according to conditions such as vehicle body speed, longitudinal acceleration, lateral acceleration, and the like. There is also a problem that becomes complicated.

本発明は上記事情に鑑みてなされたもので、いかなる車両の運動状態においても、たとえ旋回制駆動時等であっても、重み付け等の複雑な処理を加えることなく、路面摩擦係数を連続的に自然な値で精度良く推定できる路面摩擦係数推定装置を提供することを目的とする。   The present invention has been made in view of the above circumstances, and in any vehicle motion state, even when turning control is performed, the road surface friction coefficient is continuously calculated without adding complicated processing such as weighting. An object of the present invention is to provide a road surface friction coefficient estimating apparatus that can accurately estimate a natural value.

本発明は、実際に生じているラック推力を推定ラック推力として算出する推定ラック推力算出手段と、少なくともタイヤの縦ひずみと横ひずみを表現するパラメータと路面摩擦係数とをパラメータとして含むタイヤのブラッシュモデルにより算出するラック推力を基準ラック推力として算出する基準ラック推力算出手段と、実際に生じている車輪の制駆動力を推定車輪制駆動力として算出する推定車輪制駆動力算出手段と、少なくともタイヤの縦ひずみと横ひずみを表現するパラメータと路面摩擦係数とをパラメータとして含むタイヤのブラッシュモデルにより算出する車輪の制駆動力を基準車輪制駆動力として算出する基準車輪制駆動力算出手段と、実際に生じている横力を推定横力として算出する推定横力算出手段と、少なくともタイヤの縦ひずみと横ひずみを表現するパラメータと路面摩擦係数とをパラメータとして含むタイヤのブラッシュモデルにより算出する横力を基準横力として算出する基準横力算出手段と、上記推定ラック推力と上記基準ラック推力との偏差と上記推定車輪制駆動力と上記基準車輪制駆動力との偏差と上記推定横力と上記基準横力との偏差が最小となるように上記路面摩擦係数の値を最適化計算により求める路面摩擦指数推定手段とを備えたことを特徴としている。   The present invention relates to a tire brush model including, as parameters, estimated rack thrust calculation means for calculating an actually generated rack thrust as an estimated rack thrust, parameters representing at least a longitudinal strain and a lateral strain of the tire, and a road surface friction coefficient. A reference rack thrust calculation means for calculating a rack thrust calculated by the above as a reference rack thrust, an estimated wheel braking / driving force calculation means for calculating an actual wheel braking / driving force as an estimated wheel braking / driving force, and at least a tire A reference wheel braking / driving force calculating means for calculating a wheel braking / driving force calculated as a reference wheel braking / driving force as a reference wheel braking / driving force by using a tire brush model including parameters representing longitudinal strain and lateral strain and a road surface friction coefficient, and Estimated lateral force calculating means for calculating the generated lateral force as an estimated lateral force, and at least the tire Reference lateral force calculation means for calculating a lateral force calculated by a tire brush model including a parameter expressing longitudinal strain and lateral strain and a road surface friction coefficient as parameters, and the estimated rack thrust and the reference rack thrust. Of the road surface friction coefficient and the estimated wheel braking / driving force and the estimated wheel force / driving force and the estimated lateral force and the reference lateral force are minimized by optimization calculation. The road surface friction index estimation means to be obtained is provided.

本発明による路面摩擦係数推定装置によれば、いかなる車両の運動状態においても、たとえ旋回制駆動時等であっても、重み付け等の複雑な処理を加えることなく、路面摩擦係数を連続的に自然な値で精度良く推定することが可能となる。   According to the road surface friction coefficient estimating apparatus according to the present invention, the road surface friction coefficient is continuously and naturally obtained without adding complicated processing such as weighting in any vehicle motion state, even during turning control. It is possible to estimate with high accuracy with high accuracy.

本発明の実施の一形態による、路面摩擦係数推定装置の機能ブロック図である。It is a functional block diagram of the road surface friction coefficient estimation apparatus by one Embodiment of this invention. 本発明の実施の一形態による、路面摩擦係数推定プログラムのフローチャートである。It is a flowchart of the road surface friction coefficient estimation program by one Embodiment of this invention. 本発明の実施の一形態による、図2から続くフローチャートである。FIG. 3 is a flowchart continued from FIG. 2 according to an embodiment of the present invention. 本発明の実施の一形態による、λの説明図である。It is explanatory drawing of (lambda) by one Embodiment of this invention.

以下、図面に基づいて本発明の実施の形態を説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1において、符号1は路面摩擦係数を推定する路面摩擦係数推定装置を示し、4輪の車輪速(左前輪車輪速Vfl、右前輪車輪速Vfr、左後輪車輪速Vrl、右後輪車輪速Vrr)を検出する4輪車輪速センサ11、前輪舵角δfを検出する舵角センサ12、横加速度(dy/dt)を検出する横加速度センサ13、ヨーレートγを検出するヨーレートセンサ14、操舵トルクThを検出する操舵トルクセンサ15、ブレーキ液圧PBを検出するブレーキ液圧センサ16の各センサが接続されて、これらセンサ11、12、13、14、15、16から4輪の車輪速Vfl、Vfr、Vrl、Vrr、前輪舵角δf、横加速度(dy/dt)、ヨーレートγ、操舵トルクTh、ブレーキ液圧PBがそれぞれ入力される。また、路面摩擦係数推定装置1には、エンジン制御装置17、トランスミッション制御装置18、電動パワーステアリング制御装置19が接続されて、エンジン出力トルクTeg、エンジン回転数Ne、主変速ギヤ比i、タービン回転数Nt、前後駆動力配分比rd、電動パワーステアリングモータの電流値iqがそれぞれ入力される。更に、路面摩擦係数推定装置1には、ブレーキスイッチ20が接続されており、ブレーキのON−OFF信号が入力される。 In FIG. 1, reference numeral 1 denotes a road surface friction coefficient estimating device for estimating a road surface friction coefficient. Four wheel speeds (left front wheel speed Vfl, right front wheel speed Vfr, left rear wheel speed Vrl, right rear wheel) A four-wheel wheel speed sensor 11 for detecting a speed Vrr), a steering angle sensor 12 for detecting a front wheel steering angle δf, a lateral acceleration sensor 13 for detecting a lateral acceleration (d 2 y / dt 2 ), and a yaw rate sensor for detecting a yaw rate γ. 14, the steering torque sensor 15 for detecting the steering torque Th and the brake hydraulic pressure sensor 16 for detecting the brake hydraulic pressure PB are connected, and these sensors 11, 12, 13, 14, 15, 16 are connected to the four wheels. Wheel speeds Vfl, Vfr, Vrl, Vrr, front wheel steering angle δf, lateral acceleration (d 2 y / dt 2 ), yaw rate γ, steering torque Th, and brake fluid pressure PB are input. Further, the road surface friction coefficient estimating device 1 is connected to an engine control device 17, a transmission control device 18, and an electric power steering control device 19, and an engine output torque Teg, an engine speed Ne, a main transmission gear ratio i, a turbine rotation. The number Nt, the front / rear driving force distribution ratio rd, and the current value iq of the electric power steering motor are input. Further, a brake switch 20 is connected to the road surface friction coefficient estimation device 1 and a brake ON-OFF signal is input.

路面摩擦係数推定装置1は、上述の各入力信号に基づき、後述する路面摩擦係数推定プログラムに従って、実際に生じているラック推力を推定ラック推力Fr_starとして算出し、タイヤの縦ひずみと横ひずみを表現するパラメータλと路面摩擦係数μとをパラメータとして含むタイヤのブラッシュモデルにより算出するラック推力を基準ラック推力Fr_modelとして算出し、実際に生じている車輪の制駆動力を推定車輪制駆動力Fx_starとして算出し、タイヤの縦ひずみと横ひずみを表現するパラメータλと路面摩擦係数μとをパラメータとして含むタイヤのブラッシュモデルにより算出する車輪の制駆動力を基準車輪制駆動力Fx_modelとして算出し、実際に生じている横力を推定横力Fy_starとして算出し、タイヤの縦ひずみと横ひずみを表現するパラメータλと路面摩擦係数μとをパラメータとして含むタイヤのブラッシュモデルにより算出する横力を基準横力Fy_modelとして算出し、推定ラック推力Fr_starと基準ラック推力Fr_modelとの偏差と推定車輪制駆動力Fx_starと基準車輪制駆動力Fx_modelとの偏差と推定横力Fy_starと基準横力Fy_modelとの偏差が最小となるように路面摩擦係数μの値を最適化計算により求めるように構成されている。   The road surface friction coefficient estimation device 1 calculates the actual rack force generated as the estimated rack force Fr_star according to the road surface friction coefficient estimation program described later based on the above input signals, and expresses the longitudinal and lateral strains of the tire. The rack thrust calculated by the tire brush model including the parameter λ and the road surface friction coefficient μ as parameters is calculated as the reference rack thrust Fr_model, and the braking / driving force of the wheel actually generated is calculated as the estimated wheel braking / driving force Fx_star. The wheel braking / driving force calculated by the tire brush model including the parameter λ representing the longitudinal strain and lateral strain of the tire and the road surface friction coefficient μ as parameters is calculated as the reference wheel braking / driving force Fx_model, and is actually generated. Is calculated as the estimated lateral force Fy_star, and represents the tire's longitudinal and lateral strain parameters. The lateral force calculated by the tire brush model including the data λ and the road surface friction coefficient μ as parameters is calculated as the reference lateral force Fy_model, and the deviation between the estimated rack thrust Fr_star and the reference rack thrust Fr_model and the estimated wheel braking / driving force Fx_star And the reference wheel braking / driving force Fx_model, and the difference between the estimated lateral force Fy_star and the reference lateral force Fy_model is determined by optimization calculation so that the deviation is minimized.

すなわち、路面摩擦係数推定装置1は、図1に示すように、車体速度算出部1a、車体加減速度算出部1b、トランスミッション出力トルク算出部1c、運転状態判定部1d、接地荷重算出部1e、前輪すべり角算出部1f、前輪スリップ率算出部1g、推定車輪制駆動力算出部1h、推定ラック推力算出部1i、推定横力算出部1j、基準車輪制駆動力算出部1k、基準ラック推力算出部1l、基準横力算出部1m、路面摩擦係数算出部1nから主要に構成されている。   That is, as shown in FIG. 1, the road surface friction coefficient estimation device 1 includes a vehicle body speed calculation unit 1a, a vehicle body acceleration / deceleration calculation unit 1b, a transmission output torque calculation unit 1c, an operation state determination unit 1d, a ground load calculation unit 1e, and a front wheel. Slip angle calculation unit 1f, front wheel slip ratio calculation unit 1g, estimated wheel braking / driving force calculation unit 1h, estimated rack thrust calculation unit 1i, estimated lateral force calculation unit 1j, reference wheel braking / driving force calculation unit 1k, reference rack thrust calculation unit 1l, a standard lateral force calculation unit 1m, and a road surface friction coefficient calculation unit 1n.

車体速度算出部1aは、4輪車輪速センサ11から4輪の車輪速(左前輪車輪速Vfl、右前輪車輪速Vfr、左後輪車輪速Vrl、右後輪車輪速Vrr)が入力される。そして、例えば、以下の(1)式により、車体速度Vを算出し、車体加減速度算出部1b、前輪すべり角算出部1fに出力する。
V=((Vfl+Vfr+Vrl+Vrr)−Vw_max)/3 …(1)
ここで、Vw_maxは最大速の車輪速を示し、一輪浮きによる誤判定を避けるために、Vw_maxの車輪速以外の3輪の平均値より車体速度Vを算出するようになっている。
The vehicle body speed calculation unit 1a receives four wheel speeds (left front wheel speed Vfl, right front wheel speed Vfr, left rear wheel speed Vrl, right rear wheel speed Vrr) from the four wheel speed sensor 11. . Then, for example, the vehicle body speed V is calculated by the following equation (1), and is output to the vehicle body acceleration / deceleration calculation unit 1b and the front wheel slip angle calculation unit 1f.
V = ((Vfl + Vfr + Vrl + Vrr) −Vw_max) / 3 (1)
Here, Vw_max indicates the maximum wheel speed, and the vehicle body speed V is calculated from the average value of the three wheels other than the wheel speed of Vw_max in order to avoid erroneous determination due to single wheel floating.

車体加減速度算出部1bは、車体速度算出部1aから車体速度Vが入力される。そして、例えば、車体速度Vを微分することにより車体加減速度、すなわち、(dV/dt)を算出して、接地荷重算出部1e、推定車輪制駆動力算出部1hに出力する。   The vehicle body acceleration / deceleration calculation unit 1b receives the vehicle body speed V from the vehicle body speed calculation unit 1a. Then, for example, the vehicle body acceleration / deceleration, that is, (dV / dt) is calculated by differentiating the vehicle body speed V, and is output to the ground load calculation unit 1e and the estimated wheel braking / driving force calculation unit 1h.

トランスミッション出力トルク算出部1cは、エンジン制御装置17からエンジン出力トルクTeg、エンジン回転数Neが入力され、トランスミッション制御装置18から主変速ギヤ比i、タービン回転数Ntが入力される。そして、例えば、以下の(2)式により、トランスミッション出力トルクTM_trqを算出し、前輪スリップ率算出部1gに出力する。
TM_trq=Teg・t・i …(2)
ここで、tはトルクコンバータのトルク比で、例えば、予め設定されているトルクコンバータの回転速度比e(Nt/Ne)と、トルクコンバータのトルク比tとのマップを参照することにより求められる。
The transmission output torque calculation unit 1c receives the engine output torque Teg and the engine speed Ne from the engine control device 17, and the main transmission gear ratio i and the turbine speed Nt from the transmission control device 18. Then, for example, the transmission output torque TM_trq is calculated by the following equation (2) and output to the front wheel slip ratio calculation unit 1g.
TM_trq = Teg · t · i (2)
Here, t is the torque ratio of the torque converter, and is obtained, for example, by referring to a map of a preset rotation speed ratio e (Nt / Ne) of the torque converter and a torque ratio t of the torque converter.

運転状態判定部1dは、ブレーキスイッチ20からブレーキのON−OFF信号が入力される。そして、車両が制動状態(ブレーキスイッチ20がON)か、それ以外の走行状態(慣性走行を含む駆動状態;ブレーキスイッチ20がOFF)かを判定して、判定結果を前輪スリップ率算出部1g、推定車輪制駆動力算出部1hに出力する。   The driving state determination unit 1 d receives a brake ON-OFF signal from the brake switch 20. Then, it is determined whether the vehicle is in a braking state (the brake switch 20 is ON) or other driving state (a driving state including inertial driving; the brake switch 20 is OFF), and the determination result is a front wheel slip ratio calculating unit 1g, Output to the estimated wheel braking / driving force calculation unit 1h.

接地荷重算出部1eは、横加速度センサ13から横加速度(dy/dt)が入力され、車体加減速度算出部1bから車体加減速度(dV/dt)が入力される。そして、例えば、以下の(3)式により、前後荷重移動量ΔWxを算出し、(4)式により、左右荷重移動量ΔWyを算出して、(5)〜(8)式により、左前輪接地荷重Fz_fl、右前輪接地荷重Fz_fr、左後輪接地荷重Fz_rl、右後輪接地荷重Fz_rrを算出して、基準車輪制駆動力算出部1k、基準ラック推力算出部1l、基準横力算出部1m、路面摩擦係数算出部1nに出力する。
ΔWx=(1/2)・(h/(lf+lf))・m・(dV/dt) …(3)
ここで、hは重心高、lfは前軸−重心間距離、mは車両質量である。
ΔWy=(1/2)・(h/d)・m・(dy/dt) …(4)
ここで、dはトレッドである。
Fz_fl=(1/2)・(lr/(lf+lr))・m・g−ΔWx−ΔWy…(5)
Fz_fr=(1/2)・(lr/(lf+lr))・m・g−ΔWx+ΔWy…(6)
Fz_rl=(1/2)・(lf/(lf+lr))・m・g+ΔWx−ΔWy…(7)
Fz_rr=(1/2)・(lf/(lf+lr))・m・g+ΔWx+ΔWy…(8)
ここで、lrは後軸−重心間距離、gは重力加速度である。
The ground load calculation unit 1e receives lateral acceleration (d 2 y / dt 2 ) from the lateral acceleration sensor 13, and receives vehicle acceleration / deceleration (dV / dt) from the vehicle body acceleration / deceleration calculation unit 1b. Then, for example, the front / rear load movement amount ΔWx is calculated by the following equation (3), the left / right load movement amount ΔWy is calculated by the equation (4), and the left front wheel grounding is calculated by the equations (5) to (8). A load Fz_fl, a right front wheel ground contact load Fz_fr, a left rear wheel ground load Fz_rl, and a right rear wheel ground load Fz_rr are calculated to obtain a reference wheel braking / driving force calculation unit 1k, a reference rack thrust calculation unit 1l, a reference lateral force calculation unit 1m, It outputs to the road surface friction coefficient calculation part 1n.
ΔWx = (1/2) · (h / (lf + lf)) · m · (dV / dt) (3)
Here, h is the height of the center of gravity, lf is the distance between the front shaft and the center of gravity, and m is the vehicle mass.
ΔWy = (1/2) · (h / d) · m · (d 2 y / dt 2 ) (4)
Here, d is a tread.
Fz_fl = (1/2) · (lr / (lf + lr)) · m · g−ΔWx−ΔWy (5)
Fz_fr = (1/2) · (lr / (lf + lr)) · m · g−ΔWx + ΔWy (6)
Fz_rl = (1/2) · (lf / (lf + lr)) · m · g + ΔWx−ΔWy (7)
Fz_rr = (1/2) · (lf / (lf + lr)) · m · g + ΔWx + ΔWy (8)
Here, lr is the distance between the rear axis and the center of gravity, and g is the gravitational acceleration.

前輪すべり角算出部1fは、舵角センサ12から前輪舵角δfが入力され、車体速度算出部1aから車体速度Vが入力される。そして、例えば、以下の(9)式により、前輪すべり角βfを算出する。
βf=β+(lf/V)・γ−δf …(9)
ここで、βは車体すべり角、γはヨーレートであり、以下の(10)、(11)式により算出される。
β=((1−(m/(2・(lf+lr)))・(lf/(lr・Kr))
・V)/(1+A・V))・(lr/(lf+lr))・δf…(10)
γ=(1/(1+A・V))・(V/(lf+lr))・δf…(11)
ここで、Aは車両のスタビリティファクタであり、以下の(12)式により算出される。
A=−(m/(2・(lf+lr)))
・(lf・Kf−lr・Kr)/(Kf・Kr) …(12)
ここで、Kfは前輪の等価コーナリングパワー、Krは後輪の等価コーナリングパワーである。
The front wheel slip angle calculation unit 1f receives the front wheel steering angle δf from the steering angle sensor 12 and the vehicle body speed V from the vehicle body speed calculation unit 1a. Then, for example, the front wheel slip angle βf is calculated by the following equation (9).
βf = β + (lf / V) · γ−δf (9)
Here, β is the vehicle slip angle, and γ is the yaw rate, and is calculated by the following equations (10) and (11).
β = ((1- (m / (2 · (lf + lr))) · (lf / (lr · Kr))
(V 2 ) / (1 + A · V 2 )) (lr / (lf + lr)) δf (10)
γ = (1 / (1 + A · V 2 )) · (V / (lf + lr)) · δf (11)
Here, A is a stability factor of the vehicle, and is calculated by the following equation (12).
A = − (m / (2 · (lf + lr) 2 ))
(Lf · Kf−lr · Kr) / (Kf · Kr) (12)
Here, Kf is the equivalent cornering power of the front wheels, and Kr is the equivalent cornering power of the rear wheels.

また、前輪すべり角算出部1fは、新たな前輪すべり角を算出すると、過去に算出したサンプリング時間の異なる複数の前輪すべり角により、ベクトル量である前輪すべり角βfを新たに設定して、基準車輪制駆動力算出部1k、基準ラック推力算出部1l、基準横力算出部1m、路面摩擦係数算出部1nに出力する。本実施の形態では、前輪すべり角βfの例として、新しくサンプリングされた順に、βf[0]、βf[1]、・・・、βf[m]、・・・、βf[18]、βf[19]の合計20個の成分から構成されているもので説明する。すなわち、

Figure 2011057036
となっている。 Further, when the front wheel slip angle calculation unit 1f calculates a new front wheel slip angle, the front wheel slip angle βf, which is a vector amount, is newly set based on a plurality of front wheel slip angles having different sampling times calculated in the past. It outputs to the wheel braking / driving force calculation unit 1k, the reference rack thrust calculation unit 1l, the reference lateral force calculation unit 1m, and the road surface friction coefficient calculation unit 1n. In the present embodiment, as an example of the front wheel slip angle βf, βf [0], βf [1],..., Βf [m],..., Βf [18], βf [ 19], which is composed of a total of 20 components. That is,
Figure 2011057036
It has become.

前輪スリップ率算出部1gは、ブレーキ液圧センサ16からブレーキ液圧PBが入力され、トランスミッション制御装置18から前後駆動力配分比rdが入力され、トランスミッション出力トルク算出部1cからトランスミッション出力トルクTM_trqが入力され、運転状態判定部1dから車両が制動状態(ブレーキスイッチ20がON)か、それ以外の走行状態(慣性走行を含む駆動状態;ブレーキスイッチ20がOFF)かの判定結果が入力される。そして、車両が制動状態の場合は、例えば、以下の(14)式により前輪(一輪)のスリップ率Sfを算出し、慣性走行を含む駆動状態の場合は、例えば、以下の(15)式により前輪(一輪)のスリップ率Sfを算出する。
Sf=(rB/2)・KB・PB …(14)
ここで、rBは制動力配分比、KBは制動力係数である。
The front wheel slip ratio calculation unit 1g receives the brake hydraulic pressure PB from the brake hydraulic pressure sensor 16, the front / rear driving force distribution ratio rd from the transmission control device 18, and the transmission output torque TM_trq from the transmission output torque calculation unit 1c. Then, a determination result as to whether the vehicle is in a braking state (the brake switch 20 is ON) or other driving state (a driving state including inertial driving; the brake switch 20 is OFF) is input from the driving state determination unit 1d. When the vehicle is in a braking state, for example, the slip ratio Sf of the front wheel (one wheel) is calculated by the following equation (14). When the vehicle is in a driving state including inertia traveling, for example, by the following equation (15): The slip ratio Sf of the front wheel (one wheel) is calculated.
Sf = (rB / 2) · KB · PB (14)
Here, rB is a braking force distribution ratio, and KB is a braking force coefficient.

Sf=(rd/2)・TM_trq・η・if/r …(15)
ここで、ηは駆動系伝達効率、ifはファイナルギヤ比、rは動荷重半径である。
Sf = (rd / 2) · TM_trq · η · if / r (15)
Here, η is the drive system transmission efficiency, if is the final gear ratio, and r is the dynamic load radius.

また、前輪スリップ率算出部1gは、新たな前輪(一輪)のスリップ率を算出すると、過去に算出したサンプリング時間の異なる複数の前輪(一輪)のスリップ率により、ベクトル量である前輪スリップ率Sfを新たに設定して、基準車輪制駆動力算出部1k、基準ラック推力算出部1l、基準横力算出部1m、路面摩擦係数算出部1nに出力する。本実施の形態では、前輪スリップ率Sfの例として、新しくサンプリングされた順に、Sf[0]、Sf[1]、・・・、Sf[m]、・・・、Sf[18]、Sf[19]の合計20個の成分から構成されているもので説明する。すなわち、

Figure 2011057036
となっている。 Further, when the front wheel slip ratio calculating unit 1g calculates the slip ratio of a new front wheel (single wheel), the front wheel slip ratio Sf, which is a vector amount, is calculated based on the slip ratios of a plurality of front wheels (single wheel) having different sampling times calculated in the past. Are newly set and output to the reference wheel braking / driving force calculation unit 1k, the reference rack thrust calculation unit 1l, the reference lateral force calculation unit 1m, and the road surface friction coefficient calculation unit 1n. In the present embodiment, as an example of the front wheel slip ratio Sf, Sf [0], Sf [1], ..., Sf [m], ..., Sf [18], Sf [ 19], which is composed of a total of 20 components. That is,
Figure 2011057036
It has become.

推定車輪制駆動力算出部1hは、トランスミッション制御装置18から前後駆動力配分比rdが入力され、車体加減速度算出部1bから車体加減速度(dV/dt)が入力され、運転状態判定部1dから車両が制動状態(ブレーキスイッチ20がON)か、それ以外の走行状態(慣性走行を含む駆動状態;ブレーキスイッチ20がOFF)かの判定結果が入力される。そして、車両が制動状態の場合は、例えば、以下の(17)式により、実際に生じている車輪(前1輪)の制駆動力を推定車輪制駆動力Fx_starとして算出する。また、慣性走行を含む駆動状態の場合は、例えば、以下の(18)式により、実際に生じている車輪(前1輪)の制駆動力を推定車輪制駆動力Fx_starとして算出する。   The estimated wheel braking / driving force calculation unit 1h receives the front / rear driving force distribution ratio rd from the transmission control device 18, receives the vehicle body acceleration / deceleration (dV / dt) from the vehicle body acceleration / deceleration calculation unit 1b, and receives the driving state determination unit 1d. A determination result of whether the vehicle is in a braking state (the brake switch 20 is ON) or other driving state (a driving state including inertial driving; the brake switch 20 is OFF) is input. When the vehicle is in a braking state, for example, the braking / driving force of the actually generated wheel (front one wheel) is calculated as the estimated wheel braking / driving force Fx_star by the following equation (17). In the case of a driving state including inertial running, for example, the braking / driving force of the actually generated wheel (front one wheel) is calculated as the estimated wheel braking / driving force Fx_star by the following equation (18).

すなわち、車両が制動状態の場合、各輪の前後力(左前輪前後力Fx_fl、右前輪前後力Fx_fr、左後輪前後力Fx_rl、右後輪前後力Fx_rr)の関係は、
Fx_fl=Fx_fr=(1/2)・rB・m・(dV/dt)
Fx_rl=Fx_rr=(1/2)・rB・m・(dV/dt)
であるとして、
Fx_star=(Fx_fl+Fx_fr)/2=(1/2)・rB・m・(dV/dt)…(17)
また、慣性走行を含む駆動状態の場合、
Fx_star=(1/2)・rd・m・(dV/dt) …(18)
また、推定車輪制駆動力算出部1hは、新たな推定車輪制駆動力を算出すると、過去に算出したサンプリング時間の異なる複数の推定車輪制駆動力により、ベクトル量である推定車輪制駆動力Fx_starを新たに設定して、路面摩擦係数算出部1nに出力する。本実施の形態では、推定車輪制駆動力Fx_starの例として、新しくサンプリングされた順に、Fx_star[0]、Fx_star[1]、・・・、Fx_star[m]、・・・、Fx_star[18]、Fx_star[19]の合計20個の成分から構成されているもので説明する。すなわち、

Figure 2011057036
となっている。このように、推定車輪制駆動力算出部1hは、推定車輪制駆動力算出手段として設けられている。 That is, when the vehicle is in a braking state, the relationship among the front and rear forces of each wheel (left front wheel front and rear force Fx_fl, right front wheel front and rear force Fx_fr, left rear wheel front and rear force Fx_rl, right rear wheel front and rear force Fx_rr)
Fx_fl = Fx_fr = (1/2) · rB · m · (dV / dt)
Fx_rl = Fx_rr = (1/2) · rB · m · (dV / dt)
As
Fx_star = (Fx_fl + Fx_fr) / 2 = (1/2) · rB · m · (dV / dt) (17)
In the case of a driving state including inertial running,
Fx_star = (1/2) · rd · m · (dV / dt) (18)
Further, when the estimated wheel braking / driving force calculating unit 1h calculates a new estimated wheel braking / driving force, the estimated wheel braking / driving force Fx_star, which is a vector amount, is obtained from a plurality of estimated wheel braking / driving forces having different sampling times calculated in the past. Is newly set and output to the road surface friction coefficient calculating unit 1n. In the present embodiment, as an example of the estimated wheel braking / driving force Fx_star, Fx_star [0], Fx_star [1],..., Fx_star [m],. A description will be given of a configuration composed of a total of 20 components of Fx_star [19]. That is,
Figure 2011057036
It has become. Thus, the estimated wheel braking / driving force calculating unit 1h is provided as an estimated wheel braking / driving force calculating means.

推定ラック推力算出部1iは、操舵トルクセンサ15から操舵トルクThが入力され、電動パワーステアリング制御装置19から電動パワーステアリングモータの電流値iqが入力される。そして、例えば、以下の(20)式により、実際に生じているラック推力を推定ラック推力Fr_starとして算出する。
Fr_star=ζ1・(2・π/hs)・Tp) …(20)
ここで、ζ1はラック&ピニオンの効率で、hsは比ストロークである。また、Tpはピニオンギヤトルクであり、例えば、以下の(21)式により算出される。
Tp=Th+ζ2・nw・Tm …(21)
ここで、ζ2はウォームギヤ効率で、nwはウォームギヤ比である。また、Tmは電動パワーステアリングモータトルクであり、例えば、以下の(22)式により算出される。
Tm=sign(Th)・km・(1/31/2)・iq …(22)
ここで、sign(Th)は、操舵トルクThの符号であり、kmはモータトルク定数である。
The estimated rack thrust calculation unit 1 i receives the steering torque Th from the steering torque sensor 15 and the current value iq of the electric power steering motor from the electric power steering control device 19. Then, for example, the rack thrust actually generated is calculated as the estimated rack thrust Fr_star by the following equation (20).
Fr_star = ζ1 · (2 · π / hs) · Tp) (20)
Here, ζ1 is the rack and pinion efficiency, and hs is the specific stroke. Tp is the pinion gear torque, and is calculated by the following equation (21), for example.
Tp = Th + ζ2 · nw · Tm (21)
Here, ζ2 is the worm gear efficiency and nw is the worm gear ratio. Tm is the electric power steering motor torque, and is calculated by the following equation (22), for example.
Tm = sign (Th) · km · (1/3 1/2 ) · iq (22)
Here, sign (Th) is a sign of the steering torque Th, and km is a motor torque constant.

また、推定ラック推力算出部1iは、新たな推定ラック推力を算出すると、過去に算出したサンプリング時間の異なる複数の推定ラック推力により、ベクトル量である推定ラック推力Fr_starを新たに設定して、路面摩擦係数算出部1nに出力する。本実施の形態では、推定ラック推力Fr_starの例として、新しくサンプリングされた順に、Fr_star[0]、Fr_star[1]、・・・、Fr_star[m]、・・・、Fr_star[18]、Fr_star[19]の合計20個の成分から構成されているもので説明する。すなわち、

Figure 2011057036
となっている。このように、推定ラック推力算出部1iは、推定ラック推力算出手段として設けられている。 Further, when the estimated rack thrust calculation unit 1i calculates a new estimated rack thrust, the estimated rack thrust Fr_star, which is a vector quantity, is newly set based on a plurality of estimated rack thrusts having different sampling times calculated in the past, and the road surface It outputs to the friction coefficient calculation part 1n. In this embodiment, as an example of the estimated rack thrust Fr_star, Fr_star [0], Fr_star [1], ..., Fr_star [m], ..., Fr_star [18], Fr_star [ 19], which is composed of a total of 20 components. That is,
Figure 2011057036
It has become. Thus, the estimated rack thrust calculation unit 1i is provided as estimated rack thrust calculation means.

推定横力算出部1jは、横加速度センサ13から横加速度(dy/dt)が入力され、ヨーレートセンサ14からヨーレートγが入力される。そして、例えば、以下の(24)式により、実際に生じている横力(前輪側のみ)を推定横力Fy_starとして算出する。 Fy_star=(1/2)・(m・(dy/dt)+I・(dγ/dt))
/(lf+lr) …(24)
ここで、Iはヨーイング慣性モーメントであり、(dγ/dt)はヨー角加速度である。
The estimated lateral force calculation unit 1j receives the lateral acceleration (d 2 y / dt 2 ) from the lateral acceleration sensor 13 and the yaw rate γ from the yaw rate sensor 14. For example, the lateral force actually generated (only on the front wheel side) is calculated as the estimated lateral force Fy_star by the following equation (24). Fy_star = (1/2) · (m · (d 2 y / dt 2 ) + I · (dγ / dt))
/ (Lf + lr) (24)
Here, I is the yawing moment of inertia, and (dγ / dt) is the yaw angular acceleration.

また、推定横力算出部1jは、新たな推定横力を算出すると、過去に算出したサンプリング時間の異なる複数の推定横力により、ベクトル量である推定横力Fy_starを新たに設定して、路面摩擦係数算出部1nに出力する。本実施の形態では、推定横力Fy_starの例として、新しくサンプリングされた順に、Fy_star[0]、Fy_star[1]、・・・、Fy_star[m]、・・・、Fy_star[18]、Fy_star[19]の合計20個の成分から構成されているもので説明する。すなわち、

Figure 2011057036
となっている。このように、推定横力算出部1jは、推定横力算出手段として設けられている。 Further, when the estimated lateral force calculation unit 1j calculates a new estimated lateral force, the estimated lateral force Fy_star, which is a vector amount, is newly set based on a plurality of estimated lateral forces with different sampling times calculated in the past, and the road surface It outputs to the friction coefficient calculation part 1n. In this embodiment, as an example of the estimated lateral force Fy_star, Fy_star [0], Fy_star [1], ..., Fy_star [m], ..., Fy_star [18], Fy_star [ 19], which is composed of a total of 20 components. That is,
Figure 2011057036
It has become. Thus, the estimated lateral force calculation unit 1j is provided as estimated lateral force calculation means.

基準車輪制駆動力算出部1kは、接地荷重算出部1eから各輪の接地荷重Fz_fl、Fz_fr、Fz_rl、Fz_rrが入力され、前輪すべり角算出部1fから前輪すべり角βfが入力され、前輪スリップ率算出部1gから前輪スリップ率Sfが入力される。そして、路面摩擦係数算出部1nからの指令に基づいて、例えば、以下の(26)式に示すような、タイヤの縦ひずみと横ひずみを表現するパラメータλと路面摩擦係数μとをパラメータとして含むタイヤのブラッシュモデルにより、車輪(前一輪)の制駆動力を基準車輪制駆動力Fx_modelとして算出し、路面摩擦係数算出部1nに出力する。
Fx_model=−Ks・Sf・ξs−6・μ・Fz_f・cosθ・((1/6)
−(1/2)・ξs+(1/3)・ξs) …(26)
ここで、Ksはドライビングスティフネスであり、Fz_fは前輪の接地荷重であり、以下の(27)式で算出される。
Fz_f=(Fz_fl+Fz_fr)/2 …(27)
また、ξsは、以下の(28)式で算出される。
The reference wheel braking / driving force calculation unit 1k receives the ground load Fz_fl, Fz_fr, Fz_rl, Fz_rr of each wheel from the ground load calculation unit 1e, the front wheel slip angle βf from the front wheel slip angle calculation unit 1f, and the front wheel slip ratio. The front wheel slip ratio Sf is input from the calculation unit 1g. Then, based on a command from the road surface friction coefficient calculation unit 1n, for example, as shown in the following equation (26), a parameter λ representing the tire longitudinal strain and lateral strain and a road surface friction coefficient μ are included as parameters. Based on the tire brush model, the braking / driving force of the wheel (front one wheel) is calculated as the reference wheel braking / driving force Fx_model and output to the road surface friction coefficient calculating unit 1n.
Fx_model = −Ks · Sf · ξs 2 −6 · μ · Fz_f · cos θ · ((1/6)
− (1/2) · ξs 2 + (1/3) · ξs 3 ) (26)
Here, Ks is the driving stiffness, and Fz_f is the contact load of the front wheel, and is calculated by the following equation (27).
Fz_f = (Fz_fl + Fz_fr) / 2 (27)
Ξs is calculated by the following equation (28).

ξs=1−(Ks/(3・μ・Fz_f))・λ …(28)
更に、λは、以下の(29)式で算出され、前輪すべり角βf、前輪スリップ率Sfを用いて図で示すと図4に示すようにθを用いて(30)式で表される。
ξs = 1− (Ks / (3 · μ · Fz_f)) · λ (28)
Further, λ is calculated by the following equation (29), and is represented by the equation (30) using θ as shown in FIG. 4 when the diagram is shown using the front wheel slip angle βf and the front wheel slip ratio Sf.

λ=(Sf+(Kf/Ks)・(1+Sf)・tanβf)1/2 …(29)
cosθ=Sf/λ …(30)
λ = (Sf 2 + (Kf / Ks) 2 · (1 + Sf) 2 · tan 2 βf) 1/2 (29)
cos θ = Sf / λ (30)

尚、本実施の形態では、基準車輪制駆動力Fx_modelも、用いる前輪すべり角βf、前輪スリップ率Sfに対応して20個のデータが設定され、用いられた路面摩擦係数が前回の値μ[n-1]である場合は、新しく算出された順に、Fx_model[0][n-1]、Fx_model[1][n-1]、・・・、Fx_model[m][n-1]、・・・、Fx_model[18][n-1]、Fx_model[19][n-1]の合計20個の成分から構成されているもので説明する。すなわち、

Figure 2011057036
となっている。このように、基準車輪制駆動力算出部1kは、基準車輪制駆動力算出手段として設けられている。 In this embodiment, 20 data are set for the reference wheel braking / driving force Fx_model corresponding to the front wheel slip angle βf and the front wheel slip ratio Sf to be used, and the road surface friction coefficient used is the previous value μ [ n-1], Fx_model [0] [n-1], Fx_model [1] [n-1],..., Fx_model [m] [n-1],. .., Fx_model [18] [n-1] and Fx_model [19] [n-1] are composed of a total of 20 components. That is,
Figure 2011057036
It has become. Thus, the reference wheel braking / driving force calculation unit 1k is provided as a reference wheel braking / driving force calculation unit.

基準ラック推力算出部1lは、接地荷重算出部1eから各輪の接地荷重Fz_fl、Fz_fr、Fz_rl、Fz_rrが入力され、前輪すべり角算出部1fから前輪すべり角βfが入力され、前輪スリップ率算出部1gから前輪スリップ率Sfが入力される。そして、路面摩擦係数算出部1nからの指令に基づいて、例えば、以下の(32)式に示すような、タイヤの縦ひずみと横ひずみを表現するパラメータλと路面摩擦係数μとをパラメータとして含むタイヤのブラッシュモデルにより、車輪(前一輪)のラック推力を基準ラック推力Fr_modelとして算出し、路面摩擦係数算出部1nに出力する。
Fr_model=(1/ln)・(SAT+εc・Fy) …(32)
ここで、lnはニューマチックトレール、εcはキャスタトレールである。
The reference rack thrust calculation unit 11 receives the ground load Fz_fl, Fz_fr, Fz_rl, Fz_rr of each wheel from the ground load calculation unit 1e, and the front wheel slip angle βf from the front wheel slip angle calculation unit 1f, and the front wheel slip ratio calculation unit A front wheel slip ratio Sf is input from 1 g. Then, based on a command from the road surface friction coefficient calculation unit 1n, for example, as shown in the following equation (32), a parameter λ representing the tire longitudinal strain and lateral strain and a road surface friction coefficient μ are included as parameters. The rack thrust of the wheel (front one wheel) is calculated as the reference rack thrust Fr_model by the tire brush model, and is output to the road surface friction coefficient calculation unit 1n.
Fr_model = (1 / ln) · (SAT + εc · Fy) (32)
Here, ln is a pneumatic trail, and εc is a caster trail.

SATは、例えば、以下の(33)式により、算出される。 The SAT is calculated by the following equation (33), for example.

SAT=(lt/2)・Kf・(1+Sf)・tanβf・ξs・(1−(4/3)・ξs)−(3/2)・lt・μ・Fz_f・sinθ・ξs・(1−ξs)+(2/3)・lt・Ks・(1+Sf)・Sf・tanβf・ξs+((3・lt・(μ・Fz_f)・sinθ・cosθ)/(5・Ks))・(1−10・ξs+15・ξs−6・ξs
…(33)
ここで、ltはタイヤ接地長さである。sinθは以下の(34)式で算出される。
SAT = (lt / 2) · Kf · (1 + Sf) · tan βf · ξs 2 · (1− (4/3) · ξs 2 ) − (3/2) · lt · μ · Fz_f · sinθ · ξs 2 · ( 1−ξs) 2 + (2/3) · lt · Ks · (1 + Sf) · Sf · tan βf · ξs 3 + ((3 · lt · (μ · Fz_f) 2 · sinθ · cosθ) / (5 · Ks) ) ・ (1-10 ・ ξs 3 +15 ・ ξs 4 −6 ・ ξs 5 )
... (33)
Here, lt is a tire ground contact length. sinθ is calculated by the following equation (34).

sinθ=(Kf・tanβf・(1+Sf))/(Ks・λ) …(34)     sinθ = (Kf · tanβf · (1 + Sf)) / (Ks · λ) (34)

また、Fyは、例えば、以下の(35)式により、算出される。
Fy=−Kf・(1+Sf)・tanβf・ξs−6・μ・Fz_f・sinθ・((1/6)
−(1/2)・ξs+(1/3)・ξs) …(35)
Fy is calculated by, for example, the following equation (35).
Fy = −Kf · (1 + Sf) · tan βf · ξs 2 −6 · μ · Fz_f · sin θ · ((1/6)
− (1/2) · ξs 2 + (1/3) · ξs 3 ) (35)

尚、本実施の形態では、基準ラック推力Fr_modelも、用いる前輪すべり角βf、前輪スリップ率Sfに対応して20個のデータが設定され、用いられた路面摩擦係数が前回の値μ[n-1]である場合は、新しく算出された順に、Fr_model[0][n-1]、Fr_model[1][n-1]、・・・、Fr_model[m][n-1]、・・・、Fr_model[18][n-1]、Fr_model[19][n-1]の合計20個の成分から構成されているもので説明する。すなわち、

Figure 2011057036
となっている。このように、基準ラック推力算出部1lは、基準ラック推力算出手段として設けられている。 In this embodiment, 20 data are set for the reference rack thrust Fr_model corresponding to the front wheel slip angle βf and the front wheel slip rate Sf to be used, and the road surface friction coefficient used is the previous value μ [n− 1], Fr_model [0] [n-1], Fr_model [1] [n-1],..., Fr_model [m] [n-1],. , Fr_model [18] [n-1], Fr_model [19] [n-1], which is composed of a total of 20 components. That is,
Figure 2011057036
It has become. Thus, the reference rack thrust calculation unit 1l is provided as a reference rack thrust calculation means.

基準横力算出部1mは、接地荷重算出部1eから各輪の接地荷重Fz_fl、Fz_fr、Fz_rl、Fz_rrが入力され、前輪すべり角算出部1fから前輪すべり角βfが入力され、前輪スリップ率算出部1gから前輪スリップ率Sfが入力される。そして、路面摩擦係数算出部1nからの指令に基づいて、例えば、以下の(37)式に示すような、タイヤの縦ひずみと横ひずみを表現するパラメータλと路面摩擦係数μとをパラメータとして含むタイヤのブラッシュモデルにより、車輪(前一輪)の横力を基準横力Fy_modelとして算出し、路面摩擦係数算出部1nに出力する。
Fy_model=−Kf・(1+Sf)・tanβf・ξs−6・μ・Fz_f・sinθ
・((1/6)−(1/2)・ξs+(1/3)・ξs) …(37)
The reference lateral force calculation unit 1m receives the contact loads Fz_fl, Fz_fr, Fz_rl, and Fz_rr of each wheel from the contact load calculation unit 1e, and the front wheel slip angle βf from the front wheel slip angle calculation unit 1f, and the front wheel slip ratio calculation unit A front wheel slip ratio Sf is input from 1 g. Then, based on a command from the road surface friction coefficient calculation unit 1n, for example, as shown in the following equation (37), a parameter λ expressing the tire longitudinal strain and lateral strain and a road surface friction coefficient μ are included as parameters. The lateral force of the wheel (front one wheel) is calculated as a reference lateral force Fy_model by the tire brush model, and is output to the road surface friction coefficient calculating unit 1n.
Fy_model = −Kf · (1 + Sf) · tanβf · ξs 2 −6 · μ · Fz_f · sinθ
((1/6) − (1/2) · ξs 2 + (1/3) · ξs 3 ) (37)

尚、本実施の形態では、基準横力Fy_modelも、用いる前輪すべり角βf、前輪スリップ率Sfに対応して20個のデータが設定され、用いられた路面摩擦係数が前回の値μ[n-1]である場合は、新しく算出された順に、Fy_model[0][n-1]、Fy_model[1][n-1]、・・・、Fy_model[m][n-1]、・・・、Fy_model[18][n-1]、Fy_model[19][n-1]の合計20個の成分から構成されているもので説明する。すなわち、

Figure 2011057036
となっている。このように、基準横力算出部1mは、基準横力算出手段として設けられている。 In the present embodiment, as the reference lateral force Fy_model, 20 data are set corresponding to the front wheel slip angle βf and the front wheel slip ratio Sf to be used, and the road surface friction coefficient used is the previous value μ [n− 1], Fy_model [0] [n-1], Fy_model [1] [n-1],..., Fy_model [m] [n-1],. , Fy_model [18] [n-1], Fy_model [19] [n-1], which is composed of a total of 20 components. That is,
Figure 2011057036
It has become. Thus, the reference lateral force calculation unit 1m is provided as a reference lateral force calculation unit.

路面摩擦係数算出部1nは、接地荷重算出部1eから各輪の接地荷重Fz_fl、Fz_fr、Fz_rl、Fz_rrが入力され、前輪すべり角算出部1fから前輪すべり角βfが入力され、前輪スリップ率算出部1gから前輪スリップ率Sfが入力され、推定車輪制駆動力算出部1hから推定車輪制駆動力Fx_starが入力され、推定ラック推力算出部1iから推定ラック推力Fr_starが入力され、推定横力算出部1jから推定横力Fy_starが入力される。そして、推定車輪制駆動力Fx_star、推定ラック推力Fr_star、推定横力Fy_starと同じタイミングで、基準車輪制駆動力Fx_model、基準ラック推力Fr_model、基準横力Fy_modelを、上述の基準車輪制駆動力算出部1k、基準ラック推力算出部1l、基準横力算出部1mにより、上述のタイヤの縦ひずみと横ひずみを表現するパラメータλと路面摩擦係数μとをパラメータとして含むタイヤのブラッシュモデルにより算出し、これらの偏差を最小とする路面摩擦係数μの値を最適化計算により求める。   The road surface friction coefficient calculation unit 1n receives the contact loads Fz_fl, Fz_fr, Fz_rl, and Fz_rr of each wheel from the contact load calculation unit 1e, and the front wheel slip angle βf from the front wheel slip angle calculation unit 1f. The front wheel slip ratio Sf is input from 1g, the estimated wheel braking / driving force Fx_star is input from the estimated wheel braking / driving force calculating unit 1h, the estimated rack thrust Fr_star is input from the estimated rack thrust calculating unit 1i, and the estimated lateral force calculating unit 1j To input the estimated lateral force Fy_star. Then, at the same timing as the estimated wheel braking / driving force Fx_star, estimated rack thrust Fr_star, and estimated lateral force Fy_star, the reference wheel braking / driving force Fx_model, reference rack thrust Fr_model, and reference lateral force Fy_model are converted into the above-described reference wheel braking / driving force calculation unit. 1k, the reference rack thrust calculation unit 1l, and the reference lateral force calculation unit 1m are calculated by a tire brush model including the parameter λ and the road surface friction coefficient μ, which express the longitudinal strain and lateral strain of the tire, as parameters, The value of the road surface friction coefficient μ that minimizes the deviation is obtained by optimization calculation.

具体的には、以下の(39)式により、路面摩擦係数μが微小変化した時の、基準車輪制駆動力Fx_model、基準ラック推力Fr_model、基準横力Fy_modelの変化量を要素とするベクトルであるヤコビアンJmodel[n-1]を、路面摩擦係数の前回値μ[n-1]を使って算出する。尚、ヤコビアンJmodel[n-1]の添字[n-1]は、路面摩擦係数の前回値μ[n-1]を表すものであり、反復演算n−1=0の場合は、路面摩擦係数の前回値μ[n-1]が無いため、先のサンプリング時における路面摩擦係数μの算出結果を代入する。   Specifically, the following equation (39) is a vector whose elements are changes in the reference wheel braking / driving force Fx_model, the reference rack thrust Fr_model, and the reference lateral force Fy_model when the road surface friction coefficient μ changes slightly. The Jacobian Jmodel [n-1] is calculated using the previous value μ [n-1] of the road surface friction coefficient. The subscript [n-1] of the Jacobian Jmodel [n-1] represents the previous value μ [n-1] of the road surface friction coefficient. When the iterative calculation n-1 = 0, the road surface friction coefficient. Since there is no previous value μ [n−1], the calculation result of the road surface friction coefficient μ at the time of the previous sampling is substituted.

Figure 2011057036
ここで、(39)式中のJx_model[n-1]は、以下の(40)式である。
Figure 2011057036
Here, Jx_model [n-1] in the equation (39) is the following equation (40).

Figure 2011057036
そして、(40)式中の各要素は、それぞれ以下の各式で求められるものである。
Figure 2011057036
And each element in (40) Formula is calculated | required by each following formula, respectively.

∂Fx_model/∂μ[0][n-1]=(1/(27・μ[n-1]・Fz_f))
・(Ks・λ・Sf[0]・(−9・μ[n-1]・Fz_f+2・Ks・λ))
∂Fx_model/∂μ[1][n-1]=(1/(27・μ[n-1]・Fz_f))
・(Ks・λ・Sf[1]・(−9・μ[n-1]・Fz_f+2・Ks・λ))

∂Fx_model/∂μ[m][n-1]=(1/(27・μ[n-1]・Fz_f))
・(Ks・λ・Sf[m]・(−9・μ[n-1]・Fz_f+2・Ks・λ))

∂Fx_model/∂μ[18][n-1]=(1/(27・μ[n-1]・Fz_f))
・(Ks・λ・Sf[18]・(−9・μ[n-1]・Fz_f+2・Ks・λ))
∂Fx_model/∂μ[19][n-1]=(1/(27・μ[n-1]・Fz_f))
・(Ks・λ・Sf[19]・(−9・μ[n-1]・Fz_f+2・Ks・λ))
∂Fx_model / ∂μ [0] [n-1] = (1 / (27 · μ 3 [n-1] · Fz_f 2 ))
(Ks 2 · λ · Sf [0] · (−9 · μ [n-1] · Fz_f + 2 · Ks · λ))
∂Fx_model / ∂μ [1] [n-1] = (1 / (27 · μ 3 [n-1] · Fz_f 2 ))
(Ks 2 · λ · Sf [1] · (−9 · μ [n-1] · Fz_f + 2 · Ks · λ))
:
∂Fx_model / ∂μ [m] [n-1] = (1 / (27 · μ 3 [n-1] · Fz_f 2 ))
(Ks 2 · λ · Sf [m] · (−9 · μ [n-1] · Fz_f + 2 · Ks · λ))
:
∂Fx_model / ∂μ [18] [n-1] = (1 / (27 · μ 3 [n-1] · Fz_f 2 ))
(Ks 2 · λ · Sf [18] · (−9 · μ [n-1] · Fz_f + 2 · Ks · λ))
∂Fx_model / ∂μ [19] [n-1] = (1 / (27 · μ 3 [n-1] · Fz_f 2 ))
(Ks 2 · λ · Sf [19] · (−9 · μ [n-1] · Fz_f + 2 · Ks · λ))

また、(39)式中のJr_model[n-1] は、以下の(41)式である。   Further, Jr_model [n-1] in the equation (39) is the following equation (41).

Figure 2011057036
そして、(41)式中の各要素は、それぞれ以下の各式で求められるものである。
Figure 2011057036
And each element in (41) Formula is calculated | required by each following formula, respectively.

∂Fr_model/∂μ[0][n-1]=(−1/(135・Fz_f・μ[n-1]・ln))
・(Ks・λ・(1+Sf[0])・tanβf[0] ・(Ks・λ・lt
・(−5・Kf+8・Ks・Sf[0])−15・Fz_f・μ[n-1]・(6・Kf・εc+3・Kf・lt−8・Ks・Sf[0]・lt)+10・Ks・λ・Fz_f・μ[n-1]・(2・Kf・εc+3・Kf・lt−6・Ks・Sf[0]・lt))
∂Fr_model/∂μ[1][n-1]=(−1/(135・Fz_f・μ[n-1]・ln))
・(Ks・λ・(1+Sf[1])・tanβf[1] ・(Ks・λ・lt
・(−5・Kf+8・Ks・Sf[1])−15・Fz_f・μ[n-1]・(6・Kf・εc+3・Kf・lt−8・Ks・Sf[1]・lt)+10・Ks・λ・Fz_f・μ[n-1]・(2・Kf・εc+3・Kf・lt−6・Ks・Sf[1]・lt))

∂Fr_model/∂μ[m][n-1] =(−1/(135・Fz_f・μ[n-1]・ln))
・(Ks・λ・(1+Sf[m])・tanβf[m] ・(Ks・λ・lt
・(−5・Kf+8・Ks・Sf[m])−15・Fz_f・μ[n-1]・(6・Kf・εc+3・Kf・lt−8・Ks・Sf[m]・lt)+10・Ks・λ・Fz_f・μ[n-1]・(2・Kf・εc+3・Kf・lt−6・Ks・Sf[m]・lt))

∂Fr_model/∂μ[18][n-1]=(−1/(135・Fz_f・μ[n-1]・ln))
・(Ks・λ・(1+Sf[18])・tanβf[18] ・(Ks・λ・lt
・(−5・Kf+8・Ks・Sf[18])−15・Fz_f・μ[n-1]・(6・Kf・εc+3・Kf・lt−8・Ks・Sf[18]・lt)+10・Ks・λ・Fz_f・μ[n-1]・(2・Kf・εc+3・Kf・lt−6・Ks・Sf[18]・lt))
∂Fr_model/∂μ[19][n-1]=(−1/(135・Fz_f・μ[n-1]・ln))
・(Ks・λ・(1+Sf[19])・tanβf[19] ・(Ks・λ・lt
・(−5・Kf+8・Ks・Sf[19])−15・Fz_f・μ[n-1]・(6・Kf・εc+3・Kf・lt−8・Ks・Sf[19]・lt)+10・Ks・λ・Fz_f・μ[n-1]・(2・Kf・εc+3・Kf・lt−6・Ks・Sf[19]・lt))
∂Fr_model / ∂μ [0] [n -1] = (- 1 / (135 · Fz_f 3 · μ 4 [n-1] · ln))
(Ks · λ · (1 + Sf [0]) · tanβf [0] (Ks 2 · λ 2 · lt
(−5 · Kf + 8 · Ks · Sf [0]) − 15 · Fz_f 2 · μ 2 [n−1] · (6 · Kf · εc + 3 · Kf · lt−8 · Ks · Sf [0] · lt) + 10 · Ks · λ · Fz_f · μ [n-1] · (2 · Kf · εc + 3 · Kf · lt-6 · Ks · Sf [0] · lt))
∂Fr_model / ∂μ [1] [n -1] = (- 1 / (135 · Fz_f 3 · μ 4 [n-1] · ln))
・ (Ks ・ λ ・ (1 + Sf [1]) ・ tanβf [1] ・ (Ks 2・ λ 2・ lt
(−5 · Kf + 8 · Ks · Sf [1]) − 15 · Fz_f 2 · μ 2 [n−1] · (6 · Kf · εc + 3 · Kf · lt−8 · Ks · Sf [1] · lt) + 10 · Ks · λ · Fz_f · μ [n-1] · (2 · Kf · εc + 3 · Kf · lt-6 · Ks · Sf [1] · lt))
:
∂Fr_model / ∂μ [m] [n -1] = (- 1 / (135 · Fz_f 3 · μ 4 [n-1] · ln))
(Ks · λ · (1 + Sf [m]) · tanβf [m] (Ks 2 · λ 2 · lt
(−5 · Kf + 8 · Ks · Sf [m]) − 15 · Fz_f 2 · μ 2 [n−1] · (6 · Kf · εc + 3 · Kf · lt−8 · Ks · Sf [m] · lt) + 10 · Ks · λ · Fz_f · μ [n-1] · (2 · Kf · εc + 3 · Kf · lt-6 · Ks · Sf [m] · lt))
:
∂Fr_model / ∂μ [18] [n-1] = (− 1 / (135 · Fz_f 3 · μ 4 [n-1] · ln))
(Ks · λ · (1 + Sf [18]) · tanβf [18] (Ks 2 · λ 2 · lt
(−5 · Kf + 8 · Ks · Sf [18]) − 15 · Fz_f 2 · μ 2 [n−1] · (6 · Kf · εc + 3 · Kf · lt−8 · Ks · Sf [18] · lt) + 10 · Ks · λ · Fz_f · μ [n-1] · (2 · Kf · εc + 3 · Kf · lt-6 · Ks · Sf [18] · lt))
∂Fr_model / ∂μ [19] [n-1] = (− 1 / (135 · Fz_f 3 · μ 4 [n-1] · ln))
(Ks · λ · (1 + Sf [19]) · tanβf [19] (Ks 2 · λ 2 · lt
(−5 · Kf + 8 · Ks · Sf [19]) − 15 · Fz_f 2 · μ 2 [n−1] · (6 · Kf · εc + 3 · Kf · lt−8 · Ks · Sf [19] · lt) + 10 · Ks · λ · Fz_f · μ [n-1] · (2 · Kf · εc + 3 · Kf · lt-6 · Ks · Sf [19] · lt))

更に、(39)式中のJy_model[n-1] は、以下の(42)式である。   Further, Jy_model [n-1] in the equation (39) is the following equation (42).

Figure 2011057036
そして、(42)式中の各要素は、それぞれ以下の各式で求められるものである。
Figure 2011057036
And each element in (42) Formula is calculated | required by each following formula, respectively.

∂Fy_model/∂μ[0][n-1]=(1/(27・μ[n-1]・Fz_f))
・(Kf・Ks・λ・(1+Sf[0])・tanβf[0]・(−9・μ[n-1]・Fz_f+2・Ks・λ))
∂Fy_model/∂μ[1][n-1]=(1/(27・μ[n-1]・Fz_f))
・(Kf・Ks・λ・(1+Sf[1])・tanβf[1]・(−9・μ[n-1]・Fz_f+2・Ks・λ))

∂Fy_model/∂μ[m][n-1]=(1/(27・μ[n-1]・Fz_f))
・(Kf・Ks・λ・(1+Sf[m])・tanβf[m]・(−9・μ[n-1]・Fz_f+2・Ks・λ))

∂Fy_model/∂μ[18][n-1]=(1/(27・μ[n-1]・Fz_f))
・(Kf・Ks・λ・(1+Sf[18])・tanβf[18]・(−9・μ[n-1]・Fz_f+2・Ks・λ))
∂Fy_model/∂μ[19][n-1]=(1/(27・μ[n-1]・Fz_f))
・(Kf・Ks・λ・(1+Sf[19])・tanβf[19]・(−9・μ[n-1]・Fz_f+2・Ks・λ))
次に、路面摩擦係数算出部1nは、以下の(43)式により、路面摩擦係数の変化量δμを算出する。
δμ=(Jmodel[n-1]・Jmodel[n-1]+Wμ)−1・Jmodel[n-1]・(F_star−F_model [n-1]) …(43)
ここで、Wμは予め実験等により設定しておいた路面摩擦係数の変化量δμの重み関数であり、重みを大きくすることで路面摩擦係数の推定の安定性向上に繋がるが、収束時間が長くなる。Jmodel[n-1]は、上述の(39)式で示す通りであり、F_star、F_model [n-1]は、それぞれ以下の(44)式、(45)式で示す。
∂Fy_model / ∂μ [0] [n-1] = (1 / (27 · μ 3 [n-1] · Fz_f 2 ))
(Kf.Ks..lambda. (1 + Sf [0]). Tan.beta.f [0]. (-9..mu. [N-1] .Fz_f + 2.Ks..lambda.))
∂Fy_model / ∂μ [1] [n-1] = (1 / (27 · μ 3 [n-1] · Fz_f 2 ))
(Kf · Ks · λ · (1 + Sf [1]) · tanβf [1] · (−9 · μ [n-1] · Fz_f + 2 · Ks · λ))
:
∂Fy_model / ∂μ [m] [n-1] = (1 / (27 · μ 3 [n-1] · Fz_f 2 ))
(Kf · Ks · λ · (1 + Sf [m]) · tanβf [m] · (−9 · μ [n-1] · Fz_f + 2 · Ks · λ))
:
∂Fy_model / ∂μ [18] [n-1] = (1 / (27 · μ 3 [n-1] · Fz_f 2 ))
(Kf · Ks · λ · (1 + Sf [18]) · tanβf [18] · (−9 · μ [n-1] · Fz_f + 2 · Ks · λ))
∂Fy_model / ∂μ [19] [n-1] = (1 / (27 · μ 3 [n-1] · Fz_f 2 ))
(Kf.Ks..lambda. (1 + Sf [19]). Tan.beta.f [19]. (-9..mu. [N-1] .Fz_f + 2.Ks..lambda.))
Next, the road surface friction coefficient calculation unit 1n calculates a road surface friction coefficient change amount δμ using the following equation (43).
δμ = (Jmodel [n-1 ] T · Jmodel [n-1] + Wμ) -1 · Jmodel [n-1] · (F_star-F_model [n-1]) ... (43)
Here, Wμ is a weight function of the road surface friction coefficient change amount δμ set in advance by experiments or the like. Increasing the weight leads to improvement in stability of estimation of the road surface friction coefficient, but the convergence time is long. Become. Jmodel [n-1] is as shown by the above equation (39), and F_star and F_model [n-1] are shown by the following equations (44) and (45), respectively.

Figure 2011057036
そして、路面摩擦係数算出部1nは、以下の(46)式により、路面摩擦係数の今回の値μ[n]を算出する。
μ[n]=μ[n-1]+δμ …(46)
次いで、路面摩擦係数算出部1nは、(46)式で算出した路面摩擦係数の今回の値μ[n]を用いて、基準車輪制駆動力Fx_model、基準ラック推力Fr_model、基準横力Fy_modelを、以下の(47)式のように算出する。
Figure 2011057036
Then, the road surface friction coefficient calculation unit 1n calculates the current value μ [n] of the road surface friction coefficient by the following equation (46).
μ [n] = μ [n−1] + δμ (46)
Next, the road surface friction coefficient calculating unit 1n uses the current value μ [n] of the road surface friction coefficient calculated by the equation (46) to obtain the reference wheel braking / driving force Fx_model, the reference rack thrust Fr_model, and the reference lateral force Fy_model, It is calculated as in the following equation (47).

Figure 2011057036
尚、反復演算回数n=0の場合は、前サンプリング時間における結果を代入する。
Figure 2011057036
If the number of iterations n = 0, the result at the previous sampling time is substituted.

次に、以下の(48)式の評価関数L[n]を算出する。
L[n]=(F_star−F_model [n])(F_star−F_model [n])+Wμ・δμ
…(48)
そして、この評価関数の前回値L[n-1]と今回値L[n]とを比較して、予め設定した値ε未満に収束しているか否か判定し、収束している場合は、そこで収束演算を止め、演算された路面摩擦係数の今回の値μ[n]を路面摩擦係数μとして出力する。また、ε未満に収束していない場合は、再び、ヤコビアンJ[n-1]からの算出を繰り返す。このように、路面摩擦係数算出部1nは、路面摩擦係数推定手段としての機能を有している。
Next, an evaluation function L [n] of the following equation (48) is calculated.
L [n] = (F_star−F_model [n]) T (F_star−F_model [n]) + Wμ · δμ 2
... (48)
Then, the previous value L [n-1] and the current value L [n] of this evaluation function are compared to determine whether or not the evaluation function has converged below a preset value ε. Therefore, the convergence calculation is stopped, and the calculated value μ [n] of the road friction coefficient is output as the road friction coefficient μ. If it has not converged below ε, the calculation from Jacobian J [n−1] is repeated again. Thus, the road surface friction coefficient calculation unit 1n has a function as a road surface friction coefficient estimation unit.

次に、路面摩擦係数推定装置1で実行される路面摩擦係数推定プログラムを、図2、図3のフローチャートで説明する。   Next, a road surface friction coefficient estimation program executed by the road surface friction coefficient estimation device 1 will be described with reference to the flowcharts of FIGS.

まず、ステップ(以下、「S」と略称)101で、必要なパラメータ、すなわち、4輪の車輪速Vfl、Vfr、Vrl、Vrr、前輪舵角δf、横加速度(dy/dt)、ヨーレートγ、操舵トルクTh、ブレーキ液圧PB、エンジン出力トルクTeg、エンジン回転数Ne、主変速ギヤ比i、タービン回転数Nt、前後駆動力配分比rd、電動パワーステアリングモータの電流値iq、ブレーキのON−OFF信号が読み込まれる。 First, in step (hereinafter abbreviated as “S”) 101, necessary parameters, that is, four wheel speeds Vfl, Vfr, Vrl, Vrr, front wheel steering angle δf, lateral acceleration (d 2 y / dt 2 ), Yaw rate γ, steering torque Th, brake hydraulic pressure PB, engine output torque Teg, engine speed Ne, main transmission gear ratio i, turbine speed Nt, front / rear driving force distribution ratio rd, electric power steering motor current value iq, brake ON-OFF signal is read.

次に、S102に進み、トランスミッション出力トルク算出部1cで、上述の(2)式により、トランスミッション出力トルクTM_trqを算出する。   Next, proceeding to S102, the transmission output torque calculation unit 1c calculates the transmission output torque TM_trq by the above-described equation (2).

次いで、S103に進み、車体速度算出部1aで、上述の(1)式により、車体速度Vを算出を算出し、車体加減速度算出部1bで車体加減速度(dV/dt)を算出する。   Next, the process proceeds to S103, where the vehicle body speed calculation unit 1a calculates the vehicle body speed V by the above-described equation (1), and the vehicle body acceleration / deceleration calculation unit 1b calculates the vehicle body acceleration / deceleration (dV / dt).

次に、S104に進み、接地荷重算出部1eで、上述の(5)〜(8)式により、左前輪接地荷重Fz_fl、右前輪接地荷重Fz_fr、左後輪接地荷重Fz_rl、右後輪接地荷重Fz_rrを算出する。   Next, proceeding to S104, the ground load calculation unit 1e calculates the left front wheel ground load Fz_fl, the right front wheel ground load Fz_fr, the left rear wheel ground load Fz_rl, and the right rear wheel ground load according to the above formulas (5) to (8). Fz_rr is calculated.

次いで、S105に進み、前輪すべり角算出部1fで、上述の(9)式により、前輪すべり角βfを算出し、上述の(13)式の前輪すべり角βfを出力する。   Next, the process proceeds to S105, where the front wheel slip angle calculation unit 1f calculates the front wheel slip angle βf by the above equation (9) and outputs the front wheel slip angle βf of the above equation (13).

次に、S106に進み、運転状態判定部1dで、車両が制動状態(ブレーキスイッチ20がON)か、それ以外の走行状態(慣性走行を含む駆動状態;ブレーキスイッチ20がOFF)かを判定する。   Next, the process proceeds to S106, and the driving state determination unit 1d determines whether the vehicle is in a braking state (the brake switch 20 is ON) or other driving state (a driving state including inertial driving; the brake switch 20 is OFF). .

この判定の結果、車両が制動状態(ブレーキスイッチ20がON)の場合は、S107に進んで、前輪スリップ率算出部1gで、上述の(14)式により、前輪(一輪)のスリップ率Sfを算出し、上述の(16)式の前輪(一輪)のスリップ率Sfを出力する。   As a result of this determination, if the vehicle is in a braking state (the brake switch 20 is ON), the process proceeds to S107, and the front wheel slip ratio calculation unit 1g calculates the slip ratio Sf of the front wheel (one wheel) by the above-described equation (14). Calculate and output the slip ratio Sf of the front wheel (one wheel) of the above equation (16).

その後、S108に進んで、推定車輪制駆動力算出部1hで、上述の(17)式により、推定車輪制駆動力Fx_starを算出し、上述の(19)式の推定車輪制駆動力Fx_starを出力して、S111へと進む。   Thereafter, the process proceeds to S108, where the estimated wheel braking / driving force calculation unit 1h calculates the estimated wheel braking / driving force Fx_star according to the above equation (17) and outputs the estimated wheel braking / driving force Fx_star according to the above equation (19). Then, the process proceeds to S111.

一方、S106の判定の結果、車両が制動状態(ブレーキスイッチ20がON)以外の走行状態(慣性走行を含む駆動状態;ブレーキスイッチ20がOFF)の場合は、S109に進んで、前輪スリップ率算出部1gで、上述の(15)式により、前輪(一輪)のスリップ率Sfを算出し、上述の(16)式の前輪(一輪)のスリップ率Sfを出力する。   On the other hand, if the result of determination in S106 is that the vehicle is in a traveling state other than the braking state (the brake switch 20 is ON) (driving state including inertial traveling; the brake switch 20 is OFF), the process proceeds to S109 and the front wheel slip ratio is calculated. The part 1g calculates the slip ratio Sf of the front wheel (single wheel) according to the above equation (15), and outputs the slip ratio Sf of the front wheel (single wheel) according to the above equation (16).

その後、S110に進んで、推定車輪制駆動力算出部1hで、上述の(18)式により、推定車輪制駆動力Fx_starを算出し、上述の(19)式の推定車輪制駆動力Fx_starを出力して、S111へと進む。   Thereafter, the process proceeds to S110, where the estimated wheel braking / driving force calculation unit 1h calculates the estimated wheel braking / driving force Fx_star according to the above equation (18) and outputs the estimated wheel braking / driving force Fx_star according to the above equation (19). Then, the process proceeds to S111.

そして、S108、或いは、S110からS111へと進むと、推定ラック推力算出部1iで、上述の(20)式により、推定ラック推力Fr_starを算出し、上述の(23)式の推定ラック推力Fr_starを出力する。   Then, when proceeding from S108 or S110 to S111, the estimated rack thrust calculation unit 1i calculates the estimated rack thrust Fr_star from the above equation (20), and the estimated rack thrust Fr_star of the above equation (23) is calculated. Output.

次に、S112に進み、推定横力算出部1jで、上述の(24)式により、推定横力Fy_starを算出し、上述の(25)式の推定横力Fy_starを出力する。   Next, proceeding to S112, the estimated lateral force calculation unit 1j calculates the estimated lateral force Fy_star by the above-described equation (24), and outputs the estimated lateral force Fy_star of the above-described equation (25).

次いで、S113に進んで、路面摩擦係数算出部1nで、上述の(39)式の、ヤコビアンJmodel[n-1]を算出する。   Next, the process proceeds to S113, and the road surface friction coefficient calculation unit 1n calculates Jacobian Jmodel [n-1] of the above equation (39).

次に、S114に進み、路面摩擦係数算出部1nで、上述の(43)式により、路面摩擦係数の変化量δμを算出する。   Next, the process proceeds to S114, and the road surface friction coefficient calculating unit 1n calculates the road surface friction coefficient change amount δμ by the above-described equation (43).

次に、S115に進んで、路面摩擦係数算出部1nで、上述の(46)式により、路面摩擦係数の今回の値μ[n]を算出する。   Next, proceeding to S115, the road surface friction coefficient calculation unit 1n calculates the current value μ [n] of the road surface friction coefficient by the above-described equation (46).

次いで、S116に進み、路面摩擦係数算出部1nは、基準車輪制駆動力算出部1kで、上述の算出した路面摩擦係数の今回の値μ[n]を用いて、上述の(26)式により、20個の成分からなる基準車輪制駆動力Fx_model [n]を算出する。   Next, the process proceeds to S116, where the road surface friction coefficient calculating unit 1n uses the current value μ [n] of the road surface friction coefficient calculated above by the reference wheel braking / driving force calculating unit 1k according to the above equation (26). A reference wheel braking / driving force Fx_model [n] composed of 20 components is calculated.

次に、S117に進んで、路面摩擦係数算出部1nは、基準ラック推力算出部1lで、上述の算出した路面摩擦係数の今回の値μ[n]を用いて、上述の(32)式により、20個の成分からなる基準ラック推力Fr_model[n]を算出する。   Next, proceeding to S117, the road surface friction coefficient calculating unit 1n uses the current value μ [n] of the above calculated road surface friction coefficient by the reference rack thrust force calculating unit 11 to calculate the above equation (32). , A reference rack thrust Fr_model [n] composed of 20 components is calculated.

次いで、S118に進み、路面摩擦係数算出部1nは、基準横力算出部1mで、上述の算出した路面摩擦係数の今回の値μ[n]を用いて、上述の(37)式により、20個の成分からなる基準横力Fy_model[n]を算出する。   Next, the process proceeds to S118, where the road surface friction coefficient calculation unit 1n uses the current value μ [n] of the road surface friction coefficient calculated above by the reference lateral force calculation unit 1m to calculate 20 A reference lateral force Fy_model [n] composed of individual components is calculated.

次に、S119に進み、、路面摩擦係数算出部1nは、上述の(48)式に示す、評価関数の今回値L[n]を算出する。   Next, proceeding to S119, the road surface friction coefficient calculating unit 1n calculates the current value L [n] of the evaluation function shown in the above equation (48).

そして、S120に進み、評価関数の今回値L[n]と前回値L[n-1]との差(L[n]−L[n-1])が予め設定した値ε未満に収束しているか否か(L[n]−L[n-1]<εか否か)判定する。この判定の結果、ε未満に収束している場合(L[n]−L[n-1]<εの場合)は、S121に進んで、S115で得られた路面摩擦係数の今回の値μ[n]を路面摩擦係数の推定結果として出力してプログラムを抜ける。   In S120, the difference (L [n] -L [n-1]) between the current value L [n] and the previous value L [n-1] of the evaluation function converges below a preset value ε. (L [n] −L [n−1] <ε). As a result of the determination, if the value converges to less than ε (if L [n] −L [n−1] <ε), the process proceeds to S121, and the current value μ of the road surface friction coefficient obtained in S115. [n] is output as the estimation result of the road surface friction coefficient, and the program is exited.

一方、ε未満に収束していない場合(L[n]−L[n-1]≧εの場合)は、S122に進んで、今回算出した値を前回の値として、すなわち、Fx_model [n-1]←Fx_model [n]、Fr_model[n-1]←Fr_model[n]、Fy_model[n-1]←Fy_model[n]、μ[n-1]←μ[n]、L[n-1]←L[n]として、再びS113からの演算を繰り返す。   On the other hand, if it has not converged below ε (in the case of L [n] −L [n−1] ≧ ε), the process proceeds to S122, and the value calculated this time is set as the previous value, that is, Fx_model [n− 1] ← Fx_model [n], Fr_model [n-1] ← Fr_model [n], Fy_model [n-1] ← Fy_model [n], μ [n-1] ← μ [n], L [n-1] As ← L [n], the calculation from S113 is repeated again.

このように、本発明の実施の形態によれば、実際に生じているラック推力を推定ラック推力Fr_starとして算出し、タイヤの縦ひずみと横ひずみを表現するパラメータλと路面摩擦係数μとをパラメータとして含むタイヤのブラッシュモデルにより算出するラック推力を基準ラック推力Fr_modelとして算出し、実際に生じている車輪の制駆動力を推定車輪制駆動力Fx_starとして算出し、タイヤの縦ひずみと横ひずみを表現するパラメータλと路面摩擦係数μとをパラメータとして含むタイヤのブラッシュモデルにより算出する車輪の制駆動力を基準車輪制駆動力Fx_modelとして算出し、実際に生じている横力を推定横力Fy_starとして算出し、タイヤの縦ひずみと横ひずみを表現するパラメータλと路面摩擦係数μとをパラメータとして含むタイヤのブラッシュモデルにより算出する横力を基準横力Fy_modelとして算出し、推定ラック推力Fr_starと基準ラック推力Fr_modelとの偏差と推定車輪制駆動力Fx_starと基準車輪制駆動力Fx_modelとの偏差と推定横力Fy_starと基準横力Fy_modelとの偏差が最小となるように路面摩擦係数μの値を最適化計算により求めるように構成されている。このように、旋回運動情報、前後方向運動情報、横方向運動情報を考慮したブラッシュモデル式を使用して路面摩擦係数を推定することにより、如何なる車両運動状態においても路面μ値を、重み付け等することなく連続的に求めることができる。また、ブラッシュモデルは、縦ひずみと横ひずみを考慮しているため、両ひずみを必要とする旋回駆動時、旋回制動時の路面摩擦係数であっても精度良く推定することができる。このように本発明の実施の形態によれば、いかなる車両の運動状態においても、たとえ旋回制駆動時等であっても、重み付け等の複雑な処理を加えることなく、路面摩擦係数を連続的に自然な値で精度良く推定することができる。   As described above, according to the embodiment of the present invention, the actually generated rack thrust is calculated as the estimated rack thrust Fr_star, and the parameter λ expressing the longitudinal strain and the lateral strain of the tire and the road surface friction coefficient μ are set as parameters. The rack thrust calculated by the brush model of the tire included as the reference rack thrust Fr_model is calculated, and the braking / driving force of the actual wheel is calculated as the estimated wheel braking / driving force Fx_star to express the longitudinal strain and lateral strain of the tire. The wheel braking / driving force calculated by the tire brush model including the parameter λ and the road surface friction coefficient μ as parameters is calculated as the reference wheel braking / driving force Fx_model, and the actual lateral force is calculated as the estimated lateral force Fy_star. Tire parameters including a parameter λ expressing the longitudinal strain and lateral strain of the tire and a road surface friction coefficient μ as parameters. The lateral force calculated by the cache model is calculated as the reference lateral force Fy_model, the deviation between the estimated rack thrust Fr_star and the reference rack thrust Fr_model, the deviation between the estimated wheel braking / driving force Fx_star and the reference wheel braking / driving force Fx_model, and the estimated lateral force Fy_star The value of the road surface friction coefficient μ is determined by optimization calculation so that the deviation from the reference lateral force Fy_model is minimized. In this way, the road surface μ value is weighted in any vehicle motion state by estimating the road surface friction coefficient using the brush model formula considering the turning motion information, the longitudinal motion information, and the lateral motion information. Can be obtained continuously without any problem. In addition, since the brush model takes into account longitudinal strain and lateral strain, it is possible to accurately estimate even the road surface friction coefficient during turning driving and turning braking that require both strains. As described above, according to the embodiment of the present invention, the road surface friction coefficient can be continuously obtained without adding complicated processing such as weighting even when the vehicle is in any motion state, even when turning control is being driven. The natural value can be estimated with high accuracy.

尚、本実施の形態では、評価関数L[n]の収束判定を、ε未満になるまで行うようにしているが、収束演算の回数を予め設定しておくようにしても良い。また、演算回数の制限値を設けておいても良い。   In this embodiment, the convergence determination of the evaluation function L [n] is performed until it becomes less than ε. However, the number of convergence calculations may be set in advance. Also, a limit value for the number of operations may be provided.

1 路面摩擦係数推定装置
1a 車体速度算出部
1b 車体加減速度算出部
1c トランスミッション出力トルク算出部
1d 運転状態判定部
1e 接地荷重算出部
1f 前輪すべり角算出部
1g 前輪スリップ率算出部
1h 推定車輪制駆動力算出部(推定車輪制駆動力算出手段)
1i 推定ラック推力算出部(推定ラック推力算出手段)
1j 推定横力算出部(推定横力算出手段)
1k 基準車輪制駆動力算出部(基準車輪制駆動力算出手段)
1l 基準ラック推力算出部(基準ラック推力算出手段)
1m 基準横力算出部(基準横力算出手段)
1n 路面摩擦係数算出部(路面摩擦係数推定手段)
DESCRIPTION OF SYMBOLS 1 Road surface friction coefficient estimation apparatus 1a Car body speed calculation part 1b Car body acceleration / deceleration calculation part 1c Transmission output torque calculation part 1d Driving state determination part 1e Ground load calculation part 1f Front wheel slip angle calculation part 1g Front wheel slip ratio calculation part 1h Estimated wheel braking / driving Force calculation unit (estimated wheel braking / driving force calculation means)
1i Estimated rack thrust calculation unit (estimated rack thrust calculation means)
1j Estimated lateral force calculation unit (estimated lateral force calculation means)
1k Reference wheel braking / driving force calculating unit (reference wheel braking / driving force calculating means)
1l reference rack thrust calculation unit (reference rack thrust calculation means)
1m Standard lateral force calculation unit (Standard lateral force calculation means)
1n Road surface friction coefficient calculation unit (road surface friction coefficient estimation means)

Claims (3)

実際に生じているラック推力を推定ラック推力として算出する推定ラック推力算出手段と、
少なくともタイヤの縦ひずみと横ひずみを表現するパラメータと路面摩擦係数とをパラメータとして含むタイヤのブラッシュモデルにより算出するラック推力を基準ラック推力として算出する基準ラック推力算出手段と、
実際に生じている車輪の制駆動力を推定車輪制駆動力として算出する推定車輪制駆動力算出手段と、
少なくともタイヤの縦ひずみと横ひずみを表現するパラメータと路面摩擦係数とをパラメータとして含むタイヤのブラッシュモデルにより算出する車輪の制駆動力を基準車輪制駆動力として算出する基準車輪制駆動力算出手段と、
実際に生じている横力を推定横力として算出する推定横力算出手段と、
少なくともタイヤの縦ひずみと横ひずみを表現するパラメータと路面摩擦係数とをパラメータとして含むタイヤのブラッシュモデルにより算出する横力を基準横力として算出する基準横力算出手段と、
上記推定ラック推力と上記基準ラック推力との偏差と上記推定車輪制駆動力と上記基準車輪制駆動力との偏差と上記推定横力と上記基準横力との偏差が最小となるように上記路面摩擦係数の値を最適化計算により求める路面摩擦係数推定手段と、
を備えたことを特徴とする路面摩擦係数推定装置。
An estimated rack thrust calculating means for calculating an actual rack thrust as an estimated rack thrust;
A reference rack thrust calculation means for calculating, as a reference rack thrust, a rack thrust calculated by a tire brush model including at least a parameter expressing a longitudinal strain and a lateral strain of the tire and a road surface friction coefficient as parameters;
An estimated wheel braking / driving force calculating means for calculating an actual wheel braking / driving force as an estimated wheel braking / driving force;
A reference wheel braking / driving force calculating means for calculating, as a reference wheel braking / driving force, a wheel braking / driving force calculated by a tire brush model including at least a parameter expressing the longitudinal strain and lateral strain of the tire and a road surface friction coefficient as parameters; ,
An estimated lateral force calculating means for calculating an actual lateral force as an estimated lateral force;
A reference lateral force calculating means for calculating a lateral force calculated by a tire brush model including at least a parameter expressing a longitudinal strain and a lateral strain of the tire and a road surface friction coefficient as a parameter;
The road surface so that a deviation between the estimated rack thrust and the reference rack thrust, a deviation between the estimated wheel braking / driving force and the reference wheel braking / driving force, and a deviation between the estimated lateral force and the reference lateral force is minimized. Road surface friction coefficient estimating means for obtaining the value of the friction coefficient by optimization calculation;
A road surface friction coefficient estimating device comprising:
上記タイヤの縦ひずみと横ひずみを表現するパラメータは、少なくともタイヤの横すべり角とスリップ率とで算出するパラメータであることを特徴とする請求項1記載の路面摩擦係数推定装置。   2. The road surface friction coefficient estimating apparatus according to claim 1, wherein the parameter expressing the longitudinal strain and lateral strain of the tire is a parameter calculated by at least a tire slip angle and a slip ratio. 上記路面摩擦係数推定手段は、上記それぞれの偏差を二乗した値に、前回算出した路面摩擦係数に対する今回の路面摩擦係数の修正量を二乗した値と予め設定した重み関数を乗算した値を加算して評価関数を形成し、該評価関数を路面摩擦係数で偏微分した値が0となることを利用して上記路面摩擦係数の修正量を算出し、今回の路面摩擦係数を求めることを特徴とする請求項1又は請求項2記載の路面摩擦係数推定装置。   The road friction coefficient estimation means adds a value obtained by multiplying a value obtained by squaring the correction amount of the current road friction coefficient with respect to the previously calculated road friction coefficient to a value obtained by squaring each of the deviations and a weight function set in advance. Forming an evaluation function, calculating the amount of correction of the road surface friction coefficient using the fact that the value obtained by partial differentiation of the evaluation function with the road surface friction coefficient is 0, and obtaining the current road surface friction coefficient The road surface friction coefficient estimating device according to claim 1 or 2.
JP2009207341A 2009-09-08 2009-09-08 Road friction coefficient estimation device Expired - Fee Related JP5271209B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009207341A JP5271209B2 (en) 2009-09-08 2009-09-08 Road friction coefficient estimation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009207341A JP5271209B2 (en) 2009-09-08 2009-09-08 Road friction coefficient estimation device

Publications (2)

Publication Number Publication Date
JP2011057036A true JP2011057036A (en) 2011-03-24
JP5271209B2 JP5271209B2 (en) 2013-08-21

Family

ID=43945199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009207341A Expired - Fee Related JP5271209B2 (en) 2009-09-08 2009-09-08 Road friction coefficient estimation device

Country Status (1)

Country Link
JP (1) JP5271209B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3309025A1 (en) * 2016-10-13 2018-04-18 Volvo Car Corporation Method and system for computing a road friction estimate
EP3309026A1 (en) * 2016-10-13 2018-04-18 Volvo Car Corporation Method and system for computing a road friction estimate
KR20180115047A (en) * 2017-04-12 2018-10-22 현대자동차주식회사 System and method for estimating steering torque
CN111559379A (en) * 2019-02-14 2020-08-21 操纵技术Ip控股公司 Road friction coefficient estimation using steering system signals

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003341502A (en) * 2002-05-24 2003-12-03 Aisin Seiki Co Ltd Device for estimating road surface friction coefficient estimating device, and operation controlling device of vehicle with the device
JP2004130964A (en) * 2002-10-11 2004-04-30 Aisin Seiki Co Ltd Road surface status estimating device and vehicle motion controller equipped with the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003341502A (en) * 2002-05-24 2003-12-03 Aisin Seiki Co Ltd Device for estimating road surface friction coefficient estimating device, and operation controlling device of vehicle with the device
JP2004130964A (en) * 2002-10-11 2004-04-30 Aisin Seiki Co Ltd Road surface status estimating device and vehicle motion controller equipped with the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3309025A1 (en) * 2016-10-13 2018-04-18 Volvo Car Corporation Method and system for computing a road friction estimate
EP3309026A1 (en) * 2016-10-13 2018-04-18 Volvo Car Corporation Method and system for computing a road friction estimate
US10710597B2 (en) 2016-10-13 2020-07-14 Volvo Car Corporation Method and system for computing a road friction estimate
US10775294B2 (en) 2016-10-13 2020-09-15 Volvo Car Corporation Method and system for computing a road friction estimate
KR20180115047A (en) * 2017-04-12 2018-10-22 현대자동차주식회사 System and method for estimating steering torque
KR102286847B1 (en) 2017-04-12 2021-08-05 현대자동차주식회사 System and method for estimating steering torque
CN111559379A (en) * 2019-02-14 2020-08-21 操纵技术Ip控股公司 Road friction coefficient estimation using steering system signals
US11498613B2 (en) * 2019-02-14 2022-11-15 Steering Solutions Ip Holding Corporation Road friction coefficient estimation using steering system signals
CN111559379B (en) * 2019-02-14 2024-03-12 操纵技术Ip控股公司 Road friction coefficient estimation using steering system signals

Also Published As

Publication number Publication date
JP5271209B2 (en) 2013-08-21

Similar Documents

Publication Publication Date Title
JP5035419B2 (en) Road surface friction coefficient estimation device and road surface friction coefficient estimation method
CN101657345B (en) Device and method for estimating frictional condition of ground contact surface of wheel
US10144433B2 (en) Method and arrangement for tire to road friction estimation
JP5096781B2 (en) Vehicle road friction coefficient estimation device
EP3309024B1 (en) Method and system for determining friction between the ground and a tire of a vehicle
WO2010001819A1 (en) Road surface friction coefficient estimating device and road surface friction coefficient estimating method
CN103612634B (en) The evaluation method of distributing In-wheel motor driving electronlmobil coefficient of road adhesion
CN105691403B (en) The full drive electric automobile coefficient of road adhesion method of estimation of four-wheel
JP4867369B2 (en) Driving force control device for electric vehicle, automobile and driving force control method for electric vehicle
CN105857304A (en) Four-wheel drive vehicle-based moment of force distribution control system
JP6504223B2 (en) Vehicle driving force control method
JP5271209B2 (en) Road friction coefficient estimation device
JP5096725B2 (en) Vehicle road friction coefficient estimation device
JP5540641B2 (en) Tire condition estimation device
JP6577850B2 (en) Vehicle control apparatus and vehicle control method
JP2010195326A (en) Device and method for estimating tread friction state of vehicle
JP4862422B2 (en) Vehicle state estimation and control device
JP4926729B2 (en) Vehicle road friction coefficient estimation device
JP4862423B2 (en) Vehicle state estimation and control device
JP3271956B2 (en) Road surface friction coefficient estimation device for vehicles
JP2010083395A (en) Road surface friction coefficient estimation device
JP2020090174A (en) Travel control method and travel control device for vehicle
JP2005041244A (en) Load moving state estimating device and rolling state estimating device
JP5228993B2 (en) Vehicle ground contact surface friction state estimation apparatus and method
JP4835198B2 (en) Vehicle behavior control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130416

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130510

R150 Certificate of patent or registration of utility model

Ref document number: 5271209

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees