JP2011056737A - Surface-treated steel material excellent in corrosion resistance - Google Patents

Surface-treated steel material excellent in corrosion resistance Download PDF

Info

Publication number
JP2011056737A
JP2011056737A JP2009207751A JP2009207751A JP2011056737A JP 2011056737 A JP2011056737 A JP 2011056737A JP 2009207751 A JP2009207751 A JP 2009207751A JP 2009207751 A JP2009207751 A JP 2009207751A JP 2011056737 A JP2011056737 A JP 2011056737A
Authority
JP
Japan
Prior art keywords
steel material
vanadium
corrosion resistance
molybdenum
zirconium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009207751A
Other languages
Japanese (ja)
Other versions
JP5504773B2 (en
Inventor
Masaji Murase
正次 村瀬
Masahito Kaneko
雅仁 金子
Toshiyuki Hoshino
俊幸 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2009207751A priority Critical patent/JP5504773B2/en
Publication of JP2011056737A publication Critical patent/JP2011056737A/en
Application granted granted Critical
Publication of JP5504773B2 publication Critical patent/JP5504773B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a steel material capable of affording sufficient corrosion resistance by inexpensively improving the corrosion resistance of an organic coated steel material in an environment severer in corrosive condition. <P>SOLUTION: The surface-treated steel material excellent in corrosion resistance is characterized by having a surface-treated layer including following (a)-(c) on the surface of the steel material: (a) a gas phase silica of 1,000 nm or smaller in mean particle size, (b) an amino-based or epoxy-based silane coupling agent and (c) at least one oxide selected from oxides of molybdenum, vanadium, zirconium and tungsten and/or at least one oxysalt selected from oxysalts of molybdenum, vanadium, zirconium and tungsten. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、耐食性に優れた表面処理鋼材に関する。   The present invention relates to a surface-treated steel material having excellent corrosion resistance.

有機被覆鋼材の下地処理としては、リン酸塩処理やクロメート処理あるいは有機樹脂と無機物からなる薄膜の表面処理層が塗装処理下地として知られている。これらの役割は、塗装と鋼材の密着性を高めること、また有機層の下で鋼材の腐食を抑制し、有機被覆鋼材の腐食環境における耐久性を高めることにある。   As a base treatment of an organic coated steel material, a surface treatment layer of a thin film made of a phosphate treatment, a chromate treatment or an organic resin and an inorganic substance is known as a coating treatment base. These roles are to increase the adhesion between the paint and the steel material, and to suppress the corrosion of the steel material under the organic layer and to increase the durability of the organic coated steel material in the corrosive environment.

シリカは、酸、アルカリに対していずれも殆ど不溶であり、安定な物質であるため、各種表面処理剤に添加されて使用されることが多く、特許文献1では、クロメート処理皮膜の上層にシリカとバインダー樹脂を配合した樹脂層を有する有機複合被覆鋼板が開示されている。   Since silica is almost insoluble in both acid and alkali and is a stable substance, it is often used by being added to various surface treatment agents. An organic composite-coated steel sheet having a resin layer in which a binder resin is blended is disclosed.

また、シランカップリング剤は、鋼表面と反応あるいは自己縮合反応により鋼材表面に表面処理層を形成する能力が高いので、例えば、特許文献2には、微粒子シリカ、シランカップリング剤、バナジン酸化合物等を所定割合で含有するクロメートフリー表面処理亜鉛系めっき鋼板が開示されている。   Further, since the silane coupling agent has a high ability to form a surface treatment layer on the steel surface by reaction with the steel surface or by self-condensation reaction, for example, Patent Document 2 discloses fine particle silica, silane coupling agent, vanadic acid compound. And the like, and a chromate-free surface-treated zinc-based plated steel sheet is disclosed.

特許第2988822号公報Japanese Patent No. 2988822 特開2008−169470号公報JP 2008-169470 A

しかし、シリカは、鋼板との間では殆ど反応せずシリカを鋼材表面に表面処理層として処理するためには何らかのバインダーが必要であり、特許文献1に示すように、樹脂やクロメート層などの鋼材に付着する成分を必要とする。   However, silica hardly reacts with steel plates, and some kind of binder is necessary to treat silica as a surface treatment layer on the steel surface. As shown in Patent Document 1, steel materials such as resin and chromate layers are used. Requires ingredients to adhere to.

一方、シランカップリング剤は、鋼表面と反応あるいは自己縮合反応により鋼材表面に表面処理層を形成する能力が高いが、(1)高価であること、(2)表層にある程度の厚みを形成するためには、シランカップリング剤の量が相当量必要になること、(3)相当量のシランカップリング剤を鋼材表面に塗布する方法が少ない等の問題がある。   On the other hand, the silane coupling agent has a high ability to form a surface treatment layer on the steel surface by reaction with the steel surface or self-condensation reaction, but (1) it is expensive and (2) forms a certain thickness on the surface layer. For this purpose, there are problems such that a considerable amount of the silane coupling agent is required, and (3) there are few methods for applying a considerable amount of the silane coupling agent to the surface of the steel material.

例えばシランカップリング剤の水溶液として供給しようとしても、濃度が高くなると自己縮合反応により溶液がゲル化し、使用可能時間が制限されることや鋼材表面への吸着が阻害されることがあることから経済的、技術的にシランカップリング層をバインダーとして形成することには困難を伴う。   For example, even if it is supplied as an aqueous solution of a silane coupling agent, if the concentration becomes high, the solution gels due to a self-condensation reaction, which may limit the usable time and may inhibit the adsorption to the steel surface. It is difficult to technically and technically form a silane coupling layer as a binder.

本発明の課題は、より腐食環境の厳しい環境における有機被覆鋼材の耐食性を安価に向上させ、十分な耐食性の得られる鋼材を提供することである。   An object of the present invention is to provide a steel material that can improve the corrosion resistance of an organically coated steel material in a more severe corrosive environment at a low cost and obtain sufficient corrosion resistance.

発明者等は、鋼材の腐食反応に伴う環境(pH)の変化が、有機被覆層の剥離や接着劣化をひきおこし、有機被覆層の耐食寿命を低下させることに対して、シリカ層の鋼材表面への形成は、有機被覆層の剥離や接着劣化に対してより有効なことを見出した。   Inventors have found that the change in the environment (pH) associated with the corrosion reaction of the steel material causes peeling of the organic coating layer and adhesion deterioration, and reduces the corrosion resistance life of the organic coating layer. It has been found that the formation of is more effective against peeling of the organic coating layer and adhesion deterioration.

しかしながらシリカ層を効率良く鋼材表面に形成させることは上述したように、困難を伴い技術上の課題も多い。そこで発明者等は、シリカ層を鋼材表面に形成させる方法を鋭意検討し、下記知見を得た。   However, as described above, efficiently forming the silica layer on the surface of the steel material is difficult and has many technical problems. Accordingly, the inventors diligently studied a method for forming a silica layer on the steel material surface, and obtained the following knowledge.

シリカ層の主たる形成材として、気相シリカを用いた。気相シリカの表面には水和に伴うOH基が多数存在し、これはシランカップリング剤と反応が可能であること、また同様に鋼材表面に形成された水和によるOH基もシランカップリング剤との反応が可能であるからである。   Vapor phase silica was used as the main forming material of the silica layer. There are many OH groups that accompany hydration on the surface of vapor phase silica, which can react with silane coupling agents, and OH groups formed by hydration on the surface of steel materials are also silane coupled. This is because the reaction with the agent is possible.

従って層構成の主材料を気相シリカとして、シランカップリング剤が、気相シリカ粒子間のカップリングおよび鋼材と気相シリカ同士のカップリングに作用し、鋼材表面にシリカを主成分とした表面処理層を形成することが可能となる。   Therefore, the main material of the layer structure is gas phase silica, and the silane coupling agent acts on the coupling between the gas phase silica particles and the coupling between the steel material and the gas phase silica, and the surface of the steel material mainly composed of silica. A treatment layer can be formed.

また、気相シリカ上にはシランカップリング剤層が、シランカップリング剤とシリカ表面の反応によって形成される。シランカップリング剤の末端には、アミノ基やエポキシ基、あるいはシラノール基が存在し、この極性基が更に上層に形成される有機樹脂層と水素結合や酸-塩基結合を生成し、表面処理層と有機樹脂層との接着が改善されるという利点も得られる。   A silane coupling agent layer is formed on the vapor phase silica by a reaction between the silane coupling agent and the silica surface. The end of the silane coupling agent has an amino group, an epoxy group, or a silanol group, and this polar group further forms a hydrogen bond or an acid-base bond with the organic resin layer formed in the upper layer, and the surface treatment layer There is also an advantage that the adhesion between the organic resin layer and the organic resin layer is improved.

さらには、このようなシリカ層中に、モリブデン、バナジウム、ジルコニウムなどの酸化物あるいは酸素酸塩が含まれていると、これにより鋼材の腐食反応が抑制され、より有機被覆層の耐久性を向上させる特性を有することも知見した。   Furthermore, if such a silica layer contains oxides or oxyacid salts such as molybdenum, vanadium, zirconium, etc., this suppresses the corrosion reaction of the steel material and further improves the durability of the organic coating layer. It has also been found that it has the properties of

本発明は上記した知見に基づくものであり、上記課題を解決するために本発明は以下の特徴を有する。   The present invention is based on the findings described above, and the present invention has the following features in order to solve the above problems.

第一の発明は、鋼材の表面に、下記a)〜c)を含有する表面処理層を有することを特徴とする耐食性に優れた表面処理鋼材である。
a)平均粒径が1000nm以下の気相シリカ
b)アミノ系またはエポキシ系のシランカップリング剤
c)モリブデン、バナジウム、ジルコニウム、タングステンの酸化物の中から選ばれる少なくとも1種の酸化物、および/または、モリブデン、バナジウム、ジルコニウム、タングステンの酸素酸塩の中から選ばれる少なくとも1種の酸素酸塩
1st invention is the surface treatment steel material excellent in corrosion resistance characterized by having the surface treatment layer containing the following a) -c) on the surface of steel material.
a) Gas phase silica having an average particle size of 1000 nm or less b) Amino or epoxy silane coupling agent c) At least one oxide selected from oxides of molybdenum, vanadium, zirconium, tungsten, and / or Or at least one oxyacid salt selected from oxyacid salts of molybdenum, vanadium, zirconium, and tungsten

第二の発明は、第一の発明に記載の表面処理層の上にエポキシ系またはポリウレタン系またはアクリル系の有機樹脂層を有することを特徴とする耐食性に優れた有機被覆鋼材である。   The second invention is an organic coated steel material excellent in corrosion resistance, characterized by having an epoxy-based, polyurethane-based, or acrylic-based organic resin layer on the surface treatment layer described in the first invention.

第三の発明は、下記a)〜d)を含むことを特徴とする表面処理組成物である。
a)平均粒径が1000nm以下の気相シリカ
b)アミノ系またはエポキシ系のシランカップリング剤
c)モリブデン、バナジウム、ジルコニウム、タングステンの酸化物の中から選ばれる少なくとも1種の酸化物、および/または、モリブデン、バナジウム、ジルコニウム、タングステンの酸素酸塩の中から選ばれる少なくとも1種の酸素酸塩
d)水を含む溶媒
3rd invention is the surface treatment composition characterized by including the following a) -d).
a) Gas phase silica having an average particle size of 1000 nm or less b) Amino or epoxy silane coupling agent c) At least one oxide selected from oxides of molybdenum, vanadium, zirconium, tungsten, and / or Or at least one oxyacid salt selected from molybdenum, vanadium, zirconium, and tungsten oxyacid salts d) a solvent containing water

第四の発明は、下記a)〜d)を含む表面処理組成物を塗布した後加熱して、下記d)溶媒を蒸発させることを特徴とする耐食性に優れた表面処理鋼材の製造方法である。
a)平均粒径が1000nm以下の気相シリカ
b)アミノ系またはエポキシ系のシランカップリング剤
c)モリブデン、バナジウム、ジルコニウム、タングステンの酸化物の中から選ばれる少なくとも1種の酸化物、および/または、モリブデン、バナジウム、ジルコニウム、タングステンの酸素酸塩の中から選ばれる少なくとも1種の酸素酸塩
d)水を含む溶媒
4th invention is the manufacturing method of the surface treatment steel material excellent in corrosion resistance characterized by heating after apply | coating the surface treatment composition containing the following a) -d), and evaporating the following d) solvent. .
a) Gas phase silica having an average particle size of 1000 nm or less b) Amino or epoxy silane coupling agent c) At least one oxide selected from oxides of molybdenum, vanadium, zirconium, tungsten, and / or Or at least one oxyacid salt selected from molybdenum, vanadium, zirconium, and tungsten oxyacid salts d) a solvent containing water

第五の発明は、第四の発明に記載の表面処理鋼材の製造方法にて得られた表面処理鋼材の上に、エポキシ系、ポリウレタン系またはアクリル系の有機樹脂層を形成することを特徴とする耐食性に優れた有機被覆鋼材の製造方法である。   The fifth invention is characterized in that an epoxy-based, polyurethane-based or acrylic-based organic resin layer is formed on the surface-treated steel obtained by the method for producing a surface-treated steel according to the fourth invention. It is the manufacturing method of the organic covering steel material excellent in corrosion resistance.

本発明により製造された鋼材は、従来の有機被覆鋼材に比較して、例えば皮膜損傷部の腐食の進行速度を1/2以下程度に抑えることが可能で、防食コストを低く抑制することができる。また、本発明の鋼材で構成される有機被覆層を有する鋼構造物は、厳しい腐食環境においても長期の耐久性を有する鋼構造物として使用することができる。   Compared to conventional organic-coated steel materials, the steel materials manufactured according to the present invention can suppress the progress of corrosion of the damaged part of the film, for example, to about ½ or less, and can suppress the anticorrosion cost low. . Moreover, the steel structure which has the organic coating layer comprised with the steel material of this invention can be used as a steel structure which has long-term durability also in a severe corrosive environment.

クロスカットとクロスカットの剥離距離A1〜A8との関係を説明する図である。It is a figure explaining the relationship between crosscut and crosscut peeling distance A1-A8.

本発明について以下詳細に説明する。   The present invention will be described in detail below.

鋼材上に形成する表面処理層中のシリカは、気相シリカ粒子とアミノ系あるいはエポキシ系シランカップリング剤によって形成されるネットワーク構造が主体になる。気相シリカ粒子は、表面に多くのOH基を有しているため、他の製造方法で作られたシリカに比較して、表面においてシランカップリング剤と反応する確率が高く、本構造に適している。   The silica in the surface treatment layer formed on the steel material mainly has a network structure formed by vapor phase silica particles and an amino or epoxy silane coupling agent. Vapor phase silica particles have many OH groups on the surface, so they have a higher probability of reacting with silane coupling agents on the surface than silica made by other production methods, and are suitable for this structure. ing.

またシリカ粒子の表面積は大きな方が同様な理由で有利となるが、表面積は基本的に粒径に依存しており粒径を小さくすることでより有利になると考えられるが、1000nm以下の平均粒径のシリカを使用することにより達成される。平均粒径が1000nmを超えるとシリカのネットワーク構造に隙間が多くでき、表面処理層として欠陥の大きな層が形成されてしまうため、平均粒径は1000nm以下が好ましい。より好ましくは、最大粒径が1000nm以下の気相シリカ粒子が良い。   Further, the larger the surface area of the silica particles is advantageous for the same reason, but the surface area basically depends on the particle size and is considered to be more advantageous by reducing the particle size. This is achieved by using a silica of a diameter. If the average particle diameter exceeds 1000 nm, there are many gaps in the silica network structure, and a layer having a large defect is formed as the surface treatment layer. Therefore, the average particle diameter is preferably 1000 nm or less. More preferably, vapor phase silica particles having a maximum particle size of 1000 nm or less are preferable.

平均粒径は、例えば以下の方法にて求めることができる。先ず、少量の気相シリカを走査電子顕微鏡(以下、省略してSEMと呼ぶ)にて拡大像を得る。倍率は、1000倍以上5000倍以下が好ましい。得られた拡大像にて、任意の気相シリカを40粒以上選択し、その各々の粒子における最大長さを測定する。そして、その全測定値の算術平均値を平均粒径とする。   The average particle diameter can be determined, for example, by the following method. First, an enlarged image of a small amount of vapor phase silica is obtained with a scanning electron microscope (hereinafter abbreviated as SEM). The magnification is preferably 1000 times or more and 5000 times or less. In the obtained enlarged image, 40 or more arbitrary gas phase silicas are selected, and the maximum length of each particle is measured. And let the arithmetic mean value of all the measured values be an average particle diameter.

シランカップリング剤は、各種のものが知られているが、その大半がシラノール基と有機極性基を有するものであるが、有機極性基としては、(1)上層有機層に広く使用されるエポキシ系樹脂、ポリウレタン系樹脂と反応性に優れている、アミノ基、エポキシ基が好適であること、(2)シラノール基以外が鋼材表面やシリカ表面と結合を形成することを想定するとアミノ系、エポキシ系がこれらとの間でもより優れた結合を形成すると考えられるため、これらを使うのが好適である。   Although various types of silane coupling agents are known, most of them have silanol groups and organic polar groups. As organic polar groups, (1) epoxy widely used for upper organic layers Assuming that amino groups and epoxy groups are excellent in reactivity with polyurethane resins and polyurethane resins, and (2) other than silanol groups form bonds with the steel surface or silica surface, amino groups and epoxy These are preferred because the system is believed to form better bonds with them.

これらの代表例としては、γ-アミノプロピルトリエトキシシラン、γ-アミノプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルトリエトキシシランなどが挙げられる。   Typical examples of these are γ-aminopropyltriethoxysilane, γ-aminopropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyl. Examples include triethoxysilane.

これらは、いずれもシラノール基を複数有するので、気相シリカ間、あるいは気相シリカ−鋼材間、気相シリカ−有機樹脂間に架橋構造が形成されるので気相シリカの鋼面上での固定、および気相シリカ間での固定、有機樹脂層との間での固定の効果が期待できる。   Since these all have a plurality of silanol groups, a cross-linked structure is formed between the vapor phase silica, between the vapor phase silica and the steel material, or between the vapor phase silica and the organic resin, so that the vapor phase silica is fixed on the steel surface. , And fixation between vapor phase silica and fixation between organic resin layers can be expected.

以上により、基本的な酸、アルカリに強い層が形成されるが、ここに鋼を不働態化させる、またはインヒビターとして作用する無機材料が加わると、より効果的な表面処理層が形成される。本発明にて使用する無機材料は、モリブデンの酸化物、バナジウムの酸化物、ジルコニウムの酸化物、タングステンの酸化物、モリブデンの酸素酸塩、バナジウムの酸素酸塩、ジルコニウムの酸素酸塩およびタングステンの酸素酸塩である。当該酸化物と当該酸素酸塩の内から1種類を選択して使用しても良いし、当該酸化物の内から複数種類を選択して使用しても、当該酸素酸塩の内から複数種類を選択して使用しても、さらに当該酸化物と当該酸素酸塩の内から複数種類を選択して使用しても良い。   As described above, a basic layer resistant to acids and alkalis is formed. However, when an inorganic material that inactivates steel or acts as an inhibitor is added thereto, a more effective surface treatment layer is formed. Inorganic materials used in the present invention include molybdenum oxide, vanadium oxide, zirconium oxide, tungsten oxide, molybdenum oxyacid salt, vanadium oxyacid salt, zirconium oxyacid salt, and tungsten oxide. Oxyacid salt. One type may be selected and used from the oxide and the oxyacid salt, or a plurality of types may be selected from the oxides and used. Or a plurality of types selected from the oxide and the oxyacid salt may be used.

これらの化合物としては、モリブデン酸ナトリウム、モリブデン酸アンモニウム、バナジン酸ナトリウム、メタバナジン酸ナトリウム、ジルコン酸ナトリウム、タングステン酸ナトリウム、3酸化モリブデン、3酸化バナジウム、5酸化バナジウム、酸化ジルコニウム、酸化タングステンなどが好適である。   Preferred examples of these compounds include sodium molybdate, ammonium molybdate, sodium vanadate, sodium metavanadate, sodium zirconate, sodium tungstate, molybdenum trioxide, vanadium trioxide, vanadium pentoxide, zirconium oxide, and tungsten oxide. It is.

有機被覆層下では、主に有機被覆層下の界面を破壊する作用として、有機被覆層を透過する酸素および水などがひき起こす腐食反応の結果生成するアルカリや酸による界面の破壊が挙げられる。シリカで形成される表面処理層は、リン酸やクロメート処理層とは異なり基本的に酸、アルカリに不溶性であるので、これらに強いことに加えて、上記無機物が表面処理層に加わることで、原因となる腐食反応も根本から抑制することができ、より効果的である。   Under the organic coating layer, as an action for mainly destroying the interface under the organic coating layer, there is destruction of the interface with an alkali or an acid generated as a result of a corrosion reaction caused by oxygen or water permeating the organic coating layer. Unlike the phosphoric acid or chromate treatment layer, the surface treatment layer formed of silica is basically insoluble in acids and alkalis. In addition to being strong to these, the inorganic substance is added to the surface treatment layer, The caustic corrosion reaction can also be fundamentally suppressed and is more effective.

これらの表面処理層は、以下の方法で鋼材上に生成させることができる。
まず、下記a)〜d)を含む表面処理組成物を用意する。ここで、a)平均粒径が1000nm以下の気相シリカ、b)アミノ系またはエポキシ系のシランカップリング剤、c)モリブデン、バナジウム、ジルコニウム、タングステンの酸化物の中から選ばれる少なくとも1種の酸化物、および/または、モリブデン、バナジウム、ジルコニウム、タングステンの酸素酸塩の中から選ばれる少なくとも1種の酸素酸塩、d)水を含む溶媒である。
These surface treatment layers can be generated on the steel material by the following method.
First, a surface treatment composition containing the following a) to d) is prepared. Here, a) gas phase silica having an average particle diameter of 1000 nm or less, b) an amino or epoxy silane coupling agent, c) at least one oxide selected from oxides of molybdenum, vanadium, zirconium, and tungsten Oxides and / or at least one oxyacid salt selected from molybdenum, vanadium, zirconium, and tungsten oxyacid salts, and d) a solvent containing water.

本発明における表面処理組成物のd)溶媒は、必ず水を含む。気相シリカを沈殿させること無くある程度均一に表面処理組成物中に混合させるには、溶媒中の気相シリカの表面に極性が存在している状態であることが望ましい。この表面極性により斥力が発生し、気相シリカは溶媒中に、沈殿すること無くある程度均一に混合させることができる。溶媒に水を用いれば、最も効果的にこの気相シリカの表面極性を発生させることができる。この気相シリカの表面極性を発生させられるのであれば、溶媒は水以外に、エタノール、メタノール他の有機溶媒を含んでいても良い。またこの表面極性の効果を得るためには、溶媒全量を100質量部とした場合、水が50質量部以上を占めることが望ましい。また、使用する水は、純水(イオン交換水を含む)、精製水、水道水等で良い。   The d) solvent of the surface treatment composition in the present invention always contains water. In order to mix the vapor-phase silica into the surface treatment composition to some extent without precipitation, it is desirable that the surface of the vapor-phase silica in the solvent has a polarity. Repulsive force is generated by this surface polarity, and the vapor phase silica can be mixed in the solvent uniformly to some extent without precipitation. If water is used as the solvent, the surface polarity of the gas phase silica can be generated most effectively. If the surface polarity of the vapor phase silica can be generated, the solvent may contain an organic solvent other than water, such as ethanol, methanol, and the like. In order to obtain the effect of this surface polarity, it is desirable that water accounts for 50 parts by mass or more when the total amount of the solvent is 100 parts by mass. The water used may be pure water (including ion exchange water), purified water, tap water, or the like.

上記d)溶媒に、a)気相シリカ、b)シランカップリング剤ならびにc)前述の酸化物および前述の酸素酸塩の内から選ばれた少なくとも1種を投入して、表面処理組成物とする。これらは、一度に投入しても良いが、個別に投入しても良い。   A) a surface-treating composition comprising: a) gas phase silica, b) a silane coupling agent, and c) at least one selected from the above oxides and the above oxyacid salts. To do. These may be input at a time or may be input individually.

さらに、上記表面処理組成物中には、必須ではないがシランカップリング剤の安定性をコントロールするための酸などを添加しても良い。   Furthermore, although not essential, an acid or the like for controlling the stability of the silane coupling agent may be added to the surface treatment composition.

このようにして得られた表面処理組成物を、鋼材面に塗布後、溶媒を蒸発させる。塗布した溶媒を蒸発させる方法としては、具体的には鋼材を加熱する方法が、最も簡便で効率的であるので望ましい。   After applying the surface treatment composition thus obtained to the steel surface, the solvent is evaporated. As a method of evaporating the applied solvent, specifically, a method of heating a steel material is desirable because it is the simplest and most efficient.

以下実施例にて本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail with reference to examples.

1.供試鋼板の作製について
鋼材は、普通鋼(SS400)を使用した。サイズは、100mm×50mm×6mmtとして黒皮をブラスト処理で取り除いたものを使用した。
1. About preparation of test steel plate As the steel material, ordinary steel (SS400) was used. The size was 100 mm × 50 mm × 6 mmt, and the black skin was removed by blasting.

表面に塗布する表面処理組成物は、下記の手順で作成した。イオン交換水中に気相シリカを投入し、沈殿しないように攪拌した。この攪拌液へ無機材料(バナジン酸ナトリウム、メタバナジン酸ナトリウム、ジルコン酸ナトリウム、モリブデン酸アンモニウム、タングステン酸ナトリウム、5酸化バナジウム、3酸化モリブデン、いずれも試薬、純度99.9%のものを使用)およびシランカップリング剤としてアミノプロピルトリエトキシシランあるいは3‐グリシジルプロピルトリエトキシシランを投入し、攪拌機により強攪拌した。これを表面処理組成物とした。また、無機材料は、溶解しやすいように乳鉢ですりつぶし、概ね粒径が1μm以下の粉体状にしたものを使用した。   The surface treatment composition applied to the surface was prepared by the following procedure. Vapor phase silica was put into ion-exchanged water and stirred so as not to precipitate. To this stirring liquid, an inorganic material (sodium vanadate, sodium metavanadate, sodium zirconate, ammonium molybdate, sodium tungstate, vanadium pentoxide, molybdenum trioxide, all of which use a reagent having a purity of 99.9%) and Aminopropyltriethoxysilane or 3-glycidylpropyltriethoxysilane was added as a silane coupling agent and stirred vigorously with a stirrer. This was made into the surface treatment composition. In addition, the inorganic material was crushed with a mortar so as to be easily dissolved, and a powder having a particle size of approximately 1 μm or less was used.

そして、攪拌を継続しながらこの表面処理組成物を鋼材表面に流しかけた。この際、鋼材を斜め45度に保持することにより、表面処理組成物の溶液膜の厚みがほぼ一定となるようにした。その後,約1分ほど静置し、140℃に保持した電気炉中で鋼材温度が100℃に達するまで加熱し、表面処理組成物中の溶媒を蒸発させることにより表面処理層を形成させた。   And this surface treatment composition was poured on the steel material surface, continuing stirring. At this time, the thickness of the solution film of the surface treatment composition was made substantially constant by maintaining the steel material at an angle of 45 degrees. Then, it left still for about 1 minute, it heated until the steel materials temperature reached 100 degreeC in the electric furnace hold | maintained at 140 degreeC, and the surface treatment layer was formed by evaporating the solvent in a surface treatment composition.

その後、この表面処理層上に、
ア)ポリウレタン塗料(パーマガード330プライマー 第一工業製薬製)を40μmスプレー塗布し、更にポリウレタン塗料(パーマガード137 第一工業製薬製)を1mmの厚みにスプレー塗装し1週間養生したものと、
イ)エポキシ樹脂(エピコート828/P002を100:50で配合)を300μmバーコーターで塗布し、180℃で10分間焼き付けたもの、
の2水準の被覆材を被覆した有機被覆鋼材を作成した。
Then, on this surface treatment layer,
A) Polyurethane paint (Permguard 330 Primer, manufactured by Daiichi Kogyo Seiyaku) was applied by 40 μm spray, and polyurethane paint (Permguard 137, manufactured by Daiichi Kogyo Seiyaku) was sprayed to a thickness of 1 mm and cured for 1 week.
A) Epoxy resin (Epicoat 828 / P002 blended at 100: 50) was applied with a 300 μm bar coater and baked at 180 ° C. for 10 minutes,
An organic-coated steel material coated with a two-level coating material was prepared.

なお、表面処理組成物における、溶媒の組成、気相シリカの平均粒径と含有量、シランカップリング剤の組成、無機材料の組成については、表1と表3に示す。   In addition, it shows in Table 1 and Table 3 about the composition of a solvent in a surface treatment composition, the average particle diameter and content of a gaseous-phase silica, the composition of a silane coupling agent, and the composition of an inorganic material.

2.耐食性の調査について
鋼材の耐食性の調査については、上記有機樹脂層を被覆した鋼材の裏・端面をシールテープにより腐食しないようマスキングを行った。その後この試験材の有機被覆層に鋼面に達するクロスカット(図1参照)を鋸刃により30mm×30mmの大きさで形成した。その後、複合サイクル試験機により、4時間乾燥(50℃×30%RH以下)、2時間塩水噴霧(35℃/5%NaCl溶液)、2時間湿潤(60℃×98%RH以上)を1cycleとする複合腐食試験を300サイクル実施した。
2. About investigation of corrosion resistance About investigation of corrosion resistance of steel materials, masking was performed so that the back and end faces of the steel materials coated with the organic resin layer were not corroded by seal tape. Thereafter, a cross cut (see FIG. 1) reaching the steel surface was formed in a size of 30 mm × 30 mm by a saw blade on the organic coating layer of the test material. Then, using a combined cycle tester, 4 hours of drying (50 ° C. × 30% RH or less), 2 hours of salt spray (35 ° C./5% NaCl solution), 2 hours of wetness (60 ° C. × 98% RH or more) is 1 cycle. The combined corrosion test was performed 300 cycles.

試験終了後、試験材を回収しクロスカット周囲の膨れおよび剥離部分を強制的に剥離し、そのクロスカット部からの剥離幅を測定した。強制的に剥離した試料の例を図1示す。図1において、クロスカットから剥離領域の端までの垂直距離をAとすると、1つのクロスカットにつき、図中A1〜A8の8ヶ所の距離が測定箇所となる。これら8ヶ所の測定距離を算術平均して得られた値をそのクロスカットからの剥離幅とした。   After completion of the test, the test material was collected, the bulge and the peeled portion around the crosscut were forcibly peeled, and the peel width from the crosscut portion was measured. An example of a sample that is forcibly peeled is shown in FIG. In FIG. 1, when the vertical distance from the crosscut to the edge of the peeling area is A, eight distances A1 to A8 in the figure are measurement points for one crosscut. The value obtained by arithmetically averaging the measurement distances at these eight locations was taken as the peel width from the crosscut.

この実施例では、塗装材料の耐食性の評価として、クロスカットの剥離幅を代表値として示した。クロスカット部からは、塗膜断面が直接環境にさらされる。この部分で物質輸送が行われ、塗膜下で腐食反応が発生することになる。この腐食反応の直接的な結果あるいは腐食生成物により、膨れや剥離が発生する。膨れや剥離の大小は塗膜下で起きる腐食反応の大小に依存していると考えられる。これは即ち表面処理層による腐食抑制効果と直接相関があるものと考えられる。従って、剥離幅の大小によって、表面処理層の優劣が決定されるものと考えられる。   In this example, as an evaluation of the corrosion resistance of the coating material, the peel width of the cross cut was shown as a representative value. From the cross cut portion, the cross section of the coating film is directly exposed to the environment. Mass transport is performed in this portion, and a corrosion reaction occurs under the coating film. Due to the direct result of this corrosion reaction or corrosion products, blistering and peeling occur. It is considered that the size of swelling and peeling depends on the size of the corrosion reaction occurring under the coating film. This is considered to have a direct correlation with the corrosion suppression effect by the surface treatment layer. Therefore, it is considered that the superiority or inferiority of the surface treatment layer is determined by the magnitude of the peeling width.

3.結果
表1にポリウレタン樹脂を被覆した有機被覆鋼材の場合、表3にエポキシ樹脂を被覆した有機被覆鋼材の場合の、表面処理組成物の組成とクロスカットからの剥離距離(mm)をそれぞれ示す。
3. Results Table 1 shows the composition of the surface treatment composition and the peel distance (mm) from the crosscut in the case of an organic coated steel material coated with a polyurethane resin, and Table 3 shows the case of an organic coated steel material coated with an epoxy resin.

従来方法による比較例として、表面処理をせずに上記ア)とイ)の方法にて直接被覆した有機被覆鋼材と、パルボンドによるリン酸塩処理後に上記ア)とイ)の方法にて被覆した有機被覆鋼材とを作成し、上記2.の方法にてクロスカットからの剥離距離(mm)を測定した。そちらの結果を、ポリウレタン樹脂を被覆した場合を表2に、エポキシ樹脂の場合を表4に示す。   As a comparative example using the conventional method, an organically coated steel material directly coated by the above methods a) and a) without surface treatment, and coated by the above methods a) and a) after phosphating with Palbond. An organic coated steel material is prepared, and 2. The peel distance (mm) from the cross cut was measured by the method. The results are shown in Table 2 when the polyurethane resin is coated, and Table 4 when the epoxy resin is coated.

なお表1と表3中の表面処理組成物における含有量は、溶媒全量を100質量部とした場合の質量部にて示した。   In addition, content in the surface treatment composition of Table 1 and Table 3 was shown by the mass part when the solvent whole quantity is 100 mass parts.

Figure 2011056737
Figure 2011056737

Figure 2011056737
Figure 2011056737

ポリウレタン樹脂被覆の場合、本発明例では、表面処理を施さない試料28、および代表的な鉄用のリン酸塩処理で処理を施した試料29に比較して、クロスカットからの剥離距離が低減している。本発明例である試料1〜24においては、剥離距離は、2.7〜3.9mmであるが、試料28では、8.8mm、試料29では、5.8mmである。また、表面処理組成物の組成が本発明の規定から外れている場合(試料25〜27)は、やはり剥離距離が増える。特に、シランカップリング剤が含有されていない場合は、剥離距離が大きく増加していることが分かる。   In the case of polyurethane resin coating, the separation distance from the cross-cut is reduced in the example of the present invention compared to the sample 28 not subjected to the surface treatment and the sample 29 treated by the typical iron phosphate treatment. is doing. In samples 1 to 24, which are examples of the present invention, the peel distance is 2.7 to 3.9 mm, but in sample 28, it is 8.8 mm, and in sample 29, it is 5.8 mm. Moreover, when the composition of the surface treatment composition deviates from the definition of the present invention (samples 25 to 27), the separation distance is also increased. In particular, it can be seen that when the silane coupling agent is not contained, the peel distance is greatly increased.

Figure 2011056737
Figure 2011056737

Figure 2011056737
Figure 2011056737

一方、エポキシ樹脂被覆の場合には、本発明例である試料30〜41において剥離幅が5.6〜7.4mmであるのに対し、表4における試料45の17.8mm、試料46の10.6mmであり、ポリウレタン樹脂被覆の場合と同様に抑制されている。また、表面処理組成物の組成が本発明の規定から外れている場合(試料42〜44)も、やはり剥離距離が増える。特に、シランカップリング剤が含有されていない場合は、剥離距離が大きく増加しているのは、ポリウレタン樹脂被覆の場合と同様である。   On the other hand, in the case of the epoxy resin coating, the peeling width is 5.6 to 7.4 mm in the samples 30 to 41 which are the examples of the present invention, whereas 17.8 mm of the sample 45 and 10 of the sample 46 in Table 4. .6 mm, which is suppressed similarly to the case of polyurethane resin coating. In addition, when the composition of the surface treatment composition deviates from the definition of the present invention (samples 42 to 44), the separation distance is also increased. In particular, when no silane coupling agent is contained, the peel distance is greatly increased as in the case of polyurethane resin coating.

以上の結果から、表面処理後の同系統の被覆材においてはいずれの場合も、本発明の表面処理組成物を用いた表面処理層の付与により耐食性の向上が認められ、より優れた耐食性能が確保されている。   From the above results, in any case of the same type of coating material after the surface treatment, the improvement of the corrosion resistance is recognized by the application of the surface treatment layer using the surface treatment composition of the present invention, and more excellent corrosion resistance performance. It is secured.

Claims (5)

鋼材の表面に、下記a)〜c)を含有する表面処理層を有することを特徴とする耐食性に優れた表面処理鋼材。
a)平均粒径が1000nm以下の気相シリカ
b)アミノ系またはエポキシ系のシランカップリング剤
c)モリブデン、バナジウム、ジルコニウム、タングステンの酸化物の中から選ばれる少なくとも1種の酸化物、および/または、モリブデン、バナジウム、ジルコニウム、タングステンの酸素酸塩の中から選ばれる少なくとも1種の酸素酸塩
A surface-treated steel material excellent in corrosion resistance, comprising a surface-treated layer containing the following a) to c) on the surface of the steel material.
a) Gas phase silica having an average particle size of 1000 nm or less b) Amino or epoxy silane coupling agent c) At least one oxide selected from oxides of molybdenum, vanadium, zirconium, tungsten, and / or Or at least one oxyacid salt selected from oxyacid salts of molybdenum, vanadium, zirconium, and tungsten
請求項1記載の表面処理層の上にエポキシ系、ポリウレタン系またはアクリル系の有機樹脂層を有することを特徴とする耐食性に優れた有機被覆鋼材。   An organic coated steel material excellent in corrosion resistance, comprising an epoxy, polyurethane or acrylic organic resin layer on the surface treatment layer according to claim 1. 下記a)〜d)を含むことを特徴とする表面処理組成物。
a)平均粒径が1000nm以下の気相シリカ
b)アミノ系またはエポキシ系のシランカップリング剤
c)モリブデン、バナジウム、ジルコニウム、タングステンの酸化物の中から選ばれる少なくとも1種の酸化物、および/または、モリブデン、バナジウム、ジルコニウム、タングステンの酸素酸塩の中から選ばれる少なくとも1種の酸素酸塩
d)水を含む溶媒
A surface treatment composition comprising the following a) to d):
a) Gas phase silica having an average particle size of 1000 nm or less b) Amino or epoxy silane coupling agent c) At least one oxide selected from oxides of molybdenum, vanadium, zirconium, tungsten, and / or Or at least one oxyacid salt selected from molybdenum, vanadium, zirconium, and tungsten oxyacid salts d) a solvent containing water
下記a)〜d)を含む表面処理組成物を塗布した後加熱して、下記d)溶媒を蒸発させることを特徴とする耐食性に優れた表面処理鋼材の製造方法。
a)平均粒径が1000nm以下の気相シリカ
b)アミノ系またはエポキシ系のシランカップリング剤
c)モリブデン、バナジウム、ジルコニウム、タングステンの酸化物の中から選ばれる少なくとも1種の酸化物、および/または、モリブデン、バナジウム、ジルコニウム、タングステンの酸素酸塩の中から選ばれる少なくとも1種の酸素酸塩
d)水を含む溶媒
A method for producing a surface-treated steel material having excellent corrosion resistance, which comprises applying a surface treatment composition containing the following a) to d) and then heating to evaporate the following d) solvent.
a) Gas phase silica having an average particle size of 1000 nm or less b) Amino or epoxy silane coupling agent c) At least one oxide selected from oxides of molybdenum, vanadium, zirconium, tungsten, and / or Or at least one oxyacid salt selected from molybdenum, vanadium, zirconium, and tungsten oxyacid salts d) a solvent containing water
請求項4記載の表面処理鋼材の製造方法にて得られた表面処理鋼材の上に、エポキシ系、ポリウレタン系またはアクリル系の有機樹脂層を形成することを特徴とする耐食性に優れた有機被覆鋼材の製造方法。   5. An organic coated steel material having excellent corrosion resistance, wherein an epoxy, polyurethane or acrylic organic resin layer is formed on the surface treated steel obtained by the method for producing a surface treated steel according to claim 4. Manufacturing method.
JP2009207751A 2009-09-09 2009-09-09 Surface-treated steel with excellent corrosion resistance Expired - Fee Related JP5504773B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009207751A JP5504773B2 (en) 2009-09-09 2009-09-09 Surface-treated steel with excellent corrosion resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009207751A JP5504773B2 (en) 2009-09-09 2009-09-09 Surface-treated steel with excellent corrosion resistance

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2014012110A Division JP5716849B2 (en) 2014-01-27 2014-01-27 Surface-treated steel with excellent corrosion resistance

Publications (2)

Publication Number Publication Date
JP2011056737A true JP2011056737A (en) 2011-03-24
JP5504773B2 JP5504773B2 (en) 2014-05-28

Family

ID=43944968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009207751A Expired - Fee Related JP5504773B2 (en) 2009-09-09 2009-09-09 Surface-treated steel with excellent corrosion resistance

Country Status (1)

Country Link
JP (1) JP5504773B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013240936A (en) * 2012-05-21 2013-12-05 Jfe Steel Corp Polyurethane-coated steel material with excellent durability

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0760897A (en) * 1993-06-14 1995-03-07 Sumitomo Metal Ind Ltd Lubricating black steel panel
JPH08299902A (en) * 1995-05-12 1996-11-19 Sumitomo Metal Ind Ltd Resin-coated metallic sheet and its production
JPH09241859A (en) * 1996-03-11 1997-09-16 Kawasaki Steel Corp Organic clad coating steel excellent in chromium eluting resistance and blister resistance
JPH11335862A (en) * 1998-05-20 1999-12-07 Nkk Corp Production of surface treated steel plate having excellent corrosion resistance
JPH11335864A (en) * 1998-05-20 1999-12-07 Nkk Corp Production of surface treated steel plate having excellent corrosion resistance
JP2000199071A (en) * 1998-12-28 2000-07-18 Nippon Steel Corp Precoated steel sheet excellent in corrosion resistance
JP2000199078A (en) * 1998-12-28 2000-07-18 Nippon Steel Corp Precoated steel sheet excellent in corrosion resistance
JP2000239856A (en) * 1998-12-25 2000-09-05 Nippon Steel Corp Precoated steel sheet excellent in corrosion resistance
JP2007197824A (en) * 2005-12-28 2007-08-09 Jfe Steel Kk Electromagnetic steel sheet with insulating coating film
JP2008255466A (en) * 2007-03-13 2008-10-23 Kansai Paint Co Ltd Metal surface treatment composition

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0760897A (en) * 1993-06-14 1995-03-07 Sumitomo Metal Ind Ltd Lubricating black steel panel
JPH08299902A (en) * 1995-05-12 1996-11-19 Sumitomo Metal Ind Ltd Resin-coated metallic sheet and its production
JPH09241859A (en) * 1996-03-11 1997-09-16 Kawasaki Steel Corp Organic clad coating steel excellent in chromium eluting resistance and blister resistance
JPH11335862A (en) * 1998-05-20 1999-12-07 Nkk Corp Production of surface treated steel plate having excellent corrosion resistance
JPH11335864A (en) * 1998-05-20 1999-12-07 Nkk Corp Production of surface treated steel plate having excellent corrosion resistance
JP2000239856A (en) * 1998-12-25 2000-09-05 Nippon Steel Corp Precoated steel sheet excellent in corrosion resistance
JP2000199071A (en) * 1998-12-28 2000-07-18 Nippon Steel Corp Precoated steel sheet excellent in corrosion resistance
JP2000199078A (en) * 1998-12-28 2000-07-18 Nippon Steel Corp Precoated steel sheet excellent in corrosion resistance
JP2007197824A (en) * 2005-12-28 2007-08-09 Jfe Steel Kk Electromagnetic steel sheet with insulating coating film
JP2008255466A (en) * 2007-03-13 2008-10-23 Kansai Paint Co Ltd Metal surface treatment composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013240936A (en) * 2012-05-21 2013-12-05 Jfe Steel Corp Polyurethane-coated steel material with excellent durability

Also Published As

Publication number Publication date
JP5504773B2 (en) 2014-05-28

Similar Documents

Publication Publication Date Title
JP4683582B2 (en) Water-based metal material surface treatment agent, surface treatment method and surface treatment metal material
TWI447264B (en) Surface-treating agent for metallic material
AU2006260006B2 (en) Chrome-free composition of low temperature curing for treating a metal surface and a metal sheet using the same
JP4276689B2 (en) Cationic electrodeposition coating method and metal substrate coated with cationic electrodeposition
BRPI0613757A2 (en) Surface treated chromate-free metal material with excellent corrosion resistance, heat resistance, fingerprint resistance, conductivity, coating ability, and blackness resistance at work
JP4007627B2 (en) Surface treatment agent composition for metal material and treatment method
EP2418301A1 (en) Surface-treating agent, process for manufacturing plated steel sheet using the surface-treating agent, and plated steel sheet
JP7210742B2 (en) Two-layer composition for steel plate surface treatment and steel plate surface-treated using the same
KR20150121426A (en) Coating Layer Structure For Prevention Of Corrosion And The Manufacturing Method Thereof
JP6569194B2 (en) Surface-treated hot-dip galvanized steel sheet with excellent corrosion resistance
EP3872228A1 (en) Surface treatment solution composition containing trivalent chromium and inorganic compound, and method for manufacturing hot dip galvanized steel sheet surface-treated using same
JP6441655B2 (en) Ground treatment liquid, method for producing organic coated galvanized steel pipe using ground treatment liquid, and organic coated galvanized steel pipe
JP5504773B2 (en) Surface-treated steel with excellent corrosion resistance
JP5920016B2 (en) Polyurethane-coated steel material with excellent durability
JP4878976B2 (en) Gasket material and manufacturing method thereof
JP4007626B2 (en) Aqueous metal surface pretreatment composition for enhancing adhesion durability
JP5716849B2 (en) Surface-treated steel with excellent corrosion resistance
JP2009084702A (en) Metal surface treatment liquid for cationic electrodeposition coating
WO2017010571A1 (en) Water-based treatment agent, zinc-plated steel material or zinc alloy-plated steel material, and coated zinc-plated steel material or coated zinc alloy-plated steel material
CN1025684C (en) Treating liquid for rusty surface of steel
JP5900952B2 (en) Aqueous binder composition for metal surface treatment agent
US20220403525A1 (en) Composite coating for eliminating pollution by heavy metal chromium and vocs from source and preparation method
JP2014012811A (en) Anticorrosive paint composition and metal member having anticorrosive paint film
JP4765902B2 (en) Surface-treated metal material with excellent adhesion and film adhesion
JP7063298B2 (en) Surface treatment liquid for hot-dip galvanized steel sheet, zinc-based plated steel sheet and its manufacturing method

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120727

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130521

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140303

R150 Certificate of patent or registration of utility model

Ref document number: 5504773

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees