JP2011056139A - Method of measuring body fat of cat - Google Patents

Method of measuring body fat of cat Download PDF

Info

Publication number
JP2011056139A
JP2011056139A JP2009211032A JP2009211032A JP2011056139A JP 2011056139 A JP2011056139 A JP 2011056139A JP 2009211032 A JP2009211032 A JP 2009211032A JP 2009211032 A JP2009211032 A JP 2009211032A JP 2011056139 A JP2011056139 A JP 2011056139A
Authority
JP
Japan
Prior art keywords
body fat
cat
measured
thickness
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009211032A
Other languages
Japanese (ja)
Other versions
JP5386281B2 (en
Inventor
Masayuki Okawa
雅之 大川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2009211032A priority Critical patent/JP5386281B2/en
Publication of JP2011056139A publication Critical patent/JP2011056139A/en
Application granted granted Critical
Publication of JP5386281B2 publication Critical patent/JP5386281B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of accurately measuring the body fat of a cat. <P>SOLUTION: In this method of measuring the body fat of a cat, the thickness of fat of any region or its lower tissue from the back of a neck to a scapula in the cat in a face down posture is measured, and the body fat of the whole body is obtained based on the thickness. Preferably the thickness is measured by biological impedance, electrostatic capacity, ultrasonic wave, infrared ray, CT or MRI. Further preferably the body fat of the whole body is obtained based on the weight of the cat. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、猫の体脂肪の測定方法に関する。   The present invention relates to a method for measuring cat body fat.

近年の豊かな食料事情に起因して、ペットとして飼育されている猫には肥満が広く認められている。ある研究では、25〜30%の猫が肥満又は過体重であるとされている(非特許文献1参照)。肥満猫は、糖尿病、皮膚疾患、脂肪肝などを起こすリスクが高いといわれており、猫の健康と福祉に対して大きな脅威となっている。   Obesity is widely recognized in cats raised as pets due to the rich food situation in recent years. In one study, 25-30% of cats are considered obese or overweight (see Non-Patent Document 1). Obese cats are said to have a high risk of causing diabetes, skin diseases, fatty liver, etc., and are a great threat to the health and well-being of cats.

体脂肪は、肥満であるか否かの尺度の一つとなるものである。体脂肪の測定に関して、出願人は先に、ヒトの体脂肪を、生体インピーダンスを測定することで求める装置を提案した(特許文献1参照)。ヒトを対象とした生体インピーダンス法による体脂肪の測定方法を、動物である牛等の家畜に応用したインピーダンス測定器具も知られている(特許文献2参照)。   Body fat is a measure of whether or not you are obese. Regarding the measurement of body fat, the applicant has previously proposed a device for obtaining human body fat by measuring bioimpedance (see Patent Document 1). There is also known an impedance measuring instrument in which a method for measuring body fat by a bioimpedance method for humans is applied to livestock such as cattle that are animals (see Patent Document 2).

また本出願人は、犬を対象とした体脂肪の測定方法も提案した(特許文献3参照)。この方法においては、体脂肪の測定具を用い、犬の最後肋骨周囲部に測定具の電極体を押し付けるようにして生体インピーダンスを測定する。そして測定された生体インピーダンスに基づき体脂肪を算出する。この方法によれば、犬の体脂肪を極めて容易にかつ正確に測定することができる。   The applicant has also proposed a body fat measurement method for dogs (see Patent Document 3). In this method, the body impedance is measured by using a body fat measuring tool and pressing the electrode body of the measuring tool around the last rib of the dog. Then, body fat is calculated based on the measured bioelectrical impedance. According to this method, the body fat of a dog can be measured very easily and accurately.

犬を測定対象とした場合には、特許文献3に記載のとおり、最後肋骨周囲部を対象部位に選択して生体インピーダンスを測定することが、測定の正確さの点から有利である。しかし、皮下脂肪の分布の様子は動物によって異なる場合が多いので、体脂肪の分布の様子が犬とは大きく異なる動物を測定対象とした場合には、最後肋骨周囲部を対象部位に選択しても、体脂肪を正確に測定できないことがある。例えば犬と異なり、猫は最後肋骨周囲部には皮下脂肪がほとんど観察されないので、犬と同様の方法で猫の体脂肪を正確に測定することは容易でない。   When a dog is a measurement target, as described in Patent Document 3, it is advantageous from the viewpoint of measurement accuracy that the bioelectrical impedance is measured by selecting the peripheral portion of the last rib as a target site. However, since the distribution of subcutaneous fat is often different from animal to animal, if the animal whose distribution of body fat is significantly different from that of the dog is to be measured, the area around the last rib is selected as the target region. However, body fat may not be measured accurately. For example, unlike dogs, cats hardly see subcutaneous fat around the last rib, so it is not easy to accurately measure cat body fat in the same way as dogs.

特開2002−369806号公報JP 2002-369806 A 特開2002−253523号公報JP 2002-253523 A 特許第4342581号公報Japanese Patent No. 4342581

Scarlett JM, Donoghue S, Daidla J, et. al., "Overweight cats: prevalence and risk factors", Int. J. Obes., 1994, 18, s22-s28Scarlett JM, Donoghue S, Daidla J, et. Al., "Overweight cats: prevalence and risk factors", Int. J. Obes., 1994, 18, s22-s28

本発明の課題は、猫の体脂肪を従来よりも正確に測定し得る方法を提供することにある。   The subject of this invention is providing the method of measuring the body fat of a cat more correctly than before.

本発明は、伏臥状態の猫における頸部背側から肩胛骨間までの間のいずれかの部位の皮下脂肪又はその下部組織の厚みを測定し、その厚みに基づいて体全体の体脂肪を求める、猫の体脂肪の測定方法を提供するものである。   The present invention measures the thickness of the subcutaneous fat or the lower tissue of any part between the dorsal neck of the prone cat and between the shoulder ribs, and determines the body fat of the whole body based on the thickness. A method for measuring body fat of a cat is provided.

また本発明は、伏臥状態の猫における頸部背側から肩胛骨間までの間における生体インピーダンスを測定することにより体脂肪率を求める、猫の体脂肪率の測定方法を提供するものである。   The present invention also provides a method for measuring the body fat percentage of a cat, wherein the body fat percentage is determined by measuring the bioimpedance between the back of the neck and the shoulder ribs in a prone cat.

本発明の方法によれば、猫の体脂肪を正確に測定することができる。   According to the method of the present invention, the body fat of a cat can be accurately measured.

図1は、本発明の測定方法を実施するときの猫の状態を示す模式図である。FIG. 1 is a schematic diagram showing the state of a cat when carrying out the measuring method of the present invention. 図2(a)及び図2(b)は、生体インピーダンスと皮下脂肪の厚みとの関係を示すグラフであり、図2(a)が本発明に従う結果であり、図2(b)が比較例の結果である。2 (a) and 2 (b) are graphs showing the relationship between the bioelectrical impedance and the thickness of subcutaneous fat, FIG. 2 (a) is the result according to the present invention, and FIG. 2 (b) is a comparative example. Is the result of 図3(a)は本発明に従い測定された全身体脂肪率と皮下脂肪の厚みとの関係を示すグラフであり、図3(b)は本発明に従い測定された全身体脂肪率と生体インピーダンスとの関係を示すグラフである。FIG. 3 (a) is a graph showing the relationship between the whole body fat percentage measured according to the present invention and the thickness of subcutaneous fat, and FIG. 3 (b) shows the whole body fat percentage measured according to the present invention and the bioimpedance. It is a graph which shows the relationship. 図4(a)は比較例の全身体脂肪率と皮下脂肪の厚みとの関係を示すグラフであり、図4(b)は比較例の全身体脂肪率と生体インピーダンスとの関係を示すグラフである。FIG. 4A is a graph showing the relationship between the whole body fat percentage and the thickness of subcutaneous fat in the comparative example, and FIG. 4B is a graph showing the relation between the whole body fat percentage and the bioelectrical impedance in the comparative example. is there. 図5は、生体インピーダンスの測定に用いられる装置の一例を示す斜視図である。FIG. 5 is a perspective view showing an example of an apparatus used for measuring bioimpedance. 図6は、図5に示す装置を用いた生体インピーダンスの測定方法を示す模式図である。FIG. 6 is a schematic diagram showing a bioimpedance measurement method using the apparatus shown in FIG.

以下本発明を、その好ましい実施形態に基づき図面を参照しながら説明する。本発明の体脂肪測定方法における「体脂肪」という語は、特に断らない限り「体脂肪率」及び「体脂肪量(重量、体積)」の両方を含む概念である。   The present invention will be described below based on preferred embodiments with reference to the drawings. The term “body fat” in the body fat measurement method of the present invention is a concept including both “body fat percentage” and “body fat mass (weight, volume)” unless otherwise specified.

本発明においては、猫の体脂肪の測定を、図1に示すように猫を伏臥させた状態で行う。猫を伏臥させるのは、測定の安定性や再現性を確実にするためである。そして伏臥状態下に、正中線に沿った頸部背側から肩胛骨間までの間のいずれかの部位の皮下脂肪又はその下部組織の厚みを測定する。測定部位は、図1におけるAで示す部位である。以下の説明においては、簡便のために、この測定部位Aを単に「肩胛骨間」ともいう。なお、同図中、点線で表される一対の湾曲線は、肩胛骨の縁が位置する部位を示している。本発明者らの検討の結果、犬と比較して、猫は、頸部背側から肩胛骨間までの間の皮下脂肪が比較的厚く、この部位において体脂肪を測定すると、正確な測定結果が得られることが判明した。   In the present invention, the body fat of a cat is measured in a state where the cat is prone as shown in FIG. The reason for prone to cats is to ensure measurement stability and reproducibility. Then, under the prone state, the thickness of the subcutaneous fat or its lower tissue in any part between the back of the neck along the midline and between the shoulder ribs is measured. The measurement site is the site indicated by A in FIG. In the following description, this measurement site A is also simply referred to as “between shoulder and ribs” for convenience. In addition, in the same figure, a pair of curved line represented with a dotted line has shown the site | part in which the edge of a shoulder rib is located. As a result of the study by the present inventors, compared with dogs, cats have relatively thick subcutaneous fat between the back of the neck and between the shoulder ribs, and when measuring body fat at this site, accurate measurement results can be obtained. It turned out to be obtained.

肩胛骨間における皮下脂肪及び/又はその下部組織の厚みは、肩胛骨間の皮膚を摘んでその厚みを、ノギス等を用いて実測してもよく、あるいは後述する所定の方法を用いて間接的に、かつ非侵襲的に測定してもよい。なお、皮下脂肪の下部組織には、例えば脂肪や組織液等が含まれる。簡便のため、以下の説明においては、特に断らない限り、皮下脂肪及び/又はその下部組織を皮下脂肪と総称する。   The thickness of the subcutaneous fat and / or the underlying tissue between the shoulder ribs may be measured by picking the skin between the shoulder ribs and using a caliper or the like, or indirectly using a predetermined method described later, And you may measure noninvasively. The lower tissue of subcutaneous fat includes, for example, fat and tissue fluid. For convenience, in the following description, unless otherwise specified, subcutaneous fat and / or its lower tissue is collectively referred to as subcutaneous fat.

皮下脂肪の厚みを、実測ではなく、所定の手段を用いて間接的に測定する場合には、その手段として例えば生体インピーダンス、静電容量、超音波、赤外線、CT(コンピューテッド・トモグラフィ)又はMRI(核磁気共鳴画像)等の非侵襲的測定手段を用いることができる。これらは、それぞれを単独で用いてもよく、あるいは2種以上を組み合わせて用いることができる。   When the thickness of the subcutaneous fat is indirectly measured using a predetermined means instead of actual measurement, examples of the means include bioimpedance, capacitance, ultrasonic waves, infrared rays, and CT (Computed Tomography). Alternatively, noninvasive measurement means such as MRI (Nuclear Magnetic Resonance Image) can be used. These may be used alone or in combination of two or more.

皮下脂肪の厚みを、生体インピーダンスの測定から求めるためには、インピーダンスの測定装置を用いて肩胛骨間のインピーダンスを測定し、予め求めておいたインピーダンスと皮下脂肪の厚みとの検量線から厚みを求めればよい。静電容量の測定から厚みを求めるためには、容量計を用いて肩胛骨間の静電容量を測定し、あらかじめ求めておいた静電容量と皮下脂肪の厚みとの検量線から厚みを求めればよい。超音波の測定から厚みを求めるためには、超音波画像診断装置を用いて肩胛骨間の断面画像を撮影し、皮下脂肪厚みを求めればよい。赤外線、特に近赤外線の測定から厚みを求めるためには、近赤外線照射装置及び受光装置を用いて肩胛骨間の皮下脂肪による吸収スペクトルを測定し、あらかじめ求めておいた吸収スペクトルと皮下脂肪厚みとの検量線から皮下脂肪厚みを求めればよい。CTやMRIを用いた場合には、それらの測定結果から直接厚みを求めることができる。   In order to determine the thickness of subcutaneous fat from the measurement of bioimpedance, the impedance between the shoulder ribs is measured using an impedance measurement device, and the thickness can be obtained from a calibration curve between the impedance obtained beforehand and the thickness of subcutaneous fat. That's fine. To obtain the thickness from the capacitance measurement, measure the capacitance between the shoulder ribs using a capacitance meter, and obtain the thickness from the calibration curve of the capacitance obtained beforehand and the thickness of the subcutaneous fat. Good. In order to obtain the thickness from the measurement of ultrasonic waves, a cross-sectional image between the shoulder ribs is taken using an ultrasonic diagnostic imaging apparatus, and the subcutaneous fat thickness may be obtained. In order to obtain the thickness from the measurement of infrared rays, particularly near infrared rays, the absorption spectrum by the subcutaneous fat between the shoulder ribs is measured using a near infrared irradiation device and a light receiving device, and the absorption spectrum and the subcutaneous fat thickness obtained in advance are measured. What is necessary is just to obtain | require subcutaneous fat thickness from a calibration curve. When CT or MRI is used, the thickness can be obtained directly from the measurement results.

図2(a)には、生体インピーダンスの測定結果と、肩胛骨間における皮下脂肪の実測値との関係が示されている。測定の対象となった猫の詳細は以下の表1に示すとおりである。この関係から明らかなように、肩胛骨間を測定部位として選択すると、生体インピーダンスと皮下脂肪の厚みとの間には非常に高い相関関係があることが判る。一方、図2(b)には、犬の体脂肪率の測定に有効とされている腰背部(図1中、符号Bで示される部位)における生体インピーダンスの測定結果と、皮下脂肪の実測値との関係が示されている。この測定部位は、図1中、符号Bで表される部位であり、この部位は腰背部における正中線から20mm側方に偏倚している。以下の説明においては、簡便のために、この測定部位Bを単に「腰背部」ともいう。図2(b)に示す結果から明らかなように、腰背部を測定部位として選択した場合には、生体インピーダンスと皮下脂肪の厚みとの間には相関関係が認められない。なお、図2(a)及び(b)に示す測定に用いた生体インピーダンスの測定装置の詳細については後述する。   FIG. 2A shows the relationship between the measurement result of bioimpedance and the measured value of subcutaneous fat between the shoulder ribs. Details of the cats to be measured are as shown in Table 1 below. As is clear from this relationship, it is understood that there is a very high correlation between the bioelectrical impedance and the thickness of subcutaneous fat when the area between the shoulder ribs is selected as the measurement site. On the other hand, FIG. 2 (b) shows the measurement results of bioimpedance at the lumbar region (the part indicated by symbol B in FIG. 1), which is effective for measuring the body fat percentage of dogs, and the measured values of subcutaneous fat. The relationship is shown. This measurement site is a site represented by symbol B in FIG. 1, and this site is biased to the side of 20 mm from the median line in the lower back. In the following description, for the sake of convenience, this measurement site B is also simply referred to as “lumbar region”. As is apparent from the results shown in FIG. 2B, when the lower back is selected as the measurement site, no correlation is recognized between the bioelectrical impedance and the thickness of the subcutaneous fat. The details of the bioimpedance measuring apparatus used for the measurement shown in FIGS. 2A and 2B will be described later.

Figure 2011056139
Figure 2011056139

図3(a)には、猫の全身の体脂肪率と、肩胛骨間における皮下脂肪の実測値との関係が示されている。この関係から明らかなように、肩胛骨間を測定部位として選択すると、全身の体脂肪率と皮下脂肪の厚みとの間にも高い相関関係があることが判る。同図に示す結果と、先に説明した図2(a)に示す結果から、全身の体脂肪率と生体インピーダンスとの関係をグラフ化したものが図3(b)である。図3(b)に示す結果から明らかなように、皮下脂肪の測定部位として肩胛骨間を選択すると、全身の体脂肪率と生体インピーダンスとが良く相関することが判る。したがって本発明の方法に従い皮下脂肪の厚みの測定部位に肩胛骨間を選択することで、全身の体脂肪率を非侵襲的に正確に測定することができる。   FIG. 3A shows the relationship between the body fat percentage of the whole body of the cat and the measured value of subcutaneous fat between the shoulder ribs. As is apparent from this relationship, it is found that when the area between the shoulder ribs is selected as the measurement site, there is a high correlation between the body fat percentage of the whole body and the thickness of the subcutaneous fat. FIG. 3B is a graph showing the relationship between the body fat percentage of the whole body and the bioelectrical impedance based on the results shown in FIG. 2 and the results shown in FIG. As is apparent from the results shown in FIG. 3B, it can be seen that when the area between the shoulder ribs is selected as the measurement site for subcutaneous fat, the body fat percentage of the whole body and the bioimpedance are well correlated. Therefore, the body fat percentage of the whole body can be accurately measured noninvasively by selecting between the shoulder ribs as the measurement site of the thickness of subcutaneous fat according to the method of the present invention.

以上説明したとおり、猫の肩胛骨間における生体インピーダンスを測定することによって、全身の体脂肪率を求めることができる。したがって、生体インピーダンス測定結果を肩胛骨間における皮下脂肪の厚みに対照させることなく、直接全身の体脂肪率と関連付けることができる。   As described above, the body fat percentage of the whole body can be obtained by measuring the bioimpedance between the cat's shoulder ribs. Therefore, the bioimpedance measurement result can be directly related to the body fat percentage of the whole body without contrasting the thickness of the subcutaneous fat between the shoulder ribs.

図4(a)には、猫の全身の体脂肪率と、腰背部における皮下脂肪の実測値との関係が示されている。この関係から明らかなように、腰背部を測定部位として選択すると、全身の体脂肪率と皮下脂肪の厚みと間には相関関係が認められないことが判る。同図に示す結果と、先に説明した図2(b)に示す結果から、全身の体脂肪率と生体インピーダンスとの関係をグラフ化したものが図4(b)である。図4(b)に示す結果から明らかなように、皮下脂肪の測定部位として腰背部を選択すると、全身の体脂肪率と生体インピーダンスとの間に相関関係が認められないことが判る。つまり、皮下脂肪の厚みの測定部位に、犬の場合に有効とされていた腰背部を選択しても、全身の体脂肪率を正確に測定できないことが判る。   FIG. 4 (a) shows the relationship between the body fat percentage of the whole body of the cat and the measured value of subcutaneous fat in the lower back. As is clear from this relationship, it can be seen that when the lower back is selected as the measurement site, there is no correlation between the body fat percentage of the whole body and the thickness of the subcutaneous fat. FIG. 4B is a graph showing the relationship between the body fat percentage of the whole body and the bioelectrical impedance based on the results shown in FIG. 2 and the results shown in FIG. 2B described above. As is apparent from the results shown in FIG. 4B, it can be seen that when the lower back is selected as the measurement site for subcutaneous fat, no correlation is found between the body fat percentage of the whole body and the bioelectrical impedance. In other words, it can be understood that the body fat percentage of the whole body cannot be accurately measured even if the waist and back part, which was effective in the case of a dog, is selected as the measurement site for the thickness of subcutaneous fat.

上述した全身の体脂肪率は重水希釈法によって測定される。重水希釈法は全身の体脂肪率を正確に測定できる方法として当該技術分野において良く知られた方法である。しかし重水希釈法は、その測定が複雑であるという欠点を有している。本明細書で行った重水希釈法の詳細は次のとおりである。   The above-mentioned whole body fat percentage is measured by the heavy water dilution method. The heavy water dilution method is a well-known method in the art as a method for accurately measuring the body fat percentage of the whole body. However, the heavy water dilution method has a drawback that its measurement is complicated. The details of the heavy water dilution method performed in this specification are as follows.

Burkholderらの方法1)に準じ、前記の表1に示す各猫(個体No.A〜F)の頚静脈から2.5mlの血液を採取した。採取した血液の血清分離を行い、重水注入前の血清サンプルとした。次に前足静脈に翼状針を留置し、シリンジに計り取った重水を0.4g/kg(体重)の割合で皮下に注入した。更にヘパ生10mlを注入した。注入前後のシリンジの重量を測定し、差分を重水の注入量(WD2O)gとした。重水の拡散時間として90分間とった。その後、再び反対の頚静脈から2.5mlの血液を採取した。採取した血液の血清分離を行い、重水注入後の血清サンプルとした。IRMSによって血清サンプル中の重水濃度を分析した。注入前の血清サンプル中の重水濃度をC1(ppm)、注入後の重水濃度をC2(ppm)、注入した重水の量をWD2O(g)とし、体重をBW(kg)として、以下の計算式から体脂肪率を算出した。
体脂肪率(%)=100−{105D2O/(C2−C1)}/0.732BW
[1]:William J. Burkholder, Craig D. Thatcher AJVR 59(8) 1998 927-937
According to the method 1) of Burkholder et al., 2.5 ml of blood was collected from the jugular vein of each cat (individual Nos. A to F) shown in Table 1 above. The collected blood was subjected to serum separation to obtain a serum sample before heavy water injection. Next, a pterygium needle was placed in the forelimb vein, and heavy water measured by a syringe was injected subcutaneously at a rate of 0.4 g / kg (body weight). Further, 10 ml of hepa raw was injected. The weight of the syringe before and after injection was measured, and the difference was defined as the injection amount of heavy water (W D2O ) g. The diffusion time of heavy water was 90 minutes. Thereafter, 2.5 ml of blood was again collected from the opposite jugular vein. Serum separation of the collected blood was performed to obtain a serum sample after heavy water injection. The heavy water concentration in the serum samples was analyzed by IRMS. The concentration of heavy water in the serum sample before injection is C 1 (ppm), the concentration of heavy water after injection is C 2 (ppm), the amount of injected heavy water is W D2O (g), and the weight is BW (kg). The body fat percentage was calculated from the following formula.
Body fat percentage (%) = 100− {10 5 W D2O / (C 2 −C 1 )} / 0.732 BW
[1]: William J. Burkholder, Craig D. Thatcher AJVR 59 (8) 1998 927-937

図3(a)に示すように、全身の体脂肪率と、肩胛骨間における皮下脂肪との厚みとの間には一次の相関関係がある。つまり体脂肪率をzとし、皮下脂肪の厚みをxとすると、zとxは以下の式(1)で表される
z=a1x+c1 (1)
(式中、a1及びc1は定数を表す。)。
As shown in FIG. 3A, there is a first-order correlation between the body fat percentage of the whole body and the thickness of the subcutaneous fat between the shoulder ribs. That is, if the body fat percentage is z and the thickness of the subcutaneous fat is x, z and x are expressed by the following formula (1): z = a 1 x + c 1 (1)
(Wherein a 1 and c 1 represent constants).

前記の式(1)において、体脂肪率zに対する上述した体重の寄与分を加味して測定の精度を高める検討を本発明者らがしたところ、体重をyとしたとき、体脂肪率z、皮下脂肪の厚みx及び体重yの三者は、以下の式(2)で一層正確に記述されることが判明した。
z=a2x+b2y+c2 (2)
(式中、a2、b2及びc2は定数を表す。)。
In the above formula (1), the present inventors have studied to increase the accuracy of measurement in consideration of the contribution of the body weight to the body fat percentage z. When the body weight is y, the body fat percentage z, It was found that the subcutaneous fat thickness x and the body weight y are more accurately described by the following formula (2).
z = a 2 x + b 2 y + c 2 (2)
(Wherein a 2 , b 2 and c 2 represent constants).

例えば、前記の表1に示す6匹の猫を対象とした場合には、前記の式(2)は、以下の式(2a)で記述される。この場合の相関係数R2は0.8709である。したがって、体脂肪率の測定を、皮下脂肪の厚み及び体重の双方に基づき行うことで、図3(a)の場合よりも測定精度が向上することが判る。
z=2.564473x+2.059329y+3.634708 (2a)
For example, when the six cats shown in Table 1 are targeted, the above formula (2) is described by the following formula (2a). In this case, the correlation coefficient R 2 is 0.8709. Therefore, it can be seen that the measurement accuracy is improved as compared with the case of FIG. 3A by measuring the body fat percentage based on both the thickness and the weight of the subcutaneous fat.
z = 2.564647x + 2.059329y + 3.634708 (2a)

図6は、生体インピーダンスの測定装置の一例を示す斜視図である。同図に示す測定装置10は、本体部12と、その下部に位置し、下方へ垂下する複数の電極体11を備えている。電極体11は、電圧用電極13と電流用電極14とを2個ずつ備えている。各電極13,14は導電性材料から構成されている。各電極13,14は先端が丸みを帯びた円柱状になっている。2個の電圧用電極13間の距離は固定されている。同様に2個の電流用電極14間の距離も固定されている。このように構成することで、インピーダンスの測定値に変動が生じにくくなる。   FIG. 6 is a perspective view showing an example of a bioimpedance measuring apparatus. The measuring apparatus 10 shown in the figure includes a main body portion 12 and a plurality of electrode bodies 11 that are positioned below the main body portion 12 and hang downward. The electrode body 11 includes two voltage electrodes 13 and two current electrodes 14. Each electrode 13 and 14 is comprised from the electroconductive material. Each of the electrodes 13 and 14 has a cylindrical shape with a rounded tip. The distance between the two voltage electrodes 13 is fixed. Similarly, the distance between the two current electrodes 14 is also fixed. By configuring in this way, fluctuations in the measured impedance value are less likely to occur.

本体部12内には制御算定部(図示せず)が内蔵されている。制御算定部は、上述した各電極13,14に電気的に接続されている。制御算定部12には、例えばマイクロコンピュータ等による公知の制御機構が組み込まれている。また制御算定部12には、公知のインピーダンス測定回路が組み込まれている。制御算定部12は、2個の電流用電極14間に交流電流を流すことができる構成になっている。また制御算定部12は、2個の電圧用電極13間の電圧を測定できる構成になっている。   A control calculator (not shown) is built in the main body 12. The control calculation unit is electrically connected to the electrodes 13 and 14 described above. The control calculation unit 12 incorporates a known control mechanism such as a microcomputer. The control calculation unit 12 incorporates a known impedance measurement circuit. The control calculation unit 12 is configured to allow an alternating current to flow between the two current electrodes 14. The control calculation unit 12 is configured to measure the voltage between the two voltage electrodes 13.

制御算定部12は、0.1〜1mAの交流電流を、一対の電流用電極14の間に流れるように制御することが可能になっている。この通電状態下に、制御算定部12は、電圧用電極13の間の電圧を測定できるようになっている。制御算定部12には、電圧用電極13によって測定された電圧と生体インピーダンスとの関係に関するデータが予めメモリされている。そして測定された電圧と、予めメモリされたデータとに基づいて、生体インピーダンスが表示部15に表示されるようになっている。場合によっては、上述した図3(b)に示す関係を制御算定部12にメモリしておき、体脂肪率そのものを表示部15に表示することもできる。体脂肪率そのものを表示部15に表示させる場合には、猫の体重を初期データとして入力できるようにしておき、体脂肪率の算出を前記の式(2)に従い行うことで、体脂肪率を一層求めることができる。   The control calculation unit 12 can control so that an alternating current of 0.1 to 1 mA flows between the pair of current electrodes 14. Under this energized state, the control calculation unit 12 can measure the voltage between the voltage electrodes 13. The control calculation unit 12 stores in advance data relating to the relationship between the voltage measured by the voltage electrode 13 and the bioelectrical impedance. Based on the measured voltage and data stored in advance, the bioelectrical impedance is displayed on the display unit 15. In some cases, the relationship shown in FIG. 3B can be stored in the control calculation unit 12 and the body fat percentage itself can be displayed on the display unit 15. When the body fat percentage itself is displayed on the display unit 15, the weight of the cat can be input as initial data, and the body fat percentage is calculated according to the above equation (2). You can ask for more.

生体インピーダンスを測定するときに使用する交流電流の周波数は80〜600kHz、特に100〜500kHz、とりわけ200〜400kHzとすることが、電極と皮膚との間の電気抵抗が減り、電極と皮膚の間に多少被毛が挟まれていても、その影響を受けにくく、生体インピーダンスを精度良く測定できる点から好ましい。   The frequency of the alternating current used when measuring the bioimpedance is 80 to 600 kHz, particularly 100 to 500 kHz, and particularly 200 to 400 kHz. This reduces the electric resistance between the electrode and the skin, Even if some hair is sandwiched, it is preferable because it is not easily affected and bioimpedance can be accurately measured.

図6に示す装置を用いて生体インピーダンスを測定するときには、図7に示すように、伏臥状態の猫における正中線に沿った頸部背側から肩胛骨間までの間のいずれかの部位において、被毛をかき分けて皮膚を露出させ、露出した皮膚に測定装置10の電極体11を押し当てる。その状態下に、電流用電極14の間に交流電流を流し、電圧用電極13の間の電圧を測定する。   When the bioimpedance is measured using the apparatus shown in FIG. 6, as shown in FIG. 7, in any part between the back of the neck and the area between the shoulder ribs along the midline in the prone cat, The hair is divided to expose the skin, and the electrode body 11 of the measuring device 10 is pressed against the exposed skin. Under this state, an alternating current is passed between the current electrodes 14 and the voltage between the voltage electrodes 13 is measured.

測定に際して、猫の体が汚れている場合は、予め皮脂を取り除くことが好ましい。例えば有機溶剤を施して皮脂を取り除くことができる。有機溶剤は、これをスポンジ、織布、不織布、脱脂綿等に含浸させて、これらを用いて電極体11を押し当てる部位を拭き取ることができる。有機溶剤としては、例えばエタノール、イソプロピルアルコール等の水溶性のものが用いられる。   In the measurement, if the cat's body is dirty, it is preferable to remove sebum beforehand. For example, an organic solvent can be applied to remove sebum. The organic solvent can be impregnated with sponge, woven fabric, non-woven fabric, absorbent cotton or the like, and can be used to wipe off the portion against which the electrode body 11 is pressed. As an organic solvent, water-soluble things, such as ethanol and isopropyl alcohol, are used, for example.

また、生体インピーダンスを測定する部位に電解液を施すことも好ましい。また、導電性クリームを施すことも好ましい。この理由は、体表面と電極13,14の間に絶縁体である被毛が存在しても、生体インピーダンスを正確に測定することが可能となるからである。電解液としては、例えば塩化カルシウム、塩化ナトリウム、塩化カリウム等の電解質の水溶液を用いることができる。これらの電解液の溶質の濃度は0.03〜10質量%、特に0.2〜10質量%とすることが好ましい。   It is also preferable to apply an electrolytic solution to a site where bioimpedance is measured. It is also preferable to apply a conductive cream. This is because the bioimpedance can be accurately measured even when hair that is an insulator exists between the body surface and the electrodes 13 and 14. As the electrolytic solution, for example, an aqueous solution of an electrolyte such as calcium chloride, sodium chloride, or potassium chloride can be used. The concentration of the solute in these electrolytic solutions is preferably 0.03 to 10% by mass, particularly preferably 0.2 to 10% by mass.

10 生体インピーダンス測定装置
11 電極体
12 本体部
13 電圧用電極
14 電流用電極
15 表示部
DESCRIPTION OF SYMBOLS 10 Bioimpedance measuring apparatus 11 Electrode body 12 Main body part 13 Voltage electrode 14 Current electrode 15 Display part

Claims (5)

伏臥状態の猫における頸部背側から肩胛骨間までの間のいずれかの部位の皮下脂肪又はその下部組織の厚みを測定し、その厚みに基づいて体全体の体脂肪を求める、猫の体脂肪の測定方法。   The body fat of a cat, which measures the body fat of the whole body based on the thickness of the subcutaneous fat or its underlying tissue measured at any site between the dorsal neck of the prone cat and between the shoulder ribs Measuring method. 前記の厚みを、生体インピーダンス、静電容量、超音波、赤外線、CT又はMRIによって測定する請求項1記載の測定方法。   The measurement method according to claim 1, wherein the thickness is measured by bioimpedance, capacitance, ultrasonic waves, infrared rays, CT, or MRI. 前記の厚みを生体インピーダンスによって測定するとともに、測定する部位に、電解液、導電性クリーム又は有機溶剤を施す請求項2記載の測定方法。   The measurement method according to claim 2, wherein the thickness is measured by bioimpedance and an electrolytic solution, a conductive cream, or an organic solvent is applied to a site to be measured. 更に猫の体重に基づいて体全体の体脂肪を求める請求項1ないし3のいずれかに記載の測定方法。   The measurement method according to any one of claims 1 to 3, wherein the body fat of the entire body is further determined based on the weight of the cat. 伏臥状態の猫における頸部背側から肩胛骨間までの間における生体インピーダンスを測定することにより体脂肪率を求める、猫の体脂肪率の測定方法。   A method for measuring the body fat percentage of a cat, wherein the body fat percentage is determined by measuring the bioimpedance between the back of the neck and the shoulder ribs in a prone cat.
JP2009211032A 2009-09-11 2009-09-11 Method for measuring body fat in cats Active JP5386281B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009211032A JP5386281B2 (en) 2009-09-11 2009-09-11 Method for measuring body fat in cats

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009211032A JP5386281B2 (en) 2009-09-11 2009-09-11 Method for measuring body fat in cats

Publications (2)

Publication Number Publication Date
JP2011056139A true JP2011056139A (en) 2011-03-24
JP5386281B2 JP5386281B2 (en) 2014-01-15

Family

ID=43944483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009211032A Active JP5386281B2 (en) 2009-09-11 2009-09-11 Method for measuring body fat in cats

Country Status (1)

Country Link
JP (1) JP5386281B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020197894A (en) * 2019-06-03 2020-12-10 日本ペットフード株式会社 Method for determining health state of companion animal

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003144005A (en) * 2000-12-19 2003-05-20 Nippon Pet Food Kk Electrode for measuring electroconductivity and apparatus for measuring body fat using the same
WO2004112605A1 (en) * 2003-06-19 2004-12-29 Kao Corporation Body fat measuring instrument for pet
JP2005087442A (en) * 2003-09-17 2005-04-07 Tanita Corp Exercise management apparatus for dogs
JP2007175086A (en) * 2005-12-27 2007-07-12 Kao Corp Method for measuring body fat of pet
JP2007175200A (en) * 2005-12-27 2007-07-12 Kao Corp Device for measuring body fat of pet
JP2007195931A (en) * 2005-03-25 2007-08-09 Kao Corp Pet body fat measuring tool
JP2008149016A (en) * 2006-12-19 2008-07-03 Kao Corp Body fat measuring instrument for pet animal

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003144005A (en) * 2000-12-19 2003-05-20 Nippon Pet Food Kk Electrode for measuring electroconductivity and apparatus for measuring body fat using the same
WO2004112605A1 (en) * 2003-06-19 2004-12-29 Kao Corporation Body fat measuring instrument for pet
JP2005087442A (en) * 2003-09-17 2005-04-07 Tanita Corp Exercise management apparatus for dogs
JP2007195931A (en) * 2005-03-25 2007-08-09 Kao Corp Pet body fat measuring tool
JP2007175086A (en) * 2005-12-27 2007-07-12 Kao Corp Method for measuring body fat of pet
JP2007175200A (en) * 2005-12-27 2007-07-12 Kao Corp Device for measuring body fat of pet
JP2008149016A (en) * 2006-12-19 2008-07-03 Kao Corp Body fat measuring instrument for pet animal

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020197894A (en) * 2019-06-03 2020-12-10 日本ペットフード株式会社 Method for determining health state of companion animal
JP2021177421A (en) * 2019-06-03 2021-11-11 日本ペットフード株式会社 Method of determining health condition of companion animals

Also Published As

Publication number Publication date
JP5386281B2 (en) 2014-01-15

Similar Documents

Publication Publication Date Title
US7003346B2 (en) Method for illness and disease determination and management
ES2411513T3 (en) Measurement of excreted fluids from an organ
JP5419861B2 (en) Impedance measuring apparatus and method
US20180177430A1 (en) Impedance methods and apparatuses using arrays of bipolar electrodes
AU2012351988B2 (en) Devices, systems and methods for determining the relative spatial change in subsurface resistivities across frequencies in tissue
US20060161073A1 (en) In vitro and in vivo assessment of organs and tissue and use, transplant, freshness and tissue conditions
CN101998840A (en) Method and device for non-invasive determination of the concentration of a substance in a body fluid
JP3905358B2 (en) Conductivity measuring electrode and body fat measuring device using this electrode
JP5386281B2 (en) Method for measuring body fat in cats
JP4969612B2 (en) Pet body fat measuring instrument
JP4286262B2 (en) Pet body fat measuring instrument
KR20160054188A (en) Apparatus for measuring body composition for an animal
Ahad et al. Finite element analysis of electrical impedance myography in the rat hind limb
JP4664161B2 (en) Optimal electrode position searching method and apparatus for measuring visceral fat and subcutaneous fat of trunk
JP2007000154A (en) Electrode for measuring electroconductivity and apparatus for measuring body fat using the same
Schlebusch et al. Optimal electrode positions to determine bladder volume by bioimpedance spectroscopy
Yaguiyan-Colliard et al. Indirect prediction of total body water content in healthy adult Beagles by single-frequency bioelectrical impedance analysis
JP4740637B2 (en) Trunk visceral fat measurement method and apparatus
Shuai et al. Application of electrical impedance tomography for continuous monitoring of retroperitoneal bleeding after blunt trauma
JP2007175200A (en) Device for measuring body fat of pet
JP4664162B2 (en) Optimal electrode position automatic identification method and apparatus for measuring visceral fat and subcutaneous fat in trunk
JP4740641B2 (en) Trunk subcutaneous fat measuring method and apparatus, trunk visceral / subcutaneous fat measuring method and apparatus
JP2007175086A (en) Method for measuring body fat of pet
WO2023205781A2 (en) Systems and methods of musculoskeletal health and performance assessment
JP4342581B2 (en) Pet body fat measuring instrument

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120607

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130702

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130820

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130910

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131007

R151 Written notification of patent or utility model registration

Ref document number: 5386281

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250