JP2011056395A - Water treatment method for producing purified water - Google Patents

Water treatment method for producing purified water Download PDF

Info

Publication number
JP2011056395A
JP2011056395A JP2009208691A JP2009208691A JP2011056395A JP 2011056395 A JP2011056395 A JP 2011056395A JP 2009208691 A JP2009208691 A JP 2009208691A JP 2009208691 A JP2009208691 A JP 2009208691A JP 2011056395 A JP2011056395 A JP 2011056395A
Authority
JP
Japan
Prior art keywords
water
reverse osmosis
treated
working electrode
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009208691A
Other languages
Japanese (ja)
Other versions
JP4897022B2 (en
Inventor
Kensuke Honda
謙介 本多
Kazuo Uchikura
和雄 内倉
Ryoko Chiba
良子 千葉
Ikuo Sakurada
郁雄 桜田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KOMETTO KK
Original Assignee
KOMETTO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KOMETTO KK filed Critical KOMETTO KK
Priority to JP2009208691A priority Critical patent/JP4897022B2/en
Publication of JP2011056395A publication Critical patent/JP2011056395A/en
Application granted granted Critical
Publication of JP4897022B2 publication Critical patent/JP4897022B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To improve the efficiency of filtration with a reverse osmosis membrane by beforehand reducing endotoxin in raw material water before reverse osmosis treatment for obtaining purified water used for an artificial dialysis solution. <P>SOLUTION: In water treatment method for producing purified water by passing water to be treated through a reverse osmosis treatment apparatus 4 comprising reverse osmosis membranes, an electrolyzer 2 is installed which has a working electrode 11 where a diamond thin film is formed on a substrate, and a counter electrode 13 facing the working electrode 11 so as to leave a space of 0.05 or 1.0 mm between them, and uses the space as a passage of the water to be treated, a voltage less than a voltage causing water electrolysis is applied between the working electrode 11 and the counter electrode 13 to electrolyze the water to be treated, and the water to be treated whose endotoxin content is reduced to 1,000 unit/L or less is supplied to the reverse osmosis treatment apparatus 4. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は精製水たとえば人工透析器に使用する精製水を、水道水などの原水から製造するための水処理方法に関するものであって、特にエンドトキシンを良好に除去できる方法を提供する。   The present invention relates to a water treatment method for producing purified water, for example, purified water used in an artificial dialyzer, from raw water such as tap water, and particularly provides a method that can favorably remove endotoxin.

エンドトキシンはグラム陰性桿菌の細胞膜外壁を構成するリボ多糖であり、溶菌や菌体の破壊によって溶出して細菌毒素として作用する。グラム陰性桿菌であれば大腸菌のような一般的な細菌も上記のような毒作用の原因となり、人工透析の透析液などを介してエンドトキシンが体内に入ると悪寒、発熱、敗血症などを発生させることがある。また発熱を起こさない量のエンドトキシンでも炎症性サイトカインが生成し、長期の人工透析患者においてはこれにより発生した蛋白質の蓄積により、透析アミロイド症の原因となる。   Endotoxin is a ribopolysaccharide that forms the outer wall of the cell membrane of Gram-negative bacilli, and is eluted by lysis or destruction of bacterial cells to act as a bacterial toxin. In the case of Gram-negative bacilli, common bacteria such as Escherichia coli can cause the above-mentioned toxic effects. There is. Inflammatory cytokines are also produced by endotoxin in an amount that does not cause fever. In long-term artificial dialysis patients, the accumulation of proteins generated thereby causes dialysis amyloidosis.

人工透析の透析液は原液を精製水で稀釈して作製されるが、この稀釈のための精製水は水道水などの原水を処理して得ている。一般の水道水は殺菌処理を受けているため菌類は1L当たり100以下と少なく飲料用には適しているが、エンドトキシンは通常10000単位/L程度含まれており医療用としては不適当である。透析用水としては10単位/L以下であること、望ましくは0まで低減することが求められている。このため透析用水は逆浸透処理により精製して作製するのが一般的であり、逆浸透膜は水分子のみを通過させるので、エンドトキシンなどは除去される。さらに逆浸透処理をする前に、原水中の微生物や微粒子をフィルターで除去したり、イオン交換樹脂の層を通過させて軟水化などの処理をしたり、活性炭により塩素などを除去するなどの前処理を組み合わせることが多い。   The dialysate for artificial dialysis is prepared by diluting the stock solution with purified water, and the purified water for this dilution is obtained by treating raw water such as tap water. Since general tap water is sterilized, the number of fungi is less than 100 per liter, which is suitable for beverages. However, endotoxin is usually contained at about 10,000 units / L and is unsuitable for medical use. The water for dialysis is required to be 10 units / L or less, preferably to 0. For this reason, dialysis water is generally produced by purification by reverse osmosis, and the reverse osmosis membrane allows only water molecules to pass through, so that endotoxin and the like are removed. Before reverse osmosis treatment, remove microorganisms and fine particles in the raw water with a filter, pass through an ion exchange resin layer to soften water, remove chlorine with activated carbon, etc. Often combined processing.

しかしながら、このように逆浸透膜以外に種々の手段を併用してもエンドトキシンが完全に無い精製水を製造することは困難なのが実情であり、このため特別な手段をさらに併用することが提案されている。たとえば特開2007−237062号公報(特許文献1)には、逆浸透処理後の精製水をさらに電気再生式純水装置で処理することにより、エンドトキシンを完全に除去できるとしている。この電気再生式純水装置はアニオン交換樹脂とカチオン交換樹脂とを混合した樹脂をアニオン交換膜、カチオン交換膜で隔てられた充填室に充填し、これと平行して設けた電極間に通電するものである。これによりイオン交換樹脂の充填室から処理済みの精製水を取り出すことができる。   However, even if various means other than reverse osmosis membranes are used in combination, it is actually difficult to produce purified water completely free of endotoxins. For this reason, it has been proposed to further use special means. ing. For example, Japanese Patent Application Laid-Open No. 2007-237062 (Patent Document 1) states that endotoxin can be completely removed by further treating purified water after reverse osmosis treatment with an electric regeneration type pure water apparatus. This electric regenerative water purifier fills a filling chamber separated by an anion exchange membrane and a cation exchange membrane with a mixture of an anion exchange resin and a cation exchange resin, and energizes between electrodes provided in parallel therewith. Is. Thus, the treated purified water can be taken out from the ion exchange resin filling chamber.

また特開2007−252396号公報(特許文献2)にも逆浸透膜処理水を電気式脱イオン水製造装置を通すことにより、精製水中の微生物やエントドキシンを除去する方法が開示されている。引用文献2によると電気式脱イオン水製造装置は、カチオン交換膜とアニオン交換膜で区画される脱塩室にイオン交換体を充填し、この脱塩室の両側に濃縮室を設け、これらの脱塩室と濃縮室を陽極を備えた陽極室と陰極を備えた陰極室の間に配置したものであり、電圧を印加しながら精製水を得ることができる。 Japanese Patent Application Laid-Open No. 2007-252396 (Patent Document 2) also discloses a method for removing microorganisms and endotoxin in purified water by passing reverse osmosis membrane treated water through an electric deionized water production apparatus. According to the cited document 2, the electric deionized water production apparatus is filled with an ion exchanger in a demineralization chamber divided by a cation exchange membrane and an anion exchange membrane, and a concentration chamber is provided on both sides of the demineralization chamber. A desalting chamber and a concentrating chamber are arranged between an anode chamber having an anode and a cathode chamber having a cathode, and purified water can be obtained while applying a voltage.

特開2007−237062号公報JP 2007-237062 A 特開2007−252396号公報JP 2007-252396 A

前記の特開2007−237062号公報や特開2007−252396号公報に記載の方法においては、脱イオン作用と電解による殺菌作用によって系内に細菌が繁殖するのを防止するので、エンドトキシンの無い精製水を得ることができるとしている。しかし逆浸透膜で濾過された精製水は水分子のみである筈のところ、多くの場合にエンドトキシンが含有しているのが実情である。   In the method described in JP 2007-237062 A and JP 2007-252396 A, since bacteria are prevented from breeding in the system due to deionization action and bactericidal action by electrolysis, purification without endotoxin is performed. You can get water. However, the purified water filtered through the reverse osmosis membrane is only water molecules, but in many cases endotoxin is contained.

逆浸透膜による濾過の効率は原水の水質の影響を受け、原水中にエンドトキシン量が多いと、濾過水のエンドトキシンも増加し、またエンドトキシンを阻止する率を向上させようとすると濾過の効率が低下する。このためエンドトキシン含有量が10単位/L以下の精製水を得ようとすると処理した原水の10%程度しか精製水が得られないのが一般的である。このようなことから本発明は逆浸透処理を行なう前の原料水に対して処理を行うことにより、逆浸透膜による濾過の効率を向上させてエンドトキシンの少ない精製水を得ることを目的とする。   The efficiency of filtration using reverse osmosis membranes is affected by the quality of the raw water. If the amount of endotoxin in the raw water is large, the endotoxin of the filtered water also increases, and the efficiency of filtration decreases when trying to improve the endotoxin blocking rate To do. For this reason, when trying to obtain purified water having an endotoxin content of 10 units / L or less, it is common to obtain purified water of only about 10% of the treated raw water. In view of the above, an object of the present invention is to obtain purified water with little endotoxin by improving the efficiency of filtration by a reverse osmosis membrane by performing treatment on raw water before performing reverse osmosis treatment.

本発明は前記課題を解決するものであって、被処理水を逆浸透膜からなる逆浸透処理装置を通過させて精製水を製造するための水処理方法において、ダイヤモンド薄膜を基板に生成させた作用電極と、作用電極と0.05ないし1.0mmの間隙を以って対向する対極とを有し、前記間隙を前記被処理水の流路とする電解装置を設け、水の電解が発生する電圧未満の電圧を前記作用電極と対極間に印加して被処理水の電解を行ない、含有するエンドトキシンが1000単位/L以下にされた被処理水を前記逆浸透処理装置に送給することを特徴とする精製水を製造するための水処理方法である。   The present invention solves the above-mentioned problems, and in a water treatment method for producing purified water by passing water to be treated through a reverse osmosis treatment apparatus comprising a reverse osmosis membrane, a diamond thin film is formed on a substrate. An electrolysis apparatus having a working electrode and a counter electrode facing the working electrode with a gap of 0.05 to 1.0 mm and using the gap as a flow path for the water to be treated is generated to electrolyze water. A voltage lower than the working voltage is applied between the working electrode and the counter electrode to electrolyze the water to be treated, and the water to be treated whose contained endotoxin is 1000 units / L or less is fed to the reverse osmosis treatment device. Is a water treatment method for producing purified water.

ここにおいて、電解装置により電解が行なわれた被処理水は貯水槽に貯められ、逆浸透処理装置には前記貯水槽から被処理水が送給されることも特徴とする。
またさらに、作用電極に印加する電解電圧は、Ag/AgCl基準電極に対して1.2〜2.5Vであることも特徴とする。
Here, the water to be treated that has been electrolyzed by the electrolyzer is stored in a water tank, and the water to be treated is fed from the water tank to the reverse osmosis treatment device.
Furthermore, the electrolytic voltage applied to the working electrode is characterized by being 1.2 to 2.5 V with respect to the Ag / AgCl reference electrode.

水道水には通常10000単位/L程度のエントドキシンが存在するが、本発明によれば逆浸透処理前の処理水を1000単位/L以下に低減することが可能であり、これにより逆浸透膜による濾過の効率を向上させてエンドトキシンの少ない精製水を得ることができる。   Tap water usually contains about 10000 units / L of endotoxin, but according to the present invention, it is possible to reduce the treated water before reverse osmosis treatment to 1000 units / L or less. Purified water with little endotoxin can be obtained by improving the efficiency of filtration.

本発明の水処理方法に使用する装置の配置図である。It is a layout of the apparatus used for the water treatment method of the present invention. 本発明の水処理方法に使用する装置の配置図である。It is a layout of the apparatus used for the water treatment method of the present invention. 本発明に使用する電解装置を示す軸方向に平行な断面図である。It is sectional drawing parallel to an axial direction which shows the electrolysis apparatus used for this invention. 図3におけるA−A´矢視断面図である。It is AA 'arrow sectional drawing in FIG.

本発明の水処理方法は、基本的には被処理水を逆浸透膜からなる逆浸透処理装置を通過させて精製水を製造するものであるが、電解装置を付加してこれにより処理された水を逆浸透処理装置に送給することを特徴点としている。逆浸透処理装置については特に限定するものではなく、逆浸透モジュールとこれに処理水を高圧で供給するポンプから成っている。逆浸透モジュールとしては平面膜モジュール、スパイラルモジュール、管型モジュールのいずれであってもよい。   In the water treatment method of the present invention, purified water is basically produced by passing the water to be treated through a reverse osmosis treatment apparatus comprising a reverse osmosis membrane. It is characterized by feeding water to a reverse osmosis treatment device. It does not specifically limit about a reverse osmosis processing apparatus, It consists of a reverse osmosis module and the pump which supplies treated water to this at high pressure. The reverse osmosis module may be any of a planar membrane module, a spiral module, and a tubular module.

本発明の水処理方法に使用する装置の配置図を図1に示す。1は原水槽であるが、ここからポンプ7で送給された原料水は電解装置2に送られる。電解装置2から出た被処理水はイオン交換処理装置3を経て逆浸透処理装置4に送られ、得られた精製水は精製水槽5に貯められる。上記のイオン交換処理装置3は、従来からの逆浸透処理装置においても前処理用として一般に付加されているものであり、本発明の方法においても設けるのが好ましい。イオン交換処理装置はカルシウムイオン、塩素イオンなどの陽イオン、陰イオンを除去する。このような付加される装置は図1や後に示す図2に記載のものに限定されず、例えば原水中の微生物や微粒子を除去するためのフィルターや、水道水の殺菌のために添加されている塩素を活性炭により吸着除去する活性炭処理装置などをさらに付加することもできる。   The layout of the apparatus used for the water treatment method of the present invention is shown in FIG. Reference numeral 1 denotes a raw water tank, from which the raw water fed by the pump 7 is sent to the electrolyzer 2. The water to be treated that has come out of the electrolysis device 2 is sent to the reverse osmosis treatment device 4 through the ion exchange treatment device 3, and the purified water obtained is stored in the purified water tank 5. The ion exchange treatment device 3 is generally added for pretreatment even in a conventional reverse osmosis treatment device, and is preferably provided also in the method of the present invention. The ion exchange treatment device removes cations and anions such as calcium ions and chlorine ions. Such a device to be added is not limited to the one shown in FIG. 1 or FIG. 2 shown later. For example, it is added for sterilization of tap water or a filter for removing microorganisms and fine particles in raw water. An activated carbon treatment apparatus that adsorbs and removes chlorine by activated carbon can be further added.

なお図1の水処理装置においては電解装置2は逆浸透処理装置4の上流に設けられいて、被処理水が電解装置から逆浸透処理装置に流れるようになっている。すなわち電解装置2と逆浸透処理装置4の間にはイオン交換処理装置3があるが、いずれにしても電解装置2と逆浸透処理装置4は流路で結合されている。しかし図2に配置図を示すように電解装置2により電解が行なわれた被処理水は貯水槽6に一旦貯められ、逆浸透処理装置4には貯水槽6から処理水が送給されるようにしてもよい。なお8はポンプであるが、ポンプは図1や図2に記載が無い位置にも適宜設けることができる。貯水槽6は複数あっても良く、その場合には1つの貯水槽に被処理水が流入しているとき、他の貯水槽から被処理水を送り出すこともできる。図2のような配置にすることにより、電解装置と逆浸透処理装置との処理速度が一致しなくても円滑な処理が可能になる。   In the water treatment apparatus of FIG. 1, the electrolysis apparatus 2 is provided upstream of the reverse osmosis treatment apparatus 4 so that water to be treated flows from the electrolysis apparatus to the reverse osmosis treatment apparatus. That is, there is an ion exchange treatment device 3 between the electrolysis device 2 and the reverse osmosis treatment device 4, but in any case, the electrolysis device 2 and the reverse osmosis treatment device 4 are coupled by a flow path. However, as shown in the layout diagram in FIG. 2, the water to be treated that has been electrolyzed by the electrolyzer 2 is temporarily stored in the water tank 6, and the treated water is supplied from the water tank 6 to the reverse osmosis treatment device 4. It may be. In addition, although 8 is a pump, a pump can be suitably provided also in the position which is not described in FIG.1 and FIG.2. There may be a plurality of water storage tanks 6. In this case, when the water to be treated flows into one water tank, the water to be treated can be sent out from the other water tank. By arranging as shown in FIG. 2, smooth processing is possible even if the processing speeds of the electrolysis apparatus and the reverse osmosis processing apparatus do not match.

本発明の水処理方法に使用する電解装置は、ダイヤモンド薄膜を基板に生成させた作用電極と、作用電極と間隙を以って対向する対極とを有し、この間隙を被処理水の流路とするものである。図3および図4はこのような電解装置を示すものであって、図3は軸方向に平行な断面図、図4は図3におけるA−A´矢視断面図である。これらの図において11は作用電極であって(図4では位置関係を2点鎖線で示している)、薄い板状の電導性の基板の少なくとも表側の面、すなわち図4において少なくとも左側の面に導電性のダイヤモンド被膜が形成されている。また12は弗素樹脂など耐薬品性の電気絶縁体からなるスペーサであって、図4に見るように一つの細長い穴121が開いている。また13はチタンなどの耐蝕性を有する導電体のブロックからなる対極であって、スペーサ12を挟んで作用電極11のダイヤモンドが形成された面と対向している。したがって作用電極と対極との間隔はスペーサの厚みによって定められる。   The electrolysis apparatus used in the water treatment method of the present invention has a working electrode in which a diamond thin film is formed on a substrate, and a counter electrode facing the working electrode with a gap therebetween. It is what. 3 and 4 show such an electrolysis apparatus, where FIG. 3 is a cross-sectional view parallel to the axial direction, and FIG. 4 is a cross-sectional view taken along line AA ′ in FIG. In these figures, reference numeral 11 denotes a working electrode (in FIG. 4, the positional relationship is indicated by a two-dot chain line), which is at least on the front surface of the thin plate-like conductive substrate, that is, on at least the left surface in FIG. A conductive diamond film is formed. Reference numeral 12 denotes a spacer made of a chemical-resistant electrical insulator such as fluorine resin, and has one elongated hole 121 as shown in FIG. Reference numeral 13 denotes a counter electrode made of a corrosion-resistant conductor block such as titanium, which faces the surface of the working electrode 11 on which the diamond is formed with the spacer 12 interposed therebetween. Therefore, the distance between the working electrode and the counter electrode is determined by the thickness of the spacer.

上記の作用電極11は導電性の薄板、たとえば厚さが0.7mm程度の導電性のシリコンの単結晶板を基板として数μmの大きさの微細なダイヤモンドの結晶からなる30μm程度の厚さの被膜を形成することによって作成される。ダイヤモンド被膜の形成はアセトンなどの炭素源を含有する水素ガス中でプラズマCVDにより行なえる。なおダイヤモンドに導電性を付与するために酸化硼素などを前記炭素源に溶解することにより硼素をドープする。   The working electrode 11 is a conductive thin plate, for example, a conductive silicon single crystal plate having a thickness of about 0.7 mm, and has a thickness of about 30 μm made of fine diamond crystals of several μm in size. Created by forming a coating. The diamond film can be formed by plasma CVD in hydrogen gas containing a carbon source such as acetone. In order to impart conductivity to diamond, boron oxide or the like is doped in boron by dissolving it in the carbon source.

前記スペーサ12の穴121によって形成される一つの空間14にそれぞれ開口して、被処理液の導入口15および排出口16があるが、これらはいずれも対極13のブロックに設けられている。すなわち被処理液の導入口15および排出口16は対極13のブロックに穴をあけることによって形成され、被処理液の導入、排出のための流体継手17、18が対極のブロックにねじ込まれている。なお19は対極13への通電端子である。   Each of the spaces 14 formed by the holes 121 of the spacer 12 is opened to have an inlet 15 and an outlet 16 for the liquid to be processed, both of which are provided in the block of the counter electrode 13. That is, the inlet 15 and the outlet 16 of the liquid to be processed are formed by making holes in the block of the counter electrode 13, and fluid couplings 17 and 18 for introducing and discharging the liquid to be processed are screwed into the block of the counter electrode. . Reference numeral 19 denotes an energization terminal for the counter electrode 13.

また30は参照電極であって、先端が対極と同一面になるように対極のブロックにねじ込んで取り付けられている。ここではAg−AgCl系の例を示しているが、弗素樹脂のような耐薬品性の容器301の中に飽和KCl溶液をゼラチンによりゲル状にしたものが電解液302として充填されている。さらにこの中に表面をAgClにしたAg線が電極材303として挿入されている。また304は参照電極の電解液302と被処理液とを隔てる多孔質セラミックスなどのフィルターである。参照電極は本発明の電解処理装置としては必須のものではないが、作用電極と対極間の正確な電圧を測定するため設けることは好ましい。   Reference numeral 30 denotes a reference electrode, which is screwed into a counter electrode block so that its tip is flush with the counter electrode. Here, an example of an Ag-AgCl system is shown, but a chemical resistant container 301 such as a fluororesin in which a saturated KCl solution is gelatinized with gelatin is filled as an electrolytic solution 302. Further, an Ag wire having a surface made of AgCl is inserted as an electrode material 303 therein. Reference numeral 304 denotes a filter made of porous ceramic or the like that separates the electrolyte solution 302 of the reference electrode from the liquid to be treated. Although the reference electrode is not essential for the electrolytic treatment apparatus of the present invention, it is preferable to provide the reference electrode in order to measure an accurate voltage between the working electrode and the counter electrode.

また作用電極11の電極板の裏面、すなわち対極13と対向する面の反対側には作用電極への通電板20が設けられ、作用電極11に接触している。21は作用電極11への通電端子である。また22は耐薬品性の電気絶縁体からなるシールカバーであって、図示しない複数の止めねじによって前記の対極13のブロックと結合されており、Oリング23、24でシールすることにより電解装置の内部を密閉する。また前記の通電板20の一部にOリング26を設けてその内側に被処理液が入らないようにし、液体を介さず直接に通電板を電極板の裏面に電気的接触させる。また27は対極13の金属ブロック全体を覆うプラスチック製の絶縁カバーである。   Further, a current-carrying plate 20 for the working electrode is provided on the back surface of the electrode plate of the working electrode 11, that is, on the opposite side of the surface facing the counter electrode 13, and is in contact with the working electrode 11. Reference numeral 21 denotes an energization terminal for the working electrode 11. Reference numeral 22 denotes a seal cover made of a chemical-resistant electrical insulator, which is connected to the block of the counter electrode 13 by a plurality of set screws (not shown). Seal the inside. In addition, an O-ring 26 is provided in a part of the energizing plate 20 so that the liquid to be treated does not enter inside thereof, and the energizing plate is directly brought into electrical contact with the back surface of the electrode plate without passing through the liquid. A plastic insulating cover 27 covers the entire metal block of the counter electrode 13.

なお後述のように本発明においては、ダイヤモンド電極では比較的高い電圧範囲でも水の電解が生じないことを利用して、水の電解を発生させずにエンドトキシンを分解するものである。しかしながら作用電極11の裏面および端面は必ずしもダイヤモンド被膜が形成されているわけではなく、また通電板20についても当然にダイヤモンド被膜が無い。したがって被処理液が電極板などにおけるダイヤモンド被膜が無い部分に回り込むと水の電解が発生するおそれがあるが、作用電極11の電極板の端面や、通電板との接触部分以外の裏面も被処理液との接触を許容する構造にしている。このようにしても液の流れの無い個所では気泡が発生してもその部分に止まり、金属の表面が気泡で覆われて通電しなくなるので水の電解はそれ以上進行しない。もし被処理液が作用電極のスペーサの孔121に面した範囲内に止まるようにシールしようとすると、作用電極と対極の間を大きな力で加圧しなければならず電極板の破損の問題から困難である。したがって上記のように作用電極の電極板における対極と対向する面と反対側の面の一部分、すなわち通電部分以外は被処理液との接触を許容する構造にすることは実用上重要である。   As will be described later, in the present invention, utilizing the fact that the diamond electrode does not cause electrolysis of water even in a relatively high voltage range, endotoxin is decomposed without causing electrolysis of water. However, the back surface and the end surface of the working electrode 11 are not necessarily formed with a diamond coating, and the current-carrying plate 20 naturally has no diamond coating. Accordingly, when the liquid to be treated wraps around a portion of the electrode plate or the like where there is no diamond coating, water electrolysis may occur. The structure allows contact with liquid. Even in this way, even if bubbles are generated in a place where there is no flow of the liquid, it stops at that portion, and since the metal surface is covered with bubbles and is not energized, electrolysis of water does not proceed any further. If the liquid to be treated is to be sealed so as to remain within the range facing the spacer hole 121 of the working electrode, it is difficult to press the gap between the working electrode and the counter electrode with a large force, which is difficult due to the problem of damage to the electrode plate. It is. Therefore, as described above, it is practically important to have a structure that allows contact with the liquid to be treated except for a portion of the surface of the working electrode opposite to the surface facing the counter electrode, that is, the energized portion.

本発明の方法は上記のような電解装置を使用して、Ag/AgCl基準電極に対して1.2〜2.5Vの電圧を作用電極に印加して電解を行なう。本発明における電解処理は水の電解が生じない限度の電圧で行なうものであるが、上記のように電解装置の作用電極としてダイヤモンド電極を使用することにより高い電圧でなければ分解しない分子の原子間の結合を切断することも可能となり、本発明が目的とするエンドトキシンの分解、不活性化を行なうことができる。すなわち従来の電解装置における作用電極である白金電極などでは電解電圧が1.2Vを超えると水の電気分解が発生するが、本発明で使用する電解装置は約2.5V(Ag/AgCl基準電極に対して)まで水の電気分解が発生しない。水が電解するような条件においても並行してエンドトキシンの分解は行なわれるが、水の電解が発生するとこれにエネルギーが費やされるのでエンドトキシンの分解状況が不安定になる。なお電解電圧は高い方がエンドトキシンの分解が促進され、1.3V以上が好ましいが、1.9Vを超えるとその効果が飽和する。したがって電解電圧は1.3〜1.9Vがより好ましい。   In the method of the present invention, electrolysis is performed by applying a voltage of 1.2 to 2.5 V to the working electrode with respect to the Ag / AgCl reference electrode using the above-described electrolysis apparatus. The electrolytic treatment in the present invention is performed at a voltage at which electrolysis of water does not occur, but as described above, by using a diamond electrode as the working electrode of the electrolysis apparatus, the interatomic atoms of molecules that can be decomposed only at a high voltage The endotoxin targeted by the present invention can be decomposed and inactivated. That is, in the case of a platinum electrode or the like which is a working electrode in a conventional electrolysis apparatus, water electrolysis occurs when the electrolysis voltage exceeds 1.2 V. However, the electrolysis apparatus used in the present invention is about 2.5 V (Ag / AgCl reference electrode). Electrolysis of water does not occur until Endotoxin is decomposed in parallel even under conditions where water is electrolyzed. However, when water is electrolyzed, energy is consumed for this, and the endotoxin decomposition state becomes unstable. A higher electrolysis voltage promotes endotoxin decomposition and is preferably 1.3 V or more. However, when it exceeds 1.9 V, the effect is saturated. Therefore, the electrolytic voltage is more preferably 1.3 to 1.9V.

本発明において水が電解しない電圧範囲でエンドトキシンの分解を行なうには、前記のように作用電極11のダイヤモンド被膜を有する面と対極13との間隔を1.0mm以下といった狭い間隙にする必要がある。なお作用電極と対極との間隔は0.05mmより小さいと作用電極と対極とが接触するおそれがあるので、0.05mm以上が適当である。なお、このような電解によるエンドトキシンの分子の分解が、なぜ作用電極と対極とを0.05ないし1.0mmといった狭い間隙をもって対向させた場合にのみ発生するのかは不明である。   In the present invention, in order to decompose endotoxin in a voltage range in which water is not electrolyzed, the gap between the surface of the working electrode 11 having the diamond coating and the counter electrode 13 needs to be a narrow gap of 1.0 mm or less. . In addition, since there exists a possibility that a working electrode and a counter electrode may contact if the space | interval of a working electrode and a counter electrode is smaller than 0.05 mm, 0.05 mm or more is suitable. It is unclear why such endotoxin molecule decomposition by electrolysis occurs only when the working electrode and the counter electrode face each other with a narrow gap of 0.05 to 1.0 mm.

本発明における被処理水である水道水などにおいては当然に電解質がほとんど含まれないが、水の硬度に対応したカルシウムイオンや殺菌のため添加された塩素に由来する塩素イオンなどが存在する。本発明においては水の電解が生じないような条件で電解するので、上記のような水道水に含まれる微量のイオンを電解質として利用する。逆浸透処理の前段の処理として一般に設けられるイオン交換処理装置を本発明の水処理装置においても設けるのが好ましいが、図1や図2に示したように電解装置の後段に設ける。もし電解装置の前段に設けると電解質が極めて少なくなって電解処理が困難になる。   Naturally, the tap water, which is the water to be treated in the present invention, contains almost no electrolyte, but there are calcium ions corresponding to the hardness of the water and chlorine ions derived from chlorine added for sterilization. In the present invention, electrolysis is performed under conditions that do not cause electrolysis of water, so that a very small amount of ions contained in tap water as described above is used as the electrolyte. Although it is preferable to provide an ion exchange treatment apparatus generally provided as a treatment before the reverse osmosis treatment also in the water treatment apparatus of the present invention, it is provided at the latter stage of the electrolysis apparatus as shown in FIGS. If it is provided at the front stage of the electrolysis apparatus, the amount of electrolyte becomes very small and the electrolysis process becomes difficult.

本発明の水処理方法において水道水を電解したときの電流値は、作用電極の実効面積、すなわち図3、図4においてスペーサの穴121に面した部分の面積が、約2.8cmの場合において数十μA〜数百μA程度である。水道水の不純物は地域によって大きく相違するだけでなく、同じ蛇口からの水であっても時間的な変動が大きい。さらにまた容器に汲み置きした水においては経時的な変化もある。水道水にはエンドトキシン以外にも電解の対象となる様々な不純物が当然に入っており、上記のような電解電流はエンドトキシンの分解だけによるものではない。電解電流自体の変動が大きいこともあって、電解電流値の経過の測定によってエンドトキシンの分解の程度を知ることは、このようなことから不可能である。 In the water treatment method of the present invention, when the tap water is electrolyzed, the effective value of the working electrode, that is, the area of the portion facing the hole 121 of the spacer in FIGS. 3 and 4 is about 2.8 cm 2 . Is about several tens of μA to several hundred μA. Impurities of tap water not only vary greatly from region to region, but also vary over time even with water from the same faucet. Furthermore, there is a change over time in the water pumped in the container. In addition to endotoxin, tap water naturally contains various impurities that are subject to electrolysis, and the above electrolysis current is not only due to decomposition of endotoxin. Since the fluctuation of the electrolysis current itself is large, it is impossible to know the degree of endotoxin degradation by measuring the course of the electrolysis current value.

なお作用電極と対極との間隔が1.0mmより大きくても、水の電解が生じない電圧範囲において電解電流は観測されるが、これは成分の分解によるものではなく分子からの電子の離脱によるものである。この場合、検出される電流は1μA以下の程度であって、本発明の場合よりずっと小さい。   Even when the distance between the working electrode and the counter electrode is larger than 1.0 mm, an electrolysis current is observed in a voltage range in which electrolysis of water does not occur, but this is not due to decomposition of components but due to detachment of electrons from molecules. Is. In this case, the detected current is on the order of 1 μA or less, which is much smaller than in the present invention.

上記のようにして電解装置によりエンドトキシンを分解、不活性化した被処理水は図1や図2に示すようにイオン交換処理装置などを経て逆浸透処理装置に送られ、ここで残留しているエンドトキシンが除去される。通常の水道水に含まれるエンドトキシンの分量は10000単位/L程度であるが、本発明の水処理方法においては電解装置により1000単位/L以下、好ましくは500単位/L以下にされる。逆浸透膜の性質として、除去すべき物質の初期濃度が高いほど除去の効率が低下する。このため通常の水道水を原水として逆浸透処理したとき、透析水として得られるのは処理した水の10%程度である。一方、本発明においては逆浸透処理に供される被処理水のエンドトキシン含有量を1000単位/L以下に低減することにより濾過の効率を向上させることができ、処理した水の30%以上が透析用水として利用可能となる。   The water to be treated in which the endotoxin is decomposed and inactivated by the electrolytic device as described above is sent to the reverse osmosis treatment device through the ion exchange treatment device as shown in FIGS. 1 and 2, and remains there. Endotoxin is removed. The amount of endotoxin contained in normal tap water is about 10,000 units / L. In the water treatment method of the present invention, the amount is made 1000 units / L or less, preferably 500 units / L or less by an electrolysis apparatus. As a property of the reverse osmosis membrane, the higher the initial concentration of the substance to be removed, the lower the removal efficiency. Therefore, when reverse osmosis treatment is performed using normal tap water as raw water, about 10% of the treated water is obtained as dialyzed water. On the other hand, in the present invention, the efficiency of filtration can be improved by reducing the endotoxin content of water to be treated for reverse osmosis treatment to 1000 units / L or less, and 30% or more of the treated water is dialyzed. It can be used as irrigation water.

(実施例1)
図3および図4に示した電解装置により水道水の電解を行なって含有するエンドトキシンの分解、不活性化を行なった。作用電極と対極との間隔を0.5mmとし、水道水を1.5ml/minの流速で流しつつ電圧を変更した条件で電解を行ない、エンドトキシンの含有量を測定した。各条件の試料は、被処理水を電解装置に5分以上通過させた後、電解装置から出た水をエンドトキシンの汚染の無い容器に採取した。なおエンドトキシン濃度の測定は和光純薬株式会社製のリムルス試薬を使用して行なった。
Example 1
The endotoxin contained was decomposed and inactivated by electrolyzing tap water with the electrolysis apparatus shown in FIGS. Electrolysis was carried out under conditions where the distance between the working electrode and the counter electrode was 0.5 mm, and the voltage was changed while flowing tap water at a flow rate of 1.5 ml / min, and the endotoxin content was measured. Samples of each condition were obtained by allowing the water to be treated to pass through the electrolysis apparatus for 5 minutes or more and then collecting the water from the electrolysis apparatus in a container free from endotoxin contamination. The endotoxin concentration was measured using a Limulus reagent manufactured by Wako Pure Chemical Industries, Ltd.

電解電圧(Ag/AgCl基準電極に対して)と電解処理後に残存するエンドトキシンとの関係を表1に示す。なお水道水である原水のエンドトキシン含有量は12400単位/Lであった。また表1に示す電圧の範囲において水の電解は発生しなかった。表1で見るように電解電圧1.0V以下ではほとんどエンドトキシンの低下が無いが、1.3V以上になると急激に低下する。このようにエンドトキシン含有量が1000単位/L以下になると、逆浸透処理において濾過の効率を向上させることができる。なお電解電圧を1.9Vを超えて高くしてもエンドトキシンの低下が頭打ちになることが判る。   Table 1 shows the relationship between the electrolysis voltage (relative to the Ag / AgCl reference electrode) and the endotoxin remaining after the electrolytic treatment. The endotoxin content of raw water, which is tap water, was 12400 units / L. In addition, electrolysis of water did not occur within the voltage range shown in Table 1. As seen in Table 1, there is almost no decrease in endotoxin at an electrolysis voltage of 1.0 V or less, but it suddenly decreases at 1.3 V or more. As described above, when the endotoxin content is 1000 units / L or less, the filtration efficiency can be improved in the reverse osmosis treatment. In addition, it turns out that the fall of endotoxin reaches a peak even if it raises electrolysis voltage exceeding 1.9V.

Figure 2011056395
Figure 2011056395

(実施例2)
実施例1で使用した電解装置において、スペーサ11の厚みが異なるものを使用することにより作用電極11と対極13との間隔を変える実験を行なった。また参照電極30の先端位置はいずれの場合も対極の電極面と同じにしたので、参照電極と対極との間隔も作用電極と対極との間隔と同じになる。水道水を1.5ml/minの流速で流しつつ各条件で電解を行ない、エンドトキシンの含有量を測定した。使用した原水、試料の採取方法や測定方法は実施例1と同様である。電解装置の作用電極印加電圧はAg/AgCl基準電極に対してすべて1.9Vにしたが、水の電解は発生しなかった。
(Example 2)
In the electrolysis apparatus used in Example 1, an experiment was performed in which the distance between the working electrode 11 and the counter electrode 13 was changed by using spacers 11 having different thicknesses. Since the tip position of the reference electrode 30 is the same as the counter electrode surface in any case, the distance between the reference electrode and the counter electrode is also the same as the distance between the working electrode and the counter electrode. Electrolysis was carried out under various conditions while flowing tap water at a flow rate of 1.5 ml / min, and the endotoxin content was measured. The raw water used, the sample collection method and the measurement method are the same as in Example 1. The working electrode applied voltage of the electrolyzer was 1.9 V with respect to the Ag / AgCl reference electrode, but water electrolysis did not occur.

作用電極と対極との間隔と、電解処理後に残存するエンドトキシンとの関係を表2に示す。表2で見るように電極の間隔が1.0mm以下の条件ではエンドトキシンの低下が生じており、電極の間隔が狭いほど低下の程度が大きいが、2.0mmの場合にはエンドトキシンの低下が見られなかった。なお水道水である原水のエンドトキシン含有量は実施例1と同様に12400単位/Lであった。なお電極の間隔が1.0mm以下の条件では100μA前後の電解電流が観察されたが、2.0mmの場合には電解電流は測定感度ぎりぎりのわずかしか検出されなかった。   Table 2 shows the relationship between the distance between the working electrode and the counter electrode and the endotoxin remaining after the electrolytic treatment. As can be seen from Table 2, the endotoxin decreases when the electrode spacing is 1.0 mm or less. The narrower the electrode spacing, the greater the degree of decrease, but when 2.0 mm, the endotoxin decreases. I couldn't. The endotoxin content of raw water as tap water was 12400 units / L as in Example 1. An electrolytic current of around 100 μA was observed under the condition where the distance between the electrodes was 1.0 mm or less, but in the case of 2.0 mm, the electrolytic current was detected only at the margin of measurement sensitivity.

Figure 2011056395
Figure 2011056395

1 原水槽
2 電解装置
3 イオン交換処理装置
4 逆浸透処理装置
5 精製水槽
6 貯水槽
7、8 ポンプ
11 作用電極
12 スペーサ
121 穴
13 対極
14 空間
15、16 溶出液の導入口および排出口
17、18 流体継手
19 通電端子
20 通電板
21 通電端子
22 シールカバー
23、24、26 Oリング
27 絶縁カバー
30 参照電極
301 容器
302 電解液
303 電極材
304 フィルター
DESCRIPTION OF SYMBOLS 1 Raw water tank 2 Electrolysis apparatus 3 Ion exchange processing apparatus 4 Reverse osmosis processing apparatus 5 Purified water tank 6 Water storage tank 7, 8 Pump 11 Working electrode 12 Spacer 121 Hole 13 Counter electrode 14 Space 15, 16 Eluate inlet and outlet 17, 18 Fluid coupling 19 Current-carrying terminal 20 Current-carrying plate 21 Current-carrying terminal 22 Seal cover 23, 24, 26 O-ring 27 Insulating cover 30 Reference electrode 301 Container 302 Electrolyte 303 Electrode material 304 Filter

Claims (3)

被処理水を逆浸透膜からなる逆浸透処理装置を通過させて精製水を製造するための水処理方法において、ダイヤモンド薄膜を基板に生成させた作用電極と、作用電極と0.05ないし1.0mmの間隙を以って対向する対極とを有し、前記間隙を前記被処理水の流路とする電解装置を設け、水の電解が発生する電圧未満の電圧を前記作用電極と対極間に印加して被処理水の電解を行ない、含有するエンドトキシンが1000単位/L以下にされた被処理水を前記逆浸透処理装置に送給することを特徴とする精製水を製造するための水処理方法。 In a water treatment method for producing purified water by passing water to be treated through a reverse osmosis treatment apparatus comprising a reverse osmosis membrane, a working electrode having a diamond thin film formed on a substrate, a working electrode, and 0.05 to 1. An electrolyzer having a counter electrode facing with a gap of 0 mm and using the gap as a flow path for the water to be treated is provided, and a voltage lower than a voltage at which water electrolysis is generated is provided between the working electrode and the counter electrode. Water treatment for producing purified water, characterized in that the water to be treated is electrolyzed and the treated water whose endotoxin content is 1000 units / L or less is fed to the reverse osmosis treatment device Method. 電解装置により電解が行なわれた被処理水は貯水槽に貯められ、逆浸透処理装置には前記貯水槽から被処理水が送給されることを特徴とする請求項1記載の精製水を製造するための水処理方法。 2. The purified water according to claim 1, wherein the treated water electrolyzed by the electrolyzer is stored in a water storage tank, and the treated water is fed from the water storage tank to the reverse osmosis treatment apparatus. Water treatment method to do. 作用電極に印加する電解電圧は、Ag/AgCl基準電極に対して1.2〜2.5Vであることを特徴とする請求項1または2に記載の精製水を製造するための水処理方法。 The water treatment method for producing purified water according to claim 1 or 2, wherein the electrolytic voltage applied to the working electrode is 1.2 to 2.5 V with respect to the Ag / AgCl reference electrode.
JP2009208691A 2009-09-09 2009-09-09 Water treatment method for producing purified water Expired - Fee Related JP4897022B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009208691A JP4897022B2 (en) 2009-09-09 2009-09-09 Water treatment method for producing purified water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009208691A JP4897022B2 (en) 2009-09-09 2009-09-09 Water treatment method for producing purified water

Publications (2)

Publication Number Publication Date
JP2011056395A true JP2011056395A (en) 2011-03-24
JP4897022B2 JP4897022B2 (en) 2012-03-14

Family

ID=43944682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009208691A Expired - Fee Related JP4897022B2 (en) 2009-09-09 2009-09-09 Water treatment method for producing purified water

Country Status (1)

Country Link
JP (1) JP4897022B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012183450A (en) * 2011-03-03 2012-09-27 Kometto:Kk Method for manufacturing endotoxin-free purified water
CN109095671A (en) * 2018-10-25 2018-12-28 江苏全给净化科技有限公司 A kind of water treatment facilities for family hemodialysis instrument
US10603424B2 (en) 2011-03-23 2020-03-31 Nxstage Medical, Inc. Peritoneal dialysis systems, devices, and methods
US11207454B2 (en) 2018-02-28 2021-12-28 Nxstage Medical, Inc. Fluid preparation and treatment devices methods and systems

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07290065A (en) * 1994-04-21 1995-11-07 Hiroshi Yano Medical water and producing device therefor
JPH09299948A (en) * 1996-05-08 1997-11-25 Keiaikai Water treatment device and method therefor
JP2002052390A (en) * 2000-08-10 2002-02-19 Coherent Technology:Kk Method and apparatus for removing impurities
JP2009192265A (en) * 2008-02-12 2009-08-27 Kometto:Kk Electrolytic treatment method for substance in solution

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07290065A (en) * 1994-04-21 1995-11-07 Hiroshi Yano Medical water and producing device therefor
JPH09299948A (en) * 1996-05-08 1997-11-25 Keiaikai Water treatment device and method therefor
JP2002052390A (en) * 2000-08-10 2002-02-19 Coherent Technology:Kk Method and apparatus for removing impurities
JP2009192265A (en) * 2008-02-12 2009-08-27 Kometto:Kk Electrolytic treatment method for substance in solution

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012183450A (en) * 2011-03-03 2012-09-27 Kometto:Kk Method for manufacturing endotoxin-free purified water
US11433169B2 (en) 2011-03-23 2022-09-06 Nxstage Medical, Inc. Dialysis systems, devices, and methods
US11224684B2 (en) 2011-03-23 2022-01-18 Nxstage Medical, Inc. Peritoneal dialysis systems, devices, and methods
US10610630B2 (en) 2011-03-23 2020-04-07 Nxstage Medical, Inc. Peritoneal dialysis systems, devices, and methods
US10688234B2 (en) 2011-03-23 2020-06-23 Nxstage Medical, Inc. Peritoneal dialysis systems, devices, and methods
US10688235B2 (en) 2011-03-23 2020-06-23 Nxstage Medical, Inc. Peritoneal dialysis systems, devices, and methods
US10898630B2 (en) 2011-03-23 2021-01-26 Nxstage Medical, Inc. Peritoneal dialysis systems, devices, and methods
US10603424B2 (en) 2011-03-23 2020-03-31 Nxstage Medical, Inc. Peritoneal dialysis systems, devices, and methods
US11717601B2 (en) 2011-03-23 2023-08-08 Nxstage Medical, Inc. Dialysis systems, devices, and methods
US11135348B2 (en) 2011-03-23 2021-10-05 Nxstage Medical, Inc. Peritoneal dialysis systems, devices, and methods
US11690941B2 (en) 2011-03-23 2023-07-04 Nxstage Medical, Inc. Peritoneal dialysis systems, devices, and methods
US11433170B2 (en) 2011-03-23 2022-09-06 Nxstage Medical, Inc. Dialysis systems, devices, and methods
US11364328B2 (en) 2018-02-28 2022-06-21 Nxstage Medical, Inc. Fluid preparation and treatment devices methods and systems
US11207454B2 (en) 2018-02-28 2021-12-28 Nxstage Medical, Inc. Fluid preparation and treatment devices methods and systems
US11872337B2 (en) 2018-02-28 2024-01-16 Nxstage Medical, Inc. Fluid preparation and treatment devices methods and systems
CN109095671A (en) * 2018-10-25 2018-12-28 江苏全给净化科技有限公司 A kind of water treatment facilities for family hemodialysis instrument

Also Published As

Publication number Publication date
JP4897022B2 (en) 2012-03-14

Similar Documents

Publication Publication Date Title
JP3181796B2 (en) Electrolyzed water production equipment
JP3181795B2 (en) Electrolyzed water production equipment
JP2003080258A (en) Electrolytic cell for making electrified anode water suitable for surface cleaning and surface treatment, manufacturing method the same and use
JPH10151463A (en) Water treatment method
JP4897022B2 (en) Water treatment method for producing purified water
GB2490912A (en) An electrode comprising a plurality of lands with a layer of diamond thereon
WO2012070287A1 (en) Electrolyzed water producing apparatus
GB2490913A (en) A method for producing ozone from an electrochemical cell where the electrodes can be cleaned through reversing the electrode polarity
WO2003000956A1 (en) Portable device for electrochemical processing of liquids
JP4641003B2 (en) Electrolyzed water generation method and electrolyzed water generator
KR101787181B1 (en) Desalination system and method
JP5282109B2 (en) Method for producing purified water from which endotoxin has been removed
JP2007070701A (en) Solid polymer electrolyte type ozone generation apparatus
JP4849886B2 (en) Silica removal method
JP2010179283A (en) Apparatus and method for treating water
TW202200844A (en) Method and apparatus for producing aqueous hypochlorous acid solution
JP6847477B1 (en) Electrolyzed water production equipment and method for producing electrolyzed water using this
WO2022195708A1 (en) Electrolyzed water production apparatus, and electrolyzed water production method using same
JP2008100174A (en) Daily life water feed method and arrangement
JP4750873B2 (en) Method for treating waste liquid containing phenols
JP2000061470A (en) Injection water containing electrolytic liquid
CN212505088U (en) Desalination device for preparing ultra-high-purity hypochlorous acid aqueous solution by using salt as raw material
JP5036746B2 (en) Chloride ion removing apparatus and chloride ion removing method
JP5866163B2 (en) Electric deionized water production equipment
JP2003071455A (en) Method and apparatus for treating waste liquid containing tetraalkylammonium

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110920

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111220

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111221

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees