JP2011056392A - Garbage disposal facility and garbage disposal method - Google Patents

Garbage disposal facility and garbage disposal method Download PDF

Info

Publication number
JP2011056392A
JP2011056392A JP2009208553A JP2009208553A JP2011056392A JP 2011056392 A JP2011056392 A JP 2011056392A JP 2009208553 A JP2009208553 A JP 2009208553A JP 2009208553 A JP2009208553 A JP 2009208553A JP 2011056392 A JP2011056392 A JP 2011056392A
Authority
JP
Japan
Prior art keywords
waste
furnace
magnetic material
exhaust gas
grate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009208553A
Other languages
Japanese (ja)
Inventor
Satoshi Yoshimoto
聡 吉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takuma Co Ltd
Original Assignee
Takuma Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takuma Co Ltd filed Critical Takuma Co Ltd
Priority to JP2009208553A priority Critical patent/JP2011056392A/en
Publication of JP2011056392A publication Critical patent/JP2011056392A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Gasification And Melting Of Waste (AREA)
  • Incineration Of Waste (AREA)
  • Processing Of Solid Wastes (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Manufacture Of Iron (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a garbage disposal facility and a garbage disposal method by which a magnetic material (iron oxide) in incineration ash subjected to a landfill disposal conventionally can be reused. <P>SOLUTION: The garbage disposal facility includes: a garbage incinerator 2: a magnetic sorter 4 for magnetically sorting the magnetic material from the incineration ash discharged from the garbage incinerator 2; and a reduction furnace 15 for executing reduction metallization treatment of the magnetic material sorted by the magnetic sorter 4. Also, the garbage disposal method includes: a process of executing incineration of combustible garbage in the garbage incinerator; a magnetic sorting process of magnetically sorting the magnetic material from the incineration ash discharged from the garbage incinerator; and a process of executing the reduction metallization treatment of the magnetic material sorted by the magnetic sorting process in the reduction furnace. The iron oxide (magnetic material) which has been conventionally filled in the land is made reusable by executing reduction treatment. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、焼却灰から磁力選別された磁性物(酸化鉄)を再利用するための、ごみ処理施設及びごみ処理方法に関する。   The present invention relates to a waste treatment facility and a waste treatment method for reusing magnetic substances (iron oxide) magnetically selected from incinerated ash.

従来の一般的なごみ処理施設の処理フローを図13に示す。   A processing flow of a conventional general waste disposal facility is shown in FIG.

粗大ごみは、リサイクル施設30で分別処理され、鉄類・アルミ類はスクラップ原料として再利用のめに売却され、可燃残渣はごみ焼却炉2で焼却処理される。   The bulky waste is separated at the recycling facility 30, the iron and aluminum are sold for reuse as scrap materials, and the combustible residue is incinerated in the waste incinerator 2.

廃プラスチックは、分別処理施設20で分別されて圧縮処理され、リサイクル施設においてリサイクルされる。   Waste plastic is separated and compressed at the separation facility 20 and recycled at the recycling facility.

可燃ごみは、ごみ焼却炉2において高温(例えば800℃〜1000℃)で焼却され、ごみ焼却炉2から排出された焼却灰3は、磁力選別機4によって磁性物(酸化鉄)5と非磁性物(焼却灰)6とに分別される。非磁性物(焼却灰)6は、溶融炉7において更に高温(例えば1300〜1400℃)で加熱・減溶され、有機物は、熱分解、ガス化、燃焼し、無機物は溶融してスラグ8として取り出され、非磁性物(焼却灰)に残留する金属は溶融炉内でスラグと比重分離して溶融メタルとして取り出される。また、非磁性物(焼却灰)に含まれている低沸点の重金属類や塩化物等は溶融により揮散し、冷却固化により溶融炉7の下流の集塵機で溶融飛灰として捕集される。スラグは、主に土木資材、建設資材としてリサイクルされ、有効利用される。溶融メタルは、主成分が鉄であり、建設機械などのカウンターウェイととして有効利用される。溶融飛灰は、鉛や亜鉛などの重金属類を高濃度で含むため、山元還元により資源化される。また、ストーカ式焼却炉から排出される焼却灰を焼成する場合は、ストーカ式焼却炉とは別にキルン炉により焼成が行われる(特許文献1等)。   The combustible waste is incinerated at a high temperature (for example, 800 ° C. to 1000 ° C.) in the waste incinerator 2, and the incinerated ash 3 discharged from the waste incinerator 2 is made nonmagnetic by the magnetic separator (iron oxide) 5. It is separated into the product (incinerated ash) 6. The non-magnetic material (incinerated ash) 6 is heated and reduced at a higher temperature (for example, 1300 to 1400 ° C.) in the melting furnace 7, the organic material is pyrolyzed, gasified and burned, and the inorganic material is melted to form slag 8. The metal which is taken out and remains in the non-magnetic material (incineration ash) is separated from the slag in the specific gravity in the melting furnace and taken out as molten metal. In addition, low boiling point heavy metals and chlorides contained in the non-magnetic material (incineration ash) are volatilized by melting, and are collected as molten fly ash by a dust collector downstream of the melting furnace 7 by cooling and solidification. Slag is mainly recycled and used effectively as civil engineering and construction materials. Molten metal is mainly composed of iron, and is effectively used as a counterway for construction machines. Since molten fly ash contains heavy metals such as lead and zinc in high concentrations, it is recycled by Yamamoto reduction. Moreover, when incineration ash discharged | emitted from a stoker type incinerator is baked, it is baked by a kiln furnace separately from a stoker type incinerator (patent document 1 etc.).

特開2005−164059号公報JP 2005-164059 A

しかしながら、焼却灰から磁力選別機によって分別された磁性物(酸化鉄)は、焼却炉の高温燃焼によって酸化されており、資源化原料に適さない性状であるため、殆どが埋立処分されているのが実情である。   However, the magnetic material (iron oxide) separated from the incineration ash by the magnetic separator is oxidized by high-temperature combustion in the incinerator and is not suitable for a raw material for recycling. Is the actual situation.

そこで、本発明は、従来は埋立処分されていた焼却灰中の磁性物(酸化鉄)を再利用することを可能にする、ごみ処理施設及びごみ処理方法を提供することを目的とする。   Therefore, an object of the present invention is to provide a waste treatment facility and a waste treatment method that make it possible to reuse magnetic substances (iron oxide) in incinerated ash that has been disposed of in landfills.

上記目的を達成するため、本発明に係るごみ処理施設は、ごみ焼却炉と、ごみ焼却炉から排出した焼却灰から磁性物を磁力選別する磁力選別機と、磁力選別機により選別された磁性物を還元金属化処理する還元炉と、を備えていることを特徴とする。   In order to achieve the above object, a waste treatment facility according to the present invention includes a waste incinerator, a magnetic separator for magnetically sorting magnetic materials from the incinerated ash discharged from the waste incinerator, and a magnetic material selected by the magnetic separator. And a reduction furnace that performs a reduction metallization treatment.

本発明に係るごみ処理施設は、前記磁性物を還元炉に投入する前に、前記磁性物に廃プラスチックを混合して成形する混合・成形機を更に備えることが好ましい。この場合において、前記磁性物を廃プラスチックと混合する前に該磁性物を破砕する破砕機と、該破砕機により破砕した磁性物を所定粒径以下に篩い分ける篩と、を備えることが好ましい。   The waste treatment facility according to the present invention preferably further comprises a mixing / molding machine that mixes and molds waste plastic with the magnetic material before the magnetic material is put into a reduction furnace. In this case, it is preferable to include a crusher that crushes the magnetic material before mixing the magnetic material with waste plastic, and a sieve that screens the magnetic material crushed by the crusher to a predetermined particle size or less.

前記還元炉の排ガスを前記ごみ焼却炉の排ガスと併せて処理する排ガス処理設備を備えることが好ましい。あるいは、ごみ処理施設が溶融炉を備える場合は、前記還元炉の排ガスを前記溶融炉の排ガスと併せて処理する排ガス処理設備を備えても良い。   It is preferable to provide an exhaust gas treatment facility for treating the exhaust gas of the reduction furnace together with the exhaust gas of the waste incinerator. Alternatively, when the waste treatment facility includes a melting furnace, an exhaust gas treatment facility for treating the exhaust gas of the reduction furnace together with the exhaust gas of the melting furnace may be provided.

前記還元炉は、フレーム一体型水冷火格子を備えるとともに火格子下部から高温還元ガスが供給される水冷ストーカを備え、前記フレーム一体型水冷火格子は、炉壁を貫通して両サイドに延びる左右一対の支持部と該一対の支持部間を連結する連結部とが一体形成され、前記連結部の表面に耐火性保護層が設けられ、前記両サイドの支持部及び連結部を連通する冷却水流路が内部に形成され、前記支持部の炉壁外側部位に冷却水の出入口を備えることが好ましい。   The reduction furnace includes a water-cooled stoker provided with a frame-integrated water-cooled grate and a high-temperature reducing gas supplied from a lower part of the grate, and the frame-integrated water-cooled grate extends left and right through the furnace wall. A pair of supporting portions and a connecting portion that connects the pair of supporting portions are integrally formed, a fireproof protective layer is provided on the surface of the connecting portion, and a cooling water flow that communicates the supporting portions and the connecting portions on both sides. It is preferable that a passage is formed inside, and a cooling water inlet / outlet is provided at a portion outside the furnace wall of the support portion.

また、上記目的を達成するため、空冷火格子を有する燃焼ストーカの後段に、フレーム一体型水冷火格子を有する焼成ストーカを備え、焼却炉と一体で焼却灰の焼成処理を行うハイブリッド型ストーカ炉を、本発明に係るごみ処理施設が備えることを特徴とする。   In order to achieve the above object, a hybrid stoker furnace that includes a firing stoker having a water-cooled grate integrated with a frame at the rear stage of a combustion stoker having an air-cooled grate and that performs incineration ash firing treatment integrally with the incinerator. The waste treatment facility according to the present invention is provided.

さらに、上記目的を達成するため、本発明に係るごみ処理方法は、ごみ焼却炉において可燃ごみを焼却処理する工程と、ごみ焼却炉から排出した焼却灰から磁性物を磁力選別する磁力選別工程と、磁力選別工程により選別された磁性物を還元炉において還元金属化処理する工程と、を含むことを特徴とする。   Furthermore, in order to achieve the above-mentioned object, the waste treatment method according to the present invention includes a step of incinerating combustible waste in a waste incinerator, and a magnetic force separation step of magnetically separating magnetic substances from the incinerated ash discharged from the waste incinerator. And a reduction metallization treatment of the magnetic material selected by the magnetic force selection step in a reduction furnace.

上記本発明に係るごみ処理方法において、還元金属化処理工程において、廃プラスチックを還元剤として用いることが好ましい。この場合において、廃プラスチックは、前記磁性物と混合、成形してペレット化することが好ましい。前記磁性物を廃プラスチックと混合する前に該磁性物を破砕機によって破砕する破砕工程と、破砕した磁性物を所定粒径以下に篩い分ける篩工程と、を備えることが好ましい。   In the waste treatment method according to the present invention, it is preferable to use waste plastic as a reducing agent in the reduction metallization treatment step. In this case, the waste plastic is preferably mixed with the magnetic material, molded, and pelletized. It is preferable to include a crushing step of crushing the magnetic material with a crusher before mixing the magnetic material with waste plastic, and a sieving step of sieving the crushed magnetic material to a predetermined particle size or less.

前記還元炉の排ガスは、ごみ焼却炉の排ガス及び溶融炉の排ガスの少なくとも一方と併せて、共通の排ガス処理設備で排ガス処理することが好ましい。   The exhaust gas of the reduction furnace is preferably treated with a common exhaust gas treatment facility in combination with at least one of the exhaust gas of the waste incinerator and the exhaust gas of the melting furnace.

本発明によれば、従来埋立処分されていた酸化鉄(磁性物)を、還元処理することにより、埋立処分量の低減、金属売却益の増加、リサイクル率の向上が可能となる。   According to the present invention, it is possible to reduce the amount of landfill disposal, increase the profit on sale of metal, and improve the recycling rate by reducing iron oxide (magnetic material) that has been disposed of in landfill.

また、ごみ処理施設内の廃プラスチックを還元剤として用いることで、廃プラスチックを有効利用できる。特に、ごみ処理施設には、一般に廃プラスチックの処理施設が併設されているので利用し易い。   Moreover, waste plastic can be effectively used by using waste plastic in the waste treatment facility as a reducing agent. In particular, waste disposal facilities are generally equipped with waste plastic treatment facilities, making them easy to use.

さらに、還元炉から排出される排ガスは、ごみ処理施設内の焼却炉や溶融炉の排ガス処理設備と共通化して処理することにより、設備費の増加を抑えることができる。   Further, the exhaust gas discharged from the reduction furnace can be treated in common with the incinerator and melting furnace exhaust gas treatment equipment in the waste treatment facility, thereby suppressing an increase in equipment costs.

また、還元炉を、フレーム一体型水冷火格子の下部から高温還元ガスを供給するストーカ式とすることにより、キルン式のような大きな落下撹拌が行われないため、飛灰発生量を抑えることができる。   In addition, by using a stoker-type reducing furnace that supplies high-temperature reducing gas from the lower part of the frame-integrated water-cooled grate, large drop stirring as in the kiln type is not performed, so the amount of fly ash generated can be suppressed. it can.

また、乾燥段、燃焼段、及び後燃焼段からなる一般的なストーカ式焼却炉の前記後燃焼段に、フレーム一体型水冷火格子を組み込み、該フレーム一体型水冷火格子の下部から高温還元ガスを供給することにより、燃焼段で焼却処理された焼却灰の顕熱を有効利用でき、熱効率の良い還元処理を行うことができる。   Also, a frame-integrated water-cooled grate is incorporated into the post-combustion stage of a typical stoker-type incinerator consisting of a drying stage, a combustion stage, and a post-combustion stage, and a high-temperature reducing gas is introduced from the bottom of the frame-integrated water-cooled grate By supplying the sensible heat, the sensible heat of the incinerated ash that has been incinerated in the combustion stage can be used effectively, and a reduction process with high thermal efficiency can be performed.

本発明に係るごみ処理施設の一実施形態を示すブロック図である。It is a block diagram showing one embodiment of a waste disposal facility according to the present invention. 本発明に係るごみ処理施設の構成要素である還元炉の一実施形態を示す縦断側面図である。It is a vertical side view which shows one Embodiment of the reduction furnace which is a component of the refuse disposal facility which concerns on this invention. 図2の還元炉の構成要素である火格子の一実施形態を示す平面図である。It is a top view which shows one Embodiment of the grate which is a component of the reduction furnace of FIG. 図3の火格子の作動状態を示す平面図である。It is a top view which shows the operating state of the grate of FIG. 図3の火格子の構成要素である可動火格子を一部断面で示す平面図である。It is a top view which shows the movable grate which is a component of the grate of FIG. 3 in a partial cross section. 図5のVI−VI線に沿う縦断面図である。It is a longitudinal cross-sectional view which follows the VI-VI line of FIG. 図3の火格子の構成要素である固定火格子を一部断面で示す平面図である。It is a top view which shows the fixed grate which is a component of the grate of FIG. 3 in a partial cross section. 図7のVIII−VIII線に沿う縦断面図である。It is a longitudinal cross-sectional view which follows the VIII-VIII line of FIG. 図3のIX−IX線に沿う縦断面図である。It is a longitudinal cross-sectional view which follows the IX-IX line of FIG. 図9のX−X線に沿う縦断面図である。It is a longitudinal cross-sectional view which follows the XX line of FIG. 火格子の他の実施形態を示す平面図である。It is a top view which shows other embodiment of a grate. 本発明に係るごみ処理施設の構成要素であるストーカ式複合炉の一実施形態を示す縦断側面図である。It is a vertical side view which shows one Embodiment of the stoker type compound furnace which is a component of the refuse disposal facility which concerns on this invention. 従来のごみ処理施設を示すブロック図である。It is a block diagram which shows the conventional waste disposal facility.

以下に、本発明の実施形態について、図面を参照して説明する。なお、全図を通し、同様の構成部分には同符号を付した。   Embodiments of the present invention will be described below with reference to the drawings. In addition, the same code | symbol was attached | subjected to the same component through the whole figure.

本発明に係るごみ処理施設の一実施形態を図1にブロック図で示す。ごみ処理施設1には、可燃ごみと、粗大ごみと、廃プラスチックとが搬送されてくる。   An embodiment of a waste treatment facility according to the present invention is shown in a block diagram in FIG. Combustible waste, bulky waste, and waste plastic are transported to the waste treatment facility 1.

可燃ごみは、ごみ焼却炉2において焼却される。ごみ焼却炉2から排出した焼却灰3は、磁力選別機4によって、磁性物5(酸化鉄)と非磁性物6(焼却灰)とに磁力選別される。磁力選別機4によって選別された非磁性物6は、従来と同様、溶融炉7において溶融処理され、溶融炉7から排出されたスラグ8や溶融メタルはリサイクルされ、溶融飛灰9は山元還元される。   Combustible waste is incinerated in the waste incinerator 2. The incineration ash 3 discharged from the waste incinerator 2 is magnetically sorted by a magnetic separator 4 into a magnetic material 5 (iron oxide) and a non-magnetic material 6 (incineration ash). The non-magnetic material 6 selected by the magnetic separator 4 is melted in the melting furnace 7 as before, the slag 8 and the molten metal discharged from the melting furnace 7 are recycled, and the molten fly ash 9 is reduced to the base. The

磁力選別機4により選別された磁性物5は、破砕機10において破砕された後、篩11において所望粒径(例えば59mm以下)に篩選別され、篩上のものは破砕機10の上流側の破砕機10に戻して再破砕し、篩下の細かな磁性物5(酸化鉄)が回収される。   The magnetic material 5 selected by the magnetic separator 4 is crushed by the crusher 10 and then sieved to a desired particle size (for example, 59 mm or less) by the sieve 11, and the material on the sieve is on the upstream side of the crusher 10. Returning to the crusher 10 and re-crushing, fine magnetic material 5 (iron oxide) under the sieve is recovered.

ごみ処理施設1には、廃プラスチックの分別処理施設20が併設されている。分別処理施設20において金属屑等の不適物を取り除かれた廃プラスチックは、圧縮梱包されてリサイクルされる一方、一部の廃プラスチックは、篩分けされた前述の磁選、分級された磁性物(酸化鉄)5と混合(12)され、適宜成分調整した上でペレットに成形(13)され、還元鉄原料とされる。なお、廃プラスチックを酸化鉄と混合、成形するための混合・成形機は、混合機と成形機とが一体であっても別体でもよい。   The waste treatment facility 1 is provided with a waste plastic separation treatment facility 20. Waste plastic from which unsuitable materials such as metal scraps have been removed at the sorting facility 20 is compressed and packaged and recycled, while some waste plastic is subjected to the above-mentioned magnetic separation and classification of magnetic materials (oxidized). (Iron) 5 is mixed (12), and the components are appropriately adjusted and then formed into pellets (13) to obtain reduced iron raw material. The mixing / molding machine for mixing and molding the waste plastic with iron oxide may be a single unit or a separate unit.

本発明のごみ処理施設1には、還元炉15が配設されている。還元炉15において前記還元鉄原料を高温(1100℃〜1300℃)で加熱すると、プラスチック成分が還元炉15内で瞬時に還元ガス(CO,H)となって酸化鉄を還元することにより、鉄が得られる。 A reduction furnace 15 is disposed in the waste treatment facility 1 of the present invention. When the reduced iron raw material is heated at a high temperature (1100 ° C. to 1300 ° C.) in the reduction furnace 15, the plastic component instantaneously becomes a reducing gas (CO, H 2 ) in the reduction furnace 15 to reduce the iron oxide, Iron is obtained.

還元炉15の排ガスは、ごみ焼却炉2及び溶融炉7の少なくとも一方の排ガス処理設備(図示せず。)を利用して排ガス処理することができる。それにより、排ガス処理設備を増設せずに済むので、設備費の増加を抑えることができる。   The exhaust gas from the reduction furnace 15 can be treated with exhaust gas using an exhaust gas treatment facility (not shown) of at least one of the waste incinerator 2 and the melting furnace 7. Thereby, since it is not necessary to add an exhaust gas treatment facility, an increase in facility cost can be suppressed.

ごみ処理施設1には、従来と同様に、粗大ごみを分別してリサイクルするためのリサイクル施設30も併設されており、リサイクル施設30で分別された鉄類はスクラップ原料として売却される。還元炉15によって得られた鉄は、粗大ごみから分別された鉄類と同様に、スクラップ原料として再利用するためい売却される。   As in the past, the waste treatment facility 1 is also provided with a recycle facility 30 for separating and recycling oversized waste, and the iron separated at the recycle facility 30 is sold as a scrap material. The iron obtained by the reduction furnace 15 is sold for reuse as scrap raw material in the same manner as irons separated from bulky waste.

一般に、ごみ処理施設には、粗大ごみ・不燃ごみのリサイクル設備を併設しており、スクラップ類の売却ルートが確立しているため、還元炉15で還元された鉄の売却にも活用可能である。また、溶融炉7が連続可動しないごみ処理施設の場合、溶融炉7の休止期間に還元炉15を運転することで、運転員の増員無しに、還元炉15を導入することができる。   Generally, waste disposal facilities are equipped with recycling facilities for oversized and non-combustible waste, and since the sales route for scraps has been established, it can also be used to sell iron that has been reduced in the reduction furnace 15. . In the case of a waste treatment facility where the melting furnace 7 does not move continuously, the reduction furnace 15 can be introduced without increasing the number of operators by operating the reduction furnace 15 during the suspension period of the melting furnace 7.

なお、上記実施形態では、廃プラスチックを酸化鉄の還元剤として用いたが、還元剤として従来用いられている石炭、コークス等を、廃プラスチックに代えて焼却灰に加えることもできるし、あるいは、廃プラスチックと併用して用いることもできる。   In the above embodiment, waste plastic is used as a reducing agent for iron oxide, but coal, coke and the like conventionally used as a reducing agent can be added to incineration ash instead of waste plastic, or It can also be used in combination with waste plastic.

還元炉15の一実施形態を図2に示す。図2は、フレーム一体型水冷火格子43を備えるストーカ式還元炉15Aの内部構造を示す側面図である。このストーカ式還元炉15Aは、従来のストーカ炉のような金属製のフレームの上に耐火物製火格子を載せて連結支持して火格子の下方から空気を供給する構成と異なり、後述するように、火格子がフレームと一体的に形成されるとともに内部に冷却水流路が形成されており、火格子下部から高温還元ガスを供給することができるように構成されている。   One embodiment of the reduction furnace 15 is shown in FIG. FIG. 2 is a side view showing the internal structure of the stoker type reduction furnace 15A including the frame-integrated water-cooled grate 43. As shown in FIG. This stoker type reduction furnace 15A is different from a structure in which a refractory grate is mounted on a metal frame like a conventional stoker furnace and connected and supported to supply air from below the grate, as will be described later. In addition, the grate is formed integrally with the frame, and the cooling water flow path is formed inside, so that the high-temperature reducing gas can be supplied from the lower part of the grate.

ストーカ式還元炉15Aは、図示に示す如く、還元鉄原料Aを投入する為の投入口41、投入された還元鉄原料Aを押し出す為のプッシャ42、これに依って押し出された還元鉄原料Aを搬送する火格子43等を備えている。   As shown in the figure, the stoker type reducing furnace 15A includes an inlet 41 for introducing the reduced iron raw material A, a pusher 42 for extruding the supplied reduced iron raw material A, and the reduced iron raw material A extruded thereby. Is provided with a grate 43 or the like.

火格子43は、固定火格子43Aと可動火格子43Bとが前後方向(図2において、左側が前側)に傾斜状に且つ交互に配置されている(図2では、一対の固定火格子と可動火格子のみを図示している。)。可動火格子43Bが前後傾斜方向に往復移動する事に依り還元鉄原料Aは順次下流側(図2の左側)へ搬送される。   In the grate 43, a fixed grate 43A and a movable grate 43B are alternately arranged in an inclined manner in the front-rear direction (the left side in FIG. 2 is the front side) (in FIG. 2, a pair of fixed grate and movable grate are movable). Only the grate is shown.) As the movable grate 43B reciprocates in the forward / backward tilt direction, the reduced iron raw material A is sequentially conveyed downstream (left side in FIG. 2).

ストーカ式還元炉15Aは、還元鉄原料Aの高温還元処理に適した構造であり、火格子43の下部スペースを形成する風箱44内に火炎を放射するバーナ45が設置されている。   The stoker type reduction furnace 15 </ b> A has a structure suitable for high-temperature reduction treatment of the reduced iron raw material A, and a burner 45 that radiates a flame is installed in a wind box 44 that forms a lower space of the grate 43.

風箱45は、高温燃焼排ガスBを火格子43の下部全体に供給可能な様に上方が開口した箱型を呈して居り、図示省略しているが、耐火物に依って内面がライニングされている。   The wind box 45 has a box shape with an open top so that the high-temperature combustion exhaust gas B can be supplied to the entire lower part of the grate 43 and is not shown in the figure, but the inner surface is lined with a refractory. Yes.

バーナ45は、化石燃料、COGガス、バイオガス等の燃料を燃焼させる事に依り低酸素濃度の高温燃焼排ガスBを発生させてこれを火格子43の下部に供給する。火格子43の下部に供給された低酸素濃度の高温燃焼排ガスBは、可動火格子43Bと固定火格子43Aとの間隙を通って火格子43上の還元鉄原料Aを高温還元雰囲気中で還元処理することができる。   The burner 45 generates a high-temperature combustion exhaust gas B having a low oxygen concentration by burning fuel such as fossil fuel, COG gas, biogas, etc., and supplies it to the lower part of the grate 43. The low oxygen concentration high temperature combustion exhaust gas B supplied to the lower part of the grate 43 reduces the reduced iron raw material A on the grate 43 in a high temperature reducing atmosphere through the gap between the movable grate 43B and the fixed grate 43A. Can be processed.

高温燃焼排ガスBは、好適には、酸素濃度1%以下に制御されて供給される。例えば、火格子43の下部に供給される前に高温燃焼排ガスBの酸素濃度を酸素濃度計(図示せず)に依って検出し、検出された酸素濃度が1%を超える場合には、バーナ45に供給される燃焼用空気の空気比や燃料ガス及び燃焼用空気の空燃比を調整する事に依り酸素濃度を1%以下に制御する事ができる。   The high-temperature combustion exhaust gas B is preferably supplied while being controlled to an oxygen concentration of 1% or less. For example, the oxygen concentration of the high-temperature combustion exhaust gas B is detected by an oxygen concentration meter (not shown) before being supplied to the lower part of the grate 43, and if the detected oxygen concentration exceeds 1%, the burner The oxygen concentration can be controlled to 1% or less by adjusting the air ratio of the combustion air supplied to 45 and the air-fuel ratio of the fuel gas and the combustion air.

図3,4,7,8を参照すれば、ストーカ式還元炉15Aの固定火格子43Aは、平面視において矩形状を成しており、左右一対の支持部51、52と、これら支持部51、52間を連結する連結部53とを備えている。左右一対の支持部51、52は、左右の炉壁即ち炉本体の左右の側壁54、55の貫通孔54a、55aを貫通し、側壁54、55に支持されて固定されている。炉本体の側壁54,55は、耐火壁であり、図示例では、高温ガスに耐えるため、内部を冷却水Cが循環する冷却水流路54c、55cが形成されている。   Referring to FIGS. 3, 4, 7, and 8, the fixed grate 43 </ b> A of the stoker type reduction furnace 15 </ b> A has a rectangular shape in plan view, and a pair of left and right support portions 51 and 52, and these support portions 51. , 52 are connected to each other. The pair of left and right support portions 51 and 52 pass through the through holes 54a and 55a of the left and right furnace walls, that is, the left and right side walls 54 and 55 of the furnace body, and are supported and fixed to the side walls 54 and 55. The side walls 54 and 55 of the furnace body are refractory walls, and in the illustrated example, cooling water flow paths 54c and 55c through which the cooling water C circulates are formed in order to withstand high temperature gas.

ストーカ式還元炉15Aの可動火格子43Bは、図3〜6を参照すれば、L字状をした左右一対の支持部56、57と、これら支持部56、57を連結する連結部58を備えている。L字状の支持部56、57は、前後方向に延びる縦片56a、57aと外側方に延びる横片56b、57bとを備えている。   The movable grate 43 </ b> B of the stoker type reduction furnace 15 </ b> A includes a pair of left and right support parts 56, 57 that are L-shaped and a connection part 58 that connects the support parts 56, 57, with reference to FIGS. ing. The L-shaped support portions 56 and 57 include vertical pieces 56a and 57a extending in the front-rear direction and horizontal pieces 56b and 57b extending outward.

可動火格子43Bは、固定火格子43A上にずれ重なるようにして配置されている。可動火格子43Bの支持部56、57は、炉本体の側壁54,55の貫通孔54a,55aを貫通し、炉外に設置された案内機構60,61に接続され、前後方向(図3のX方向)に案内自在に支持されている。   The movable grate 43B is arranged so as to be displaced on the fixed grate 43A. The support portions 56 and 57 of the movable grate 43B pass through the through holes 54a and 55a of the side walls 54 and 55 of the furnace main body, and are connected to guide mechanisms 60 and 61 installed outside the furnace. X direction) is supported so as to be guided.

火格子43は、それらの下方から供給される1100℃〜1300℃の高温ガスに晒される。そのため、固定火格子43A及び可動火格子43Bは、それぞれ、図5〜図8に一部断面で示すように、前記支持部及び連結部を連通する冷却水流路63、64が内部に形成されている。冷却水流路の入口63a、64a及び出口63b、64bは支持部51、52、56、57の炉外部位に設けられ、これらの冷却水出入口63a、64a、63b、64bに接続されている冷却水用配管68a、68b、69a〜69eが炉内の高温ガスに晒されないようになっている。火格子43は、支持部51,52、56,57及び連結部53、58を一体的に鋳造した水管鋳込み式の鋳鋼製が望ましい。あるいは、図示例の固定火格子43Aのように内部の冷却水流路が直線状貫通孔によって形成されている場合は、無垢材(鋼材)に深孔加工を施し、両端開口部をU字管等で管接続することによって冷却水の流路を形成しても良い。冷却水流路63、64は、図外の冷却水供給装置と冷却水用配管を介して接続され、冷却水Cが循環する。   The grate 43 is exposed to a hot gas of 1100 ° C. to 1300 ° C. supplied from below. Therefore, each of the fixed grate 43A and the movable grate 43B has cooling water flow paths 63 and 64 communicating with the support part and the connecting part, as shown in a partial cross section in FIGS. Yes. Cooling water inlets 63a, 64a and outlets 63b, 64b of the cooling water flow paths are provided outside the furnace of the support portions 51, 52, 56, 57, and are connected to these cooling water inlets / outlets 63a, 64a, 63b, 64b. The pipes 68a, 68b, 69a to 69e are not exposed to the high temperature gas in the furnace. The grate 43 is preferably made of cast water of a water pipe casting type in which the support portions 51, 52, 56, 57 and the connection portions 53, 58 are integrally cast. Alternatively, in the case where the internal cooling water flow path is formed by a straight through hole as in the fixed grate 43A in the illustrated example, a deep hole process is performed on a solid material (steel material), and both end openings are U-shaped pipes or the like. The flow path of the cooling water may be formed by pipe connection. The cooling water passages 63 and 64 are connected to a cooling water supply device (not shown) via a cooling water pipe, and the cooling water C circulates.

また、耐火性能を向上させるため、固定火格子43Aの連結部53は、支持部51,52より薄く形成され、薄くした分をセラミック等の耐火性保護層53aによって被覆されている。可動火格子43Bの連結部58も同様に、支持部56、57に比べて薄く形成され、薄くした分を耐火性保護層58aで被覆されている。なお、耐火性保護層53a、58aは、セラミック板等により構成して、取り外し可能に固定しても良い。   In order to improve the fire resistance, the connecting portion 53 of the fixed grate 43A is formed thinner than the support portions 51 and 52, and the thinned portion is covered with a fire resistant protective layer 53a such as ceramic. Similarly, the connecting portion 58 of the movable grate 43B is formed thinner than the support portions 56 and 57, and the thinned portion is covered with a fireproof protective layer 58a. The fireproof protective layers 53a and 58a may be made of a ceramic plate or the like and fixed detachably.

可動火格子43Bは、固定火格子43A上で摺動する。固定火格子43Aの上部には可動火格子43Bの摺動による摩耗に対応するため、取替え式のシュー65が取り付けられている。シュー65は、固定火格子43Aと可動火格子43Bとの間に、高温ガスが火格子の下から上へ通り抜けるための隙間を形成するスペーサとしても作用する。   The movable grate 43B slides on the fixed grate 43A. A replaceable shoe 65 is attached to the upper part of the fixed grate 43A in order to cope with wear caused by sliding of the movable grate 43B. The shoe 65 also acts as a spacer that forms a gap between the fixed grate 43 </ b> A and the movable grate 43 </ b> B so that high-temperature gas passes from the bottom to the top of the grate.

可動火格子43Bは、両端の支持部56、57が炉側壁の貫通孔54a、55aを貫通した状態で前後動する。可動火格子43Bが前後動した場合に、炉側壁の貫通口54a、55aから処理物や高温排ガスが漏出することを防ぐための構造が採用されている。   The movable grate 43B moves back and forth in a state where the support portions 56 and 57 at both ends penetrate the through holes 54a and 55a on the furnace side wall. When the movable grate 43B moves back and forth, a structure is employed to prevent leakage of processed materials and high-temperature exhaust gas from the through holes 54a and 55a on the side wall of the furnace.

可動火格子43Bが前進した際(図4の状態)に可動火格子43B後方の貫通口54a、55aを塞ぐため、可動火格子43Bの支持部56,57の後部に水冷壁67が取り付けられている。水冷壁67は、内部に冷却水路67a(図5参照)を備えている。したがって、可動火格子43Bが前進した際には、図4に示すように、後部の水冷壁67が可動火格子43Bの後部の貫通孔54a、55aを塞いた状態を維持する。   When the movable grate 43B moves forward (as shown in FIG. 4), a water cooling wall 67 is attached to the rear of the support portions 56 and 57 of the movable grate 43B in order to close the through holes 54a and 55a behind the movable grate 43B. Yes. The water cooling wall 67 includes a cooling water passage 67a (see FIG. 5). Therefore, when the movable grate 43B moves forward, as shown in FIG. 4, the rear water cooling wall 67 maintains a state where the rear through holes 54a and 55a of the movable grate 43B are closed.

また、可動火格子43Bが後退した際に横片56b、57bの前方(図3、4の下方)の貫通孔54a、55aを塞ぐために、支持部56、57の縦片56a,57aの外側面に対して、固定火格子43A上に取り付けられた水冷壁70、71が近接配置される。水冷壁70,71は、内側面に耐火物ブロック70a,71aが固定されており、内部に冷却水が循環する水路80(図10参照)が形成されている。水冷壁70,71は、支持部56,57の縦片56a、57aとの間の隙間G(図10参照)を調節可能に取り付けられている。具体的には、水冷壁70,71を固定火格子43A上に固定するためのアングル70b、71bに炉の幅方向に延びる長孔70c、71c(図3参照)が形成され、長孔70c、71cを介してボルト70d、71d及び図外のナットによって、水冷壁70,71を固定火格子43Aに固定している。したがって、水冷壁70,71は、ボルト70d、71dを緩めれば、水冷壁70,71を炉の幅方向(図3の左右方向)へ微小移動させて、支持部56,57の縦片56a,57aとの間の隙間Gを調節できる。また、ボルト70d、71dを外せば水冷壁70,71を取り外すこともでき、水冷壁70,71を取り外した空間を通じて、取替式シュー65の交換を炉側壁から行うこともできる。   Further, in order to close the through holes 54a and 55a in front of the horizontal pieces 56b and 57b (below in FIGS. 3 and 4) when the movable grate 43B is retracted, the outer side surfaces of the vertical pieces 56a and 57a of the support portions 56 and 57 On the other hand, the water cooling walls 70 and 71 attached on the fixed grate 43A are arranged close to each other. The refractory blocks 70a and 71a are fixed to the inner side surfaces of the water cooling walls 70 and 71, and a water passage 80 (see FIG. 10) through which the cooling water circulates is formed. The water cooling walls 70 and 71 are attached so that the clearance G (see FIG. 10) between the vertical pieces 56a and 57a of the support portions 56 and 57 can be adjusted. Specifically, long holes 70c and 71c (see FIG. 3) extending in the width direction of the furnace are formed in the angles 70b and 71b for fixing the water cooling walls 70 and 71 on the fixed grate 43A. The water cooling walls 70 and 71 are fixed to the fixed grate 43A by bolts 70d and 71d and nuts not shown through 71c. Therefore, when the bolts 70d and 71d are loosened, the water cooling walls 70 and 71 slightly move the water cooling walls 70 and 71 in the width direction of the furnace (left and right direction in FIG. 3), and the vertical pieces 56a of the support portions 56 and 57 are obtained. , 57a can be adjusted. Moreover, if the bolts 70d and 71d are removed, the water cooling walls 70 and 71 can be removed, and the exchangeable shoe 65 can be replaced from the furnace side wall through the space from which the water cooling walls 70 and 71 are removed.

可動火格子43Bの支持部56,57及び固定火格子43Aの支持部51,52は、それらの炉外に出ている部分が、炉の側壁54,55に取り付けられたボックス72,73内に収容され得る(図3,4)。ボックス72,73内は、不活性ガスや自己の排ガスなどでパージされ、炉内ガスの侵入が防がれ得る。   The support portions 56 and 57 of the movable grate 43B and the support portions 51 and 52 of the fixed grate 43A are located in the boxes 72 and 73 attached to the side walls 54 and 55 of the furnace. Can be accommodated (FIGS. 3 and 4). The boxes 72 and 73 are purged with an inert gas or a self-exhaust gas, so that intrusion of furnace gas can be prevented.

可動火格子43Bは、図3,4,9,10を参照すれば、ボックス72,73内に固定されたガイドレール60a、61aに案内される摺動体60b、61bに連結されている。摺動体60b、61bに連結された押出しロッド60c、61cは、ボックス72,73を貫通し、駆動装置81(図2参照)に接続され、可動火格子43Bの支持部56b、57bをボックス72,73内で前後させる。可動火格子43Bの冷却水流路63に接続される冷却水用配管68a、68bは、左右のボックス72、73を摺動可能に貫通して延びている。   3, 4, 9, and 10, the movable grate 43 </ b> B is connected to sliding bodies 60 b and 61 b guided by guide rails 60 a and 61 a fixed in the boxes 72 and 73. Extrusion rods 60c and 61c connected to the sliding bodies 60b and 61b pass through the boxes 72 and 73, and are connected to the driving device 81 (see FIG. 2). The support portions 56b and 57b of the movable grate 43B are connected to the boxes 72 and 73, respectively. Move back and forth in 73. The cooling water pipes 68a and 68b connected to the cooling water flow path 63 of the movable grate 43B extend through the left and right boxes 72 and 73 so as to be slidable.

上記構成を有する還元炉15Aによれば、投入口41から投入された還元鉄原料Aは、プッシャ42によって火格子43上に押し出され、駆動装置81の駆動により可動火格子43Bが前後動することで、火格子43上を還元鉄原料Aが下流側に搬送されつつ、火格子43下部から供給される高温ガスBとプラスチック成分による還元ガスにより還元金属化される。なお、図2に示すようなストーカ炉の場合、キルン炉の様な大きな落下撹拌が行われないため、飛灰発生量を抑制することができる。   According to the reduction furnace 15A having the above-described configuration, the reduced iron raw material A input from the input port 41 is pushed out onto the grate 43 by the pusher 42, and the movable grate 43B moves back and forth by driving the driving device 81. Thus, the reduced iron raw material A is conveyed on the downstream side of the grate 43 and reduced metallized by the high temperature gas B supplied from the lower part of the grate 43 and the reducing gas by the plastic component. In the case of a stoker furnace as shown in FIG. 2, the amount of fly ash generated can be suppressed because large drop stirring is not performed unlike a kiln furnace.

還元炉に使用される水冷式の可動火格子は、上記形態に代えて、例えば、図11に示すように、可動火格子43B’の左右の支持部56’、57’を平面視凸状に鋳造し、凸片56m、57mを除く側面56n、57nに対し、炉幅方向位置調節可能且つ取外し可能な水冷壁70’、71’をそれぞれ近接配置する構成とすることも可能である。   The water-cooled movable grate used in the reduction furnace is, instead of the above-described form, for example, as shown in FIG. 11, left and right support portions 56 ′, 57 ′ of the movable grate 43B ′ are convex in plan view. It is also possible to adopt a configuration in which water-cooled walls 70 ′ and 71 ′ that are castable and can be adjusted in the furnace width direction and can be removed from the side surfaces 56n and 57n excluding the convex pieces 56m and 57m.

さらに、上記実施形態のストーカ式還元炉に代えて、一般的なストーカ焼却炉の最終段(後燃焼段)の後燃焼ストーカを、上記ストーカ式還元炉と同様の構造に置換したストーカ式複合炉を採用することもできる。すなわち、図12に示すように、ストーカ式複合炉100は、空冷火格子101を有する乾燥ストーカ102及び燃焼ストーカ103の後段に、フレーム一体型水冷火格子43を有する水冷ストーカ104を備え、空冷式の乾燥ストーカ102及び燃焼ストーカ103にはそれらの下部から燃焼用空気Eを供給し、フレーム一体型水冷火格子43の下部からは高温(1100〜1300℃程度)で低酸素濃度の還元ガスBを供給するように構成している。フレーム一体型水冷火格子は、図3〜図11で示したものと同様の構成を採用できる。ストーカ式複合炉100は、水冷ストーカ104の上部炉内を加熱するための加熱バーナ106を備えることができ、また、水冷ストーカ104の上流部に還元剤を供給するための還元剤供給装置107を備えることができる。   Further, in place of the stoker-type reducing furnace of the above-described embodiment, a stoker-type combined furnace in which the post-combustion stoker of the final stage (post-combustion stage) of a general stoker incinerator is replaced with the same structure as the stoker-type reducing furnace. Can also be adopted. That is, as shown in FIG. 12, the stoker type combined furnace 100 includes a dry stoker 102 having an air-cooled grate 101 and a water-cooled stoker 104 having a frame-integrated water-cooled grate 43 at the rear stage of the combustion stoker 103, and is air-cooled. The dry stoker 102 and the combustion stoker 103 are supplied with combustion air E from the lower part thereof, and the lower part of the frame-integrated water-cooled grate 43 is supplied with a reducing gas B having a high temperature (about 1100 to 1300 ° C.) and a low oxygen concentration. It is configured to supply. The frame-integrated water-cooled grate can adopt the same configuration as that shown in FIGS. The stoker type combined furnace 100 can include a heating burner 106 for heating the inside of the upper furnace of the water-cooled stalker 104, and a reducing agent supply device 107 for supplying a reducing agent to the upstream portion of the water-cooled stalker 104. Can be provided.

斯かる構成のストーカ式複合炉100によれば、投入口105から投入された可燃ごみは、乾燥ストーカ102で乾燥され、燃焼ストーカ103で燃焼して焼却灰となった後、水冷ストーカ104において高温の還元ガスによって焼却灰中の酸化鉄が還元処理される。   According to the stoker type combined furnace 100 having such a configuration, combustible waste introduced from the inlet 105 is dried by the dry stoker 102, burned by the combustion stoker 103 to become incinerated ash, and then heated at the water-cooled stoker 104. Iron oxide in the incineration ash is reduced by the reducing gas.

このように、ストーカ式複合炉100は、乾燥ストーカ102及び燃焼ストーカ103で焼却処理された焼却灰の顕熱を利用し、さらに水冷ストーカ104においてフレーム一体型水冷火格子43の下から高温の還元ガスを供給することで、効率的に焼却灰中の磁性物(酸化鉄)の還元処理を行うことができる。   As described above, the stoker-type combined furnace 100 utilizes the sensible heat of the incinerated ash incinerated by the dry stoker 102 and the combustion stoker 103, and further reduces the temperature of the water-cooled stoker 104 from the bottom of the frame-integrated water-cooled grate 43 at a high temperature. By supplying gas, it is possible to efficiently reduce the magnetic substance (iron oxide) in the incineration ash.

なお、ストーカ式複合炉100は、焼成を目的とする場合は、フレーム一体型水冷火格子43の下部から供給される高温ガスは還元ガスでなくても良いが、その場合には、酸化鉄を還元処理するための還元炉が別途併設される。従来の一般的な水冷ストーカ式焼却炉による焼却灰の焼成は、火格子上面から一方向の加熱となり、焼却灰が断熱層となって熱伝導効率が悪いが、図12に示すようなストーカ式複合炉の場合、緩やかな撹拌とストーカ下部からの高温ガス供給が加わるため、焼却灰の焼成速度が増し、外部燃料の削減に大きく貢献する。   In the case of the stoker-type combined furnace 100, when firing is intended, the high-temperature gas supplied from the lower part of the frame-integrated water-cooled grate 43 does not have to be a reducing gas. A reduction furnace for reduction treatment is additionally provided. The burning of the incineration ash by the conventional general water-cooled stoker type incinerator is one-way heating from the upper surface of the grate, and the incineration ash becomes a heat insulating layer and has poor heat conduction efficiency, but the stoker type as shown in FIG. In the case of a combined furnace, since gentle stirring and high-temperature gas supply from the lower part of the stoker are added, the burning rate of incineration ash increases, which greatly contributes to the reduction of external fuel.

本発明は、上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において、形態の変更が可能である。   The present invention is not limited to the above-described embodiment, and modifications can be made without departing from the spirit of the present invention.

1 ごみ処理施設
2 ごみ焼却炉
3 焼却灰
4 磁力選別機
5 磁性物(酸化鉄)
6 非磁性物(焼却灰)
7 溶融炉
8 スラグ
9 溶融飛灰
10 破砕機
11 篩
15、15A 還元炉
20 分別処理施設
30 リサイクル施設
43 フレーム一体型水冷火格子
43A 固定火格子
43B 可動火格子
56、57、51、52 支持部
53、58 連結部
53a、58a 耐火性保護層
63,64 冷却水流路
1 Garbage Treatment Facility 2 Garbage Incinerator 3 Incineration Ash 4 Magnetic Sorting Machine 5 Magnetic Material (Iron Oxide)
6 Non-magnetic material (incineration ash)
7 Melting furnace 8 Slag 9 Molten fly ash 10 Crusher 11 Sieve 15, 15A Reduction furnace 20 Sorting treatment facility 30 Recycling facility 43 Frame-integrated water-cooled grate 43A Fixed grate 43B Movable grate 56, 57, 51, 52 53, 58 Connecting portion 53a, 58a Fireproof protective layer 63, 64 Cooling water flow path

Claims (13)

ごみ焼却炉と、ごみ焼却炉から排出した焼却灰から磁性物を磁力選別する磁力選別機と、磁力選別機により選別された磁性物を還元金属化処理する還元炉と、を備えていることを特徴とするごみ処理施設。 A waste incinerator, a magnetic separator for magnetically sorting magnetic materials from the incinerated ash discharged from the waste incinerator, and a reduction furnace for reducing metallization of the magnetic materials sorted by the magnetic separator Characteristic waste treatment facility. 前記磁性物を還元炉に投入する前に前記磁性物に廃プラスチックを混合して成形する混合・成形機を更に備えることを特徴とする請求項1に記載のごみ処理施設。 The refuse disposal facility according to claim 1, further comprising a mixing / molding machine that mixes and forms waste plastic with the magnetic material before putting the magnetic material into a reduction furnace. 前記磁性物を廃プラスチックと混合する前に該磁性物を破砕する破砕機と、該破砕機により破砕した磁性物を所定粒径以下に篩い分ける篩と、を備えることを特徴とする請求項2に記載のごみ処理施設。 3. A crusher for crushing the magnetic material before mixing the magnetic material with waste plastic, and a sieve for screening the magnetic material crushed by the crusher to a predetermined particle size or less. Waste treatment facility described in 1. 前記還元炉の排ガスを、前記ごみ焼却炉の排ガスと併せて処理する排ガス処理設備を備えることを特徴とする請求項1〜3の何れかに記載のごみ処理施設。 The waste treatment facility according to any one of claims 1 to 3, further comprising an exhaust gas treatment facility for treating the exhaust gas of the reduction furnace together with the exhaust gas of the waste incinerator. ごみ処理施設が前記磁力選別機で選別された非磁性物を溶融処理する溶融炉を更に備え、前記還元炉の排ガスを、前記溶融炉の排ガスと併せて処理する排ガス処理施設を備えることを特徴とする請求項1〜4の何れかに記載のごみ処理施設。 The waste treatment facility further includes a melting furnace for melting the non-magnetic material selected by the magnetic separator, and further includes an exhaust gas treatment facility for processing the exhaust gas of the reduction furnace together with the exhaust gas of the melting furnace. The refuse disposal facility according to any one of claims 1 to 4. 前記還元炉は、フレーム一体型水冷火格子を備えるとともに該フレーム一体型水冷火格子下部から高温還元ガスが供給される水冷ストーカを備え、
前記フレーム一体型水冷火格子は、左右の炉壁をそれぞれ貫通して延びる左右一対の支持部と該一対の支持部間を連結する連結部とが一体形成され、前記連結部の表面に耐火性保護層が設けられ、前記支持部及び連結部を連通する冷却水流路が内部に形成され、前記支持部の炉壁外側部位に冷却水の出入口を備えることを特徴とする請求項1〜5の何れかに記載のごみ処理施設。
The reduction furnace includes a water-cooled stoker provided with a frame-integrated water-cooled grate and supplied with high-temperature reducing gas from the lower part of the frame-integrated water-cooled grate,
The frame-integrated water-cooled grate is integrally formed with a pair of left and right support portions that extend through the left and right furnace walls and a connection portion that connects between the pair of support portions, and has a fire resistance on the surface of the connection portion. The protective layer is provided, a cooling water flow path communicating the support portion and the connecting portion is formed inside, and a cooling water inlet / outlet portion is provided in a furnace wall outer side portion of the support portion. Garbage disposal facility described in any one.
火格子下部から空気が供給される乾燥ストーカと、前記乾燥ストーカの後段に配置され火格子下部から空気が供給される燃焼ストーカと、前記燃焼ストーカの後段に配置されフレーム一体型水冷火格子を備えるとともに下部から高温ガスが供給される水冷ストーカと、を備えるストーカ式複合炉であって、
前記フレーム一体型水冷火格子は、左右の炉壁をそれぞれ貫通して延びる左右一対の支持部と該一対の支持部間を連結する連結部とが一体形成され、前記連結部の表面に耐火性保護層が設けられ、前記支持部及び連結部を連通する冷却水流路が内部に形成され、前記支持部の炉壁外側部位に冷却水の出入口を備える前記ストーカ式複合炉を有することを特徴とする、ごみ処理施設。
A drying stoker supplied with air from the lower part of the grate, a combustion stoker arranged at the rear stage of the drying stoker and supplied with air from the lower part of the grate, and a water-cooled grate integrated with a frame arranged at the rear stage of the combustion stoker And a water-cooled stoker supplied with high-temperature gas from the lower part, and a stoker-type combined furnace comprising:
The frame-integrated water-cooled grate is integrally formed with a pair of left and right support portions that extend through the left and right furnace walls and a connection portion that connects between the pair of support portions, and has a fire resistance on the surface of the connection portion. The stoker type combined furnace is provided with a protective layer, a cooling water flow path communicating with the support portion and the connection portion is formed therein, and a cooling water inlet / outlet portion is provided at a portion outside the furnace wall of the support portion. A waste disposal facility.
ごみ焼却炉において可燃ごみを焼却処理する工程と、ごみ焼却炉から排出した焼却灰から磁性物を磁力選別する磁力選別工程と、磁力選別工程により選別された磁性物を還元炉において還元金属化処理する工程と、を含むことを特徴とするごみ処理方法。 A process for incinerating combustible waste in a waste incinerator, a magnetic separation process for magnetically sorting magnetic materials from the incineration ash discharged from the waste incinerator, and a reduction metallization treatment for magnetic materials selected by the magnetic separation process in a reduction furnace A waste disposal method comprising the steps of: 前記還元金属化処理する工程において、廃プラスチックを還元剤として用いることを特徴とする請求項8に記載のごみ処理方法。 The waste treatment method according to claim 8, wherein waste plastic is used as a reducing agent in the reduction metallization treatment. 廃プラスチックを前記磁性物と混合、成形してペレット化することを特徴とする請求項9に記載のごみ処理方法。 10. The waste disposal method according to claim 9, wherein waste plastic is mixed with the magnetic material and molded into pellets. 前記磁性物を廃プラスチックと混合する前に該磁性物を破砕機によって破砕する破砕工程と、破砕した磁性物を所定粒径以下に篩い分ける篩工程と、を更に備えることを特徴とする請求項10に記載のごみ処理方法。 The crushing step of crushing the magnetic material with a crusher before mixing the magnetic material with waste plastic, and a sieving step of sieving the crushed magnetic material to a predetermined particle size or less. 10. The waste disposal method according to 10. 前記還元炉の排ガスを、前記ごみ焼却炉の排ガスと併せて処理する排ガス処理工程を更に含むことを特徴とする請求項8〜11の何れかに記載のごみ処理方法。 The waste treatment method according to any one of claims 8 to 11, further comprising an exhaust gas treatment step of treating the exhaust gas of the reduction furnace together with the exhaust gas of the waste incinerator. 前記磁力選別工程で磁力選別された非磁性物を溶融炉で処理する溶融処理工程と、前記還元炉の排ガスを、前記溶融炉の排ガスと併せて処理する排ガス処理工程とを、更に含むことを特徴とする請求項8〜12の何れかに記載のごみ処理方法。 A melting treatment step of treating the non-magnetic material magnetically sorted in the magnetic separation step in a melting furnace, and an exhaust gas treatment step of treating the exhaust gas of the reduction furnace together with the exhaust gas of the melting furnace. The garbage disposal method according to any one of claims 8 to 12.
JP2009208553A 2009-09-09 2009-09-09 Garbage disposal facility and garbage disposal method Pending JP2011056392A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009208553A JP2011056392A (en) 2009-09-09 2009-09-09 Garbage disposal facility and garbage disposal method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009208553A JP2011056392A (en) 2009-09-09 2009-09-09 Garbage disposal facility and garbage disposal method

Publications (1)

Publication Number Publication Date
JP2011056392A true JP2011056392A (en) 2011-03-24

Family

ID=43944679

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009208553A Pending JP2011056392A (en) 2009-09-09 2009-09-09 Garbage disposal facility and garbage disposal method

Country Status (1)

Country Link
JP (1) JP2011056392A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101607255B1 (en) 2014-08-19 2016-03-29 주식회사 포스코 METHOD FOR MANUFACTURING Direct Reduced Iron, AND APPARATUS FOR THE SAME
JP2018171591A (en) * 2017-03-31 2018-11-08 Jx金属株式会社 Method for treating general waste incineration ash
CN109351755A (en) * 2018-10-31 2019-02-19 华南理工大学 A kind of processing method of aging rubbish
WO2020021930A1 (en) 2018-07-25 2020-01-30 積水化学工業株式会社 Control device, operation control device, server, management server, computer program, learning model, control method and operation control method
JP2021053641A (en) * 2020-12-28 2021-04-08 Jx金属株式会社 Method for treating general waste incineration ash
CN112844677A (en) * 2020-12-15 2021-05-28 李治 Intelligence environmental protection waste classification device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03501768A (en) * 1988-10-13 1991-04-18 アセア・ブラウン・ボベリ・アクチエンゲゼルシヤフト Method and apparatus for processing slag or other incineration residue from garbage incineration equipment
JP2001132930A (en) * 1999-11-05 2001-05-18 Mitsubishi Heavy Ind Ltd Method and device for changing incineration ash to resource
JP2001240917A (en) * 2000-02-29 2001-09-04 Nippon Steel Corp Method for utilizing metal in refuse
JP2005111394A (en) * 2003-10-09 2005-04-28 Jfe Holdings Inc Disposal method for organic waste
JP2008001931A (en) * 2006-06-21 2008-01-10 Sumitomo Osaka Cement Co Ltd Method of recovering iron resource

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03501768A (en) * 1988-10-13 1991-04-18 アセア・ブラウン・ボベリ・アクチエンゲゼルシヤフト Method and apparatus for processing slag or other incineration residue from garbage incineration equipment
JP2001132930A (en) * 1999-11-05 2001-05-18 Mitsubishi Heavy Ind Ltd Method and device for changing incineration ash to resource
JP2001240917A (en) * 2000-02-29 2001-09-04 Nippon Steel Corp Method for utilizing metal in refuse
JP2005111394A (en) * 2003-10-09 2005-04-28 Jfe Holdings Inc Disposal method for organic waste
JP2008001931A (en) * 2006-06-21 2008-01-10 Sumitomo Osaka Cement Co Ltd Method of recovering iron resource

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101607255B1 (en) 2014-08-19 2016-03-29 주식회사 포스코 METHOD FOR MANUFACTURING Direct Reduced Iron, AND APPARATUS FOR THE SAME
JP2018171591A (en) * 2017-03-31 2018-11-08 Jx金属株式会社 Method for treating general waste incineration ash
WO2020021930A1 (en) 2018-07-25 2020-01-30 積水化学工業株式会社 Control device, operation control device, server, management server, computer program, learning model, control method and operation control method
CN109351755A (en) * 2018-10-31 2019-02-19 华南理工大学 A kind of processing method of aging rubbish
CN112844677A (en) * 2020-12-15 2021-05-28 李治 Intelligence environmental protection waste classification device
CN112844677B (en) * 2020-12-15 2022-11-18 张成云 Intelligence environmental protection waste classification device
JP2021053641A (en) * 2020-12-28 2021-04-08 Jx金属株式会社 Method for treating general waste incineration ash
JP7062748B2 (en) 2020-12-28 2022-05-06 Jx金属株式会社 How to treat general waste incinerator ash

Similar Documents

Publication Publication Date Title
JP2011056392A (en) Garbage disposal facility and garbage disposal method
JPH03501768A (en) Method and apparatus for processing slag or other incineration residue from garbage incineration equipment
JP3980216B2 (en) Waste treatment facility
JP2008202803A (en) Industrial waste melting/solidifying apparatus
EP0778446B1 (en) Garbage incinerating system
JP6391046B2 (en) Metal smelting raw material recovery apparatus and method from waste incineration ash, and metal recovery apparatus and method from waste incineration ash
JP4660260B2 (en) Recycling equipment for construction residue
JP4432047B2 (en) Waste treatment furnace and waste treatment equipment that treats dust and sludge together
JP3838589B2 (en) Method and apparatus for pyrolysis gasification and melting of waste
JP4036826B2 (en) Incineration melt cooling method
JP3483054B2 (en) DC electric melting furnace for the production of reduced molten slag.
JP2006308226A (en) Fluidized bed furnace and incineration method of fluidized bed furnace
JP3113723B2 (en) Waste incineration melting equipment
Shibaike et al. Development of high-performance direct melting process for municipal solid waste
JP2006183998A (en) Method of improving properties of incineration residues produced in incineration plant, and method of treating the residues
JP3764635B2 (en) Waste incinerator
JP5686433B2 (en) Waste melting treatment method
Osada Direct melting process for MSW recycling
Wadhwa Sustainable manufacturing in SMEs: Technology options
JP2006105431A (en) Stoker type incinerator
JP2008069984A (en) Gasification melting method and device
EP2587145B1 (en) Method for the pollution-free thermal processing of solid municipal waste and plant for carrying out said method
JP2001240917A (en) Method for utilizing metal in refuse
JP3891754B2 (en) Waste incineration ash melting system using fine combustion of waste plastics
KR100535196B1 (en) Method and apparatus for the thermal treatment of fly dust from grate incineration plants

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120831

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130225

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130701