JP2011056418A - Exterior structure, and coating solution therefor - Google Patents

Exterior structure, and coating solution therefor Download PDF

Info

Publication number
JP2011056418A
JP2011056418A JP2009209707A JP2009209707A JP2011056418A JP 2011056418 A JP2011056418 A JP 2011056418A JP 2009209707 A JP2009209707 A JP 2009209707A JP 2009209707 A JP2009209707 A JP 2009209707A JP 2011056418 A JP2011056418 A JP 2011056418A
Authority
JP
Japan
Prior art keywords
metal oxide
photocatalyst
oxide particles
silica particles
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009209707A
Other languages
Japanese (ja)
Inventor
Yoji Takagi
洋二 高木
Junji Kameshima
順次 亀島
Makoto Hayakawa
信 早川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toto Ltd
Original Assignee
Toto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto Ltd filed Critical Toto Ltd
Priority to JP2009209707A priority Critical patent/JP2011056418A/en
Publication of JP2011056418A publication Critical patent/JP2011056418A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Catalysts (AREA)
  • Paints Or Removers (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an exterior structure which is constituted so as to suppress the deterioration of a base material and also excellent in harmful gas decomposition properties and fungicidal-algicidal properties, and a coating solution therefor. <P>SOLUTION: The exterior structure is formed by providing a photocatalyst layer on the surface of the base material and the photocatalyst layer is obtained by drying the photocatalyst coating solution applied to the surface of the base material. The photocatalyst coating solution is composed of photocatalytic metal oxide particles, silica particles, a curable silicone emulsion, a water soluble copper compound and water. The silica particles are partially subjected to coating or modification treatment by a substance having a hydrophobic group and the photocatalytic metal oxide particles have oxidation power stronger than reduction power. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、有害ガス分解性、降雨・水洗によるセルフクリーニング性等の光触媒機能を有する外構に関する。
あるいは、建造物、乗物およびそれらを構成する部材、複合材に有害ガス分解性、降雨・水洗によるセルフクリーニング性等の光触媒機能を、コーティング層を形成することにより付与可能な外構用コーティング液に関する。
The present invention relates to an outer structure having a photocatalytic function such as decomposability of harmful gas and self-cleaning property by rain / washing.
Alternatively, the present invention relates to a coating liquid for exteriors capable of providing a photocatalytic function such as harmful gas decomposability, self-cleaning property by rain / water washing, etc., by forming a coating layer on a building, a vehicle, members constituting them, and a composite material. .

酸化チタンなどの光触媒が、近年建築物の建造物、乗物およびそれらを構成する部材、複合材など多くの用途において利用されている。
屋外用途については、基材表面に光触媒を塗装することにより、光エネルギーを利用してNOx、SOx等の有害物質の分解機能を付与することが可能となる。また層表面を少なくとも光照射時には親水性になるように構成すれば、降雨により付着汚れが洗い流される、セルフクリーニング機能も付与可能となる。
また屋内用途についても、光エネルギーを利用してVOC等の有害物質の分解機能を付与したり、抗菌機能を付与したりすることが可能となる。
In recent years, photocatalysts such as titanium oxide have been used in many applications such as buildings of buildings, vehicles, members constituting them, and composite materials.
For outdoor use, by applying a photocatalyst to the surface of the base material, it is possible to impart a function of decomposing harmful substances such as NOx and SOx using light energy. Further, if the surface of the layer is made at least hydrophilic when irradiated with light, it is possible to provide a self-cleaning function in which attached dirt is washed away by rain.
In addition, for indoor use, it is possible to impart a function of decomposing toxic substances such as VOCs and an antibacterial function using light energy.

建築物の建造物、乗物およびそれらを構成する部材、複合材などの場合、上記光触媒機能を付与したい基材の表面は、意匠性を持たせるためにエナメル塗装されていたり、エナメル塗装の上にクリア塗装されている場合が多い。
そこに直接光触媒層を形成しようとすると、エナメル塗装面やクリア塗装面は主として有機物で構成されているため、長期的には光触媒層と上記塗装面の界面に存在する光触媒粒子により塗装面が劣化するという問題を生じる。
In the case of building structures, vehicles, and members, composite materials, etc., the surface of the base material to which the photocatalytic function is to be applied is enameled or applied on top of the enamel to provide design. Often painted clear.
If an attempt is made to directly form a photocatalyst layer there, the enameled and clear painted surfaces are mainly composed of organic matter, and in the long term, the painted surface will deteriorate due to the photocatalyst particles present at the interface between the photocatalyst layer and the painted surface. Cause problems.

そのために、従来、エナメル塗装面やクリア塗装面と、光触媒層との間に、無機成分の多いバリア層を形成することが行われている(特開2007−167718号公報)。
しかし、バリア層を形成すると、コストアップになるだけでなく、工数がかかり、手軽に光触媒機能を付与できない。
Therefore, conventionally, a barrier layer containing a large amount of inorganic components has been formed between the enamel-coated surface, the clear-coated surface, and the photocatalyst layer (Japanese Patent Laid-Open No. 2007-167718).
However, when the barrier layer is formed, not only the cost is increased, but also man-hours are required and the photocatalytic function cannot be easily provided.

そこで、エナメル塗装面やクリア塗装面の劣化を抑制しつつ光触媒機能を発揮し、さらに好適には塗布時に異臭や環境汚染がなく、最も好適には基材表面の紫外線による劣化も抑制する、基材に直接塗布して光触媒機能層を形成する、光触媒塗装体、あるいは光触媒コーティング液が必要とされる。   Therefore, the photocatalytic function is exhibited while suppressing the deterioration of the enameled surface or the clear painted surface, more preferably, there is no off-flavor or environmental pollution during application, and most preferably the deterioration of the substrate surface due to ultraviolet rays is suppressed. A photocatalyst-coated body or a photocatalyst coating solution that directly coats the material to form a photocatalytic functional layer is required.

このような基材に直接1コートで光触媒機能を発揮する光触媒コーティング組成物としては、例えば、シラン変性された光触媒粒子と、珪素原子に結合したアルコキシ基及び/又は水酸基の含有量が7〜20mmol/gであるコロイダルシリカと、珪素原子に結合したアルコキシ基及び/又は水酸基の含有量が1〜20mmol/gである重合体エマルジョン粒子を含んでなる水系有機・無機複合組成物が知られている(特開2008−222887号公報)。
更に、特開2008−31297号には、「上述した光触媒(a1)は、好適にPt、Rh、Ru、Nb、Cu、Sn、Ni、Feなどの金属及び/又はこれらの酸化物を添加あるいは固定化したり、シリカや多孔質リン酸カルシウム等で被覆したり(例えば特開平10−244166号公報参照)して使用することもできる。」と開示されている。
As such a photocatalyst coating composition that directly exerts a photocatalytic function on one substrate, the content of silane-modified photocatalyst particles and alkoxy groups and / or hydroxyl groups bonded to silicon atoms is 7 to 20 mmol. An aqueous organic / inorganic composite composition comprising colloidal silica of / g and polymer emulsion particles having an alkoxy group bonded to a silicon atom and / or a hydroxyl group content of 1 to 20 mmol / g is known. (Japanese Unexamined Patent Application Publication No. 2008-222887).
Further, JP-A-2008-31297 states that “the above-mentioned photocatalyst (a1) is preferably added with a metal such as Pt, Rh, Ru, Nb, Cu, Sn, Ni, Fe and / or an oxide thereof. It can also be used after being fixed or coated with silica, porous calcium phosphate or the like (see, for example, JP-A-10-244166).

特開2007−167718号JP 2007-167718 A 特開2008−222887号JP 2008-2222887 A 特許3985164号Patent 3985164 特開2004−51644号JP 2004-51644 A 特開2008−31297号JP 2008-31297

しかしながら、特開2008−222887号公報では、エナメル塗装面やクリア塗装面の劣化を抑制するように2μmをこえる厚膜で塗膜する場合に、高度な光触媒分解活性が得られない。
また、特開2008−31297号公報に開示されているような光触媒にCu及び/又はこれらの酸化物を添加するのでは、銅が光触媒作用で還元され、防カビ・防藻効果を期待する場合、効果が弱くなる。
そこで、本発明では、上記事情に鑑み、エナメル塗装面やクリア塗装面の劣化を抑制するように2μmをこえる厚膜で塗膜する場合でも高度な防カビ・防藻効果を有しつつ光触媒によるガス分解活性を得ることの可能な外構および外構用コーティング液を提供することを目的とする。
However, in Japanese Patent Application Laid-Open No. 2008-222887, a high photocatalytic decomposition activity cannot be obtained when a thick film exceeding 2 μm is applied so as to suppress the deterioration of the enamel coating surface or the clear coating surface.
In addition, when Cu and / or oxides thereof are added to a photocatalyst as disclosed in Japanese Patent Application Laid-Open No. 2008-31297, copper is reduced by the photocatalytic action, and an antifungal / algae-proof effect is expected. , The effect becomes weaker.
Therefore, in the present invention, in view of the above circumstances, even when coating with a thick film exceeding 2 μm so as to suppress the deterioration of the enamel painted surface or the clear painted surface, the photocatalyst has a high antifungal and algal control effect. An object of the present invention is to provide an exterior and an exterior coating liquid capable of obtaining gas decomposition activity.

すなわち、基材表面に光触媒層を備えた外構であって、前記光触媒層は、光触媒コーティング液を塗布後乾燥させることにより得られ、前記光触媒コーティング液は、光触媒性金属酸化物粒子と、シリカ粒子と、硬化性シリコーンエマルジョンと、水溶性銅化合物と、水とを備え、前記シリカ粒子は疎水性基を有する物質により部分的に被覆或いは変性処理されていることを特徴とする外構である。   That is, the outer surface of the substrate is provided with a photocatalyst layer, and the photocatalyst layer is obtained by applying a photocatalyst coating liquid and then drying, and the photocatalyst coating liquid comprises photocatalytic metal oxide particles and silica. The silica particle comprises a particle, a curable silicone emulsion, a water-soluble copper compound, and water, and the silica particle is partially coated or modified with a substance having a hydrophobic group. .

また、本発明による外構用コーティング液は、光触媒性金属酸化物粒子と、シリカ粒子と、硬化性シリコーンエマルジョンと、水溶性銅化合物と、水と、を備え、前記シリカ粒子は、疎水性基を有する物質により部分的に被覆或いは変性処理されていることを特徴とする外構用コーティング液である。   The exterior coating liquid according to the present invention includes photocatalytic metal oxide particles, silica particles, a curable silicone emulsion, a water-soluble copper compound, and water, and the silica particles are hydrophobic groups. A coating liquid for exteriors, which is partially coated or modified with a substance having

外構
本発明による外構は、基材表面に光触媒層を備えた外構であって、前記光触媒層は、光触媒コーティング液を塗布後乾燥させることにより得られ、前記光触媒コーティング液は、光触媒性金属酸化物粒子と、シリカ粒子と、硬化性シリコーンエマルジョンと、水溶性銅化合物と、水とを備え、前記シリカ粒子は疎水性基を有する物質により部分的に被覆或いは変性処理されていることを特徴とする外構である。
このような構成にすることにより、基材の劣化を抑制しつつ有害ガス分解性および防カビ・防藻性にも優れる外構および光触媒コーティング液を提供することが可能となる。
その理由は以下のように考えられる。
光触媒コーティング液を基材に塗布し乾燥したときに、光触媒性金属酸化物粒子と、シリカ粒子は水との親和性があるために水が表面に拡散し蒸発する際に、表面に移動しやすい。一方、光触媒性金属酸化物粒子と、シリカ粒子は水との親和性があるために粒子同士が凝集しやすく、特に水との親和性に優れるシリカ粒子ではそれが顕著に生じる。
本発明では、予めシリカ粒子を疎水性基を有する物質により部分的に被覆或いは変性処理しておく。そうすることにより、シリカ粒子の凝集を有効に抑制できる。
上記のシリカ粒子を用いることで、シリコーンエマルジョンの間隙をシリカ粒子が塞いで光触媒性金属酸化物粒子の上方移動を妨げる状態を有効に回避することができ、光触媒性金属酸化物粒子を表面に高濃度で集中できるようになる。
かつ、光触媒コーティング液を基材に塗布した後に乾燥するとき、水の蒸発に伴い、表面エネルギーの小さな上記光触媒性金属酸化物粒子とともに水の表面への拡散に伴い、水に溶解している水溶性の銅化合物も表面へ移動する。それにより、塗装体表面は乾燥完了時には上記光触媒性金属酸化物粒子と銅化合物とが高濃度に互いに離間しつつ存在するようになる。ここで、本発明では光触媒性金属酸化物粒子が酸化力が還元力よりも強い光触媒粒子であるので、銅化合物が適度に離間して存在することで、銅の光還元作用をほとんど生じることなく、光触媒性金属酸化物粒子と銅との相互作用により光触媒酸化力を強めることができ、有害ガス分解性および防カビ・防藻性にも優れるようになる。
かつ、上記塗装体では、上記光触媒性金属酸化物粒子が基材側ではなく、表面側に高濃度に存在するので、光触媒と基材との界面での反応を抑制しつつ光触媒粒子の紫外線吸収により紫外線劣化をも抑制できるようになる。
Exterior are by Exterior present invention, there is provided a Exterior having a photocatalyst layer on a substrate surface, wherein the photocatalyst layer is obtained by drying after coating the photocatalyst coating liquid, the photocatalyst coating liquid, photocatalytic Metal oxide particles, silica particles, a curable silicone emulsion, a water-soluble copper compound, and water, wherein the silica particles are partially coated or modified with a substance having a hydrophobic group. It is a featured site.
By adopting such a configuration, it is possible to provide an outer structure and a photocatalyst coating liquid that are excellent in harmful gas decomposability and mold / algae resistance while suppressing deterioration of the substrate.
The reason is considered as follows.
When photocatalytic coating liquid is applied to a substrate and dried, the photocatalytic metal oxide particles and silica particles have an affinity for water, so that when water diffuses and evaporates on the surface, it easily moves to the surface. . On the other hand, since photocatalytic metal oxide particles and silica particles have an affinity for water, the particles are likely to aggregate with each other, and in particular, silica particles having an excellent affinity for water are prominent.
In the present invention, silica particles are partially coated or modified in advance with a substance having a hydrophobic group. By doing so, aggregation of silica particles can be effectively suppressed.
By using the above silica particles, it is possible to effectively avoid a state where the silica particles block the gap between the silicone emulsions and prevent the photocatalytic metal oxide particles from moving upward. You can concentrate on concentration.
In addition, when the photocatalyst coating liquid is applied to the substrate and then dried, the water is dissolved in water as the water evaporates, along with the photocatalytic metal oxide particles having a small surface energy, and diffusion to the surface of the water. Copper compounds also move to the surface. As a result, the photocatalytic metal oxide particles and the copper compound are present at a high concentration while being separated from each other on the surface of the coated body when the drying is completed. Here, in the present invention, since the photocatalytic metal oxide particles are photocatalyst particles having an oxidizing power stronger than the reducing power, the copper compound is present at a suitable distance, so that the photoreducing action of copper hardly occurs. In addition, the photocatalytic metal oxide particles and copper can enhance the photocatalytic oxidizing power through the interaction with copper, and are also excellent in harmful gas decomposability and mold / algae resistance.
In the coated body, since the photocatalytic metal oxide particles are present at a high concentration on the surface side, not on the substrate side, the UV absorption of the photocatalyst particles is suppressed while suppressing the reaction at the interface between the photocatalyst and the substrate. This makes it possible to suppress the deterioration of ultraviolet rays.

本発明の好ましい形態によれば、前記疎水性基を有する物質は、疎水性基を有するシラン及び/又は疎水性基を有するシリコーンであるようにする。
そのようにすることで、シリカ表面の被覆、変性の形態を制御しやすくなる。
According to a preferred embodiment of the present invention, the substance having a hydrophobic group is a silane having a hydrophobic group and / or a silicone having a hydrophobic group.
By doing so, it becomes easy to control the form of coating and modification on the silica surface.

本発明の好ましい形態によれば、前記シリカ粒子は、珪素原子に結合した水酸基及びアルコキシ基の合計量が、未処理状態のシリカにおける量(6.3mmol/g)より小さくする。より好ましくは6mmol/g未満であるようにする。
こうすることで、シリカ粒子の凝集を有効に抑制できるので、光触媒性金属酸化物粒子が上方に移動しやすくなり、2μmをこえる厚膜のような、上方移動行程の長い膜においても、高度な光触媒分解活性を得ることの可能な外構を提供することがより容易となる。
According to the preferable form of this invention, the said silica particle makes the total amount of the hydroxyl group couple | bonded with the silicon atom, and the alkoxy group smaller than the amount in an untreated silica (6.3 mmol / g). More preferably, it should be less than 6 mmol / g.
By doing so, the aggregation of silica particles can be effectively suppressed, so that the photocatalytic metal oxide particles easily move upward, and even in a film having a long upward movement process, such as a thick film exceeding 2 μm, it is highly advanced. It becomes easier to provide an external structure capable of obtaining photocatalytic decomposition activity.

本発明の好ましい形態によれば、前記硬化性シリコーンエマルジョンは、その硬化物が、前記硬化性シリコーンエマルジョンの硬化物(固形分質量)、前記光触媒性金属酸化物粒子および前記シリカ粒子の合計質量に対して85質量%以上、好ましくは90質量%以上であるようにする。
85質量%以上にすることにより、2μmをこえる厚膜のような、上方移動行程の長い膜においても、高度な光触媒分解活性を得ることができるとともに、着色剤を添加しない場合に透明な光触媒層が形成可能となる。
さらに、90質量%以上にすることにより、5μmをこえる厚膜のような、上方移動行程の長い膜においても、高度な光触媒分解活性を得ることができるとともに、着色剤を添加しない場合に透明な光触媒層が形成可能となる。
According to a preferred embodiment of the present invention, the curable silicone emulsion has a cured product with a total mass of the cured product (solid content mass) of the curable silicone emulsion, the photocatalytic metal oxide particles, and the silica particles. On the other hand, it is made 85 mass% or more, preferably 90 mass% or more.
By making it 85% by mass or more, a high photocatalytic decomposition activity can be obtained even in a film having a long upward movement process, such as a thick film exceeding 2 μm, and a transparent photocatalytic layer when no colorant is added. Can be formed.
Furthermore, by setting it to 90% by mass or more, a high photocatalytic decomposition activity can be obtained even in a film having a long upward movement process, such as a thick film exceeding 5 μm, and transparent when no colorant is added. A photocatalytic layer can be formed.

本発明の好ましい形態によれば、前記光触媒層の膜厚は、2μmをこえ20μm未満、好ましくは5μmをこえ20μm未満であるようにする。
そうすることで、基材への紫外線の影響を低めることができ、紫外線による基材の劣化を有効に抑制できる。
According to a preferred embodiment of the present invention, the film thickness of the photocatalyst layer is more than 2 μm and less than 20 μm, preferably more than 5 μm and less than 20 μm.
By doing so, the influence of the ultraviolet-ray to a base material can be lowered | hung and degradation of the base material by an ultraviolet-ray can be suppressed effectively.

本発明の好ましい形態によれば、前記硬化性シリコーンエマルジョンの平均粒径は、前記光触媒性金属酸化物粒子および前記シリカ粒子の平均粒径よりも大きいようにする。
そうすることで、光触媒性金属酸化物粒子およびシリカ粒子の上方移動が顕著になる。
従って、シリカ粒子がシリコーンエマルジョンに束縛されずに上方に移動しやすくなり、2μmをこえる厚膜のような、上方移動行程の長い膜においても、高度な光触媒分解活性を得ることの可能な外構を提供することがより容易となる。
According to a preferred embodiment of the present invention, the average particle size of the curable silicone emulsion is larger than the average particle size of the photocatalytic metal oxide particles and the silica particles.
By doing so, the upward movement of the photocatalytic metal oxide particles and silica particles becomes remarkable.
Accordingly, the silica particles can easily move upward without being bound by the silicone emulsion, and even in a film having a long upward movement process such as a thick film exceeding 2 μm, it is possible to obtain a high photocatalytic degradation activity. Is easier to provide.

本発明の好ましい形態によれば、前記光触媒層は透明であるようにする。
そうすることで、基材がエナメル塗装やクリア塗装の場合、その意匠性を有効に活かしつつ2μmをこえる厚膜のような、上方移動行程の長い膜においても、高度な光触媒分解活性を得ることの可能な外構を提供することがより容易となる。
According to a preferred embodiment of the present invention, the photocatalyst layer is transparent.
By doing so, when the base material is enamel coating or clear coating, high photocatalytic degradation activity can be obtained even in a film with a long upward movement process, such as a thick film exceeding 2 μm, while making effective use of its design. It is easier to provide a possible external structure.

ここで、「透明」の度合いとしては、波長550nmにおいての光触媒層の直線透過率を70%以上、より好ましくは80%以上確保するとより好ましい。そうすることで下地の色味、意匠を損なうことなく表現することが可能となる。また透明度の高いガラスやプラスチックなどにコーティングしても透明性を損なわずに済む。   Here, as the degree of “transparency”, it is more preferable to secure the linear transmittance of the photocatalyst layer at a wavelength of 550 nm of 70% or more, more preferably 80% or more. By doing so, it becomes possible to express without impairing the color and design of the groundwork. Moreover, even if it is coated on highly transparent glass or plastic, the transparency is not impaired.

本発明の好ましい形態によれば、光触媒性金属酸化物粒子としては、アナターゼ型酸化チタン、ルチル型酸化チタン、ブルッカイト型酸化チタン、酸化錫、酸化亜鉛、チタン酸ストロンチウム、酸化タングステン、酸化セリウムのような金属酸化物の粒子や、これら粒子を複数種複合させた粒子や、これら粒子に銅、白金、鉄、パラジウム、銀、金等の金属を複合、あるいはドープした粒子や、これら粒子の表面をシランやシリコーンや加水分解性金属塩で一部被覆、変性処理した粒子等が好適に利用可能である。   According to a preferred embodiment of the present invention, the photocatalytic metal oxide particles include anatase type titanium oxide, rutile type titanium oxide, brookite type titanium oxide, tin oxide, zinc oxide, strontium titanate, tungsten oxide and cerium oxide. Particles of various metal oxides, particles obtained by combining a plurality of these particles, particles obtained by combining or doping these particles with a metal such as copper, platinum, iron, palladium, silver, and gold, and the surface of these particles. Particles partially coated and modified with silane, silicone, or hydrolyzable metal salt can be suitably used.

本発明の好ましい形態によれば、光触媒性金属酸化物粒子は10nm以上100nm未満の平均粒径を有するのが好ましく、より好ましくは10nm以上60nm以下である。なお、この平均粒径は、走査型電子顕微鏡により20万倍の視野に入る任意の100個の粒子の長さを測定した個数平均値として算出される。   According to a preferred embodiment of the present invention, the photocatalytic metal oxide particles preferably have an average particle size of 10 nm or more and less than 100 nm, more preferably 10 nm or more and 60 nm or less. The average particle diameter is calculated as a number average value obtained by measuring the length of any 100 particles that enter a 200,000-fold field of view with a scanning electron microscope.

粒子の形状としては真球が最も良いが、略円形や楕円形でも良く、その場合の粒子の長さは((長径+短径)/2)として略算出される。この範囲内であると、耐候性、有害ガス分解性、および所望の各種被膜特性(透明性、塗膜強度等)が効率良く発揮される。   As the shape of the particle, a true sphere is the best, but it may be approximately circular or elliptical, and the length of the particle in this case is approximately calculated as ((major axis + minor axis) / 2). Within this range, weather resistance, harmful gas decomposability, and various desired coating properties (transparency, coating strength, etc.) are efficiently exhibited.

また、本発明の好ましい態様によれば、光触媒粒子は3nm以上30nm未満の平均結晶子径を有するのが好ましく、より好ましくは5nm以上20nm以下である。なお、この平均粒径は、粉末X線回折法により得られるX線プロファイルの3強線の積分幅からシェラー式により算出される。   According to a preferred embodiment of the present invention, the photocatalyst particles preferably have an average crystallite diameter of 3 nm or more and less than 30 nm, more preferably 5 nm or more and 20 nm or less. The average particle diameter is calculated by the Scherrer equation from the integral width of the three strong lines of the X-ray profile obtained by the powder X-ray diffraction method.

本発明の好ましい形態によれば、光触媒粒子の含有量は、乾燥質量(固形分質量)で、前記硬化性シリコーンエマルジョン、前記光触媒性金属酸化物粒子および前記シリカ粒子の合計質量に対して0.1質量%を超え15質量%未満、より好ましくは0.5質量%を超え5質量%未満であるようにする。上記範囲とすることで、光触媒の分解機能を有効に発揮するとともに、基材および中間層の耐候性を熱帯等での長期の使用にも耐えうる程度まで向上させることが可能となるとともに、光触媒による基材および中間層の劣化も抑制可能となる。すなわち、光触媒層での紫外線吸収機能および温帯、亜寒帯地方の太陽光照射下での優れた光触媒機能と充分な耐候性を同時に発揮できる。   According to a preferred embodiment of the present invention, the content of the photocatalyst particles is a dry mass (solid content mass) of 0. 0 to the total mass of the curable silicone emulsion, the photocatalytic metal oxide particles, and the silica particles. It is more than 1% by mass and less than 15% by mass, more preferably more than 0.5% by mass and less than 5% by mass. By making it within the above range, it is possible to effectively exhibit the decomposition function of the photocatalyst and to improve the weather resistance of the base material and the intermediate layer to such an extent that it can withstand long-term use in the tropics and the like. It is also possible to suppress deterioration of the base material and the intermediate layer due to. That is, it is possible to simultaneously exhibit an ultraviolet absorption function in the photocatalyst layer and an excellent photocatalyst function under sunlight irradiation in the temperate and subarctic regions and sufficient weather resistance.

本発明の水溶性の銅化合物としては、銅(II)化合物の好ましい例としては、グルコン酸塩、硫酸塩、リンゴ酸塩、乳酸塩、塩化物、硫酸塩、硝酸塩、ギ酸塩、酢酸塩、キレート等が好適に利用できる。   As the water-soluble copper compound of the present invention, preferred examples of the copper (II) compound include gluconate, sulfate, malate, lactate, chloride, sulfate, nitrate, formate, acetate, Chelates can be suitably used.

本発明の好ましい形態によれば、シリカ粒子は、好ましくは10nmを超え200nm以下、より好ましくは20nmを超え100nm以下の平均粒径を有する。なお、この平均粒径は、走査型電子顕微鏡により20万倍の視野に入る任意の100個の粒子の長さを測定した個数平均値として算出される。粒子の形状としては真球が最も良いが、略円形や楕円形でも良く、その場合の粒子の長さは((長径+短径)/2)として略算出される。   According to a preferred embodiment of the present invention, the silica particles preferably have an average particle size of more than 10 nm and 200 nm or less, more preferably more than 20 nm and 100 nm or less. The average particle diameter is calculated as a number average value obtained by measuring the length of any 100 particles that enter a 200,000-fold field of view with a scanning electron microscope. As the shape of the particle, a true sphere is the best, but it may be approximately circular or elliptical, and the length of the particle in this case is approximately calculated as ((major axis + minor axis) / 2).

本発明の好ましい形態によれば、シリカ粒子の疎水化の度合いは、シリカ粒子は、珪素原子に結合した水酸基及びアルコキシ基の合計量が、未処理状態(6.3mmol/g)より小さくする。好ましくは6mmol/g未満にする。   According to a preferred embodiment of the present invention, the degree of hydrophobicity of the silica particles is such that the total amount of hydroxyl groups and alkoxy groups bonded to silicon atoms in the silica particles is smaller than that in the untreated state (6.3 mmol / g). Preferably it is less than 6 mmol / g.

シリカ粒子を部分的に被覆または変性処理する疎水性基を有する物質としては、例えば、1〜3官能シラン、シリコーン等が好適に利用できる。
疎水性基を有する物質によりされたシリカ粒子における、被覆または変性処理に用いる物質の量は、シリカ量に対して0.1〜20質量%が好ましく、より好ましくは1〜10質量%である。
As a substance having a hydrophobic group that partially coats or modifies silica particles, for example, 1-3 functional silanes, silicones, and the like can be suitably used.
The amount of the substance used for coating or modifying treatment in the silica particles made of the substance having a hydrophobic group is preferably from 0.1 to 20% by mass, more preferably from 1 to 10% by mass, based on the amount of silica.

本発明において用いる疎水性基を有するシランとしては、例えばメチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、n−プロピルトリメトキシシラン、n−プロピルトリエトキシシラン、イソプロピルトリメトキシシラン、イソプロピルトリエトキシシラン、n−ブチルトリメトキシシラン、n−ブチルトリエトキシシラン、n−ペンチルトリメトキシシラン、n−ヘキシルトリメトキシシラン、n−ヘプチルトリメトキシシラン、n−オクチルトリメトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、アリルトリメトキシシラン、シクロヘキシルトリメトキシシラン、シクロヘキシルトリエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、3−クロロプロピルトリメトキシシラン、3−クロロプロピルトリエトキシシラン、3,3,3−トリフロロプロピルトリメトキシシラン、3,3,3−トリフロロプロピルトリエトキシシラン、3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、2−ヒドロキシエチルトリメトキシシラン、2−ヒドロキシエチルトリエトキシシラン、2−ヒドロキシプロピルトリメトキシシラン、2−ヒドロキシプロピルトリエトキシシラン、3−ヒドロキシプロピルトリメトキシシラン、3−ヒドロキシプロピルトリエトキシシラン、3−メルカプトプロピルトリメトキシシラン、3−メルカプトプロピルトリエトキシシラン、3−イソシアナートプロピルトリメトキシシラン、3−イソシアナートプロピルトリエトキシシラン、3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルトリエトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルトリエトキシシラン、3−(メタ)アクリルオキシプロピルトリメトキシシラン、3−(メタ)アタクリルオキシプロピルトリエトキシシラン、3−(メタ)アクリロイルオキシプロピルトリn−プロポキシシラン、3−(メタ)アクリロイルオキシプロピルトリイソプロポキシシラン、3−ウレイドプロピルトリメトキシシラン、3−ウレイドプロピルトリエトキシシラン等のトリアルコキシシラン類;ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジエチルジメトキシシラン、ジエチルジエトキシシラン、ジ−n−プロピルジメトキシシラン、ジ−n−プロピルジエトキシシラン、ジイソプロピルジメトキシシラン、ジイソプロピルジエトキシシラン、ジ−n−ブチルジメトキシシラン、ジ−n−ブチルジエトキシシラン、ジ−n−ペンチルジメトキシシラン、ジ−n−ペンチルジエトキシシラン、ジ−n−ヘキシルジメトキシシラン、ジ−n−ヘキシルジエトキシシラン、ジ−n−ヘプチルジメトキシシラン、ジ−n−ヘプチルジエトキシシラン、ジ−n−オクチルジメトキシシラン、ジ−n−オクチルジエトキシシラン、ジ−n−シクロヘキシルジメトキシシラン、ジ−n−シクロヘキシルジエトキシシラン、ジフェニルジメトキシシラン、ジフェニルジエトキシシラン、3−(メタ)アクリロイルオキシプロピルメチルジメトキシシラン等のジアルコキシシラン類;トリメチルメトキシシラン、トリメチルエトキシシラン等のモノアルコキシシラン類等を挙げることができる。また、これらは、単独で又は2種以上を混合して使用することができる。     Examples of the silane having a hydrophobic group used in the present invention include methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, n-propyltrimethoxysilane, n-propyltriethoxysilane, isopropyltrisilane. Methoxysilane, isopropyltriethoxysilane, n-butyltrimethoxysilane, n-butyltriethoxysilane, n-pentyltrimethoxysilane, n-hexyltrimethoxysilane, n-heptyltrimethoxysilane, n-octyltrimethoxysilane, Vinyltrimethoxysilane, vinyltriethoxysilane, allyltrimethoxysilane, cyclohexyltrimethoxysilane, cyclohexyltriethoxysilane, phenyltrimethoxysilane, phenyltrie Xysilane, 3-chloropropyltrimethoxysilane, 3-chloropropyltriethoxysilane, 3,3,3-trifluoropropyltrimethoxysilane, 3,3,3-trifluoropropyltriethoxysilane, 3-aminopropyltrimethoxy Silane, 3-aminopropyltriethoxysilane, 2-hydroxyethyltrimethoxysilane, 2-hydroxyethyltriethoxysilane, 2-hydroxypropyltrimethoxysilane, 2-hydroxypropyltriethoxysilane, 3-hydroxypropyltrimethoxysilane, 3-hydroxypropyltriethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, 3-isocyanatopropyltrimethoxysilane, 3-isocyanate pro Rutriethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyl Triethoxysilane, 3- (meth) acryloxypropyltrimethoxysilane, 3- (meth) acryloxypropyltriethoxysilane, 3- (meth) acryloyloxypropyltri-n-propoxysilane, 3- (meth) acryloyloxy Trialkoxysilanes such as propyltriisopropoxysilane, 3-ureidopropyltrimethoxysilane, and 3-ureidopropyltriethoxysilane; dimethyldimethoxysilane, dimethyldiethoxysilane, diethyldimethoxysilane, and diethyl Rudiethoxysilane, di-n-propyldimethoxysilane, di-n-propyldiethoxysilane, diisopropyldimethoxysilane, diisopropyldiethoxysilane, di-n-butyldimethoxysilane, di-n-butyldiethoxysilane, di-n -Pentyldimethoxysilane, di-n-pentyldiethoxysilane, di-n-hexyldimethoxysilane, di-n-hexyldiethoxysilane, di-n-heptyldimethoxysilane, di-n-heptyldiethoxysilane, di- n-octyldimethoxysilane, di-n-octyldiethoxysilane, di-n-cyclohexyldimethoxysilane, di-n-cyclohexyldiethoxysilane, diphenyldimethoxysilane, diphenyldiethoxysilane, 3- (meth) acryloyloxypropylmethyl Dialkoxysilane such as dimethoxysilane; trimethylmethoxysilane, monoalkoxysilane such as trimethyl silane, and the like. Moreover, these can be used individually or in mixture of 2 or more types.

本発明において用いる疎水性基を有するシリコーンとしては、上記シランの(部分)加水分解・縮合物が好適に利用できる。   As the silicone having a hydrophobic group used in the present invention, a (partial) hydrolysis / condensation product of the above silane can be suitably used.

硬化性シリコーンエマルジョンとは、基材に塗布し乾燥する際に、シリコーンエマルジョン中に存在する官能基により硬化重合反応を生じ、それに伴い硬化膜を生成しうるシリコーンエマルジョンをいう。
ここで、硬化反応には、加水分解・縮合反応、光重合反応等が好適に利用できる。
硬化反応が加水分解・縮合反応の場合には、官能基としてアルコキシド基を有し、加水分解・縮合反応によりシロキサン結合を生成する硬化性シリコーンエマルジョンが好適に利用できる。
The curable silicone emulsion refers to a silicone emulsion that, when applied to a substrate and dried, causes a curing polymerization reaction due to a functional group present in the silicone emulsion, thereby forming a cured film.
Here, a hydrolysis / condensation reaction, a photopolymerization reaction, or the like can be suitably used for the curing reaction.
When the curing reaction is a hydrolysis / condensation reaction, a curable silicone emulsion having an alkoxide group as a functional group and generating a siloxane bond by the hydrolysis / condensation reaction can be suitably used.

硬化性シリコーンエマルジョンには、上記硬化反応を生じる官能基の他に、乳化重合による有機架橋部が存在する。
有機架橋部は、ビニル基とビニル基が重合したエチレン架橋部のようなラジカル重合により生成した架橋部が好適に利用できる。ラジカル重合により生成した架橋部であれば、特に炭化水素基に限定されず、種々の変性基の組合せが好適に利用可能である。
In the curable silicone emulsion, in addition to the functional group that causes the curing reaction, an organic cross-linked portion by emulsion polymerization is present.
As the organic crosslinking part, a crosslinking part produced by radical polymerization such as an ethylene crosslinking part in which a vinyl group and a vinyl group are polymerized can be suitably used. Any cross-linked portion generated by radical polymerization is not particularly limited to a hydrocarbon group, and a combination of various modifying groups can be suitably used.

硬化性シリコーンエマルジョンには、上記硬化反応を生じる官能基、有機架橋部以外に珪素原子に結合する有機基が存在してもよい。ここで、有機基としては、アルキル基、フェニル基、シクロアルキル基等の炭化水素基や、その水素の一部が変性基に置換された有機基が挙げられる。ここで、変性基としては、アミノ基、カルボキシル基、メルカプト基、アクリル基、エポキシ基等が好適に利用できる。   In the curable silicone emulsion, an organic group bonded to a silicon atom may be present in addition to the functional group causing the curing reaction and the organic cross-linking portion. Here, examples of the organic group include hydrocarbon groups such as an alkyl group, a phenyl group, and a cycloalkyl group, and organic groups in which a part of the hydrogen is substituted with a modifying group. Here, as the modifying group, an amino group, a carboxyl group, a mercapto group, an acrylic group, an epoxy group, or the like can be suitably used.

次に、エマルジョンの乳化剤として使用される界面活性剤について述べる。界面活性剤としては、従来公知のノニオン系、カチオン系、アニオン系各種界面活性剤、及びラジカル重合可能な官能基を含有する反応性乳化剤が適用可能である。更に、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレンカルボン酸エステル、ソルビタンエステル、ポリオキシエチレンソルビタンエステルなどのノニオン系界面活性剤、アルキルトリメチルアンモニウムクロライド、アルキルベンジルアンモニウムクロライドなどのカチオン系界面活性剤、アルキル又はアルキルアリル硫酸塩、アルキル又はアルキルアリルスルフォン酸塩、ジアルキルスルフォコハク酸塩などのアニオン系界面活性剤、アミノ酸型、ベタイン型などの両性イオン型界面活性剤、特開平8−27347号公報中に記されている分子中にスルフォン酸塩、ポリオキシエチレン鎖、第4級アンモニウム塩などの基を含有するラジカル重合可能な(メタ)アクリレート、スチレン、マレイン酸エステル化合物などの誘導体を含む各種反応性界面活性剤を示すことができる。   Next, the surfactant used as an emulsifier for the emulsion will be described. As the surfactant, conventionally known nonionic, cationic, and anionic surfactants and reactive emulsifiers containing functional groups capable of radical polymerization can be applied. Furthermore, nonionic surfactants such as polyoxyethylene alkyl ether, polyoxyethylene alkyl phenyl ether, polyoxyethylene carboxylic acid ester, sorbitan ester, polyoxyethylene sorbitan ester, and cations such as alkyltrimethylammonium chloride and alkylbenzylammonium chloride Surfactants, alkyl or alkyl allyl sulfates, anionic surfactants such as alkyl or alkyl allyl sulfonates, dialkyl sulphosuccinates, zwitterionic surfactants such as amino acid types and betaine types, Radically polymerizable (meth) acrylate containing a group such as sulfonate, polyoxyethylene chain, quaternary ammonium salt in the molecule described in JP-A-8-27347, Styrene, can exhibit various reactive surfactants containing derivatives such as maleic acid ester compound.

これらの界面活性剤は1種又は2種以上を使用してもよい。界面活性剤は、エマルジョン中の樹脂固形分の0.5〜15重量%使用するのが好ましく、特には1〜10重量%使用するのがよい。   These surfactants may be used alone or in combination of two or more. The surfactant is preferably used in an amount of 0.5 to 15% by weight, particularly 1 to 10% by weight, based on the resin solid content in the emulsion.

本発明では光触媒層中にシリカ粒子以外の無機酸化物粒子が含まれていてもよい。無機酸化物粒子は、光触媒粒子と共に層を形成可能な無機酸化物の粒子であれば特に限定されず、あらゆる種類の無機酸化物の粒子が使用可能である。そのような無機酸化物粒子の例としては、アルミナ、ジルコニア、セリア、イットリア、酸化錫、酸化鉄、酸化マンガン、酸化ニッケル、酸化コバルト、ハフニア等の単一酸化物の粒子;およびチタン酸バリウム、ケイ酸カルシウム、ホウ酸アルミニウム、チタン酸カリウム等の複合酸化物の粒子が挙げられる。   In the present invention, the photocatalyst layer may contain inorganic oxide particles other than silica particles. The inorganic oxide particles are not particularly limited as long as they are inorganic oxide particles capable of forming a layer together with the photocatalyst particles, and any kind of inorganic oxide particles can be used. Examples of such inorganic oxide particles include alumina, zirconia, ceria, yttria, tin oxide, iron oxide, manganese oxide, nickel oxide, cobalt oxide, hafnia and other single oxide particles; and barium titanate, Examples thereof include composite oxide particles such as calcium silicate, aluminum borate, and potassium titanate.

光触媒層中に、紫外線吸収剤を配合させてもよい。紫外線吸収剤の含有量は、光触媒活性の発現を阻害せずに耐候性を向上できる量であれば制限はないが、例えば、光触媒層に0.001〜10質量%、好ましくは0.01〜5質量%含有させることが好ましい。   You may mix | blend a ultraviolet absorber in a photocatalyst layer. The content of the ultraviolet absorber is not limited as long as the weather resistance can be improved without inhibiting the expression of the photocatalytic activity. For example, 0.001 to 10% by mass, preferably 0.01 to 10% by weight in the photocatalyst layer. It is preferable to contain 5 mass%.

本発明に使用できる紫外線吸収剤としては、ベンゾフェノン系、ベンゾトリアゾール系、トリアジン系紫外線吸収剤を好適に例示することができる。   Preferred examples of the ultraviolet absorber that can be used in the present invention include benzophenone-based, benzotriazole-based, and triazine-based ultraviolet absorbers.

とりわけ、トリアジン系紫外線吸収剤が化学的に安定なため好ましい。トリアジン系紫外線吸収剤として具体的には、ヒドロキシフェニルトリアジンまたはその誘導体が好適に利用できる。   In particular, a triazine ultraviolet absorber is preferable because it is chemically stable. Specifically, hydroxyphenyltriazine or a derivative thereof can be suitably used as the triazine-based ultraviolet absorber.

上記ベンゾフェノン系の紫外線吸収剤としては、具体的には、2,4−ジヒドロキシベンゾフェノン、2−ヒドロキシ−4−メトキシベンゾフェノン、2−ヒドロキシ−4−メトキシベンゾフェノン−5−スルホン酸、2−ヒドロキシ−4−n−オクトキシベンゾフェノン、2−ヒドロキシ−4−n−ドデシルオキシベンゾフェノン、2−ヒドロキシ−4−ベンジルオキシベンゾフェノン、ビス(5−ベンゾイル−4−ヒドロキシ−2−メトキシフェニル)メタン、2,2’−ジヒドロキシ−4−メトキシベンゾフェノン、2,2’−ジヒドロキシ−4,4’ジメトキシベンゾフェノン、2,2’,4,4’−テトラヒドロキシベンゾフェノン、4−ドデシルオキシ−2−ヒドロキシベンゾフェノン、2−ヒドロキシ−4−メトキシ−2’−カルボキシベンゾフェノン、2−ヒドロキシ−4−ステアリルオキシベンゾフェノン、オクタベンゾン、及び2−ヒドロキシ−4−アクリロキシベンゾフェノン、2−ヒドロキシ−4−メタクリロキシベンゾフェノン、2−ヒドロキシ−5−アクリロキシベンゾフェノン、2−ヒドロキシ−5−メタクリロキシベンゾフェノン、2−ヒドロキシ−4−(アクリロキシ−エトキシ)ベンゾフェノン、2−ヒドロキシ−4−(メタクリロキシ−エトキシ)ベンゾフェノン、2−ヒドロキシ−4−(メタクリロキシ−ジエトキシ)ベンゾフェノン、2−ヒドロキシ−4−(アクリロキシ−トリエトキシ)ベンゾフェノン等の重合性のベンゾフェノン系紫外線吸収剤やそれらの(共)重合物などが挙げられる。   Specific examples of the benzophenone-based ultraviolet absorber include 2,4-dihydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-methoxybenzophenone-5-sulfonic acid, and 2-hydroxy-4. -N-octoxybenzophenone, 2-hydroxy-4-n-dodecyloxybenzophenone, 2-hydroxy-4-benzyloxybenzophenone, bis (5-benzoyl-4-hydroxy-2-methoxyphenyl) methane, 2,2 ' -Dihydroxy-4-methoxybenzophenone, 2,2'-dihydroxy-4,4'dimethoxybenzophenone, 2,2 ', 4,4'-tetrahydroxybenzophenone, 4-dodecyloxy-2-hydroxybenzophenone, 2-hydroxy- 4-methoxy-2'- Ruboxybenzophenone, 2-hydroxy-4-stearyloxybenzophenone, octabenzone, and 2-hydroxy-4-acryloxybenzophenone, 2-hydroxy-4-methacryloxybenzophenone, 2-hydroxy-5-acryloxybenzophenone, 2-hydroxy -5-methacryloxybenzophenone, 2-hydroxy-4- (acryloxy-ethoxy) benzophenone, 2-hydroxy-4- (methacryloxy-ethoxy) benzophenone, 2-hydroxy-4- (methacryloxy-diethoxy) benzophenone, 2-hydroxy- Examples thereof include polymerizable benzophenone-based ultraviolet absorbers such as 4- (acryloxy-triethoxy) benzophenone and (co) polymers thereof.

また、上記ベンゾトリアゾール系の紫外線吸収剤として具体的には、2−(2’−ヒドロキシ−5’−メチルフェニル)ベンゾトリアゾール、2−(2’−ヒドロキシ−5’−tert−ブチルフェニル)ベンゾトリアゾール、2−(2’−ヒドロキシ−3’,5’−ジ−tert−ブチルフェニル)ベンゾトリアゾール、2−(2−ヒドロキシ−5−tert−オクチルフェニル)ベンゾトリアゾール、2−(2−ヒドロキシ−3,5−ジ−tert−オクチルフェニル)ベンゾトリアゾール、2−〔2’−ヒドロキシ−3’,5’−ビス(α,α’−ジメチルベンジル)フェニル〕ベンゾトリアゾール)、メチル−3−〔3−tert−ブチル−5−(2H−ベンゾトリアゾール−2−イル)−4−ヒドロキシフェニル〕プロピオネートとポリエチレングリコール(分子量300)との縮合物(日本チバガイギー(株)製、製品名:TINUVIN−1130)、イソオクチル−3−〔3−(2H−ベンゾトリアゾール−2−イル)−5−tert−ブチル−4−ヒドロキシフェニル〕プロピオネート(日本チバガイギー(株)製、製品名:TINUVIN−384)、2−(3−ドデシル−5−メチル−2−ヒドロキシフェニル)ベンゾトリアゾール(日本チバガイギー(株)製、製品名:TINUVIN−571)、2−(2’−ヒドロキシ−3’−tert−ブチル−5’−メチルフェニル)−5−クロロベンゾトリアゾール、2−(2’−ヒドロキシ−3’,5’−ジ−tert−アミルフェニル)ベンゾトリアゾール、2−(2’−ヒドロキシ−4’−オクトキシフェニル)ベンゾトリアゾール、2−〔2’−ヒドロキシ−3’−(3”,4”,5”,6”−テトラヒドロフタルイミドメチル)−5’−メチルフェニル 〕ベンゾトリアゾール、2,2−メチレンビス〔4−(1,1,3,3−テトラメチルブチル)−6−(2H−ベンゾトリアゾール−2−イル)フェノール〕、2−(2H−ベンゾトリアゾール−2−イル)−4,6−ビス(1−メチル−1−フェニルエチル)フェノール(日本チバガイギー(株)製、製品名:TINUVIN−900)、及び2−(2’−ヒドロキシ−5’−メタクリロキシエチルフェニル)−2H−ベンゾトリアゾール(大塚化学(株)製、製品名:RUVA−93)、2−(2’−ヒドロキシ−5’−メタクリロキシエチル−3−tert−ブチルフェニル)−2H−ベンゾトリアゾール、2−(2’−ヒドロキシ−5’−メタクリリルオキシプロピル−3−tert−ブチルフェニル)−5−クロロ−2H−ベンゾトリアゾール、3−メタクリロイル−2−ヒドロキシプロピル−3−〔3’−(2”−ベンゾトリアゾリル)−4−ヒドロキシ−5−tert−ブチル〕フェニルプロピオネート(日本チバガイギー(株)製、製品名:CGL−104)等の重合性のベンゾトリアゾール系紫外線吸収剤やそれらの(共)重合物の他、TINUVIN−384−2(製品名、日本チバガイギー(株)製)、TINUVIN−99−2(製品名、日本チバガイギー(株)製)、TINUVIN−109(製品名、日本チバガイギー(株)製)、TINUVIN−328(製品名、日本チバガイギー(株)製)、TINUVIN−928(製品名、日本チバガイギー(株)製)などが挙げられる。   Specific examples of the benzotriazole-based UV absorber include 2- (2′-hydroxy-5′-methylphenyl) benzotriazole and 2- (2′-hydroxy-5′-tert-butylphenyl) benzo. Triazole, 2- (2′-hydroxy-3 ′, 5′-di-tert-butylphenyl) benzotriazole, 2- (2-hydroxy-5-tert-octylphenyl) benzotriazole, 2- (2-hydroxy- 3,5-di-tert-octylphenyl) benzotriazole, 2- [2′-hydroxy-3 ′, 5′-bis (α, α′-dimethylbenzyl) phenyl] benzotriazole), methyl-3- [3 -Tert-butyl-5- (2H-benzotriazol-2-yl) -4-hydroxyphenyl] propionate Condensate with polyethylene glycol (molecular weight 300) (product name: TINUVIN-1130 manufactured by Ciba Geigy Co., Ltd.), isooctyl-3- [3- (2H-benzotriazol-2-yl) -5-tert-butyl- 4-hydroxyphenyl] propionate (manufactured by Ciba Geigy Japan, product name: TINUVIN-384), 2- (3-dodecyl-5-methyl-2-hydroxyphenyl) benzotriazole (manufactured by Ciba Geigy Japan, product name) : TINUVIN-571), 2- (2′-hydroxy-3′-tert-butyl-5′-methylphenyl) -5-chlorobenzotriazole, 2- (2′-hydroxy-3 ′, 5′-di-) tert-amylphenyl) benzotriazole, 2- (2′-hydroxy-4′-octoxyphe) ) Benzotriazole, 2- [2′-hydroxy-3 ′-(3 ″, 4 ″, 5 ″, 6 ″ -tetrahydrophthalimidomethyl) -5′-methylphenyl] benzotriazole, 2,2-methylenebis [4 -(1,1,3,3-tetramethylbutyl) -6- (2H-benzotriazol-2-yl) phenol], 2- (2H-benzotriazol-2-yl) -4,6-bis (1 -Methyl-1-phenylethyl) phenol (manufactured by Ciba Geigy Japan, product name: TINUVIN-900), and 2- (2′-hydroxy-5′-methacryloxyethylphenyl) -2H-benzotriazole (Otsuka Chemical) Product name: RUVA-93), 2- (2′-hydroxy-5′-methacryloxyethyl-3-tert-butylphenyl) -2H Benzotriazole, 2- (2′-hydroxy-5′-methacrylyloxypropyl-3-tert-butylphenyl) -5-chloro-2H-benzotriazole, 3-methacryloyl-2-hydroxypropyl-3- [3 ′ Polymerizable benzotriazole ultraviolet absorbers such as-(2 "-benzotriazolyl) -4-hydroxy-5-tert-butyl] phenylpropionate (manufactured by Ciba-Geigy Japan, product name: CGL-104) And TINUVIN-384-2 (product name, manufactured by Ciba-Geigy Corporation of Japan), TINUVIN-99-2 (product name, manufactured by Ciba-Geigy Corporation of Japan), TINUVIN-109 (product) Name, manufactured by Nippon Ciba-Geigy Corp.), TINUVIN-328 (product name, manufactured by Ciba-Geigy Corp. Japan), INUVIN-928 (product name, manufactured by Nihon Ciba-Geigy Corporation), and the like.

また、本発明の光触媒層において、ヒンダードアミン系及び/又はヒンダードフェノール系等の光安定剤を更に含有するものは、上記紫外線吸収剤との相乗効果により、本発明の光触媒層は卓越した耐候性、耐光性を示すため好ましい。   Further, in the photocatalyst layer of the present invention, those further containing a hindered amine-based and / or hindered phenol-based light stabilizer, the photocatalyst layer of the present invention has excellent weather resistance due to a synergistic effect with the ultraviolet absorber. In view of light resistance, it is preferable.

特に、本発明の好ましい形態によれば、紫外線吸収剤としてヒドロキシフェニルトリアジン化合物を、光安定剤としてヒンダードアミン化合物を配合させるとよい。そうすることで、光触媒層による380nm未満の短波長の紫外線の吸収性能が安定する。   In particular, according to a preferred embodiment of the present invention, a hydroxyphenyl triazine compound may be blended as an ultraviolet absorber and a hindered amine compound as a light stabilizer. By doing so, the absorption performance of ultraviolet rays having a short wavelength of less than 380 nm by the photocatalyst layer is stabilized.

本発明の光触媒層中の光安定剤の含有量は、光触媒活性の発現を阻害せずに耐候性を向上できる量であれば制限はないが、例えば光触媒層に0.001〜10質量%、好ましくは0.01〜5質量%含有させることが好ましい。
ヒンダードアミン系光安定剤の具体例としては、ビス(2,2,6,6−テトラメチル−4−ピペリジル)サクシネート、ビス(2,2,6,6−テトラメチルピペリジル)セバケート、ビス(1,2,2,6,6−ペンタメチル−4−ピペリジル)2−(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)−2−ブチルマロネート、1−〔2−〔3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピニルオキシ〕エチル〕−4−〔3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピニルオキシ〕−2,2,6,6−テトラメチルピペリジン、ビス(1,2,2,6,6−ペンタメチル−4−ピペリジル)セバケートとメチル−1,2,2,6,6−ペンタメチル−4−ピペリジル−セバケートの混合物(日本チバガイギー(株)製、製品名:TINUVIN−292)、ビス(1−オクトキシ−2,2,6,6−テトラメチル−4−ピペリジル)セバケート、TINUVIN−123(製品名、日本チバガイギー(株)製)、TINUVIN−111FDL(製品名、日本チバガイギー(株)製)、TINUVIN292(製品名、日本チバガイギー(株)製)、及び1,2,2,6,6−ペンタメチル−4−ピペリジルメタクリレート、1,2,2,6,6−ペンタメチル−4−ピペリジルアクリレート、2,2,6,6−テトラメチル−4−ピペリジルメタクリレート、2,2,6,6−テトラメチル−4−ピペリジルアクリレート、1,2,2,6,6−ペンタメチル−4−イミノピペリジルメタクリレート、2,2,6,6,−テトラメチル−4−イミノピペリジルメタクリレート、4−シアノ−2,2,6,6−テトラメチル−4−ピペリジルメタクリレート、4−シアノ−1,2,2,6,6−ペンタメチル−4−ピペリジルメタクリレートなどの重合性のヒンダードアミン系紫外線吸収剤やそれらの(共)重合物を挙げることができる。
The content of the light stabilizer in the photocatalyst layer of the present invention is not limited as long as the weather resistance can be improved without inhibiting the expression of photocatalytic activity, but for example 0.001 to 10% by mass in the photocatalyst layer, It is preferable to contain 0.01-5 mass% preferably.
Specific examples of the hindered amine light stabilizer include bis (2,2,6,6-tetramethyl-4-piperidyl) succinate, bis (2,2,6,6-tetramethylpiperidyl) sebacate, bis (1, 2,2,6,6-pentamethyl-4-piperidyl) 2- (3,5-di-tert-butyl-4-hydroxybenzyl) -2-butylmalonate, 1- [2- [3- (3 5-Di-tert-butyl-4-hydroxyphenyl) propynyloxy] ethyl] -4- [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propynyloxy] -2,2,6 6-tetramethylpiperidine, bis (1,2,2,6,6-pentamethyl-4-piperidyl) sebacate and methyl-1,2,2,6,6-pentamethyl-4-piperidyl-sebake Mixture (manufactured by Ciba Geigy Japan, product name: TINUVIN-292), bis (1-octoxy-2,2,6,6-tetramethyl-4-piperidyl) sebacate, TINUVIN-123 (product name, Japan) Ciba-Geigy Co., Ltd.), TINUVIN-111FDL (product name, manufactured by Nippon Ciba-Geigy Co., Ltd.), TINUVIN 292 (product name, manufactured by Ciba-Geigy Japan), and 1,2,2,6,6-pentamethyl-4- Piperidyl methacrylate, 1,2,2,6,6-pentamethyl-4-piperidyl acrylate, 2,2,6,6-tetramethyl-4-piperidyl methacrylate, 2,2,6,6-tetramethyl-4-piperidyl Acrylate, 1,2,2,6,6-pentamethyl-4-iminopiperidyl methacrylate, 2,2,6 6, -tetramethyl-4-iminopiperidyl methacrylate, 4-cyano-2,2,6,6-tetramethyl-4-piperidyl methacrylate, 4-cyano-1,2,2,6,6-pentamethyl-4- Examples thereof include polymerizable hindered amine ultraviolet absorbers such as piperidyl methacrylate and (co) polymers thereof.

また、ヒンダードフェノール系光安定剤の具体例としては、ビス(3,5−tert−ブチル)−4−ヒドロキシトルエン、TINUVIN−144(製品名、日本チバガイギー(株)製)等を挙げることができる。   Specific examples of the hindered phenol light stabilizer include bis (3,5-tert-butyl) -4-hydroxytoluene, TINUVIN-144 (product name, manufactured by Ciba Geigy Japan, Inc.), and the like. it can.

光触媒コーティング液には任意成分として、エマルジョンの乳化剤以外に、コーティング液中に界面活性剤を配合してもよい。
本発明の好ましい態様においては、界面活性剤は、光触媒粒子1重量部に対して、10重量部未満、より好ましくは、0.1〜2重量部程度添加されるのが好ましい。
As an optional component, the photocatalyst coating liquid may contain a surfactant in the coating liquid in addition to the emulsion emulsifier.
In a preferred embodiment of the present invention, the surfactant is preferably added in an amount of less than 10 parts by weight, more preferably about 0.1 to 2 parts by weight with respect to 1 part by weight of the photocatalyst particles.

本発明による光触媒コーティング液に添加が可能な界面活性剤の例としては、スルホン酸ポリオキシエチレンアルキルフェニルエーテルアンモニウム塩、スルホン酸ポリオキシエチレンアルキルフェニルエーテルナトリウム塩、脂肪酸ナトリウムセッケン、脂肪酸カリセッケン、ジオクチルスルホコハク酸ナトリウム、アルキルサルフェート、アルキルエーテルサルフェート、アルキルサルフェートソーダ塩、アルキルエーテルサルフェートソーダ塩、ポリオキシエチレンアルキルエーテルサルフェート、ポリオキシエチレンアルキルエーテルサルフェートソーダ塩、アルキルサルフェートTEA塩、ポリオキシエチレンアルキルエーテルサルフェートTEA塩、2−エチルヘキシルアルキル硫酸エステルナトリウム塩、アシルメチルタウリン酸ナトリウム、ラウロイルメチルタウリン酸ナトリウム、ドデシルベンゼンスルホン酸ナトリウム、スルホコハク酸ラウリル2ナトリウム、ポリオキシエチレンスルホコハク酸ラウリル2ナトリウム、ポリカルボン酸、オレオイルザルコシン、アミドエーテルサルフェート、ラウロイルザルコシネート、スルホFAエステルナトリウム塩等のアニオン性界面活性剤;ポリオキシエチレンラウリルエーテル、ポリオキシエチレントリデシルエーテル、ポリオキシエチレンセチルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンオレイルエーテル、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルエステル、ポリオキシエチレンアルキルフェノールエーテル、ポリオキシエチレンノニルフェニルエーテル、ポリオキシエチレンオクチルフェニルエーテル、ポリオキシエチレンラウラート、ポリオキシエチレンステアレート、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレンオレエート、ソルビタンアルキルエステル、ポリオキシエチレンソルビタンアルキルエステル、ポリエーテル変性シリコーン、ポリエステル変性シリコーン、ソルビタンラウラート、ソルビタンステアレート、ソルビタンパルミテート、ソルビタンオレエート、ソルビタンセスキオレエート、ポリオキシエチレンソルビタンラウラート、ポリオキシエチレンソルビタンステアレート、ポリオキシエチレンソルビタンパルミテート、ポリオキシエチレンソルビタンオレエート、グリセロールステアレート、ポリグリセリン脂肪酸エステル、アルキルアルキロールアミド、ラウリン酸ジエタノールアミド、オレイン酸ジエタノールアミド、オキシエチレンドデシルアミン、ポリオキシエチレンドデシルアミン、ポリオキシエチレンアルキルアミン、ポリオキシエチレンオクタデシルアミン、ポリオキシエチレンアルキルプロピレンジアミン、ポリオキシエチレンオキシプロピレンブロックポリマー、ポリオキシエチレンステアレート等のノニオン性界面活性剤;ジメチルアルキルベタイン、アルキルグリシン、アミドベタイン、イミダゾリン等の両性界面活性剤、オクタデシルジメチルベンジルアンモニウムクロライド、アルキルジメチルベンジルアンモニウムクロライド、テトラデシルメチルベンジルアンモニウムクロライド、ジオレイルジメチルアンモニウムクロライド、1−ヒドロキシエチル−2−アルキルイミダゾリン4級塩、アルキルイソキノリニウムブロマイド、高分子アミン、オクタデシルトリメチルアンモニウムクロライド、アルキルトリメチルアンモニウムクロライド、ドデシルトリメチルアンモニウムクロライド、ヘキサデシルトリメチルアンモニウムクロライド、ベヘニルトリメチルアンモニウムクロライド、アルキルイミダゾリン4級塩、ジアルキルジメチルアンモニウムクロライド、オクタデシルアミン酢酸塩、テトラデシルアミン酢酸塩、アルキルプロピレンジアミン酢酸塩、ジデシルジメチルアンモニウムクロライド等のカチオン性界面活性剤等が挙げられる。   Examples of surfactants that can be added to the photocatalyst coating liquid according to the present invention include sulfonic acid polyoxyethylene alkylphenyl ether ammonium salt, sulfonic acid polyoxyethylene alkylphenyl ether sodium salt, fatty acid sodium soap, fatty acid potassium soap, dioctyl sulfosuccinate. Sodium acid, alkyl sulfate, alkyl ether sulfate, alkyl sulfate soda salt, alkyl ether sulfate soda salt, polyoxyethylene alkyl ether sulfate, polyoxyethylene alkyl ether sulfate soda salt, alkyl sulfate TEA salt, polyoxyethylene alkyl ether sulfate TEA salt 2-ethylhexyl alkyl sulfate sodium salt, acylmethyl taurate sodium , Sodium lauroylmethyl taurate, sodium dodecylbenzene sulfonate, disodium lauryl sulfosuccinate, disodium lauryl polyoxyethylene sulfosuccinate, polycarboxylic acid, oleoyl sarcosine, amide ether sulfate, lauroyl sarcosinate, sulfo FA ester Anionic surfactant such as sodium salt; polyoxyethylene lauryl ether, polyoxyethylene tridecyl ether, polyoxyethylene cetyl ether, polyoxyethylene stearyl ether, polyoxyethylene oleyl ether, polyoxyethylene alkyl ether, polyoxyethylene Alkyl ester, polyoxyethylene alkylphenol ether, polyoxyethylene nonylphenyl ether, polyoxyethylene Xylethylene octyl phenyl ether, polyoxyethylene laurate, polyoxyethylene stearate, polyoxyethylene alkyl phenyl ether, polyoxyethylene oleate, sorbitan alkyl ester, polyoxyethylene sorbitan alkyl ester, polyether modified silicone, polyester modified silicone Sorbitan laurate, sorbitan stearate, sorbitan palmitate, sorbitan oleate, sorbitan sesquioleate, polyoxyethylene sorbitan laurate, polyoxyethylene sorbitan stearate, polyoxyethylene sorbitan palmitate, polyoxyethylene sorbitan oleate, Glycerol stearate, polyglycerin fatty acid ester, alkylalkylol Lauric acid diethanolamide, oleic acid diethanolamide, oxyethylene dodecylamine, polyoxyethylene dodecylamine, polyoxyethylene alkylamine, polyoxyethylene octadecylamine, polyoxyethylene alkylpropylenediamine, polyoxyethyleneoxypropylene block polymer, Nonionic surfactants such as polyoxyethylene stearate; amphoteric surfactants such as dimethylalkylbetaine, alkylglycine, amidebetaine, imidazoline, octadecyldimethylbenzylammonium chloride, alkyldimethylbenzylammonium chloride, tetradecylmethylbenzylammonium chloride, Dioleyldimethylammonium chloride, 1-hydroxyethyl-2- Rukiruimidazoline quaternary salt, alkylisoquinolinium bromide, polymeric amine, octadecyltrimethylammonium chloride, alkyltrimethylammonium chloride, dodecyltrimethylammonium chloride, hexadecyltrimethylammonium chloride, behenyltrimethylammonium chloride, alkylimidazoline quaternary salt, dialkyl And cationic surfactants such as dimethylammonium chloride, octadecylamine acetate, tetradecylamine acetate, alkylpropylenediamine acetate, and didecyldimethylammonium chloride.

光触媒層には、有機防カビ剤が配合されていてもよい。例として、有機窒素硫黄系化合物、ピリチオン系化合物、有機ヨウ素系化合物、トリアジン系化合物、イソチアゾリン系化合物、イミダゾール系化合物、ピリジン系化合物、ニトリル系化合物、チオカーバメート系化合物、チアゾール系化合物、有機よう素化合物、ジスルフィド系化合物が挙げられ、単独もしくは混合物として用いられる。防カビ剤は一般に藻を防ぐ効果も合わせ持つものが多いことから、防カビ剤を添加することによって、カビと藻の両方を抑制することも期待できる。   An organic antifungal agent may be blended in the photocatalyst layer. Examples include organic nitrogen sulfur compounds, pyrithione compounds, organic iodine compounds, triazine compounds, isothiazoline compounds, imidazole compounds, pyridine compounds, nitrile compounds, thiocarbamate compounds, thiazole compounds, and organic iodine. Compounds and disulfide compounds may be mentioned and used alone or as a mixture. Since many antifungal agents generally have an effect of preventing algae, addition of the antifungal agent can be expected to suppress both mold and algae.

外構用コーティング液
本発明による外構用コーティング液は、光触媒性金属酸化物粒子と、シリカ粒子と、硬化性シリコーンエマルジョンと、水溶性銅化合物と、水とを備え、前記シリカ粒子は疎水性基を有する物質により部分的に被覆或いは変性処理されていることを特徴とする外構用コーティング液である。
このような構成にすることにより、基材の劣化を抑制しつつ有害ガス分解性および防カビ・防藻性にも優れる外構および外構用コーティング液を提供することが可能となる。
その理由は以下のように考えられる。
外構用コーティング液を基材に塗布し乾燥したときに、光触媒性金属酸化物粒子と、シリカ粒子は水との親和性があるために水が表面に拡散し蒸発する際に、表面に移動しやすい。一方、光触媒性金属酸化物粒子と、シリカ粒子は水との親和性があるために粒子同士が凝集しやすく、特に水との親和性に優れるシリカ粒子ではそれが顕著に生じる。
本発明では、予めシリカ粒子を疎水性基を有する物質により部分的に被覆或いは変性処理しておく。そうすることにより、シリカ粒子の凝集を有効に抑制できる。
上記のシリカ粒子を用いることで、シリコーンエマルジョンの間隙をシリカ粒子が塞いで光触媒性金属酸化物粒子の上方移動を妨げる状態を有効に回避することができ、光触媒性金属酸化物粒子を表面に高濃度で集中できるようになる。
かつ、外構用コーティング液を基材に塗布した後に乾燥するとき、水の蒸発に伴い、表面エネルギーの小さな上記光触媒性金属酸化物粒子とともに水の表面への拡散に伴い、水に溶解している水溶性の銅化合物も表面へ移動する。それにより、塗装体表面は乾燥完了時には上記光触媒性金属酸化物粒子と銅化合物とが高濃度に互いに離間しつつ存在するようになる。ここで、本発明では光触媒性金属酸化物粒子が酸化力が還元力よりも強い光触媒粒子であるので、銅化合物が適度に離間して存在することで、銅の光還元作用をほとんど生じることなく、光触媒性金属酸化物粒子と銅との相互作用により光触媒酸化力を強めることができ、有害ガス分解性および防カビ・防藻性にも優れるようになる。
かつ、上記塗装体では、上記光触媒性金属酸化物粒子が基材側ではなく、表面側に高濃度に存在するので、光触媒と基材との界面での反応を抑制しつつ光触媒粒子の紫外線吸収により紫外線劣化をも抑制できるようになる。
Exterior coating liquid The exterior coating liquid according to the present invention comprises photocatalytic metal oxide particles, silica particles, a curable silicone emulsion, a water-soluble copper compound, and water, and the silica particles are hydrophobic. An exterior coating solution characterized in that it is partially coated or modified with a group-containing substance.
By adopting such a configuration, it is possible to provide an exterior and an exterior coating liquid that are excellent in harmful gas decomposability and antifungal / algae resistance while suppressing deterioration of the substrate.
The reason is considered as follows.
When the exterior coating solution is applied to the substrate and dried, the photocatalytic metal oxide particles and silica particles move to the surface when water diffuses and evaporates on the surface because of its affinity with water. It's easy to do. On the other hand, since photocatalytic metal oxide particles and silica particles have an affinity for water, the particles are likely to aggregate with each other, and in particular, silica particles having an excellent affinity for water are prominent.
In the present invention, silica particles are partially coated or modified in advance with a substance having a hydrophobic group. By doing so, aggregation of silica particles can be effectively suppressed.
By using the above silica particles, it is possible to effectively avoid a state where the silica particles block the gap between the silicone emulsions and prevent the photocatalytic metal oxide particles from moving upward. You can concentrate on concentration.
In addition, when the exterior coating liquid is applied to the substrate and then dried, it dissolves in water as the water evaporates, along with the photocatalytic metal oxide particles having a small surface energy, and diffusion to the surface of the water. The water-soluble copper compound is also moved to the surface. As a result, the photocatalytic metal oxide particles and the copper compound are present at a high concentration while being separated from each other on the surface of the coated body when the drying is completed. Here, in the present invention, since the photocatalytic metal oxide particles are photocatalyst particles having an oxidizing power stronger than the reducing power, the copper compound is present at a suitable distance, so that the photoreducing action of copper hardly occurs. In addition, the photocatalytic metal oxide particles and copper can enhance the photocatalytic oxidizing power through the interaction with copper, and are also excellent in harmful gas decomposability and mold / algae resistance.
In the coated body, since the photocatalytic metal oxide particles are present at a high concentration on the surface side, not on the substrate side, the UV absorption of the photocatalyst particles is suppressed while suppressing the reaction at the interface between the photocatalyst and the substrate. This makes it possible to suppress the deterioration of ultraviolet rays.

本発明の好ましい形態によれば、前記疎水性基を有する物質は、疎水性基を有するシラン及び/又は疎水性基を有するシリコーンであるようにする。
そのようにすることで、シリカ表面の被覆、変性の形態を制御しやすくなる。
According to a preferred embodiment of the present invention, the substance having a hydrophobic group is a silane having a hydrophobic group and / or a silicone having a hydrophobic group.
By doing so, it becomes easy to control the form of coating and modification on the silica surface.

本発明の好ましい形態によれば、前記シリカ粒子は、珪素原子に結合した水酸基及びアルコキシ基の合計量が、未処理状態である6.3mmol/gより小さくする。好ましくは6mmol/g未満であるようにする。
こうすることで、シリカ粒子の凝集を有効に抑制しやすくなり、2μmをこえる厚膜のような、上方移動行程の長い膜においても、高度な光触媒分解活性を得ることの可能な外構を提供することがより容易となる。
According to the preferable form of this invention, the said silica particle makes the total amount of the hydroxyl group couple | bonded with the silicon atom and the alkoxy group smaller than 6.3 mmol / g which is an unprocessed state. Preferably it is less than 6 mmol / g.
This makes it easy to effectively suppress the aggregation of silica particles and provides a structure capable of obtaining a high degree of photocatalytic decomposition activity even in a film having a long upward movement process, such as a thick film exceeding 2 μm. It will be easier to do.

本発明の好ましい形態によれば、前記硬化性シリコーンエマルジョンは、その硬化物が、前記硬化性シリコーンエマルジョンの硬化物(固形分質量)、前記光触媒性金属酸化物粒子および前記シリカ粒子の合計質量に対して85質量%以上、好ましくは90質量%以上であるようにする。
85質量%以上にすることにより、2μmをこえる厚膜のような、上方移動行程の長い膜においても、高度な光触媒分解活性を得ることができるとともに、着色剤を添加しない場合に透明な光触媒層が形成可能となる。
さらに、90質量%以上にすることにより、5μmをこえる厚膜のような、上方移動行程の長い膜においても、高度な光触媒分解活性を得ることができるとともに、着色剤を添加しない場合に透明な光触媒層が形成可能となる。
According to a preferred embodiment of the present invention, the curable silicone emulsion has a cured product with a total mass of the cured product (solid content mass) of the curable silicone emulsion, the photocatalytic metal oxide particles, and the silica particles. On the other hand, it is made 85 mass% or more, preferably 90 mass% or more.
By making it 85% by mass or more, a high photocatalytic decomposition activity can be obtained even in a film having a long upward movement process, such as a thick film exceeding 2 μm, and a transparent photocatalytic layer when no colorant is added. Can be formed.
Furthermore, by setting it to 90% by mass or more, a high photocatalytic decomposition activity can be obtained even in a film having a long upward movement process, such as a thick film exceeding 5 μm, and transparent when no colorant is added. A photocatalytic layer can be formed.

本発明の好ましい形態によれば、前記硬化性シリコーンエマルジョンの平均粒径は、前記光触媒性金属酸化物粒子および前記シリカ粒子の平均粒径よりも大きいようにする。
そうすることで、光触媒性金属酸化物粒子の上方移動が顕著になる。
従って、シリカ粒子がシリコーンエマルジョンに束縛されずに上方に移動しやすくなり、2μmをこえる厚膜のような、上方移動行程の長い膜においても、高度な光触媒分解活性を得ることの可能な光触媒コーティング組成物を提供することがより容易となる。
According to a preferred embodiment of the present invention, the average particle size of the curable silicone emulsion is larger than the average particle size of the photocatalytic metal oxide particles and the silica particles.
By doing so, the upward movement of the photocatalytic metal oxide particles becomes remarkable.
Therefore, the photocatalytic coating can obtain a high photocatalytic decomposition activity even in a film having a long upward movement process, such as a thick film exceeding 2 μm, since the silica particles are easily moved upward without being bound by the silicone emulsion. It becomes easier to provide the composition.

外構用コーティング液には、上記「光触媒粒子」、「シリカ粒子」、「硬化性シリコーンエマルジョン」、「水溶性銅化合物」の他、下記に限定されないが、「シリカ粒子以外の無機酸化物粒子」、「紫外線吸収剤」、「光安定剤」、「界面活性剤」、「有機防カビ剤」等を配合させることができる。
尚、「光触媒粒子」、「シリカ粒子」、「硬化性シリコーンエマルジョン」、「水溶性銅化合物」に関連する事項、「シリカ粒子以外の無機酸化物粒子含有」、「紫外線吸収剤の配合」、「光安定剤の配合」、「界面活性剤の配合」、「防藻剤の配合」については、「外構」の項で述べた全ての内容が好適に利用できる。
In addition to the above “photocatalyst particles”, “silica particles”, “curable silicone emulsion”, and “water-soluble copper compound”, the coating liquid for external use is not limited to the following, but “inorganic oxide particles other than silica particles” ”,“ Ultraviolet absorber ”,“ light stabilizer ”,“ surfactant ”,“ organic antifungal agent ”and the like.
In addition, “photocatalyst particles”, “silica particles”, “curable silicone emulsion”, “water-soluble copper compound” -related matters, “containing inorganic oxide particles other than silica particles”, “formulation of UV absorber”, With respect to “formulation of light stabilizer”, “formulation of surfactant”, and “formulation of algaeproofing agent”, all the contents described in the section “Outside Structure” can be suitably used.

本発明の外構用コーティング液においては、水に可溶又は水と均一分散可能な沸点が100℃以上の被膜形成助剤を配合することができる。この被膜形成助剤は大部分の水分が気化した後も被膜中に残存し、完全硬化するまで被膜に流動性を付与することにより気化時に荒れた被膜の修復を行い、特に被膜に均一性を付与するものである。良好な被膜を得るためには、非反応性の被膜形成助剤は最終的には硬化被膜から消失することが必要であり、エステル交換反応によりケイ素原子と結合する可能性のある水酸基は含まないことが好ましい。そのため、被膜形成助剤は100℃以上、好ましくは100〜250℃、特に100〜200℃の沸点の有機溶剤であることが好ましい。沸点が高すぎると被膜中に残存しやすくなることがある。具体的には、1−ブタノール、イソブチルアルコール、2−ペンタノール、3−ペンタノール、イソペンチルアルコール、乳酸メチル、乳酸エチル、3−メチル−3−メトキシブタノール等のアルコール類、1,2−プロパンジオール、1,3−ブタンジオール1,4−ブタンジオール、2,3−ブタンジオール、1,5−ペンタンジオール、2−メチル−2,4−ペンタンジオール、グリセリン、トリメチロールプロパン等のポリオール類、2−ブトキシエタノール、2−フェノキシエタノール、2−エトキシエチルアセタート、2−ブトキシエチルアセタート、ジエチレングリコールモノブチルエーテルアセタート等のエチレングリコール誘導体、1−メトキシ−2−プロパノール、1−エトキシ−2−プロパノール、1−メトキシ−2−メチルエチルアセタート、1−エトキシ−2−メチルエチルアセタート、ジプロピレングリコール、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノメチルエーテルアセタート等のプロピレングリコール誘導体、3−メトキシブチルアセタート等のブチレングリコール誘導体、シクロヘキサノン等のケトン類、酢酸ブチル、酢酸イソブチル、γ−ブチロラクトン、炭酸プロピレン、ジブチルフタレート等のエステル類等を例示することができる。特に、2−エトキシエチルアセタート、2−ブトキシエチルアセタート、ジエチレングリコールモノブチルエーテルアセタート、1−エトキシ−2−メチルエチルアセタート、ジプロピレングリコールモノメチルエーテルアセタート等のアルキレングリコール誘導体がレベリング性の点から好ましい。これらの有機溶剤は、メタノールやエタノール等の低沸点アルコール類と比較して水溶性に劣るため、エマルジョンの安定性を損なわず、均一な被膜の形成にのみ寄与する。   In the exterior coating solution of the present invention, a film-forming aid having a boiling point of 100 ° C. or higher that is soluble in water or can be uniformly dispersed in water can be blended. This film-forming aid remains in the film even after most of the water has evaporated, and it provides fluidity to the film until it is completely cured, thereby repairing the film that was rough at the time of vaporization. It is given. In order to obtain a good film, the non-reactive film-forming aid must eventually disappear from the cured film, and does not contain hydroxyl groups that can be bonded to silicon atoms by transesterification. It is preferable. Therefore, the film forming aid is preferably an organic solvent having a boiling point of 100 ° C. or higher, preferably 100 to 250 ° C., particularly 100 to 200 ° C. If the boiling point is too high, it may easily remain in the film. Specifically, alcohols such as 1-butanol, isobutyl alcohol, 2-pentanol, 3-pentanol, isopentyl alcohol, methyl lactate, ethyl lactate, and 3-methyl-3-methoxybutanol, 1,2-propane Polyols such as diol, 1,3-butanediol 1,4-butanediol, 2,3-butanediol, 1,5-pentanediol, 2-methyl-2,4-pentanediol, glycerin, trimethylolpropane, Ethylene glycol derivatives such as 2-butoxyethanol, 2-phenoxyethanol, 2-ethoxyethyl acetate, 2-butoxyethyl acetate, diethylene glycol monobutyl ether acetate, 1-methoxy-2-propanol, 1-ethoxy-2-propanol, 1-methoxy-2 Propylene glycol derivatives such as methyl ethyl acetate, 1-ethoxy-2-methyl ethyl acetate, dipropylene glycol, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, dipropylene glycol monomethyl ether acetate, 3-methoxybutyl Examples include butylene glycol derivatives such as acetate, ketones such as cyclohexanone, esters such as butyl acetate, isobutyl acetate, γ-butyrolactone, propylene carbonate, and dibutyl phthalate. In particular, alkylene glycol derivatives such as 2-ethoxyethyl acetate, 2-butoxyethyl acetate, diethylene glycol monobutyl ether acetate, 1-ethoxy-2-methylethyl acetate, dipropylene glycol monomethyl ether acetate are leveling properties. To preferred. Since these organic solvents are inferior in water solubility as compared with low boiling alcohols such as methanol and ethanol, they do not impair the stability of the emulsion and contribute only to the formation of a uniform film.

上記被膜形成助剤の添加量は、シリコーン樹脂100重量部に対して0〜20重量部、特に1〜15重量部とすることが好ましい。20重量部を超えて添加すると、硬化終了後も被膜中に残存する被膜形成助剤の量が多くなるため、被膜の特性が不十分なものとなることがある。   The amount of the film forming aid added is preferably 0 to 20 parts by weight, particularly 1 to 15 parts by weight, based on 100 parts by weight of the silicone resin. If added in excess of 20 parts by weight, the amount of the film-forming auxiliary agent remaining in the film even after the completion of curing increases, so that the characteristics of the film may be insufficient.

本発明の外構用コーティング液の溶媒は、主として水である。それにより塗膜形成時に有機物の揮発、蒸発に伴う異臭、環境汚染を有効に防止できる。   The solvent of the exterior coating liquid of the present invention is mainly water. As a result, it is possible to effectively prevent the odor and environmental pollution associated with the volatilization and evaporation of organic substances during coating film formation.

また、外構用コーティング液の固形分濃度は特に限定されないが、1〜10質量%とするのが塗布し易い点で好ましい。外構用コーティング液なお、外構用コーティング液中の構成成分の分析は、コーティング液を限外ろ過によって粒子成分と濾液に分離し、それぞれを赤外分光分析、ゲルパーミエーションクロマトグラフィー、蛍光X線分光分析などで分析し、スペクトルを解析することによって評価することができる。   Moreover, the solid content concentration of the exterior coating liquid is not particularly limited, but is preferably 1 to 10% by mass because it is easy to apply. The coating solution for the exterior is analyzed for the constituents in the coating fluid for the exterior by separating the coating solution into a particle component and a filtrate by ultrafiltration, and analyzing each of them by infrared spectroscopy, gel permeation chromatography, fluorescence X It can be evaluated by analyzing by spectrum analysis etc. and analyzing the spectrum.

なお、上記「外構」「外構用コーティング液」の項で述べた内容は、任意に組合わせることが可能である。   It should be noted that the contents described in the sections of “Exterior” and “External Coating Liquid” can be arbitrarily combined.

外構の製造方法
本発明の外構は、上記光触媒コーティング液を、基材上に塗布することにより簡単に製造することができる。光触媒層の塗装方法は、前記液剤を刷毛塗り、ローラー、スプレー、ロールコーター、フローコーター、ディップコート、流し塗り、スクリーン印刷等、一般に広く行われている方法を利用できる。コーティング液の基材への塗布後は、常温乾燥させればよく、あるいは必要に応じて加熱乾燥してもよい。
Manufacturing method of outer structure The outer structure of the present invention can be easily manufactured by applying the photocatalyst coating liquid onto a substrate. As a method for coating the photocatalyst layer, generally used methods such as brush coating, roller, spray, roll coater, flow coater, dip coating, flow coating, and screen printing can be used. After applying the coating liquid to the substrate, it may be dried at room temperature, or may be heat-dried as necessary.

基材
本発明に用いる基材は、無機材料、有機材料、複層材料を問わず種々の材料であってよく、その形状も限定されない。材料の観点からみた基材の好ましい例としては、金属、セラミック、ガラス、プラスチック、ゴム、石、セメント、コンクリ−ト、繊維、布帛、木、紙、それらの組合せ、それらの積層体、それらの表面に少なくとも一層の被膜を有するものが挙げられる。用途の観点からみた基材の好ましい例としては、外壁、外壁用建材、屋根、屋根ふき、屋根材、屋根ふき材、雨樋、雨樋用建材、ベランダ柵、ベランダ柵用建材、ベランダ支柱、ベランダ支柱用建材、窓サッシ等が挙げられる。
特に、本発明の外構は、太陽光に晒され、太陽光に含まれる紫外線により光触媒が光励起され、ガス分解や防カビ等の光酸化作用を生じるとともに、その紫外線により基材の劣化が生じるおそれのある利用形態で用いられるのが、特に好ましい。
特に好適には、表面がエナメル塗装或いはクリア塗装されている基材が本発明の効果を充分に享受できるので最も好ましい。
Base Material The base material used in the present invention may be various materials regardless of inorganic materials, organic materials, and multilayer materials, and the shape thereof is not limited. Preferred examples of the substrate from the viewpoint of materials include metals, ceramics, glass, plastics, rubber, stones, cement, concrete, fibers, fabrics, wood, paper, combinations thereof, laminates thereof, Examples thereof include those having at least one layer of coating on the surface. As a preferable example of the base material from the viewpoint of application, outer wall, building material for outer wall, roof, roofing, roofing material, roofing material, gutter, building material for gutter, veranda fence, building material for veranda fence, veranda support, For example, building materials for veranda posts and window sashes.
In particular, the outer structure of the present invention is exposed to sunlight, and the photocatalyst is photoexcited by ultraviolet rays contained in the sunlight, causing photooxidation action such as gas decomposition and mold prevention, and deterioration of the substrate due to the ultraviolet rays. It is particularly preferable that it is used in a use form with fear.
Particularly preferably, a substrate whose surface is enamel-coated or clear-coated is most preferable because the effect of the present invention can be fully enjoyed.

本発明を以下の例に基づいて具体的に説明するが、本発明はこれらの例に限定されるものではない。   The present invention will be specifically described based on the following examples, but the present invention is not limited to these examples.

実施例1.
アナターゼ型酸化チタン粒子(平均結晶子径10nm)1.3質量部、3官能性シランで5%表面被覆したシリカ粒子(平均粒径50nm)8.7質量部、メチル基およびフェニル基を含有する硬化性シリコーンエマルジョン90質量部、銅のアミン錯体0.007質量部、銀のアミン錯体0.003質量部配合した固形分濃度25質量%の光触媒水性コーティング液を調製し、透明なアクリル基材上に150℃×5分乾燥、光触媒塗装体を得た。
得られた光触媒塗装体の光触媒層を断面観察したところ、膜厚は約7μmであり、アナターゼ型酸化チタン粒子とシリカ粒子が表面に高濃度に存在する様子が観察された。
また、光触媒塗装体の表面から観察したところ、塗装体を載置していた実験台が透けてみえた。
この光触媒塗装体について、光触媒分解活性を、NOx分解性能を調べることにより確認した。ここで、光触媒によるNOx分解機能は、JIS R1701−1「光触媒材料の空気浄化性能試験方法−第1部:窒素酸化物の除去性能」の試験法で行った。その結果、ΔNOxが0.5μmolを上回り、良好な結果を示した。
さらに、この光触媒塗装体について、抗カビ性能を確認した。前処理として1mW/cmのBLB光を24時間照射したのち、下記した抗カビ性試験を行った。 こうして得られた50×50mmの大きさの光触媒塗装体について、以下の通り抗カビ性の評価を行った。試験菌としてポテトデキストロース寒天培地で、25℃で7〜14日前培養したAspergillus niger(NBRC6341)を用い、これを0.005重量%のスルホコハク酸ジオクチルナトリウムを含む生理食塩水中に分散させ胞子懸濁液を作成した。上記方法にて得られた光触媒塗装体に、前記胞子懸濁液を、試験片1枚あたり4〜6×10個/mLになるよう滴下し、抗カビ試験片とした。この試験片に、JIS R1702(2006)に記載のフィルム密着法に準じ、密着フィルムをかぶせ、保湿可能なシャーレ内に設置し、保湿ガラスを載せて試験に用いた。前記試験片をシャーレごとBLB光照射下に設置し、光触媒塗装体面で0.4mW/cmになるようBLB光を24時間照射した。24時間照射後、胞子懸濁液を回収し、ポテトデキストロース寒天培地で培養し、生残菌数を計測した。抗カビ性は、得られた生残菌数の対数値と光触媒未加工の試験体の生残菌数の対数値の差を求めることによって得た。その結果、対数値は1を上回り、良好な結果を示した。
Example 1.
Contains 1.3 parts by mass of anatase-type titanium oxide particles (average crystallite size 10 nm), 8.7 parts by mass of silica particles (average particle size 50 nm) 5% surface-coated with trifunctional silane, methyl group and phenyl group A photocatalytic aqueous coating solution having a solid content concentration of 25% by mass containing 90 parts by mass of a curable silicone emulsion, 0.007 parts by mass of a copper amine complex, and 0.003 parts by mass of a silver amine complex was prepared on a transparent acrylic substrate. And dried at 150 ° C. for 5 minutes to obtain a photocatalyst-coated body.
When the photocatalyst layer of the obtained photocatalyst-coated body was observed in cross section, the film thickness was about 7 μm, and it was observed that anatase-type titanium oxide particles and silica particles were present at a high concentration on the surface.
Moreover, when it observed from the surface of the photocatalyst coating body, the experimental stand which mounted the coating body was seen through.
About this photocatalyst coating body, the photocatalytic decomposition activity was confirmed by investigating NOx decomposition | disassembly performance. Here, the NOx decomposition function by the photocatalyst was performed by a test method of JIS R1701-1 “Testing method for air purification performance of photocatalytic material—Part 1: Nitrogen oxide removal performance”. As a result, ΔNOx exceeded 0.5 μmol, indicating a good result.
Furthermore, antifungal performance was confirmed about this photocatalyst coating body. As a pretreatment, 1 mW / cm 2 of BLB light was irradiated for 24 hours, and then the antifungal test described below was performed. About the photocatalyst coating body of a magnitude | size of 50x50 mm obtained in this way, antifungal evaluation was performed as follows. Aspergillus niger (NBRC6341) pre-cultured at 25 ° C. for 7 to 14 days on a potato dextrose agar medium as a test bacterium, this was dispersed in physiological saline containing 0.005% by weight of dioctyl sodium sulfosuccinate, and a spore suspension It was created. The spore suspension was dropped onto the photocatalyst-coated body obtained by the above method so as to be 4 to 6 × 10 5 pieces / mL per test piece to obtain an anti-mold test piece. In accordance with the film adhesion method described in JIS R1702 (2006), the test piece was covered with an adhesion film, placed in a petri dish capable of moisture retention, and moisturized glass was placed and used for the test. The test piece was placed together with the petri dish under BLB light irradiation, and irradiated with BLB light for 24 hours so that the photocatalyst-coated body surface was 0.4 mW / cm 2 . After 24 hours of irradiation, the spore suspension was collected and cultured on a potato dextrose agar medium, and the number of surviving bacteria was counted. The antifungal property was obtained by calculating the difference between the logarithmic value of the number of surviving bacteria obtained and the logarithmic value of the number of surviving bacteria of the photocatalyst untreated specimen. As a result, the logarithmic value exceeded 1 and showed a good result.

実施例2.
アナターゼ型酸化チタン粒子(平均結晶子径10nm)1.3質量部、3官能性シランで5%表面被覆したシリカ粒子(平均粒径50nm)8.7質量部、ジメチルシリル基を有する硬化性シリコーンエマルジョン90質量部、銅のアミン錯体0.007質量部、銀のアミン錯体0.003質量部配合した固形分濃度25質量%の光触媒水性コーティング液を調製し、透明なアクリル基材上に150℃×5分乾燥、光触媒塗装体を得た。
得られた光触媒塗装体の光触媒層を断面観察したところ、膜厚は約7μmであり、アナターゼ型酸化チタン粒子とシリカ粒子が表面に高濃度に存在する様子が観察された。
また、光触媒塗装体の表面から観察したところ、塗装体を載置していた実験台が透けてみえた。
この光触媒塗装体について、光触媒分解活性を、NOx分解性能を調べることにより確認した。ここで、光触媒によるNOx分解機能は、JIS R1701−1「光触媒材料の空気浄化性能試験方法−第1部:窒素酸化物の除去性能」の試験法で行った。その結果、ΔNOxが0.5μmolを上回り、良好な結果を示した。
さらに、この光触媒塗装体について、抗カビ性能を確認した。前処理として1mW/cmのBLB光を24時間照射したのち、下記した抗カビ性試験を行った。 こうして得られた50×50mmの大きさの光触媒塗装体について、以下の通り抗カビ性の評価を行った。試験菌としてポテトデキストロース寒天培地で、25℃で7〜14日前培養したAspergillus niger(NBRC6341)を用い、これを0.005重量%のスルホコハク酸ジオクチルナトリウムを含む生理食塩水中に分散させ胞子懸濁液を作成した。上記方法にて得られた光触媒塗装体に、前記胞子懸濁液を、試験片1枚あたり4〜6×10個/mLになるよう滴下し、抗カビ試験片とした。この試験片に、JIS R1702(2006)に記載のフィルム密着法に準じ、密着フィルムをかぶせ、保湿可能なシャーレ内に設置し、保湿ガラスを載せて試験に用いた。前記試験片をシャーレごとBLB光照射下に設置し、光触媒塗装体面で0.4mW/cmになるようBLB光を24時間照射した。24時間照射後、胞子懸濁液を回収し、ポテトデキストロース寒天培地で培養し、生残菌数を計測した。抗カビ性は、得られた生残菌数の対数値と光触媒未加工の試験体の生残菌数の対数値の差を求めることによって得た。その結果、対数値は1を上回り、良好な結果を示した。
Example 2
Anatase-type titanium oxide particles (average crystallite diameter 10 nm) 1.3 parts by mass Silica particles 5% surface-coated with trifunctional silane (average particle size 50 nm) 8.7 parts by mass, curable silicone having a dimethylsilyl group An aqueous photocatalyst coating solution having a solid content concentration of 25% by mass containing 90 parts by mass of emulsion, 0.007 parts by mass of copper amine complex and 0.003 parts by mass of silver amine complex was prepared, and 150 ° C. on a transparent acrylic substrate. X Dry for 5 minutes to obtain a photocatalyst-coated body.
When the photocatalyst layer of the obtained photocatalyst-coated body was observed in cross section, the film thickness was about 7 μm, and it was observed that anatase-type titanium oxide particles and silica particles were present at a high concentration on the surface.
Moreover, when it observed from the surface of the photocatalyst coating body, the experimental stand which mounted the coating body was seen through.
About this photocatalyst coating body, the photocatalytic decomposition activity was confirmed by investigating NOx decomposition | disassembly performance. Here, the NOx decomposition function by the photocatalyst was performed by a test method of JIS R1701-1 “Testing method for air purification performance of photocatalytic material—Part 1: Nitrogen oxide removal performance”. As a result, ΔNOx exceeded 0.5 μmol, indicating a good result.
Furthermore, antifungal performance was confirmed about this photocatalyst coating body. As a pretreatment, 1 mW / cm 2 of BLB light was irradiated for 24 hours, and then the antifungal test described below was performed. About the photocatalyst coating body of a magnitude | size of 50x50 mm obtained in this way, antifungal evaluation was performed as follows. Aspergillus niger (NBRC6341) pre-cultured at 25 ° C. for 7 to 14 days on a potato dextrose agar medium as a test bacterium, this was dispersed in physiological saline containing 0.005% by weight of dioctyl sodium sulfosuccinate, and a spore suspension It was created. The spore suspension was dropped onto the photocatalyst-coated body obtained by the above method so as to be 4 to 6 × 10 5 pieces / mL per test piece to obtain an anti-mold test piece. In accordance with the film adhesion method described in JIS R1702 (2006), the test piece was covered with an adhesion film, placed in a petri dish capable of moisture retention, and moisturized glass was placed and used for the test. The test piece was placed together with the petri dish under BLB light irradiation, and irradiated with BLB light for 24 hours so that the photocatalyst-coated body surface was 0.4 mW / cm 2 . After 24 hours of irradiation, the spore suspension was collected and cultured on a potato dextrose agar medium, and the number of surviving bacteria was counted. The antifungal property was obtained by calculating the difference between the logarithmic value of the number of surviving bacteria obtained and the logarithmic value of the number of surviving bacteria of the photocatalyst untreated specimen. As a result, the logarithmic value exceeded 1 and showed a good result.

実施例3
アナターゼ型酸化チタン粒子(平均結晶子径10nm)1.3質量部、3官能性シランで5%表面被覆したシリカ粒子(平均粒径50nm)8.7質量部、メチル基およびフェニル基を含有する硬化性シリコーンエマルジョン90質量部、銅のアミン錯体0.01質量部、配合した固形分濃度25質量%の光触媒水性コーティング液を調製し、透明なアクリル基材上に150℃×5分乾燥、光触媒塗装体を得た。
得られた光触媒塗装体の光触媒層を断面観察したところ、膜厚は約7μmであり、アナターゼ型酸化チタン粒子とシリカ粒子が表面に高濃度に存在する様子が観察された。
また、光触媒塗装体の表面から観察したところ、塗装体を載置していた実験台が透けてみえた。
この光触媒塗装体について、光触媒分解活性を、NOx分解性能を調べることにより確認した。ここで、光触媒によるNOx分解機能は、JIS R1701−1「光触媒材料の空気浄化性能試験方法−第1部:窒素酸化物の除去性能」の試験法で行った。その結果、ΔNOxが0.5μmolを上回り、良好な結果を示した。
さらに、この光触媒塗装体について、抗カビ性能を確認した。前処理として1mW/cmのBLB光を24時間照射したのち、下記した抗カビ性試験を行った。 こうして得られた50×50mmの大きさの光触媒塗装体について、以下の通り抗カビ性の評価を行った。試験菌としてポテトデキストロース寒天培地で、25℃で7〜14日前培養したAspergillus niger(NBRC6341)を用い、これを0.005重量%のスルホコハク酸ジオクチルナトリウムを含む生理食塩水中に分散させ胞子懸濁液を作成した。上記方法にて得られた光触媒塗装体に、前記胞子懸濁液を、試験片1枚あたり4〜6×10個/mLになるよう滴下し、抗カビ試験片とした。この試験片に、JIS R1702(2006)に記載のフィルム密着法に準じ、密着フィルムをかぶせ、保湿可能なシャーレ内に設置し、保湿ガラスを載せて試験に用いた。前記試験片をシャーレごとBLB光照射下に設置し、光触媒塗装体面で0.4mW/cmになるようBLB光を24時間照射した。24時間照射後、胞子懸濁液を回収し、ポテトデキストロース寒天培地で培養し、生残菌数を計測した。抗カビ性は、得られた生残菌数の対数値と光触媒未加工の試験体の生残菌数の対数値の差を求めることによって得た。その結果、対数値は1を上回り、良好な結果を示した。
Example 3
Contains 1.3 parts by mass of anatase-type titanium oxide particles (average crystallite size 10 nm), 8.7 parts by mass of silica particles (average particle size 50 nm) 5% surface-coated with trifunctional silane, methyl group and phenyl group 90 parts by mass of curable silicone emulsion, 0.01 parts by mass of copper amine complex, and a mixed photocatalyst aqueous coating solution having a solid content concentration of 25% by mass are prepared and dried on a transparent acrylic substrate at 150 ° C. for 5 minutes. A painted body was obtained.
When the photocatalyst layer of the obtained photocatalyst-coated body was observed in cross section, the film thickness was about 7 μm, and it was observed that anatase-type titanium oxide particles and silica particles were present at a high concentration on the surface.
Moreover, when it observed from the surface of the photocatalyst coating body, the experimental stand which mounted the coating body was seen through.
About this photocatalyst coating body, the photocatalytic decomposition activity was confirmed by investigating NOx decomposition | disassembly performance. Here, the NOx decomposition function by the photocatalyst was performed by a test method of JIS R1701-1 “Testing method for air purification performance of photocatalytic material—Part 1: Nitrogen oxide removal performance”. As a result, ΔNOx exceeded 0.5 μmol, indicating a good result.
Furthermore, antifungal performance was confirmed about this photocatalyst coating body. As a pretreatment, 1 mW / cm 2 of BLB light was irradiated for 24 hours, and then the antifungal test described below was performed. About the photocatalyst coating body of a magnitude | size of 50x50 mm obtained in this way, antifungal evaluation was performed as follows. Aspergillus niger (NBRC6341) pre-cultured at 25 ° C. for 7 to 14 days on a potato dextrose agar medium as a test bacterium, this was dispersed in physiological saline containing 0.005% by weight of dioctyl sodium sulfosuccinate, and a spore suspension It was created. The spore suspension was dropped onto the photocatalyst-coated body obtained by the above method so as to be 4 to 6 × 10 5 pieces / mL per test piece to obtain an anti-mold test piece. In accordance with the film adhesion method described in JIS R1702 (2006), the test piece was covered with an adhesion film, placed in a petri dish capable of moisture retention, and moisturized glass was placed and used for the test. The test piece was placed together with the petri dish under BLB light irradiation, and irradiated with BLB light for 24 hours so that the photocatalyst-coated body surface was 0.4 mW / cm 2 . After 24 hours of irradiation, the spore suspension was collected and cultured on a potato dextrose agar medium, and the number of surviving bacteria was counted. The antifungal property was obtained by calculating the difference between the logarithmic value of the number of surviving bacteria obtained and the logarithmic value of the number of surviving bacteria of the photocatalyst untreated specimen. As a result, the logarithmic value exceeded 1 and showed a good result.

Claims (12)

基材表面に光触媒層を備えた外構であって、
前記光触媒層は、光触媒コーティング液を塗布後乾燥させることにより得られ、
前記光触媒コーティング液は、光触媒性金属酸化物粒子と、シリカ粒子と、硬化性シリコーンエマルジョンと、水溶性銅化合物と、水とを備え、
前記シリカ粒子は疎水性基を有する物質により部分的に被覆或いは変性処理されており、
前記光触媒性金属酸化物粒子は酸化力が還元力よりも強い光触媒性金属酸化物粒子であることを特徴とする外構。
It is an exterior equipped with a photocatalyst layer on the substrate surface,
The photocatalyst layer is obtained by applying a photocatalyst coating liquid and drying it,
The photocatalytic coating liquid comprises photocatalytic metal oxide particles, silica particles, a curable silicone emulsion, a water-soluble copper compound, and water,
The silica particles are partially coated or modified with a substance having a hydrophobic group,
The photocatalytic metal oxide particles are photocatalytic metal oxide particles having an oxidizing power stronger than a reducing power.
前記疎水性基を有する物質は、疎水性基を有するシラン及び/又は疎水性基を有するシリコーンであることを特徴とする請求項1に記載の外構。   The exterior according to claim 1, wherein the substance having a hydrophobic group is a silane having a hydrophobic group and / or a silicone having a hydrophobic group. 前記シリカ粒子は、珪素原子に結合した水酸基及びアルコキシ基の合計量が6mmol/g未満であることを特徴とする請求項2に記載の外構。   The external structure according to claim 2, wherein the silica particles have a total amount of hydroxyl groups and alkoxy groups bonded to silicon atoms of less than 6 mmol / g. 前記硬化性シリコーンエマルジョンは、その硬化物が、前記硬化性シリコーンエマルジョンの硬化物、前記光触媒性金属酸化物粒子および前記シリカ粒子の合計質量に対して80質量%以上であることを特徴とする請求項1〜3のいずれか1項に記載の外構。   The cured product of the curable silicone emulsion is 80% by mass or more based on a total mass of the cured product of the curable silicone emulsion, the photocatalytic metal oxide particles, and the silica particles. Item 4. The external structure according to any one of Items 1 to 3. 前記光触媒層の膜厚は、2μmをこえ20μm未満であることを特徴とする請求項1〜4のいずれか1項に記載の外構。   The outer structure according to any one of claims 1 to 4, wherein the film thickness of the photocatalyst layer is more than 2 µm and less than 20 µm. 前記硬化性シリコーンエマルジョンの平均粒径は、前記光触媒性金属酸化物粒子および前記シリカ粒子の平均粒径よりも大きいことを特徴とする請求項1〜5のいずれか1項に記載の外構。   The outer structure according to any one of claims 1 to 5, wherein an average particle size of the curable silicone emulsion is larger than an average particle size of the photocatalytic metal oxide particles and the silica particles. 前記光触媒層は透明であることを特徴とする請求項1〜6のいずれか1項に記載の外構。   The exterior according to any one of claims 1 to 6, wherein the photocatalyst layer is transparent. 光触媒性金属酸化物粒子と、
シリカ粒子と、
硬化性シリコーンエマルジョンと、
水溶性銅化合物と、
水と、を備え、
前記シリカ粒子は疎水性基を有する物質により部分的に被覆或いは変性処理されており、
前記光触媒性金属酸化物粒子は酸化力が還元力よりも強い光触媒性金属酸化物粒子であることを特徴とする外構用コーティング液。
Photocatalytic metal oxide particles;
Silica particles;
A curable silicone emulsion;
A water-soluble copper compound,
With water,
The silica particles are partially coated or modified with a substance having a hydrophobic group,
The exterior coating liquid, wherein the photocatalytic metal oxide particles are photocatalytic metal oxide particles having an oxidizing power stronger than a reducing power.
前記疎水性基を有する物質は、疎水性基を有するシラン及び/又は疎水性基を有するシリコーンであることを特徴とする請求項8に記載の外構用コーティング液。   The exterior coating liquid according to claim 8, wherein the substance having a hydrophobic group is a silane having a hydrophobic group and / or a silicone having a hydrophobic group. 前記シリカ粒子は、珪素原子に結合した水酸基及びアルコキシ基の合計量が6mmol/g未満であることを特徴とする請求項9に記載の光触媒コーティング液。   The photocatalyst coating liquid according to claim 9, wherein the silica particles have a total amount of hydroxyl groups and alkoxy groups bonded to silicon atoms of less than 6 mmol / g. 前記硬化性シリコーンエマルジョンは、その硬化物が、前記硬化性シリコーンエマルジョンの硬化物、前記光触媒性金属酸化物粒子および前記シリカ粒子の合計質量に対して80質量%以上であることを特徴とする請求項9または10のいずれか1項に記載の外構用コーティング液。   The cured product of the curable silicone emulsion is 80% by mass or more based on a total mass of the cured product of the curable silicone emulsion, the photocatalytic metal oxide particles, and the silica particles. Item 11. The exterior coating liquid according to any one of Items 9 or 10. 前記硬化性シリコーンエマルジョンの平均粒径は、前記光触媒性金属酸化物粒子および前記シリカ粒子の平均粒径よりも大きいことを特徴とする請求項9〜11のいずれか1項に記載の外構用コーティング液。   The external use according to any one of claims 9 to 11, wherein an average particle size of the curable silicone emulsion is larger than an average particle size of the photocatalytic metal oxide particles and the silica particles. Coating liquid.
JP2009209707A 2009-09-10 2009-09-10 Exterior structure, and coating solution therefor Pending JP2011056418A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009209707A JP2011056418A (en) 2009-09-10 2009-09-10 Exterior structure, and coating solution therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009209707A JP2011056418A (en) 2009-09-10 2009-09-10 Exterior structure, and coating solution therefor

Publications (1)

Publication Number Publication Date
JP2011056418A true JP2011056418A (en) 2011-03-24

Family

ID=43944701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009209707A Pending JP2011056418A (en) 2009-09-10 2009-09-10 Exterior structure, and coating solution therefor

Country Status (1)

Country Link
JP (1) JP2011056418A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000006300A1 (en) * 1998-07-30 2000-02-10 Toto Ltd. Method for producing high-performance material having photocatalytic function and device therefor
JP2008040171A (en) * 2006-08-07 2008-02-21 Pentax Corp Optical element with antireflection film having self-cleaning effect and method for manufacturing the same
JP2008222887A (en) * 2007-03-14 2008-09-25 Asahi Kasei Chemicals Corp Aqueous organic-inorganic composite composition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000006300A1 (en) * 1998-07-30 2000-02-10 Toto Ltd. Method for producing high-performance material having photocatalytic function and device therefor
JP2008040171A (en) * 2006-08-07 2008-02-21 Pentax Corp Optical element with antireflection film having self-cleaning effect and method for manufacturing the same
JP2008222887A (en) * 2007-03-14 2008-09-25 Asahi Kasei Chemicals Corp Aqueous organic-inorganic composite composition

Similar Documents

Publication Publication Date Title
JP2011058308A (en) External facing material for construction and coating liquid for building exterior
JP2011056449A (en) Exterior structure, and coating solution therefor
JP2011058272A (en) External facing material for construction and coating liquid for building exterior
JP2011056863A (en) External structure and coating liquid for external structure
JP2011050868A (en) Article coated with photocatalyst, and photocatalytic coating liquid
JP2011062628A (en) Exterior material for building and coating fluid for building exterior
JP2011050847A (en) Article coated with photocatalyst, and photocatalytic coating liquid
JP2011021400A (en) Window sash and coating liquid therefor
JP2011021398A (en) Roof material and coating liquid for roof
JP2011056418A (en) Exterior structure, and coating solution therefor
JP2011057875A (en) Exterior material for building and coating liquid for building exterior
JP2011056419A (en) Exterior structure, and coating solution therefore
JP2011056446A (en) Building exterior material, and coating solution therefor
JP2011058301A (en) External facing material for construction and coating liquid for building exterior
JP2011058305A (en) External facing material for construction and coating liquid for building exterior
JP2011058304A (en) External facing material for construction and coating liquid for building exterior
JP2011058306A (en) External facing material for construction and coating liquid for building exterior
JP2011050870A (en) Photocatalyst-applied object and photocatalytic coating fluid
JP2011056447A (en) Exterior structure, and coating solution therefor
JP2011056442A (en) Exterior structure, and coating solution therefor
JP2011056862A (en) External structure and coating liquid for external structure
JP2011058273A (en) External facing material for construction and coating liquid for building exterior
JP2011056448A (en) Exterior structure, and coating solution therefor
JP2011058307A (en) External facing material for construction and coating liquid for building exterior
JP2011032662A (en) External facing material for construction and coating liquid for building external facing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130311

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130313

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130701